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Abstract

Reducing program size has become an important goal in the design of modern em-
bedded systems target to mass production. This problem has driven a number of efforts
aimed at designing processors with shorter instruction formats (e.g. ARM Thumb and
MIPS16), or that are able to execute compressed code (e.g. IBM CodePack PowerPC).
This paper proposes three code compression algorithms for embedded RISC architec-
tures. In all algorithms, the encoded symbols are extracted from program expression
trees. The algorithms differ on the granularity of the encoded symbol, which are selected
from whole trees, parts of trees or single instructions. Dictionary based decompression
engines are proposed for each compression algorithm. Experimental results, based on
SPEC CINT95 programs running on the MIPS R4000 processor, reveal an average
compression ratio of 53.6% (31.5%) if the area of the decompression engine is (not)
considered.

1 Introduction

As embedded systems are becoming more complex, the size of embedded programs are
growing considerably large. The result are systems in which program memories account
for the largest share of the total die area, more than the area of the microprocessor core
and other on-chip modules. As a consequence, minimizing program size has become an
important part of the design effort (cost) of an embedded system. A way to achieve that is
to restrict the size of instructions. This is the approach used in the design of the Thumb [1]
and MIPS16 [2] processors. Shorter instructions are obtained mainly by restricting the
number of bits that encode registers and immediates. Fewer registers imply in less free-
dom for the compiler to perform important tasks, like global register allocation. It also
means more instructions to perform the same amount of computation. The net result are
30%-40% smaller programs running 15%-20% slower than programs using standard RISC
instructions [3]. Another way to reduce the size of a program is to design processors that
can execute compressed code. In order to do that, the decompression engine has to perform
real-time code decompression. Moreover, because programs have branch instructions, the
engine must allow for random codeword decompression. These are the two major features
that distinguish code compression from other data compression problems.

This paper is divided as follows. Section 2 discusses prior work on the problem of code
compression. The experimental framework used in this work is described in Section 3.
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All algorithms proposed here use expression trees or parts of expression trees to perform
compression. Section 4 explains how expression trees are determined and why we believe
they lead to improved compression. Compression algorithms and their corresponding ex-
periments are discussed in Section 5 (Tree Based Compression), Section 6 (Pattern Based
Compression), and Section 7 (Instruction Based Compression). The goal of the experiments
is to measure the final compression ratio', including the decompression engine size over-
head. Section 8 summarizes the work and Section 9 proposes new directions and possible
extensions.

2 Related Work

This paper deals with the problem of finding code compression techniques that allow effi-
cient implementations of real-time decompression engines. One might be tempted to believe
that this problem is a natural extension of the data compression problem, for which there
is an extensive literature[4]. Although data compression algorithms form the basis of code
compression, they cannot be directly applied. For example, almost all practical dictionary
based compression tools of today are based on the work of Lempel and Ziv (LZ)[5] and
its variations[6][7][8][9]. In LZ compression, the dictionary is encoded together with the
compressed string. Pointers to previously parsed substrings are used to encode the current
substring. Decompression is then performed by substituting a pointer by the substring
it points to. For the case of real-time decompression, this is a major drawback though.
Instructions that are target of branch instructions are reachable from more than one in-
struction path, and the path is only determined at execution time. Therefore, there is no
way to know, at compression time, which instruction path should be compressed. For the
rest of this section, we discuss code compression techniques that have been proposed to
solve the real-time decompression problem.

The first studies on code compression date back to the 70’s, when memory was scarce
and instruction sets were designed to minimize memory utilization. In 1972, the designers
of the Borroughs B1700 [10] developed an approach, based on instruction utilization, to
determine the size of instruction fields. Short (long) instruction fields were assigned to very
(un)frequent instructions using Huffman encoding [11]. On a variation of this approach,
programs dynamically collected instruction field utilization, such that field sizes could be
assigned at execution time.

The first approach for code compression in a RISC architecture was originally proposed
by Wolfe and Channin [12]. The processor described in there is called Code Compres-
sion RISC Processor (CCRP). In the CCRP, code is compressed one cache-line at a time.
Compressed cache lines are fetched from main-memory, uncompressed and put into the
instruction cache. Instructions in the cache are exactly as in the original uncompressed
program. This requires a new design for the instruction cache refill engine, but no modi-
fication in the core processor. The main advantage of compressing cache lines is that the
latency of the decompression engine is amortized across many cache hits. In CCRP, pro-
gram target addresses have different values if the line is in main-memory or in cache. The

Lcompression ratio = size of compressed program / size of uncompressed program
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CCRP uses a main-memory based Line Address Table (LAT) to map (uncompressed code)
addresses in the cache to (compressed code) addresses in main-memory. A Cache Line
Address Lookaside Buffer (CLB) is used to store sets of recently fetched LAT entries. The
compression algorithm for the CCRP is based on encoding byte long symbols using Huff-
man codewords[11], and results in 73% compression ratio for the MIPS R2000 instruction
set [12] and [13]. This compression ratio does not take into consideration the size of the
decompression engine.

Lefurgy et al. [3] proposed a code compression technique based on dictionary encoding.
In [3] object code is parsed and common sequences of instructions are replaced by a single
codeword. Only frequent sequences are compressed. HEscape bits are used to distinguish
between a codeword and an uncompressed instruction. The instructions corresponding to
each codeword are stored into a dictionary in the decompression engine. Codeword bits
are used to index the dictionary entries. The decompression engine expands codewords
into their original instruction sequences in the dictionary. Since the compressed program
is composed of codewords and uncompressed instructions, branch targets are recomputed
so as to reflect their new location in the program. The target address bits is divided into
two parts: the address of the compressed word and an offset from the beginning of the
compressed word. The target address is computed by adding these two, a technique that
requires modifications in the control unit of the processor core. Lefurgy et al. studied two
compression techniques. The first approach is based on fixed-length codewords. Better
compression ratios were achieved by a second approach that uses nibble aligned variable
length encoding. In this case, average compression ratios of 61%, 66%, and 74% have been
reported for the PowerPC, ARM and i386 processors respectively [3].

Wolf and Lekatsas [14][15] studied two different methods for code compression. The
best compression ratio is produced by the SADC method. In SADC, symbols are associated
to instruction opcode and operand fields. During compression, instruction sequences are
selected and a stream of bits is derived for each sequence of instruction fields. Each stream
is then encoded using Huffman codewords. The average compression ratio achieved by this
method on a MIPS architecture is 51%. It is not clear from [14] if this number takes into
consideration an estimate of the size of the decompression engine.

The CodePack PowerPC processor [16] is an architecture designed to execute compressed
code. The compression approach found at CodePack is similar to the one proposed in this
paper. They differ on how symbols are selected and encoded though. Huffman codewords
are used to encode escape bits, while symbols are selected from sequences of instruction bits
in a cache-line. The CodePack approach results in an average 60%-65% compression ratio,
not including the size of the decompression engine core.

Liao et al. [17] proposed a compression technique based on dictionaries. The main idea in
[17] is the substitution of common instruction sequences by sub-routine calls. A hardware
mechanism is proposed to minimize the cost of the sub-routine return instruction. The
average compression ratio reported for the TMS320C25 processor was 82%.
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3 Experimental Framework

The algorithms we propose have been tested using programs from the SPEC CINT95 bench-
mark running on the MIPS R4000 processor. The R4000 is a classical RISC architecture,
that has most of the features of a modern RISC processor. It is also one of the most
used RISC architectures in the embedded systems arena. Benchmark programs were cross-
compiled for the R4000 using gcc version 2.8.1 on a Sun Enterprise E450 machine. Object
code was generated using compiler options -O2 and -Os, for MIPS instruction sets mipsl
and mips2. Option -O2 generates code target to performance and includes all major com-
piler optimizations. Flag -Os selects from the optimizations available in -O2, only those
which do not increase program size. The resulting code size is shown in Table 1. In gen-
eral, optimizing for performance leads to code that is approximately the same size of those
resulting from size optimization. In Table 1, the -mips2 option produces smaller programs
than when -mipsl is used. In mipsl architectures (e.g. R2000), delayed branches are han-
dled by the compiler/assembler (resulting in many nop instructions). This is not the case
of interlocked pipelined architectures like the mips2 (e.g. R4000) [18]. For this work, the
benchmark programs were compiled using options -mips2 -Os.

H Program ‘ -mipsl -02 ‘ -mipsl -Os ‘ -mips2 -02 ‘ -mips2 -Os H

compress 2304 2304 2164 2152
gece 409204 407636 364524 363560
go 79776 80284 73908 72516
ijpeg 52816 52336 48548 47988
li 20832 20652 18616 18448
perl 80308 79676 70228 69536
vortex 167212 167384 151476 151348

Table 1: Compiler parameters and number of instructions generated.

4 Expression Trees

In compression, symbol is the basic unit used to form the fext to be compressed, and an
alphabet is the set of all symbols. This work studies three code compression techniques for
RISC architectures. The basic idea of all algorithms is the restriction we made that an
alphabet must contain only symbols that are expression trees or parts of expression trees.
In other words, a sequence of instructions that is not entirely contained in any program tree
cannot be considered a symbol. What distinguishes one algorithm from another is the way
trees are decomposed into alphabet symbols.

In the first algorithm (Section 5), symbols are whole trees and the alphabet is formed by
all distinct trees in the program. In the second algorithm (Section 6), trees are decomposed
into smaller distinct parts (i.e. patterns), which are then encoded. Finally, in the third
algorithm (Section 7), the alphabet is the set of all distinct instructions from all trees in the
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program. We use expression trees as the basis for compression because compilers tend to
generate similar expression trees during the translation of source program statements. This
is explained by: (a) the reduced number of instructions in a RISC instruction set; (b) the
small size of the majority of the expression trees, and therefore, the small number of possible
ways in which instructions can be combined; (c) the deterministic way in which compilers
generate code for abstract syntaz tree constructs, like if-then-else and for statements .

Expression trees are constructed as in [19]. An instruction is the root of an expression
tree [19] if one of the following is true: (a) the instruction stores into memory; (b) the
destination operand of the instruction is the source of more than one instruction inside
the basic block; (c) the destination operand of the instruction is the source of at least one
instruction outside the basic block; (d) the instruction is the first instruction in the basic
block; (e) the instruction is a branch. Expression trees do not cross basic block boundaries.
Examples of expression trees are listed in Figure 1.

addiu $29, $29, 256 addiu $2, $2, 60
sSW $28, 16($29) 1w $4, 0(%2)
slti  $4, $4, 17
bne $4, $0, 16
(a) (b)

Figure 1: Typical expression trees.

5 Tree Based Compression (TBC)

In Tree Based Compression (TBC) the alphabet is formed by all unique expression trees in
the program. Instructions are collapsed into sequences, each satisfying the expression tree
definition in Section 4. The set of distinct trees was determined and the results were listed
in Table 2. From Table 2, the number of distinct trees in a program is much smaller than

Program | Total Distinct
Trees Trees (%)
compress 1844 832 (45.1)
gee 291758 | 51186 (17.5)
go 62423 | 12460 (20.0)
ijpeg 40621 | 11264 (27.7)
li 15509 | 3072 (19.8)
perl 52276 | 12793 (24.5)
vortex 130336 | 17463 (13.4)

Table 2: Number of distinct trees in a program. Numbers in parentheses are percentage
with respect to the total number of trees.
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the total number of trees. On average, distinct expression trees correspond to only 24% of
all trees in a program.

5.1 The TBC Algorithm

The selection of the best method to encode trees depends on how they contribute to the
program size. In order to determine that, we ordered the set of distinct trees based on how
frequent they show up in each program. The cumulative distribution of the distinct trees in
the programs was computed. The result is shown in the graph of Figure 2. In the horizontal
axis of the graph, trees are ordered in decreasing frequency. Notice from Figure 2, that the
frequency distribution of distinct trees in all programs is very non-uniform. Actually, trees
have exponential frequency distributions. On average, 80% of all program trees are covered
by only 20% of the most frequent ones.
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Figure 2: Percentage of program trees covered by distinct trees.

This suggests that expression trees should be compressed using an encoding that assigns
smaller (larger) codewords to (un)frequent trees. Huffman encoding [4] is such an algorithm.
In [20] we studied four encoding methods based on variations of Huffman. The experimental
results reveal an average 37% compression ratio for the same set of programs studied here.
Unfortunately, designing fast Huffman decoders is complicated, and it usually results in
decoders that are more expensive than if fixed-length codewords had been used [21][22].
In order to simplify the design of the decompression engine, we developed a compression
algorithm, based on fixed-length codewords, that explores the exponential nature of the tree
frequency distribution, while producing very high compression. The algorithm divides the



Algorithms for Code Compression 7

set of distinct trees into n, classes, each class k having ny trees. The number of classes (n.)
is determined exhaustively, by exploring all possible partitions from two to eight classes. For
each partition of a given number of classes, we determine (again exhaustively) all possible
combinations of class sizes and measure their compression ratio. The combination, from all
possible partitions, that results in the smaller compression ratio is then selected as the best
partition for the tree set. One can think of this approach as a form of discrete Huffman
encoding. From this perspective, the goal of the compression algorithm is to perform a
piecewise discretization of the frequency distribution shown in Figure 2, so as to minimize
the final compression ratio.

Fixed-length codewords of size [logany | are then assigned to the trees in class k. For each
codeword we append a prefix of size [logan.]| bits, that is used by the decoder to identify
the class. The final codeword encoding of a tree is shown in Figure 3. The compression
algorithm substitutes each expression tree in the program by its corresponding codeword.

class codeword

[ Iogznc] [ Iogznk]

Figure 3: Tree encoding.

Consider, for example, program [i and a partition of the tree set into four classes.
Table 3 shows all possible combinations of codeword sizes using a four classes partition (I-
IV). The best compression ratio? (23.4%), highlighted in Table 3, assigns 1/5/8/12 bits to
classes I/11/11/IV. The combination of four classes, that minimizes the compression ratio for
program [i, divides the curve of /i (Figure 4) into four intervals, each interval corresponding
to a class. From the discretization perspective, the new value of the cumulative distribution
in each interval (i.e. class) is constant and is computed using the average frequency of the
trees in that interval.

Once the best compression ratio for a given partition is determined, we repeat the
algorithm for other partitions. Figure 5 shows the resulting compression ratio when the
tree set for each of the programs in the benchmark is partitioned into 2-8 classes. Notice
that the compression ratio decreases as the number of classes increases, until it reaches
a minimum, after which it starts to increase again. This occurs because the algorithm
automatically assigns smaller (larger) codewords to classes for which the trees have a high
(low) average frequency distribution. The more classes are added, the lower is the average
frequency difference between two neighbor classes, and the larger is the overhead due to
the new prefix bits required by the new classes. Eventually, the benefit gained by the
discretization is offset by the prefix bits overhead, and the compression ratio starts to
increase. It is interesting to notice that, for almost all programs, the minimum compression
ratio is achieved when the partition is performed using four classes. In some cases (e.g. go)
the best compression ratio occurs for five classes. Nevertheless, the average difference of

2All compression ratio numbers take into consideration the prefix size.
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Codeword size | Compr.
I | 1T | 111 | IV | Ratio
1{1] 112 30.3
1{1] 2 |12 29.2

5| 8 |12 23.4
115] 9 |12 23.5
9191 8 |12 31.2
9191 9 |12 30.5

Table 3: All possible codeword size combinations for /i using four classes.
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Figure 4: Discretization of the frequency distribution for program 1i after class partitioning.
Class I (IV) has < 1% (> 9%) of all distinct trees.
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Figure 5: Compression ratio for different partitions.

the compression ratio between classes five and four is only 0.09%. The best compression
ratio for each partition is then determined (minima in Figure 5). Table 4 shows, for each
program, the best compression ratio using four classes. The average compression ratio for
all programs studied was 27.2%.

Program | Codeword size | Compr.

Name I | 11 | 111 | IV | Ratio
compress | 1 | o 81| 10 22.9
gce 2| 8] 12 16 29.4
go 31 8] 11| 14 28.8
ijpeg 3 8| 11| 14 29.9
li 216 9| 12 23.2
perl 2| 7110 14 27.3
vortex 11610 14 28.4

Table 4: Class partition that results in the best compression ratio for four classes.

Codewords are allowed to split at the end of each 32-bit words, and bits from split
codewords are spilled into the next word. We noticed that large compression ratios can
only be achieved if we allow this to happen. The reason, also noticed in [3], is that many
common trees are originated from a single instruction word (see Section 7 for details).
Therefore, constraining codewords to a single word considerably limits the compression
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Figure 6: Decompression engine for Tree Based Compression (TBC).
ADDR OFFSET
w bits 5 bits
o Address 1 Offset 1
Address o Address 2 Offset 2
Mask Address 3 Offset 3
unused
£ o
Requested Sea N 3
Processor | Address & . =
- ~ Offset
31bp:t ATT . SHIFT Codeword
Its
2 bits Word
L ]
o
Address Fill L
Translated Word
Address Word
Memory
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ratio. This implies that the decompression engine should be able to keep track of codeword
boundaries inside the current memory word, and to put together pieces of a split codeword
during two consecutive memory fetches.

5.2 The TBC Decompression Engine

This section proposes a decoding engine for the TBC compression algorithm (Figure 6).
The decompression engine works in two phases. First, tree codewords Tc are extracted
from a memory word. Second, Tc is decoded by logic TGEN and converted to address
tdaddr. Address tdaddr points to the entry in the Tree Dictionary (TD) that stores the
first instruction of the decompressed tree. Each TD entry is composed of two fields: INSTR
and END. Field INSTR is 32 bits wide and contains one instruction of the decompressed
expression tree. Bit-field END is used to check for the last instruction in the tree being
decompressed. If END = 1 (0) the current entry is (not) the last instruction of the current
tree. END is used as a load input to the Incrementer (INC). If the current instruction is not
the last instruction of the current tree, INC increments and the output of INC points to the
next tree instruction, otherwise it loads a new tdaddr to start decoding the next compressed
tree. Address translation for branch and jump instructions is performed by the Address
Translation Table (ATT) (Figure 7) discussed in Section 5.3 below. A fair assessment of the

100
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— 80 L | | TD Overhead
X
~ Program compression
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g —
c 60 |-
% 60 I -
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S 40 |
o
= 30 |
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L 20 |-
10 |
compress  gcc go ijpeg li perl vortex

Figure 8: Final compression ratio for TBC.

compression efficiency of the TBC algorithm needs to take into consideration the silicon
area of the decompression engine. To determine the size of the decompression engine we
assume that the area of the extraction logic and the rest of the decompression engine is
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much smaller than the size of its tables (TD and ATT). Figure 8 shows the final compression
ratio of the TBC algorithm when the decompression engine modules overhead is considered.
The average size of the decompression engine, with respect to the uncompressed program
is 33.5%. The final average compression ratio for the TBC algorithm is 60.7%.

5.3 Address Translation Table

In our architecture model, the processor executes uncompressed instructions that generate
uncompressed address requests, while memory stores compressed instructions (i.e. trees).
During the execution of branch/jump instructions the address requested to memory by
the processor changes from the address of the next instruction to some arbitrary (uncom-
pressed) address. In order to satisfy this request the decompression engine should be able to
map (uncompressed) processor addresses to (compressed) memory addresses. To make this
possible, we propose the address translation module shown in Figure 7, where the mapping
is performed using an Address Translation Table (ATT).

When the processor fetches an instruction, it first looks for the requested word in the
instruction cache. If there is a cache miss, the processor requests one cache-line from
memory. The processor Requested Address is then used to generate an address to ATT.
The address of ATT is computed from Requested Address by masking out 6 bits: 2 bits that
are used for byte-offset, 3 bits to address the word in the cache-line (assuming 8 word cache-
lines), and one extra bit to reduce the number of entries (size) of ATT. As a consequence
of this extra bit, ATT can only address one every two consecutive compressed cache-lines in
memory, increasing the response time of the engine to a memory request. Therefore, there
is a trade-off, that can be explored by the designer, between the size of ATT and the latency
of the decompression engine.

After the mask operation is finished Significant bits are used to point to ATT. Each
ATT entry has two fields: ADDR and OFFSET. The ADDR field is the address of the memory
word (Word) that contains the compressed expression tree requested by the processor. By
definition of expression tree, the target of any branch/jump instruction is the root of a tree
(Section 4). Notice that the TBC algorithm can compress more than one expression tree into
a single memory word, and these can start at any one of its 32-bit positions. Field OFFSET
(5 bits) is used by the SHIFT module to determine the position of the requested compressed
tree in Word.

The latency of this address translation approach is mainly a result of the time required
to fetch, from memory, the sequence of words up to the requested tree, plus the time to
decode it. After that, the decompression engine fetches, using an internal counter, the re-
maining words that are required by the processor to complete the compressed cache-line.
Speed can be improved if the decompressor engine runs faster than memory, allowing the
engine to feed more instructions to the processor than the memory system, since code-
words are smaller than instructions and there is more than one codeword in each memory
word. The size of the address translation engine is basically the size of ATT. There are k =
Program Size/(4+ 8 + 2) lines in ATT, each line containing w = loga(Compressed Size)
ADDR bits and 5 OFFSET bits.
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6 Pattern-Based Compression (PBC)

In the previous section, expression trees were divided into subsets and the trees in each
set encoded using fixed-length codewords, the size of which is dependent on the average
frequency of the trees in the set. In this section, we discuss a compression algorithm for
which the alphabet is composed of parts of expression trees.

6.1 The PBC Algorithm

The key idea of this approach is an operation that factors out the operands (operand-
patterns) from the expression trees of a program. The factored expression trees are called
tree-patterns. We call the task of removing operands from an expression tree operand fac-
torization. Operand factorization is not a new concept though. It has been proposed in
[23] as an encoding technique for intermediate representation in compilers. Variations of
operand factorization have been used in [24][25]. Consider, for example, the expression tree

addiu $4, $4, 1 addiu *, *, *

lui $1, O lui *, *

sw $1, 0(3%4) sw %, *(*)
(a) (b)

[$4,$4,1,$1,0,%1,0,%4]
(c)

Figure 9: (a) Expression tree; (b) Tree-pattern; (c) Operand-pattern.

of Figure 9(a). Figure 9(b) shows the tree-pattern resulting after operand factorization is
applied to it. Stars (wild-cards) are used in place of the original operands. An operand-
pattern is formed by traversing the instruction sequences in the expression tree, listing the
operands when they are encountered. Figure 9(c) shows the operand-pattern determined
after the expression tree in Figure 9(a) is factored.

Table 5 lists the number of expression trees and patterns for our program set. In Table 5,
gee has 291758 different expression trees, that can be represented by only 921 (45469) tree
(operand) patterns. In other words, the tree (operand) patterns from only 0.3% (15.6%)
of all trees in gcc are enough to represent the remaining trees. Interesting enough, small
programs seem to be much less redundant than large programs. In compress (the smallest
program studied), tree-patterns correspond to 5.8% of all possible trees in the program,
while operand-patterns are 41.6% of all operand sequences.

At this point, it is interesting to determine what makes expression trees different. Two
expression trees are distinct if they have at least one different instruction. T'wo instructions
are different if they have different tree and/or operand patterns. Column (III) of Table 5
shows the number of distinct trees in each program. Notice that, for all programs, there is
a strong correlation between the number of distinct trees and operand-patterns (V). This
correlation can be measured by the difference (III) - (IV) shown in Column (VI), that results
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Program | # Trees | # Distinct Tree- Operand- (I11) - (IV)
Name (I) (IT) Trees (III) | Patterns (IV) | Patterns (V) (VI)

compress 1844 832 107 (5.8) 767 (41.6) 8.5
gec 291758 51186 921 (0.3) | 45469 (15.6) 12.6
go 62423 12460 256 (0.4) | 11373 (18.2) 9.6
ijpeg 40621 11264 348 (0.9) 9907 (24.4) 13.7
i 15509 3072 169 (1.1) | 2840 (18.3) 8.2
perl 57276 12793 547 (1.0) | 11579 (20.2) 10.5
vortex 130336 17493 324 (0.2) | 15592 (12.0) 12.2
Average | 85681 15585 382 (1.4) | 13932 (17.4) 10.8

Table 5: Number of tree and operand patterns in a program. Numbers in parentheses are
percentage with respect to the total number of expression trees.

in an average 10.8%. Hence, for the majority of the programs, given an operand pattern
there is usually a single tree-pattern associated to it. In other words, operand-patterns are
the main cause for the large diversity of program expression trees. This is not a surprise,
given the large number of ways that registers and immediates can be combined, when com-
pared with the number of combinations of instruction opcodes in a RISC architecture. The
correlation between distinct trees and operand-patterns is not one-to-one though. In this
case, there is still some opportunities for compression, by dividing a tree into its patterns.

In order to determine the form patterns contribute to a program we computed the fre-
quency contribution of all patterns. The individual frequencies of each unique tree-pattern
was determined. Tree-patterns were then ordered in a decreasing order of frequency, and
the cumulative percentage of the expression trees covered by these patterns was computed.
The results are shown in Figure 10(a). The frequency of each tree-pattern is the derivative
of the graph in Figure 10(a). Based on that, we reach the conclusion that the frequency of
a tree-pattern decreases almost exponentially as the pattern becomes less and less frequent.
On average 20% of the tree-patterns correspond to almost all trees in a program. This rule
works for all programs in Figure 10(a) but compress. The distribution of expression trees in
compress is smoother. A similar graph was also derived for operand-patterns. Figure 10(b)
shows the cumulative number of trees in a program that are covered by distinct operand-
patterns. On average, 20% of the operand-patterns account for about 80% of all operand
sequences in a program. As before, compress numbers differ from the other programs.

Operand factorization recognizes the fact that any encoding technique that intermixes
opcode and operand bits during compression misses the opportunity to capture the high
correlation exhibited by tree and operand patterns. For example, an algorithm that per-
forms sequential compression, like LZ [5], will not be able to detect the simple tree-pattern
[lw *,*,* : add *,*,*x]. Any non-sequential algorithm which considers a program as a
set of bit strings will also miss that. Consider for example, the tree-pattern [1w *,*,*] and
a processor that encodes the opcode and the destination register (in this order) using 6 bits
each. If a byte is chosen as the encoding symbol, the first byte of instructions [1w $2,*,*]
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and [lw $15,#*,*] are encoded as two different codewords, even if pattern [1w *,*,*]
accounts for a considerable share of the program bits. Moreover, operand factorization can
identify operand-patterns that are shared by two different instructions. For example, in gcc
operand-pattern [$2, $0, $4] is used by expression trees [subu $2, $0, $4] and [nor
$2, $0, $41.

Tree and operand patterns are encoded separately using the same algorithm discussed
in Section 5.1. Expression trees are encoded as codeword pairs [T'p, Op], where T'p (Op) is
the codeword for a tree (operand) pattern. Pairs [T'p, Op| are then appended sequentially to
form a list of codeword pairs that results in the compressed program. As before, Figure 11(a-
b) shows how the compression ratio varies according to the number of classes used to
divide each pattern set. Notice that for tree-patterns the best encoding is achieved for 3
classes. This certainly has to do with the sharp exponential distribution for three-patterns
in Figure 10(a). Few tree-patterns cover the majority of the trees in a program and these
are assigned to a single class. The rest of the trees have similar (small) contributions, and
therefore there is no point in assigning them to more than a couple of classes, since this only
increases the overhead due to the extra prefix bits required to encode the additional classes.
On the other hand, the compression ratio difference when 4 classes are used instead of 3
is only 0.49%. The frequency distribution for operand-patterns (Figure 10(b)) is smoother
than for tree-patterns, resulting in a better compression if the set of operand-patterns is
divided into more classes. In general this number is four, but for some programs (e.g. gcc)
the compression using five classes is better. Here again, the compression ratio difference
between both partitions is only 0.1%.

Similarly for the case of TBC (Section 5), patterns that do not fit into a single word are
spilled to the next word. This is an additional problem for the decompression engine, given
that it now should be able to realign two codewords, one for each pattern. The compression

Program | Tp Compr | Op Compr. | Composed
Name Ratio Ratio Ratio
compress 22.8 13.2 35.9
gce 29.1 13.3 42.4
go 28.6 12.5 41.1
ijpeg 29.5 14.1 43.6
li 22.9 12.1 35.0
perl 27.1 13.3 40.4
vortex 27.5 12.7 40.2

Table 6: Composed compression ratio when Tree-pattern (Tp) and Operand-pattern (Op)
codewords are combined.

ratio for tree (operand) patterns is on average 13.0% (26.8%), and is achieved when tree
(operand) patterns are divided into 4 classes. Table 6 shows the final compression ratio
(average 39.8%), when the codewords for both patterns are combined.
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6.2 The PBC Decompression Engine

This section proposes a decoding engine for the PBC Algorithm (Figure 12). As before the
decompression engine works in two phases. First, fields T'p and Op are extracted from the

compressed word. Second, 1T'p is mapped into a sequence of uncompressed instructions, and

Op is used to generate registers and immediate bits for them. This information is fed into

the Instruction Assembly Buffer (IAB) that assembles the decompressed instructions. In

the following sections we describe each module of the decompression engine.

OPECODE ITYPE

END

tpaddr [ addiu [ o' 0! o] o
lui 0,0, 00
sw 0 o' o] 1

| sw $1, 0($4) |

}
lui $1,0

IAB

addiu $4,%4,1

L ]
L ]
[ ]
TPD
TGEN
5 Tp
o $1, $4
é y $1
< L RGEN raddr |$4, $4
it -
g by
= REGD
@]
O | Op
BSEL
— IGEN

Figure 12: Decompression engine for Pattern Based Compression (PBC).

RS1
RS2
RD

IMB
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6.2.1 Tree-pattern Dictionary

The Tree-pattern Dictionary (TPD) stores the opcodes encoded by each tree-pattern code-
word. T'p is decoded by the Tree-pattern Generator (TGEN) into a TPD address tpaddr. The
opcode fields encoded by Tp are then fetched from a sequence of TPD entries starting at
tpaddr. Each TPD entry is composed of three fields: 0PCODE, ITYPE, and END. Field OPCODE
carries the opcode bits of an instruction in the tree-pattern. Field ITYPE encodes the type
(i.e. format) of the instruction. The information stored in ITYPE is used by IAB to decide
how to assemble a decompressed instruction. The IAB puts together OPCODE, register (RS1,
RS2, RD) and immediate (IMB) bits to form an instruction. Bit-field END is used to check
for the last instruction in a tree-pattern. On average, TPD area is only 0.9% of the original
program size.

6.2.2 Register Dictionary

The Register Dictionary (REGD) decodes the Op field of the incoming compressed word,
into a sequence of operand registers required by the instructions in the tree-pattern. The
output of REGD is formed by three (register) buses: RS1, RS2 and RD, that generate the bits
corresponding to the instruction source and destination registers. An estimate of the size
of REGD was determined by adding up the size (in bits) of all register fields in the operand-
patterns. In this case, the average size of REGD, with respect to the uncompressed program,
is 3.8%.

6.2.3 Immediate Dictionary

The IMD module in Figure 12 stores the immediates used by the program. A single entry in
IMD is created for each distinct immediate in the program, no matter which instruction uses
it, or how many times it shows up. For example, a single constant 4 is stored for instructions
[bgez $5, 41, [1w $6, 4($29)], and [srl $5, $3, 4]. We use the variation on the size
of immediates to minimize the number of bits stored in IMD. An evaluation of the size of the
immediates reveals that, on average, more than 70% of the immediates in a program can
be encoded into less than 16 bits. Immediates are clustered into memory banks according
to the number of bits they use. Memory bank address BADDR and bank selection BSEL are
generated by the IGEN module from codeword Op. This approach considerably reduces the
average number of distinct immediates in a program (26.7%). As a result, the average share
of the compression ratio due to IMD is 13%.

The sizes of the immediate (IMD), tree-pattern (TPD) and register dictionaries (REGD)
are easy to estimate. As before we assume that the size of the extraction logic and the rest
of the decompressor is much smaller than the size of the dictionaries. The size of ATT is
computed as described in Section 5.3. The final compression ratio, including the overhead
of the decompression engine modules is shown in Figure 13. The total area overhead of
the decompression engine contributes on average 21.5% to the final compression ratio. The
final compression ratio using PBC is 61.3%.
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Figure 13: Final compression ratio for the PBC algorithm.

7 Instruction-Based Compression (IBC)

In the two previous sections, compression was performed using whole expression trees (Sec-
tion 5) and parts of expression trees (Section 6) for symbols. In this section, the alphabet
used in compression is formed by instructions. This approach is motivated by the large per-
centage of expression trees that are composed of single instructions, as shown in Figure 14.
The horizontal axis of Figure 14 lists the set of distinct expression trees, ordered by their
frequency in the program, and the vertical axis the size of the trees in instructions. The
experimental results reveal that, in general, frequent trees have very few instructions, the
most frequent of them being single instruction trees. Rare trees are also fairly small, while
medium frequency trees are larger (2-4 instructions). This confirms, at an instruction level,
the observation made in [3] about the role played by small bit strings in program code.
The number of distinct instructions in a program is very small, as shown in Table 7. On
average, all instructions in a program are replica of only 18.3% of its instructions. This is
mainly due to the regularity and orthogonality of the instructions in a RISC architecture.
This level of code redundancy cannot be found, for example, in irregular instructions sets,
like those found in DSP architectures [26]. It remains to be shown that instructions preserve
the exponential frequency property shown by whole trees and patterns. Similarly as before,
the graph of Figure 15 shows the cumulative frequency distribution of the instructions in the
benchmark programs. On average 20% of the most frequent instructions cover almost 80%
of all instruction of a program. It is exactly this exponential behavior, at the instruction
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Program | Program Unique
Name Size Instructions (%)
compress 2152 846 (39.3)
gee 363560 38600 (10.6)
go 73908 10267 (13.9)
ijpeg 47988 10536 (22.0)
li 18448 2959 (16.0)
perl 69536 11178 (16.1)
vortex 151348 15200 (10.0)

Table 7: Number of distinct instructions in a program. Numbers in parentheses are per-
centage with respect to the total number of instructions.
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level, that explains the similar behavior for larger symbols like whole trees and patteruns.
The combination of small instruction sets with a deterministic compiler does result in very
redundant code.
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Figure 15: Cumulative instruction frequency distribution.

7.1 The IBC Algorithm

The same compression algorithm employed in Section 5 and Section 6 is used here to encode
instructions. The final compression ratio, for all possible instruction partitions from 2-8
classes is shown in Figure 16. The compression ratio is on average 31.5%, and again it is
achieved using only four classes. For some programs, the best compression is achieved for
five classes, but the difference with respect to four classes is insignificant (0.1%).

7.2 The IBC Decompression Engine

The compression algorithm proposed in this section associates an instruction codeword to
a single uncompressed instruction. The decompression engine design (Figure 17) in this
case is very simple. A codeword Ic is extracted from a memory word, and decoded by the
Instruction Generator (IGEN) that outputs a pointer (iaddr) to the Instruction Dictionary
(ID). Each entry in ID stores a single uncompressed instruction, that is passed to the
processor. The area used by the decompression engine is basically the size of dictionary ID
(average 18.3%) plus the size of the ATT (average 3.8%), computed as in Section 5.3. The
final compression ratio, if the size of the decompression engine is considered, is shown in
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Figure 17: Decompression engine for Instruction Based Compression (IBC).
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Figure 18. The average overhead of the decompression engine for all programs is 22.1%,
and the final compression ratio for the IBC algorithm is 53.6%.

8 Conclusions

This paper proposes a set of three code compression algorithms for programs running on
RISC architectures. All algorithms are based on expression trees. Symbols used for compres-
sion are whole expression trees, parts of expression trees (patterns) or single instructions.
We show that, no matter the granularity of the symbol used for compression, symbol dis-
tribution is exponential. The central idea, in all three approaches, is the partition of the
symbols into classes, based on the average frequency distribution of the symbols in each
class. Symbols in each class are assigned codewords of same length. We show that, in
general, the best compression ratio is achieved when symbols are divided into four classes.
Figure 19 shows the final compression ratios for all programs, using all three algorithms.
The average compression ratio for TBC/PBC/IBC are respectively 60.7%/61.3%/53.6%
(27.2%/39.8%/31.5%) if the decompression engine overhead is (not) included. IBC pro-
duces the best ratio. There is not much difference between TBC and IBC ratios if the
engine overhead is not included. The reason is that a large number of trees in a program
have one single instruction. The difference between TBC and IBC grows when the engine
overhead is added. This is basically caused by two reasons. First, each entry in TD (Figure 6)
has an the extra END bit required to mark the end of a tree. Second, entries in a TD dictio-
nary (Figure 6) store whole trees, which can have repeated instructions, while entries in ID
are single instructions. This result in TD dictionaries that are larger than IBC dictionaries.
The reason PBC is outperformed by IBC/TBC is much more subtle. Although separating
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Figure 19: Final compression ratio for TBC/PBC/IBC.

expression trees into tree and operand patterns might result in some gain, the improvement
is offset by the overhead resulting from using two sets of prefix bits, one for each pattern
codeword. Moreover, as discussed in Section 6, there is a strong correlation between the
number of distinct trees in a program and the number of distinct operand-patterns.

A preliminary design of the decompression engine is under way. The design is based on
a synthesizable VHDL model of the decompression engine proposed for the IBC algorithm
(Section 7.2). Preliminary performance tests have been carried out, using Exemplar/MGC
Leonardo Compiler, and the results reveal minimum operation frequencies of 120MHz across
all programs.

9 Future Work

This work can be improved in two ways. First, trees encode the same temporary register
twice. If the compiler schedules expression trees in a pre-order schedule, it is possible to
eliminate the second reference to a temporary, minimizing the size of the tree dictionary in
TBC. In this case, the decompression engine should be able to keep track of the temporary
registers, and to perform local register allocation at decompression time. There is evidence
that other forms of dividing expression trees into symbols can result in better compression.
For example, instruction 1w usually appears together with operand $29 (stack-pointer). A
thorough analysis of this kind of correlation might reveal new patterns, that could eventually
result in better compression.
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