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amp.brAbstra
tWe give a new semi-de
ision pro
edure for testing language in
lusion of nondeter-ministi
 timed automata (NTA). We show that the language generated by a progressivetimed automaton 
an be tested for in
lusion against the language generated by anyNTA. In pra
ti
e, many timed automata models of a
tual physi
al systems are progres-sive, so that the full expressiveness of NTA 
an be used to spe
ify real-time properties.These in
lude models of asyn
hronous digital 
ir
uits. The semi-de
ision pro
edure isalso a redu
tion of the language in
lusion problem for NTA to the language in
lusionproblem for nondeterministi
 e�e
tive in�nite-state !-automata.1 Introdu
tionTimed automata (TA) were proposed in [1℄ as a formalism for the veri�
ation of real-timesystems. The formalism has been extensively studied and applied to pra
ti
al problems.In the general veri�
ation problem, the system and the spe
i�
ation (the desired property)are modeled as TA, so that the problem redu
es to testing language in
lusion, whi
h isunde
idable for nondeterministi
 timed automata (NTA) [1℄. One solution, frequently pro-posed in the literature, is to use, for the spe
i�
ation, a less expressive formalism, in su
ha way that the problem be
omes de
idable. Two su
h formalisms are deterministi
 TA [1℄and event-
lo
k TA [2℄. On the other hand, the notion of nondeterminism fa
ilitates thespe
i�
ation of properties and gives rise to, potentially, smaller models. For these reasons,the investigation of more powerful de
ision pro
edures for NTA is a problem of 
onsiderableinterest.In this paper, we give a new semi-de
ision pro
edure for testing language in
lusion ofarbitrary NTA. The pro
edure generalizes the region graph [1℄ used to solve the emptinessproblem. It 
onsists of a subset 
onstru
tion over a parallel 
omposition of the two au-tomata. The 
omposition is guided by the system model automaton, and the two automatasyn
hronize through a set of 
ommon generi
 
lo
ks. The unde
idability appears in the fa
tthat the system and the spe
i�
ation may syn
hronize in su
h a way that an unboundednumber of generi
 
lo
ks is needed. However, we 
an show that the language generated bya progressive TA 
an be tested for in
lusion against the language generated by any NTA. Inpra
ti
e, many TA models of a
tual physi
al systems are progressive. These in
lude modelsof asyn
hronous digital 
ir
uits [3, 7℄. In addition, the semi-de
ision pro
edure is also a1



2 A. V. Moura and G. A. Pintoredu
tion of the language in
lusion problem for NTA to the language in
lusion problem fornondeterministi
 e�e
tive in�nite-state !-automata [10℄.The paper is organized as follows. In Se
tion 2 we review the formalism of TA. Se
tion 3presents the generalization of the region graph, and gives an example for whi
h the semi-de
ision pro
edure does not terminate. In Se
tion 4 we 
onsider the progress 
ondition underwhi
h the pro
edure will always terminate. Se
tion 5 dis
usses the problem redu
tion toin�nite-state !-automata, and Se
tion 6 
on
ludes with some �nal remarks.2 Timed AutomataInformally, a timed automaton is a �nite-state !-automaton (see Se
tion 4) together with a�nite set of 
lo
k variables whose values in
rease with the passage of time. Every transitionof the automaton has a 
onstraint on the values of the 
lo
ks and they 
an be taken only ifthe 
lo
ks satisfy the 
onstraint. In addition, a transition may reset some of the 
lo
ks. TAa

ept timed words instead of !-words. A timed word �, over a �nite alphabet of symbols�, is a pair (�; �) where: � = �1�2 � � � is a sequen
e of symbols �i 2 � (an !-word over�); and � = �1�2 � � � is an stri
tly in
reasing sequen
e of time values �i 2 R (the set ofnon-negative real numbers), �i > 0, satisfying the progress property: for every t 2 R, thereis some i � 1 su
h that �i > t. In a timed word (�; �), the time value �i is interpreted asthe time when event �i o

urs. Given a �nite set X of 
lo
k variables, a 
lo
k 
onstraint Æover X is de�ned indu
tively by Æ := x � 
 j 
 � x j :Æ j Æ1^ Æ2, where x 2 X and 
 2 Q (theset of non-negative rational numbers). The set of all 
lo
k 
onstraints over X is denoted by�(X).A timed B�u
hi automaton A is a tuple h�; Q;Q0;X; T; F i, where� � is a �nite alphabet of symbols;� Q is a �nite set of lo
ations;� Q0 � Q is a set of start lo
ations;� X is a �nite set of 
lo
ks;� T � Q � Q � � � 2X � �(X) is a set of transitions. For a transition hq; q0; a; �; Æifrom lo
ation q to lo
ation q0, on symbol a, Æ gives the 
onstraint to be satis�ed and� gives the set of 
lo
ks to be reset;� F � Q is a set of a

epting lo
ations.The language a

epted by A is obtained by de�ning runs of A over timed words. Forthis, let a 
lo
k interpretation for X be a fun
tion from X to R, that is, a parti
ular readingof the 
lo
ks in X. A generalized lo
ation of A has the form hq; �i, where q 2 Q and � isa 
lo
k interpretation for X. For t 2 R, we write � + t for the 
lo
k interpretation whi
hmaps every 
lo
k x to �(x) + t. A 
lo
k interpretation � for X satis�es a 
lo
k 
onstraintÆ over X i� Æ evaluates to true when ea
h 
lo
k x is repla
ed by �(x).A run r = (q; �), of a TA A over a timed word � = (�; �) is an in�nite sequen
e ofgeneralized lo
ations of the form r : hq0; �0i ! hq1; �1i ! hq2; �2i ! � � � , satisfying:



Language In
lusion for Timed Automata 3� Initiation: q0 2 Q0, and �0(x) = 0 for all x 2 X;� Conse
ution: for all i � 1, there exists hqi�1; qi; �i; �i; Æii 2 T su
h that (�i�1+�i��i�1)satis�es Æi, and �i(x) = 0 if x 2 �i and �i(x) = �i�1 + �i � �i�1 otherwise (�0 = 0, byde�nition).Given a run r = (q; �) over a timed word � = (�; �), let inf(r) be the set of lo-
ations su
h that q 2 inf(r) i� q = qi for in�nitely many i � 1. The run r over �is 
alled an a

epting run i� inf(r) \ F 6= ;. Finally, the language a

epted by A isL(A) = f(�; �) j A has an a

epting run over (�; �)g.One natural way to de�ne the veri�
ation problem is to model both the system andthe spe
i�
ation (the desired property) as TA. Throughout the paper, A1 and A2 alwaysdenote the TA giving the system and the spe
i�
ation, respe
tively. The system satis�esthe spe
i�
ation i� L(A1) � L(A2). For deterministi
1 A2, the language in
lusion problemredu
es to testing emptiness of L(A1) \ L(A2), whi
h is de
idable [1℄.The emptiness problem for a TA A redu
es to sear
hing for a spe
ial 
y
le in a so 
alledregion graph, whi
h is 
onstru
ted from an equivalen
e relation on the set of generalizedlo
ations of A [1℄. In the next se
tion, we de�ne a generalization of this region graph, whi
h
an be used, in many 
ases, to de
ide the language in
lusion problem for NTA.3 The Subset Constru
tion Region GraphLet A1 = h�; Q1; Q01;X1; T1; F1i and A2 = h�; Q2; Q02;X2; T2; F2i. As in [1℄, we assume,without loss of generality, that all the 
onstants in all the 
lo
k 
onstraints of A1 and A2 areintegers. We also assume that A1 and A2 are disjoint, ex
ept for the alphabet �. Sin
e we
annot 
omplement A2 in general [1℄, in order to 
ope with the nondeterminism we use thestandard idea of a subset 
onstru
tion, applied on a parallel 
omposition of the generalizedlo
ations of A1 and A2. We will not formally de�ne the parallel 
omposition or the subset
onstru
tion. These 
on
epts will be impli
itly used in the de�nition of a graph G overwhi
h the semi-de
ision pro
edure is obtained. The 
omposition is guided by A1, that is,we take 
are of only the timed words whi
h have some run of A1 over it. This is be
auseL(A1) � L(A2) i� every timed word that has an a

epting run of A1 over it, also has ana

epting run of A2 over it.Let A1 and A2 denote, respe
tively, the set of all generalized lo
ations of A1 and A2.The basi
 mathemati
al obje
t used, from now on, is what we 
all a 
omposite pair for A1and A2, whi
h has the form hp; si, where p is a �nite subset of A1, and s is a �nite subsetof A2. We denote by P the set of all 
omposite pairs for A1 and A2.1A timed automaton is said to be deterministi
 i� (1) jQ0j = 1, and (2) given any two transitionshq1; q01; a1; �1; Æ1i and hq2; q02; a2; �2; Æ2i in T , if q1 = q2 and a1 = a2, then Æ1 ^ Æ2 is unsatis�able. Theinteresting property of every deterministi
 timed automaton is that they have at most one run over everytimed word.



4 A. V. Moura and G. A. Pinto3.1 Generi
 Clo
ks and the Equivalen
e RelationThe set P is un
ountable. As in [1℄, we de�ne an equivalen
e relation � over P from whi
hwe obtain the graph G. It will turn out that the number of equivalen
e 
lasses in � is
ountable, but it is not �nite. However, for many interesting instan
es of the languagein
lusion problem, G will be �nite, a fa
t that will guarantee termination of the pro
edure.In order to de�ne the equivalen
e relation, we need to introdu
e the idea of a generi
 
lo
k.We start with the following dis
ussion.Consider a �nite timed word % = (�1; �1) ! (�2; �2) ! � � � ! (�i; �i). Let hp%; s%i bea 
omposite pair, where p% = fhq; �i j there is a �nite run hq0; �0i ! hq1; �1i ! hq2; �2i !� � � ! hq; �i of A1 over %g; and let s% be de�ned in the same way for A2. Also, let Dhp%;s%i =ft 2 R j t is in the range of some 
lo
k interpretation in p% or in s%g. The 
omposite pairhp%; s%i re
ords enough information to determine the future behavior of A1 and A2 over anytimed word having % as a pre�x. Now 
onsider another �nite timed word %0 = (�01; � 01) !(�02; � 02) ! � � � ! (�0i+1; � 0i+1), su
h that %0 has % as a pre�x. Then, jp%0 j 
an be as high ask1 times jp%j, where k1 is the degree of nondeterminism2 of A1. The same is true for js%0 j,k2 and js%j. It is interesting to note, however, that jDhp%0 ;s%0ij is, at most, jDhp%;s%ij+ 1.Let � denote the greatest 
onstant appearing in the 
lo
k 
onstraints of A1 and A2.A value t 2 R is 
alled relevant if t � �, and irrelevant otherwise. The above dis
ussionmotivates the de�nition of a generi
 
lo
k. Informally, given a 
omposite pair hp; si, weinterpret ea
h relevant value in Dhp;si as being held by a generi
 
lo
k; and all the irrelevantvalues in Dhp;si as being held by a single generi
 
lo
k. The traditional equivalen
e relationover the set of 
lo
k interpretations [1℄ is, instead, applied over the set of generi
 
lo
kinterpretations. Let us formalize these notions.Generi
 Clo
ks. Let " be a spe
ial symbol representing any value in the interval (�;1).By de�nition, "> �. Given a 
omposite pair hp; si, we de�ne the set Rhp;si � [0; �℄ [ f"gas follows: let R0hp;si = fd 2 R j d 2 Dhp;si and d is relevantg. If there is an irrelevant valuein Dhp;si, then Rhp;si = R0hp;si [ f"g, otherwise Rhp;si = R0hp;si. We 
reate a set of generi

lo
k variables, Chp;si = f
1; 
2; : : : ; 
jRhp;sijg for hp; si. The generi
 
lo
k interpretation�hp;si is de�ned as the unique bije
tive fun
tion �hp;si : Chp;si ! Rhp;si satisfying �hp;si(
1) <�hp;si(
2) < � � � < �hp;si(
jRhp;sij), that is, the generi
 
lo
k 
i holds the i-th smaller valuein Rhp;si. A generi
 
lo
k 
i is said to be irrelevant to �hp;si if �hp;si(
i) = ", and relevantotherwise. Note that at most one generi
 
lo
k is irrelevant to a 
lo
k interpretation.Given two 
omposite pairs hp; si and hp0; s0i, if jRhp;sij = jRhp0;s0ij, then we interpret thetwo sets Chp;si and Chp0;s0i as being the same set of generi
 
lo
k variables. The fun
tion�hp;si indu
es, for ea
h hq; �i 2 p, a fun
tion � : X1 ! Chp;si that asso
iates to ea
h 
lo
kx 2 X1 the generi
 
lo
k whi
h holds the value �(x), that is, �(x) = ��1hp;si(�(x)) if �(x) � �and �(x) = ��1hp;si(") otherwise. The generalized lo
ation hq; �i is, then, represented by apair hq; �i, whi
h we 
all a position of A1. Note that two di�erent generalized lo
ations2The degree of nondeterminism of a timed automaton h�; Q;Q0; X; T; F i is the 
ardinality of the greatestset E � T su
h that all transitions in E originate in the same lo
ation, are on the same symbol, and the
onjun
tion of their 
lo
k 
onstraints 
an be satis�ed.
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an be asso
iated to the same position. This is be
ause all values greater than � aremapped to ". For a 
omposite pair hp; si, we de�ne the set of positions of A1 as Php;si =fhq; �i j hq; �i represents some hq; �i 2 pg. Similarly, we de�ne the set Shp;si with respe
t toA2.The Equivalen
e Relation. Now we de�ne the equivalen
e relation � over the set of
omposite pairs (
ompare to [1℄). Given a number t 2 R, bt
 denotes the greatest integersmaller than or equal to t, and fr(t) = t � bt
 denotes the fra
tional part of t. De�nehp; si � hp0; s0i i�:� same set of generi
 
lo
ks: Chp;si = Chp0;s0i;� same sets of positions: Php;si = Php0;s0i, and Shp;si = Shp0;s0i;� equivalent generi
 
lo
ks interpretations:{ irrelevant 
lo
k: for ea
h x 2 Chp;si, �hp;si(x) = " i� �hp0;s0i(x) = ";{ relevant 
lo
ks:� for ea
h x 2 Chp;si and relevant to �hp;si, b�hp;si(x)
 = b�hp0;s0i(x)
 andfr(�hp;si(x)) = 0 i� fr(�hp0;s0i(x)) = 0;� for ea
h pair x and y in Chp;si, both relevant to �hp;si,fr(�hp;si(x)) < fr(�hp;si(y)) i� fr(�hp0;s0i(x)) < fr(�hp0;s0i(y)), andfr(�hp;si(x)) = fr(�hp;si(y)) i� fr(�hp0;s0i(x)) = fr(�hp0;s0i(y)).The relation � re
ords, for ea
h generi
 
lo
k, the interval from f[0; 0℄; (0; 1); [1; 1℄; (1; 2);: : : ; [�; �℄; (")g where the 
lo
k is 
ontained. Note that any two 
lo
ks in the same intervalsatisfy the same set of 
lo
k 
onstraints. To 
orre
tly update this information, the relationalso re
ords the order of the fra
tional parts for the relevant 
lo
ks. Nothing is needed,however, for 
lo
ks whose values are greater than �, sin
e all of them satisfy the same set of
lo
k 
onstraints. We refer the reader to [1℄ for a detailed dis
ussion about this equivalen
erelation. In the sequel, we write [hp; si℄ for the equivalen
e 
lass to whi
h hp; si belongs.We �nish this se
tion noting that the number of equivalen
e 
lasses of � is not �nite,sin
e there is no bound on the number of generi
 
lo
ks. However, it is important to notethat the number of equivalen
e 
lasses with at most K generi
 
lo
ks is �nite. Let VKdenote the set of all equivalen
e 
lasses with exa
tly K generi
 
lo
ks. The following boundholds (
ompare to [1℄):jVK j < 2jQ1jKjX1j � 2jQ2jKjX2j � (2�+2)K �K! :3.2 Time Su

essors and the Graph GLet �P denote the set of all equivalen
e 
lasses of the relation � over P. We de�ne now thesubset 
onstru
tion region graph G = (V;E). Its vertex set V is a subset of �P � f1; 2g.The reason why we need two 
opies of ea
h equivalen
e 
lass will be 
lear soon. G has aunique initial vertex hv0; 1i, and ea
h edge is labelled with one symbol from � [ f.g. The



6 A. V. Moura and G. A. Pintonew symbol . represents a passage of time. Any edge from a vertex h�; 1i goes to a vertexh�; 2i, and it has label .. Any edge from a vertex h�; 2i goes to a vertex h�; 1i, and it haslabel a, for some a 2 �. Thus, the graph G is bipartite. The edge relation is de�ned insu
h a way that the graph is \deterministi
", in the following sense: let a run of G be anin�nite sequen
e of the form: hv0; 1i �1�! hv1; 2i �2�! hv2; 1i �3�! � � � , su
h that, for all i � 0,there is an edge from hvi;�i to hvi+1;�i with label �i+1. Given a timed word � = (�; �),there exists, at most, one run hv0; 1i .�! hv1; 2i �1�! hv2; 1i .�! hv3; 2i �2�! hv4; 1i .�! � � �of G, su
h that, for every i � 1, the following holds: [hp%i ; s%ii℄ = v2i, where %i is the �nitetimed word (�1; �1) ! (�2; �2) ! � � � ! (�i; �i). We refer to this run as the run of G overthe timed word �. The unde
idability of the in
lusion problem manifests itself in the fa
tthat G may be an in�nite graph. In Se
tion 4 we give some suÆ
ient 
onditions for G tobe �nite. On
e G is �nite, we show how one 
an obtain two B�u
hi !-automata B1 and B2su
h that L(B1) � L(B2) i� L(A1) � L(A2). Thus, the problem will be redu
ed, in this
ase, to language in
lusion of !-automata.The graph G is 
onstru
ted indu
tively, from the initial vertex, by the de�nition of theedge relation. As in [1℄, we use the 
onvenient notion of a time su

essor of an equivalen
e
lass to de�ne the edge relation. In order to obtain an e�e
tive 
omputational pro
edure,instead, one should de�ne a representation for the equivalen
e 
lasses and de�ne the edgerelation dire
tly between the verti
es. This 
an 
ertainly be done, although with the 
ostof 
onsidering many di�erent 
ases in the de�nition of the edge relation.Time Su

essors. Let v be an equivalen
e 
lass. Consider a 
omposite pair hp; si in v.Given t 2 R, let hp; si+ t denote the 
omposite pair obtained from hp; si by repla
ing every
lo
k interpretation � in p or in s, by � + t. An equivalen
e 
lass v0 is a time su

essor ofv i�, given hp; si in v, v0 = [hp; si + t℄, for some t 2 R, t > 0. Any equivalen
e 
lass v has�nitely many time su

essors, sin
e the number of generi
 
lo
ks in any time su

essor ofv is, 
learly, smaller than or equal to the number of generi
 
lo
ks in v. In parti
ular, forany t1 and t2, both greater than �, [hp; si+ t1℄ = [hp; si+ t2℄, whi
h is an equivalen
e 
lasswith only one irrelevant generi
 
lo
k.The graph G. The graph G has a unique initial vertex hv0; 1i, where v0 = [hp0; s0i℄ andp0 = fhq; �0i j q 2 Q01g, and �0 is the 
lo
k interpretation whi
h maps ea
h x 2 X1 to zero.The same de�nition applies to s0 with respe
t to A2. Note that, in fa
t, hp0; s0i is theunique 
omposite pair in v0. A vertex hv; 1i has an edge with label . to a vertex hv0; 2i i�v0 is a time su

essor of v. A vertex hv; 2i has an edge with label a 2 � to a vertex hv0; 1ii�: � Given a 
omposite pair hp; si in v, the following 
onditions hold:1. Given a generalized lo
ation hq; �i in p, there is a transition hq;�; a;�; Æi in T1,su
h that � satis�es Æ; and2. v0 = [hp0; s0i℄, where:{ p0 = fhq0; � 0i j there is hq; �i in p, and hq; q0; a; �; Æi in T1, su
h that � satis�esÆ, and for ea
h x 2 X1, � 0(x) = 0 if x 2 �, and � 0(x) = �(x) otherwiseg;
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aq2 q3a ax = 1a aq1a x := 0A2 :y � 1r1A1 : y := 0

Figure 1: An instan
e for whi
h G is in�nite{ s0 = fhq0; � 0i j there is hq; �i in s, and hq; q0; a; �; Æi in T2, su
h that � satis�esÆ, and for ea
h x 2 X2, � 0(x) = 0 if x 2 �, and � 0(x) = �(x) otherwiseg.Note that there is at most one edge out of a vertex hv; 2i for ea
h symbol in �, andthat there may be a vertex hv; 2i su
h that there is no edge out of hv; 2i. But, the initialvertex and 
ondition 1. guarantee that for every vertex hv; 1i 2 V , the A1-
omponent isnonempty, that is, p is nonempty for every 
omposite pair hp; si in v. On the other hand,the A2-
omponent may be empty. We now give an example of an instan
e for whi
h G isin�nite.Example of In�nite G. Consider the instan
e in Fig. 1. The automaton A2 is thetraditional example of a non
omplementable NTA [1℄. Clearly, L(A1) 6� L(A2). Considerthe following �nite timed words %i = (a; 1� 1=21)! (a; 1� 1=22)! (a; 1� 1=23)! � � � !(a; 1 � 1=2i), i � 1. The problem o

urs be
ause %i has i + 1 di�erent �nite runs of A2over it, and the 
lo
k x is reset at distin
t times for ea
h run. Hen
e Dhp%i ;s%ii has i + 1distin
t and relevant values, so that [hp%i ; s%ii℄ has i + 1 generi
 
lo
ks. For any i � 1,there is a timed word �i, having %i as a pre�x and su
h that A1 has a run over �i. Thus,if we try to 
onstru
t G we will need an in�nite sequen
e of distin
t verti
es of the form:hv0; 1i .�! h�; 2i a�! h[hp%1 ; s%1i℄; 1i .�! h�; 2i a�! h[hp%2 ; s%2i℄; 1i .�! � � � .4 Progressive AutomataIn the above example, the automaton A1 has runs over timed words where an arbitrarynumber of events 
an happen in a time interval of unit length. Allowing this property inthe system model may drasti
ally a�e
t the 
omplexity of the de
ision problems|it is anessential property in the proofs of the unde
idability results about NTA [1, 5℄. One mayargue that a system model whi
h 
an generate arbitrarily many dis
rete events in a �niteinterval of time is not realisti
, sin
e this is not physi
ally realizable. In fa
t, many TAmodels of a
tual physi
al systems satisfy the property that there is a 
onstant K su
h thatat most K dis
rete events 
an happen, in any run, in a time interval of unit length. We saythat these TA are progressive. For instan
e, in [3, 7℄ a TA model for asyn
hronous 
ir
uits isproposed. Every logi
al gate is followed by a delay element 
onstraining, between lower andupper bounds, the rising and falling (whi
h are the dis
rete events) of the digital signals.The lower bound is a positive 
onstant, su
h that any 
y
le in the model takes at least ktime units to 
omplete, for some positive 
onstant k, and so, the automata are progressive;



8 A. V. Moura and G. A. Pintosee also [6℄ where this same dis
ussion o

urs in a similar formalism. It is worth noting thatthe progress requirement does not nullify the dense time assumption. In fa
t, one of theresults in [3℄ is that 
y
li
 
ir
uits in that model, in general, do not admit dis
retization.We 
an show that when the system model A1 is progressive, the graph G is �nite forany nondeterministi
 A2. Thus, one may use the full expressive power of NTA to spe
ifyreal-time properties.Theorem 1 If A1 is progressive, then G is �nite.Proof 1 (Outline) From the de�nitions, if there is an edge from a vertex hv; 2i, where vhas n generi
 
lo
ks, to a vertex hv0; 1i, then v0 has, at most, n+1 generi
 
lo
ks. Sin
e thenumber of equivalen
e 
lasses with at most k generi
 
lo
ks is �nite, then G is in�nite i�,for every natural k > 0, G has a vertex hv; 1i, where v has exa
tly k generi
 
lo
ks.Let N be a 
onstant su
h that for every timed word that has a run of A1 over it,any sequen
e of N events takes more than � time units. This 
onstant exists sin
e A1is progressive. Assume that G has a vertex hv; 1i, where v has N + 2 generi
 
lo
ks.By de�nition, there are N + 1 relevant generi
 
lo
ks in v. We 
an show, also from thede�nitions, that the relevant generi
 
lo
k holding the greatest value in v represents some
lo
k, in some �nite run of A1 or A2, that is not reset by the last N transitions, for all �nitetimed words su
h that the run of G over them ends in hv; 1i. This is a 
ontradi
tion to thefa
t that this generi
 
lo
k is still relevant. utWe �nish this se
tion noting that the progressiveness of A1 is a suÆ
ient but not ne
-essary 
ondition for the �niteness of G. As an example, 
onsider the instan
e of Fig. 1. Ifwe remove the 
ommand x := 0 from the transition from q1 to q2 in A2, the graph G be-
omes �nite, in spite of the non-progressiveness of A1. Another suÆ
ient, although hardlya

eptable, 
ondition for the �niteness of G is that every 
lo
k be reset, at least on
e, inevery 
y
le of A1 and A2.4.1 Obtaining the !-Automata.In [1℄, given a timed automaton A, an !-automaton B is obtained from the region graphR(A), su
h that L(A) = ; i� L(B) = ;. To this end, a 
orresponden
e between the runsof A and the runs of R(A) is established through the 
on
ept of a progressive run of R(A).This 
orresponden
e readily generalizes to our subset 
onstru
tion.For a given equivalen
e 
lass v, we de�ne the set Pv of positions of A1 as being equal tothe set Php;si for some 
omposite pair hp; si 2 v (by de�nition, the set of positions of A1 isthe same for every 
omposite pair in v). The same de�nition holds for Sv, with respe
t toA2. Consider an edge from a vertex hv; 2i to a vertex hv0; 1i with label a, for some a 2 �.This edge naturally indu
es a relation between the positions in Pv and the positions in Pv0 .We say that a position hq; �i in Pv is a-linked to a position hq0; �0i in Pv0 i�:� hq; �i represents some generalized lo
ation hq; �i, and hq0; �0i represents some general-ized lo
ation hq0; � 0i; and there is a transition hq; q0; a; �; Æi in T1, su
h that: � satis�esÆ, and for ea
h x 2 X1, � 0(x) = 0 if x 2 �, and � 0(x) = �(x) otherwise.
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lusion for Timed Automata 9Also, 
onsider an edge from a vertex hv; 1i to a vertex hv0; 2i with label .. We say that aposition hq; �i in Pv is .-linked to a position hq0; �0i in Pv0 i�:� hq; �i represents some generalized lo
ation hq; �i, and hq0; �0i represents some gener-alized lo
ation hq0; � 0i; and, for some t 2 R, t > 0, hq0; � 0i = hq; �i+ t.Analogously, we 
an de�ne the \linked" relation between the positions in Sv and S0v,with respe
t to A2. Given a run r = hv0; 1i �1�! hv1; 2i �2�! hv2; 1i �3�! � � � of G, let anA1-run of r be an in�nite sequen
e m0m1m2 � � � of positions of A1, su
h that, for all i � 0,mi 2 Pvi , and mi is �i+1-linked to mi+1. In a position m = hq; �i, the fun
tion � mapsea
h 
lo
k x in X1 to a generi
 
lo
k 
x whi
h is 
ontained in exa
tly one interval fromf[0; 0℄; (0; 1); [1; 1℄; (1; 2); : : : ; [�; �℄; (")g. We already known, by the de�nition of G, thatevery timed word that has some run of A1 over it, has a run of G over it. In a timed word�, time diverges, so that if r is the run of G over �, then, in every A1-run of r, every 
lo
kx in X1 is either reset (mapped to [0; 0℄) in�nitely often, or, after some time, it in
reaseswithout bound (is 
ontinuously mapped to (")) [1℄. Su
h A1-runs are 
alled progressive.Call a run of G progressive i� it has a progressive A1-run. The 
orresponden
e states that,for every progressive run r of G, we 
an �nd a timed word � su
h that r is the run of Gover � [1℄. Then, 
learly, either all A1-runs of r are progressive, or none is progressive.We treat �rst the 
ase where A1 is known, in advan
e, to be progressive. In this
ase, all runs of G are progressive. Afterwards, we dis
uss how to treat any A1. Assumethat A1 is progressive. Given a run r of G, 
onsider the set Rr of timed words Rr =f� j r is the run of G over �g. We have jRrj � 1 (by the above dis
ussion). We say that aposition hq; �i is A1-a

epting i� q 2 F1. A run r = hv0; 1i �1�! hv1; 2i �2�! hv2; 1i �3�! � � �of G is A1-a

epting i� there is an A1-run m0m1m2 � � � of r, su
h that for in�nitely manyi � 0, mi is A1-a

epting. The same de�nitions hold with respe
t to A2. Then, either alltimed words in Rr are a

epted by A1 or all timed words in Rr are reje
ted by A1. Thesame holds for A2. Finally, the language in
lusion problem redu
es to verifying that, forevery run r of G, if r is A1-a

epting, then r is A2-a

epting.We need to 
ope with a known diÆ
ulty of applying a subset 
onstru
tion to a B�u
hiautomaton. Consider a run r = hv0; 1i �1�! hv1; 2i �2�! hv2; 1i �3�! � � � of G. We 
annot saythat r is A1-a

epting if, for in�nitely many i � 0, there is a A1-a

epting position in Pvi .We refer the reader to [9℄ for a solution to this diÆ
ulty, in the 
ontext of !-automata. Aswe will see, instead of trying to solve this dire
tly on G, we will 
onsider a nondeterministi
image3 of G (somehow undoing the subset 
onstru
tion), so that the obtained !-automatawill be nondeterministi
 and the mentioned diÆ
ulty is deferred to the algorithms for thelanguage in
lusion problem for nondeterministi
 !-automata.!-Automata. A B�u
hi !-automaton B is a tuple h�; Q;Q0; T; F i, where� � is a �nite alphabet of symbols;� Q is a �nite set of states;3This is inspired by the deterministi
 image of a nondeterministi
 automaton [4℄.



10 A. V. Moura and G. A. Pinto� Q0 � Q is a set of initial states;� T � Q�Q�� is a set of transitions;� F � Q is a set of �nal states.A run r of B, over an !-word � = �1�2 � � � , is an in�nite sequen
e r0r1r2 � � � of states,su
h that r0 2 Q0, and for all i � 1, hri�1; ri; �ii 2 T . A run r is said to be a

epting i�,for in�nitely many i � 1, ri 2 F . The automaton B a

epts an !-word � i� there is ana

epting run of B over �. The set L(B) of !-words a

epted by B is its language.The Nondeterministi
 Image. The nondeterministi
 image en
odes the runs of G inthe alphabet of the !-automata. Let P = fm jm 2 Pv for some hv;�i 2 V g be the setof all positions of A1 in G. Then, B1 = h�; Q1; Q01; T1; F1i and B2 = h�; Q2; Q02; T2; F2i,where � = f� [ f.gg � V . For B1, we have: Q1 = V � P ; Q01 = fhhv0; 1i;mi jm 2 Pv0g;T1 = fhhhv; ii;mi; hhv0 ; ji;m0i; h�; hv0; jiii jm 2 Pv ; m0 2 Pv0 ; there is an edge from hv; iito hv0; ji with label �; and m is � -linked to m0g; F1 = fhhv; 1i;mi jm is A1-a

eptingg.For B2, the same de�nitions hold, 
hanging S for P , A2 for A1, and Sv for Pv. Then, thefollowing theorem holds. Its proof is based on the 
orresponden
e between runs of A1 andA2, and runs of G; and on the 
orresponden
e between runs of G and runs of B1 and B2:Theorem 2 L(A1) � L(A2) i� L(B1) � L(B2). utNon-progressive A1. In this 
ase, there may be a run r of G, su
h that jRrj = 0. Thede�nition of a

eptan
e for runs of G need to be 
hanged. Now, a run r = hv0; 1i �1�!hv1; 2i �2�! hv2; 1i �3�! � � � of G is A1-a

epting i� there is an A1-run m0m1m2 � � � of r, su
hthat for in�nitely many i � 0, mi is A1-a

epting; and for every 
lo
k x 2 X1, for in�nitelymany i � 0, mi = hqi; �ii and �i maps x to [0; 0℄ or to (").From the automaton B1, one 
an easily obtain an new automaton C1 that a

ounts forthis new 
ondition, in a standard way. If X1 = fx1; x2; : : : ; xng, then C1 is made of n + 1
opies of B1. The new state spa
e is V � P � f1; 2; : : : ; n+ 1g. While reading an !-word,the 
ontrol starts in the �rst 
opy, and jumps to the se
ond 
opy as soon as it gets in astate hhv; 1i; hq; �i; 1i, where � maps x1 to [0; 0℄ or to ("). This pro
ess repeats for every
lo
k until the 
ontrol rea
hes the last 
opy. Then it jumps ba
k to the �rst 
opy, as soonas it gets in a state hhv; 1i;m; n + 1i, where m is A1-a

epting. The new set of �nal statesis fhhv; 1i;m; n + 1i jm is A1-a

eptingg.5 E�e
tive In�nite-State !-AutomataThe semi-de
ision pro
edure presented above 
an be viewed as a redu
tion of the languagein
lusion problem for NTA to the language in
lusion problem for nondeterministi
 e�e
tivein�nite-state !-automata [10℄. An in�nite-state !-automaton B = h�; Q;Q0; T; F i is e�e
-tive if the sets �; Q;Q0; T and F are all re
ursive. That is, the sets may be in�nite, butthey are enumerable, and there is a Turing Ma
hine MB that takes as input four integers
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lusion for Timed Automata 11w, x, y and z, always halts, and a

epts the input i�: x 2 � if w = 1; x 2 Q if w = 2;x 2 Q0 if w = 3; hx; y; zi 2 T if w = 4; and x 2 F if w = 5 [10℄. The ma
hineMB 
an itselfbe en
oded as an integer #B, whi
h is 
alled the index of B.Given any two NTA A1 and A2, we 
an easily derive, from the semi-de
ision pro
edure,two indexes #B1 and #B2, for two nondeterministi
 e�e
tive in�nite-state !-automata B1and B2, respe
tively, su
h that L(A1) � L(A2) i� L(B1) � L(B2). This gives a pleasant4way to show that language in
lusion problem and the universality problem for NTA arein �12, sin
e the language in
lusion problem for nondeterministi
 e�e
tive in�nite-state !-automata is known to be �12-
omplete [10℄ (we refer the reader to [8℄ for an introdu
tion tothe analyti
al hierar
hy). The 
urrent 
omplexity lower bound for the language in
lusionproblem and the universality problem for NTA is �11-hard [1℄. The exa
t position of theseunde
idable problems in the analyti
al hierar
hy is an interesting open problem.6 Con
lusionsIn this paper, we presented a generalization of the region graph for NTA, whi
h leadsto a semi-de
ision pro
edure for testing language in
lusion of NTA. We showed that TAmodels of real-time systems, satisfying a progress requirement, 
an be tested against anyNTA. Interestingly enough, the semi-de
ision pro
edure is also a redu
tion of the languagein
lusion problem for NTA to the language in
lusion problem for nondeterministi
 e�e
tivein�nite-state !-automata.The method is, as one should expe
t, extremely expensive from a pra
ti
al point ofview. The pro
edure redu
es the language in
lusion problem for NTA to the languagein
lusion problem for nondeterministi
 !-automata. The size of the latter problem is doublyexponential in the number of 
lo
ks, and exponential in the number of lo
ations of the TAinvolved. Thus, one dire
tion for future work is the development of heuristi
 methods andsymboli
 te
hniques for the problem.Another dire
tion is the interesting theoreti
al question about the exa
t position ofthe language in
lusion problem and the universality problem for NTA in the analyti
alhierar
hy. They are �11-hard [1℄, and belong to �12 (as a 
orollary of Se
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