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Abstract

We give a new semi-decision procedure for testing language inclusion of nondeter-
ministic timed automata (NTA). We show that the language generated by a progressive
timed automaton can be tested for inclusion against the language generated by any
NTA. In practice, many timed automata models of actual physical systems are progres-
sive, so that the full expressiveness of NTA can be used to specify real-time properties.
These include models of asynchronous digital circuits. The semi-decision procedure is
also a reduction of the language inclusion problem for NTA to the language inclusion
problem for nondeterministic effective infinite-state w-automata.

1 Introduction

Timed automata (TA) were proposed in [1] as a formalism for the verification of real-time
systems. The formalism has been extensively studied and applied to practical problems.
In the general verification problem, the system and the specification (the desired property)
are modeled as TA, so that the problem reduces to testing language inclusion, which is
undecidable for nondeterministic timed automata (NTA) [1]. One solution, frequently pro-
posed in the literature, is to use, for the specification, a less expressive formalism, in such
a way that the problem becomes decidable. Two such formalisms are deterministic TA [1]
and event-clock TA [2]. On the other hand, the notion of nondeterminism facilitates the
specification of properties and gives rise to, potentially, smaller models. For these reasons,
the investigation of more powerful decision procedures for NTA is a problem of considerable
interest.

In this paper, we give a new semi-decision procedure for testing language inclusion of
arbitrary NTA. The procedure generalizes the region graph [1] used to solve the emptiness
problem. It consists of a subset construction over a parallel composition of the two au-
tomata. The composition is guided by the system model automaton, and the two automata
synchronize through a set of common generic clocks. The undecidability appears in the fact
that the system and the specification may synchronize in such a way that an unbounded
number of generic clocks is needed. However, we can show that the language generated by
a progressive TA can be tested for inclusion against the language generated by any NTA. In
practice, many TA models of actual physical systems are progressive. These include models
of asynchronous digital circuits [3, 7]. In addition, the semi-decision procedure is also a
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reduction of the language inclusion problem for NTA to the language inclusion problem for
nondeterministic effective infinite-state w-automata [10].

The paper is organized as follows. In Section 2 we review the formalism of TA. Section 3
presents the generalization of the region graph, and gives an example for which the semi-
decision procedure does not terminate. In Section 4 we consider the progress condition under
which the procedure will always terminate. Section 5 discusses the problem reduction to
infinite-state w-automata, and Section 6 concludes with some final remarks.

2 Timed Automata

Informally, a timed automaton is a finite-state w-automaton (see Section 4) together with a
finite set of clock variables whose values increase with the passage of time. Every transition
of the automaton has a constraint on the values of the clocks and they can be taken only if
the clocks satisty the constraint. In addition, a transition may reset some of the clocks. TA
accept timed words instead of w-words. A timed word p, over a finite alphabet of symbols
Y, is a pair (o,7) where: 0 = 0109+ is a sequence of symbols 0; € ¥ (an w-word over
Y); and 7 = 7Ty79 -+ is an strictly increasing sequence of time values 7; € R (the set of
non-negative real numbers), 7; > 0, satisfying the progress property: for every t € R, there
is some ¢ > 1 such that 7, > ¢t. In a timed word (o, 7), the time value 7; is interpreted as
the time when event o; occurs. Given a finite set X of clock variables, a clock constraint §
over X is defined inductively by ¢ := = < c|c < x|—d|d; Ad2, where z € X and ¢ € Q (the
set of non-negative rational numbers). The set of all clock constraints over X is denoted by
d(X).
A timed Bichi automaton A is a tuple (X, Q, Qo, X, T, F'), where

e ) is a finite alphabet of symbols;

e (Q is a finite set of locations;

Qo C Q is a set of start locations;

X is a finite set of clocks;

T CQxQxXx2% x®(X) is a set of transitions. For a transition {(g,q,a, ), )
from location ¢ to location ¢’, on symbol a, § gives the constraint to be satisfied and
A gives the set of clocks to be reset;

e ' C Q is a set of accepting locations.

The language accepted by A is obtained by defining runs of A over timed words. For
this, let a clock interpretation for X be a function from X to R, that is, a particular reading
of the clocks in X. A generalized location of A has the form (q,v), where ¢ € @ and v is
a clock interpretation for X. For ¢t € R, we write v + ¢ for the clock interpretation which
maps every clock = to v(z) +t. A clock interpretation v for X satisfies a clock constraint
d over X iff ¢ evaluates to true when each clock z is replaced by v(z).

A run r = (q,7), of a TA A over a timed word p = (0, 7) is an infinite sequence of
generalized locations of the form r : (qo,0) — (q1,v1) = (g2, 2) — ---, satisfying:
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e [nitiation: qy € Qo, and vy(z) =0 for all z € X;;

e Consecution: for alli > 1, there exists (g;—1, ¢i, 0i, \i, 0;) € T such that (v;_1+7;,—7;—1)
satisfies 0;, and v;(z) =0 if x € A\; and v;(x) = v;—1 + 7; — T,—1 otherwise (19 = 0, by
definition).

Given a run r = (g,7) over a timed word p = (o,7), let inf(r) be the set of lo-
cations such that ¢ € inf(r) iff ¢ = ¢; for infinitely many ¢ > 1. The run r over p
is called an accepting run iff inf(r) N F # (0. Finally, the language accepted by A is
L(A) = {(o,7)| A has an accepting run over (o, 7)}.

One natural way to define the verification problem is to model both the system and
the specification (the desired property) as TA. Throughout the paper, A; and As always
denote the TA giving the system and the specification, respectively. The system satisfies
the specification iff L(A;) C L(Az). For deterministic! Ay, the language inclusion problem

reduces to testing emptiness of L(A;) N L(Az), which is decidable [1].

The emptiness problem for a TA A reduces to searching for a special cycle in a so called
region graph, which is constructed from an equivalence relation on the set of generalized
locations of A [1]. In the next section, we define a generalization of this region graph, which
can be used, in many cases, to decide the language inclusion problem for NTA.

3 The Subset Construction Region Graph

Let Al = <27Q17Q017X17T17F1> and AQ = <Z,Q2,Q02,X2,T2,F2>. As in [1], we assuine,
without loss of generality, that all the constants in all the clock constraints of 4; and A5 are
integers. We also assume that A; and Ay are disjoint, except for the alphabet >. Since we
cannot complement Ay in general [1], in order to cope with the nondeterminism we use the
standard idea of a subset construction, applied on a parallel composition of the generalized
locations of A; and A;. We will not formally define the parallel composition or the subset
construction. These concepts will be implicitly used in the definition of a graph G over
which the semi-decision procedure is obtained. The composition is guided by A;, that is,
we take care of only the timed words which have some run of A; over it. This is because
L(A;) C L(Ay) iff every timed word that has an accepting run of 4; over it, also has an
accepting run of Ay over it.

Let A; and Ay denote, respectively, the set of all generalized locations of A4; and As.
The basic mathematical object used, from now on, is what we call a composite pair for Ay
and Ag, which has the form (p,s), where p is a finite subset of A, and s is a finite subset
of As. We denote by P the set of all composite pairs for A; and As.

'A timed automaton is said to be deterministic iff (1) |Qo| = 1, and (2) given any two transitions
{(q1,41,a1, 1,01) and {g2,qb,a2,X2,d2) in T, if 1 = g2 and a1 = a2, then &1 A J> is unsatisfiable. The
interesting property of every deterministic timed automaton is that they have at most one run over every
timed word.
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3.1 Generic Clocks and the Equivalence Relation

The set P is uncountable. As in [1], we define an equivalence relation ~ over P from which
we obtain the graph G. It will turn out that the number of equivalence classes in ~ is
countable, but it is not finite. However, for many interesting instances of the language
inclusion problem, G will be finite, a fact that will guarantee termination of the procedure.
In order to define the equivalence relation, we need to introduce the idea of a generic clock.
We start with the following discussion.

Consider a finite timed word ¢ = (01, 71) = (02,72) = -+ = (04, 7). Let (py,s,) be
a composite pair, where p, = {(¢,v)| there is a finite run (qgo, o) = (q1,71) = (g2, 12) —

— (g, ) of Ay over g}; and let s, be defined in the same way for Az. Also, let Dy, o) =
{t € R|t is in the range of some clock interpretation in p, or in s,}. The composite pair
(Do, So) records enough information to determine the future behavior of A; and Ay over any
timed word having o as a prefix. Now consider another finite timed word o' = (o}, 7{) —
(09, 73) = -+ = (0j,1,Ti;1), such that ¢’ has ¢ as a prefix. Then, [py| can be as high as
k1 times |p,|, where ki is the degree of nondeterminism? of A;. The same is true for |s,/|,
ky and |s,|. It is interesting to note, however, that |D(pg:,sg:>| is, at most, |Dy,, ;v + 1.

Let o denote the greatest constant appearing in the clock constraints of A; and As.
A value t € R is called relevant if t < «, and irrelevant otherwise. The above discussion
motivates the definition of a generic clock. Informally, given a composite pair (p,s), we
interpret each relevant value in Dy, ;) as being held by a generic clock; and all the irrelevant
values in D, ,y as being held by a single generic clock. The traditional equivalence relation
over the set of clock interpretations [1] is, instead, applied over the set of generic clock
interpretations. Let us formalize these notions.

Generic Clocks. Let 1 be a special symbol representing any value in the interval («a, 00).
By definition, 1> «. Given a composite pair (p, s), we define the set R, ,, C [0,a] U {1}

as follows: let Rzp 5 = {d e R|d € Dy, and d is relevant}. If there is an irrelevant value

in D(p,5>, then R(p,s) = Rl(p,s) U {1}, otherwise R(p,s) = Rl(p,s)'
clock variables, C, o = {c1,¢2,..., C\R(p,s>\} for (p,s). The generic clock interpretation

We create a set of generic

N(p,s) 15 defined as the unique bijective function 1, oy : Cpp, oy — Ry ) satistying 7, o (c1) <
17<pys>(cz) < < Nepys) (C|R(p,s)‘), that is, the generic clock ¢; holds the ¢-th smaller value
in Ry ). A generic clock ¢; is said to be irrelevant to g, s if 77(p,s>(Ci) =71, and relevant
otherwise. Note that at most one generic clock is irrelevant to a clock interpretation.
Given two composite pairs (p,s) and (p', s'), if |Ry, | = [ Ry «], then we interpret the
two sets C', 5y and Oy oy as being the same set of generic clock variables. The function
N(p,s) induces, for each (q,v) € p, a function p : X7 — Clp,s) that associates to each clock

x € X, the generic clock which holds the value v(x), that is, u(z) = 77(;15>(u(:v)) ifv(z) <a

and p(x) = 77(_pls>(T) otherwise. The generalized location (gq,v) is, then, represented by a
pair (q,p), which we call a position of A;. Note that two different generalized locations

>The degree of nondeterminism of a timed automaton (X, Q, Qo, X, T, F') is the cardinality of the greatest
set £ C T such that all transitions in E originate in the same location, are on the same symbol, and the
conjunction of their clock constraints can be satisfied.
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can be associated to the same position. This is because all values greater than « are
mapped to 1. For a composite pair (p, s), we define the set of positions of A; as Py, ) =
{{g, ) | (g, ) represents some (g,v) € p}. Similarly, we define the set S, ,, with respect to
As.

D,5)

The Equivalence Relation. Now we define the equivalence relation ~ over the set of
composite pairs (compare to [1]). Given a number ¢ € R, [#| denotes the greatest integer
smaller than or equal to ¢, and fr(t) = ¢t — |t] denotes the fractional part of ¢. Define
(p,s) ~ (¢, s") iff:

e same set of generic clocks: C, oy = Cuy 1)

e same sets of positions: P, o = P,

p.s)s and Sy gy = S o3
o cquivalent generic clocks interpretations:

— irrelevant clock: for each z € Cy, 4y, M(p s (2) =T HE 1 oy (2) =13
— relevant clocks:

* for each x € Cy,, and relevant to 1,4, [ (T)] = |14,y (7)] and
fr(n(p,s) (*T)) =0 iff fr(n(p’,s’)(x)) =0;

* for each pair z and y in Oy, o, both relevant to 7, o,
fr(n(p,s) (:L‘)) < fr(n(p,s) (y)) iff fr(n(p’,s’>($)) < fr(n(p’ s’)(y))v and
fr(1p,s) () = fr((p,5) (y)) HE Lr (g 5y (2)) = fr (0,51 (y)-

The relation ~ records, for each generic clock, the interval from {0, 0], (0,1), [1,1], (1,2),
..., [a,a], (1)} where the clock is contained. Note that any two clocks in the same interval
satisfy the same set of clock constraints. To correctly update this information, the relation
also records the order of the fractional parts for the relevant clocks. Nothing is needed,
however, for clocks whose values are greater than «, since all of them satisfy the same set of
clock constraints. We refer the reader to [1] for a detailed discussion about this equivalence
relation. In the sequel, we write [(p, s)] for the equivalence class to which (p, s) belongs.

We finish this section noting that the number of equivalence classes of ~ is not finite,
since there is no bound on the number of generic clocks. However, it is important to note
that the number of equivalence classes with at most K generic clocks is finite. Let Vi
denote the set of all equivalence classes with exactly K generic clocks. The following bound
holds (compare to [1]):

Vic| < 20@IET S ol@a K12l o0 L VK« KT

3.2 Time Successors and the Graph G

Let IIp denote the set of all equivalence classes of the relation ~ over P. We define now the
subset construction region graph G = (V, E). Its vertex set V is a subset of IIp x {1,2}.
The reason why we need two copies of each equivalence class will be clear soon. G has a
unique initial vertex (vp, 1), and each edge is labelled with one symbol from ¥ U {>}. The
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new symbol > represents a passage of time. Any edge from a vertex (—, 1) goes to a vertex
(—,2), and it has label >. Any edge from a vertex (—,2) goes to a vertex (—, 1), and it has
label a, for some ¢ € X. Thus, the graph G is bipartite. The edge relation is defined in
such a way that the graph is “deterministic”, in the following sense: let a run of G be an
infinite sequence of the form: (vg,1) = (v1,2) = (vg, 1) =2 -+, such that, for all 7 > 0,
there is an edge from (v;, —) to (vi41, —) with label o;4;. Given a timed word p = (o, 7),
there exists, at most, one run (vg,1) — (v1,2) — (va,1) — (v3,2) = (v4,1) —> ---
of G, such that, for every ¢ > 1, the following holds: [(p,,, S,,)] = v2i, where p; is the finite
timed word (o1, 71) — (02,72) = -+ = (04, 7;). We refer to this run as the run of G over
the timed word p. The undecidability of the inclusion problem manifests itself in the fact
that G may be an infinite graph. In Section 4 we give some sufficient conditions for G to
be finite. Once G is finite, we show how one can obtain two Buchi w-automata By and Bo
such that L(B;) C L(Bg) iff L(A;) C L(Az). Thus, the problem will be reduced, in this
case, to language inclusion of w-automata.

The graph G is constructed inductively, from the initial vertex, by the definition of the
edge relation. As in [1], we use the convenient notion of a time successor of an equivalence
class to define the edge relation. In order to obtain an effective computational procedure,
instead, one should define a representation for the equivalence classes and define the edge
relation directly between the vertices. This can certainly be done, although with the cost
of considering many different cases in the definition of the edge relation.

Time Successors. Let v be an equivalence class. Consider a composite pair (p, s) in v.
Given t € R, let (p, s) +t denote the composite pair obtained from (p, s) by replacing every
clock interpretation v in p or in s, by v + t. An equivalence class v’ is a time successor of
v iff, given (p, s) in v, v' = [(p,s) + t], for some ¢t € R, ¢t > 0. Any equivalence class v has
finitely many time successors, since the number of generic clocks in any time successor of
v is, clearly, smaller than or equal to the number of generic clocks in v. In particular, for
any t; and to, both greater than «, [(p,s) + t1] = [(p, s) + t2], which is an equivalence class
with only one irrelevant generic clock.

The graph G. The graph G has a unique initial vertex (v, 1), where vy = [(po, so)] and
po = {(¢, ) | ¢ € Qo }, and vy is the clock interpretation which maps each z € X to zero.
The same definition applies to sy with respect to Ay. Note that, in fact, (pg,so) is the
unique composite pair in vg. A vertex (v, 1) has an edge with label > to a vertex (v, 2) iff
v’ is a time successor of v. A vertex (v,2) has an edge with label a € ¥ to a vertex (v',1)
iff:

e Given a composite pair (p, s) in v, the following conditions hold:

1. Given a generalized location {(g,v) in p, there is a transition (¢, —, a,—,d) in 17,
such that v satisfies §; and

2. v =[{p',s")], where:

—p' ={(¢, V)] thereis (¢,v) in p, and (g, ¢, a, A, ) in T, such that v satisfies
d, and for each z € X1, V/(z) =0 if z € X, and /(z) = v(z) otherwise};
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1
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Ay - _‘> Az \(1_1/:6?:0 \‘1_2/ :cazl

Figure 1: An instance for which G is infinite

L

— ' ={(¢, V)] thereis (¢q,v) in s, and (g, q’,a, A, 0) in Tb, such that v satisfies
d, and for each z € X, V/(z) =0 if z € A, and /'(z) = v(z) otherwise}.

Note that there is at most one edge out of a vertex (v,2) for each symbol in ¥, and
that there may be a vertex (v,2) such that there is no edge out of (v,2). But, the initial
vertex and condition 1. guarantee that for every vertex (v,1) € V, the Aj-component is
nonempty, that is, p is nonempty for every composite pair (p, s) in v. On the other hand,
the As-component may be empty. We now give an example of an instance for which G is
infinite.

Example of Infinite G. Counsider the instance in Fig. 1. The automaton Ay is the
traditional example of a noncomplementable NTA [1]. Clearly, L(A;) € L(A3). Consider
the following finite timed words ¢; = (a,1 —1/2') = (a,1 —1/22) = (a,1 —1/2%) = ... —
(a,1 —1/2%), i > 1. The problem occurs because p; has i + 1 different finite runs of Aj
over it, and the clock x is reset at distinct times for each run. Hence D<p9i759i> has s+ 1
distinct and relevant values, so that [(py,,s,;)] has i + 1 generic clocks. For any i > 1,
there is a timed word p;, having g; as a prefix and such that A; has a run over p;. Thus,
if we try to construct G we will need an infinite sequence of distinct vertices of the form:

>

(vo, 1) = (=,2) = ([{Per, 50,)], 1) = (=,2) = ([(Po2 502)], 1) — -+

4 Progressive Automata

In the above example, the automaton 4; has runs over timed words where an arbitrary
number of events can happen in a time interval of unit length. Allowing this property in
the system model may drastically affect the complexity of the decision problems—it is an
essential property in the proofs of the undecidability results about NTA [1, 5]. One may
argue that a system model which can generate arbitrarily many discrete events in a finite
interval of time is not realistic, since this is not physically realizable. In fact, many TA
models of actual physical systems satisfy the property that there is a constant K such that
at most K discrete events can happen, in any run, in a time interval of unit length. We say
that these TA are progressive. For instance, in [3, 7] a TA model for asynchronous circuits is
proposed. Every logical gate is followed by a delay element constraining, between lower and
upper bounds, the rising and falling (which are the discrete events) of the digital signals.
The lower bound is a positive constant, such that any cycle in the model takes at least k
time units to complete, for some positive constant k, and so, the automata are progressive;
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see also [6] where this same discussion occurs in a similar formalism. It is worth noting that
the progress requirement does not nullify the dense time assumption. In fact, one of the
results in [3] is that cyclic circuits in that model, in general, do not admit discretization.

We can show that when the system model A; is progressive, the graph G is finite for
any nondeterministic A,. Thus, one may use the full expressive power of NTA to specify
real-time properties.

Theorem 1 If A, is progressive, then G is finite.

Proof 1 (Outline) From the definitions, if there is an edge from a vertex (v,2), where v
has n generic clocks, to a vertex (v', 1), then v’ has, at most, n + 1 generic clocks. Since the
number of equivalence classes with at most k& generic clocks is finite, then G is infinite iff,
for every natural k£ > 0, G has a vertex (v, 1), where v has exactly &k generic clocks.

Let N be a constant such that for every timed word that has a run of A; over it,
any sequence of N events takes more than a time units. This constant exists since Ay
is progressive. Assume that G has a vertex (v,1), where v has N + 2 generic clocks.
By definition, there are N + 1 relevant generic clocks in v. We can show, also from the
definitions, that the relevant generic clock holding the greatest value in v represents some
clock, in some finite run of A4; or Ao, that is not reset by the last NV transitions, for all finite
timed words such that the run of G over them ends in (v,1). This is a contradiction to the
fact that this generic clock is still relevant. O

We finish this section noting that the progressiveness of A; is a sufficient but not nec-
essary condition for the finiteness of G. As an example, consider the instance of Fig. 1. If
we remove the command z := 0 from the transition from ¢; to g2 in As, the graph G be-
comes finite, in spite of the non-progressiveness of A;. Another sufficient, although hardly
acceptable, condition for the finiteness of G is that every clock be reset, at least once, in
every cycle of A; and A,.

4.1 Obtaining the w-Automata.

In [1], given a timed automaton A, an w-automaton B is obtained from the region graph
R(A), such that L(A) = 0 iff L(B) = (). To this end, a correspondence between the runs
of A and the runs of R(A) is established through the concept of a progressive run of R(A).
This correspondence readily generalizes to our subset construction.

For a given equivalence class v, we define the set P, of positions of .A; as being equal to
the set P, 5y for some composite pair (p,s) € v (by definition, the set of positions of A; is
the same for every composite pair in v). The same definition holds for S,, with respect to
Ag. Consider an edge from a vertex (v,2) to a vertex (v,1) with label a, for some a € X.
This edge naturally induces a relation between the positions in P, and the positions in P,.
We say that a position (¢, ) in P, is a-linked to a position (¢/, u') in Py iff:

e (g, ) represents some generalized location (g, v), and (¢', u') represents some general-
ized location (¢’,'); and there is a transition (q,q’,a, A, d) in T, such that: v satisfies
d, and for each z € X1, V/(z) =0 if z € X, and /(z) = v(z) otherwise.
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Also, consider an edge from a vertex (v, 1) to a vertex (v',2) with label >. We say that a
position (g, u) in P, is >-linked to a position (¢', ') in P, iff:

e (g, ) represents some generalized location (q,v), and (¢’, ') represents some gener-
alized location (¢',7'); and, for some t € R, ¢ > 0, (¢, ') = (¢, V) + t.

Analogously, we can define the “linked” relation between the positions in S, and S},
with respect to Ay. Given a run r = (vg,1) = (v1,2) 2 (v,1) 25 -+ of G, let an
Ai-run of r be an infinite sequence momims - - - of positions of A;, such that, for all 7 > 0,
m; € P,,, and m; is o;41-linked to m;1;. In a position m = (g, ), the function p maps
each clock  in X; to a generic clock ¢; which is contained in exactly one interval from
{[0,0], (0,1),[1,1],(1,2),...,[a, ], (1)}. We already known, by the definition of G, that
every timed word that has some run of Ay over it, has a run of G over it. In a timed word
p, time diverges, so that if  is the run of G over p, then, in every A;-run of r, every clock
z in X is either reset (mapped to [0,0]) infinitely often, or, after some time, it increases
without bound (is continuously mapped to (1)) [1]. Such A;-runs are called progressive.
Call a run of GG progressive iff it has a progressive A;-run. The correspondence states that,
for every progressive run r of G, we can find a timed word p such that r is the run of G
over p [1]. Then, clearly, either all A;-runs of r are progressive, or none is progressive.

We treat first the case where A; is known, in advance, to be progressive. In this
case, all runs of G are progressive. Afterwards, we discuss how to treat any 4;. Assume
that Ay is progressive. Given a run r of G, consider the set R, of timed words R, =
{p|r is the run of G over p}. We have |R,| > 1 (by the above discussion). We say that a

position (g, p) is Aj-accepting iff ¢ € Fy. A run r = (vg,1) =5 (v1,2) 2 (v9,1) 25 -+
of G is Aj-accepting iff there is an A;-run mgmymes--- of r, such that for infinitely many

i > 0, my; is Aj-accepting. The same definitions hold with respect to As. Then, either all
timed words in R, are accepted by A; or all timed words in R, are rejected by A;. The
same holds for A4s. Finally, the language inclusion problem reduces to verifying that, for
every run r of G, if r is A;-accepting, then r is As-accepting.

We need to cope with a known difficulty of applying a subset construction to a Buchi
automaton. Consider a run r = (vg,1) = (v1,2) = (v, 1) =25 - of G. We cannot say
that r is Aj-accepting if, for infinitely many ¢ > 0, there is a A;-accepting position in P,,.
We refer the reader to [9] for a solution to this difficulty, in the context of w-automata. As
we will see, instead of trying to solve this directly on G, we will consider a nondeterministic
image® of G' (somehow undoing the subset construction), so that the obtained w-automata
will be nondeterministic and the mentioned difficulty is deferred to the algorithms for the
language inclusion problem for nondeterministic w-automata.

w-Automata. A Bichi w-automaton B is a tuple (A, Q, Qp, T, F), where
e A is a finite alphabet of symbols;

e (Q is a finite set of states;

3This is inspired by the deterministic image of a nondeterministic automaton [4].
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e Qo C Q is a set of initial states;
e T'C () x @ x Ais a set of transitions;
e ' C @ is a set of final states.

A run r of B, over an w-word 0 = oy09---, is an infinite sequence ryriry--- of states,
such that ry € Q, and for all 4 > 1, (r;_1,7,04) € T. A run r is said to be accepting iff,
for infinitely many ¢ > 1, r; € F. The automaton B accepts an w-word o iff there is an
accepting run of B over o. The set L(B) of w-words accepted by B is its language.

The Nondeterministic Image. The nondeterministic image encodes the runs of G in
the alphabet of the w-automata. Let P = {m|m € P, for some (v,—) € V} be the set
of all pOSitiOHS of .Al in G. Then, Bl = (A, Ql, Q017T17F1> and 82 = (A, QQ, QUZ,TQ,FQ>,
where A = {¥ U {p}} x V. For By, we have: Q1 =V x P; Qo; = {({(vo,1),m)|m € P, };
Ty = {{({{v,2),m), {{(v', 5),m"), (o, (v, 5)))|m € P,, m'" € P,, there is an edge from (v, i)
to (v, j) with label o, and m is o -linked to m'}; F; = {{(v,1),m)|m is Aj-accepting}.
For Bs, the same definitions hold, changing S for P, A, for Ay, and S, for P,. Then, the
following theorem holds. Its proof is based on the correspondence between runs of A; and
As, and runs of G; and on the correspondence between runs of G and runs of B and Bs:

Theorem 2 L(A;) C L(As) iff L(B1) C L(B3). 0

Non-progressive A4;. In this case, there may be a run r of G, such that |R,| = 0. The

definition of acceptance for runs of G need to be changed. Now, a run r = (v, 1) =

(v1,2) 25 (v9,1) 2 -+ of G is Aj-accepting iff there is an A;-run mgmyms - - - of r, such
that for infinitely many ¢ > 0, m; is Aj-accepting; and for every clock z € X, for infinitely
many ¢ > 0, m; = (gj, ;) and p; maps z to [0,0] or to (1).

From the automaton Bi, one can easily obtain an new automaton C; that accounts for
this new condition, in a standard way. If X, = {z1,z9,...,2,}, then C; is made of n + 1
copies of B;. The new state space is V' x P x {1,2,...,n + 1}. While reading an w-word,
the control starts in the first copy, and jumps to the second copy as soon as it gets in a
state ((v,1), (g, u),1), where p maps z; to [0,0] or to (1). This process repeats for every
clock until the control reaches the last copy. Then it jumps back to the first copy, as soon
as it gets in a state ({v, 1), m,n + 1), where m is Aj-accepting. The new set of final states
is {((v,1), m,n + 1) | m is A;-accepting}.

5 Effective Infinite-State w-Automata

The semi-decision procedure presented above can be viewed as a reduction of the language
inclusion problem for NTA to the language inclusion problem for nondeterministic effective
infinite-state w-automata [10]. An infinite-state w-automaton B = (A, Q, Qo, T, F') is effec-
tive if the sets A, Q, Qo,T and F' are all recursive. That is, the sets may be infinite, but
they are enumerable, and there is a Turing Machine Mp that takes as input four integers



Language Inclusion for Timed Automata 11

w, x, y and z, always halts, and accepts the input iff: z € Aifw =1; 2z € Q if w = 2;
z € Qifw=3; (z,y,2) € Tif w=4; and z € F if w =5 [10]. The machine Mz can itself
be encoded as an integer #B, which is called the index of B.

Given any two NTA A; and Ay, we can easily derive, from the semi-decision procedure,
two indexes #B7 and #Bo, for two nondeterministic effective infinite-state w-automata B
and Bz, respectively, such that L(A;) C L(Asg) iff L(By) C L(By). This gives a pleasant®
way to show that language inclusion problem and the universality problem for NTA are
in I1}, since the language inclusion problem for nondeterministic effective infinite-state w-
automata is known to be IIi-complete [10] (we refer the reader to [8] for an introduction to
the analytical hierarchy). The current complexity lower bound for the language inclusion
problem and the universality problem for NTA is II}-hard [1]. The exact position of these
undecidable problems in the analytical hierarchy is an interesting open problem.

6 Conclusions

In this paper, we presented a generalization of the region graph for NTA, which leads
to a semi-decision procedure for testing language inclusion of NTA. We showed that TA
models of real-time systems, satisfying a progress requirement, can be tested against any
NTA. Interestingly enough, the semi-decision procedure is also a reduction of the language
inclusion problem for NTA to the language inclusion problem for nondeterministic effective
infinite-state w-automata.

The method is, as one should expect, extremely expensive from a practical point of
view. The procedure reduces the language inclusion problem for NTA to the language
inclusion problem for nondeterministic w-automata. The size of the latter problem is doubly
exponential in the number of clocks, and exponential in the number of locations of the TA
involved. Thus, one direction for future work is the development of heuristic methods and
symbolic techniques for the problem.

Another direction is the interesting theoretical question about the exact position of
the language inclusion problem and the universality problem for NTA in the analytical
hierarchy. They are I1}-hard [1], and belong to II3 (as a corollary of Section 5).
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