
O
onte�udo do presente relat�orio �e de �uni
a responsabilidade do(s) autor(es).The
ontents of this report are the sole responsibility of the author(s).

Expression Tree Based Algorithms for CodeCompression on Embedded RISCAr
hite
turesGuido Araujo Paulo Centodu
atteRodolfo Azevedo Ri
ardo PannainRelat�orio T�e
ni
o IC{00-01
Janeiro de 2000

Expression Tree Based Algorithms for Code Compression onEmbedded RISC Ar
hite
turesGuido Araujo Paulo Centodu
atte Rodolfo Azevedo Ri
ardo PannainAbstra
tRedu
ing program size has be
ome an important goal in the design of modern em-bedded systems target to mass produ
tion. This problem has driven a number of e�ortsaimed at designing pro
essors with shorter instru
tion formats (e.g. ARM Thumb andMIPS16), or that are able to exe
ute
ompressed
ode (e.g. IBM CodePa
k PowerPC).This paper proposes three
ode
ompression algorithms for embedded RISC ar
hite
-tures. In all algorithms, the en
oded symbols are extra
ted from program expressiontrees. The algorithms di�er on the granularity of the en
oded symbol, whi
h are sele
tedfrom whole trees, parts of trees or single instru
tions. Di
tionary based de
ompressionengines are proposed for ea
h
ompression algorithm. Experimental results, based onSPEC CINT95 programs running on the MIPS R4000 pro
essor, reveal an average
ompression ratio of 53.6% (31.5%) if the area of the de
ompression engine is (not)
onsidered.1 Introdu
tionAs embedded systems are be
oming more
omplex, the size of embedded programs aregrowing
onsiderably large. The result are systems in whi
h program memories a

ountfor the largest share of the total die area, more than the area of the mi
ropro
essor
oreand other on-
hip modules. As a
onsequen
e, minimizing program size has be
ome animportant part of the design e�ort (
ost) of an embedded system. A way to a
hieve that isto restri
t the size of instru
tions. This is the approa
h used in the design of the Thumb [1℄and MIPS16 [2℄ pro
essors. Shorter instru
tions are obtained mainly by restri
ting thenumber of bits that en
ode registers and immediates. Fewer registers imply in less free-dom for the
ompiler to perform important tasks, like global register allo
ation. It alsomeans more instru
tions to perform the same amount of
omputation. The net result are30%-40% smaller programs running 15%-20% slower than programs using standard RISCinstru
tions [3℄. Another way to redu
e the size of a program is to design pro
essors that
an exe
ute
ompressed
ode. In order to do that, the de
ompression engine has to performreal-time
ode de
ompression. Moreover, be
ause programs have bran
h instru
tions, theengine must allow for random
odeword de
ompression. These are the two major featuresthat distinguish
ode
ompression from other data
ompression problems.This paper is divided as follows. Se
tion 2 dis
usses prior work on the problem of
ode
ompression. The experimental framework used in this work is des
ribed in Se
tion 3.1

2 G. Araujo, P. Centodu
atte, R. Azevedo and R. PannainAll algorithms proposed here use expression trees or parts of expression trees to perform
ompression. Se
tion 4 explains how expression trees are determined and why we believethey lead to improved
ompression. Compression algorithms and their
orresponding ex-periments are dis
ussed in Se
tion 5 (Tree Based Compression), Se
tion 6 (Pattern BasedCompression), and Se
tion 7 (Instru
tion Based Compression). The goal of the experimentsis to measure the �nal
ompression ratio1, in
luding the de
ompression engine size over-head. Se
tion 8 summarizes the work and Se
tion 9 proposes new dire
tions and possibleextensions.2 Related WorkThis paper deals with the problem of �nding
ode
ompression te
hniques that allow eÆ-
ient implementations of real-time de
ompression engines. One might be tempted to believethat this problem is a natural extension of the data
ompression problem, for whi
h thereis an extensive literature[4℄. Although data
ompression algorithms form the basis of
ode
ompression, they
annot be dire
tly applied. For example, almost all pra
ti
al di
tionarybased
ompression tools of today are based on the work of Lempel and Ziv (LZ)[5℄ andits variations[6℄[7℄[8℄[9℄. In LZ
ompression, the di
tionary is en
oded together with the
ompressed string. Pointers to previously parsed substrings are used to en
ode the
urrentsubstring. De
ompression is then performed by substituting a pointer by the substringit points to. For the
ase of real-time de
ompression, this is a major drawba
k though.Instru
tions that are target of bran
h instru
tions are rea
hable from more than one in-stru
tion path, and the path is only determined at exe
ution time. Therefore, there is noway to know, at
ompression time, whi
h instru
tion path should be
ompressed. For therest of this se
tion, we dis
uss
ode
ompression te
hniques that have been proposed tosolve the real-time de
ompression problem.The �rst studies on
ode
ompression date ba
k to the 70's, when memory was s
ar
eand instru
tion sets were designed to minimize memory utilization. In 1972, the designersof the Borroughs B1700 [10℄ developed an approa
h, based on instru
tion utilization, todetermine the size of instru
tion �elds. Short (long) instru
tion �elds were assigned to very(un)frequent instru
tions using Hu�man en
oding [11℄. On a variation of this approa
h,programs dynami
ally
olle
ted instru
tion �eld utilization, su
h that �eld sizes
ould beassigned at exe
ution time.The �rst approa
h for
ode
ompression in a RISC ar
hite
ture was originally proposedby Wolfe and Channin [12℄. The pro
essor des
ribed in there is
alled Code Compres-sion RISC Pro
essor (CCRP). In the CCRP,
ode is
ompressed one
a
he-line at a time.Compressed
a
he lines are fet
hed from main-memory, un
ompressed and put into theinstru
tion
a
he. Instru
tions in the
a
he are exa
tly as in the original un
ompressedprogram. This requires a new design for the instru
tion
a
he re�ll engine, but no modi-�
ation in the
ore pro
essor. The main advantage of
ompressing
a
he lines is that thelaten
y of the de
ompression engine is amortized a
ross many
a
he hits. In CCRP, pro-gram target addresses have di�erent values if the line is in main-memory or in
a
he. The1
ompression ratio = size of
ompressed program / size of un
ompressed program

Algorithms for Code Compression 3CCRP uses a main-memory based Line Address Table (LAT) to map (un
ompressed
ode)addresses in the
a
he to (
ompressed
ode) addresses in main-memory. A Ca
he LineAddress Lookaside Bu�er (CLB) is used to store sets of re
ently fet
hed LAT entries. The
ompression algorithm for the CCRP is based on en
oding byte long symbols using Hu�-man
odewords[11℄, and results in 73%
ompression ratio for the MIPS R2000 instru
tionset [12℄ and [13℄. This
ompression ratio does not take into
onsideration the size of thede
ompression engine.Lefurgy et al. [3℄ proposed a
ode
ompression te
hnique based on di
tionary en
oding.In [3℄ obje
t
ode is parsed and
ommon sequen
es of instru
tions are repla
ed by a single
odeword. Only frequent sequen
es are
ompressed. Es
ape bits are used to distinguishbetween a
odeword and an un
ompressed instru
tion. The instru
tions
orresponding toea
h
odeword are stored into a di
tionary in the de
ompression engine. Codeword bitsare used to index the di
tionary entries. The de
ompression engine expands
odewordsinto their original instru
tion sequen
es in the di
tionary. Sin
e the
ompressed programis
omposed of
odewords and un
ompressed instru
tions, bran
h targets are re
omputedso as to re
e
t their new lo
ation in the program. The target address bits is divided intotwo parts: the address of the
ompressed word and an o�set from the beginning of the
ompressed word. The target address is
omputed by adding these two, a te
hnique thatrequires modi�
ations in the
ontrol unit of the pro
essor
ore. Lefurgy et al. studied two
ompression te
hniques. The �rst approa
h is based on �xed-length
odewords. Better
ompression ratios were a
hieved by a se
ond approa
h that uses nibble aligned variablelength en
oding. In this
ase, average
ompression ratios of 61%, 66%, and 74% have beenreported for the PowerPC, ARM and i386 pro
essors respe
tively [3℄.Wolf and Lekatsas [14℄[15℄ studied two di�erent methods for
ode
ompression. Thebest
ompression ratio is produ
ed by the SADC method. In SADC, symbols are asso
iatedto instru
tion op
ode and operand �elds. During
ompression, instru
tion sequen
es aresele
ted and a stream of bits is derived for ea
h sequen
e of instru
tion �elds. Ea
h streamis then en
oded using Hu�man
odewords. The average
ompression ratio a
hieved by thismethod on a MIPS ar
hite
ture is 51%. It is not
lear from [14℄ if this number takes into
onsideration an estimate of the size of the de
ompression engine.The CodePa
k PowerPC pro
essor [16℄ is an ar
hite
ture designed to exe
ute
ompressed
ode. The
ompression approa
h found at CodePa
k is similar to the one proposed in thispaper. They di�er on how symbols are sele
ted and en
oded though. Hu�man
odewordsare used to en
ode es
ape bits, while symbols are sele
ted from sequen
es of instru
tion bitsin a
a
he-line. The CodePa
k approa
h results in an average 60%-65%
ompression ratio,not in
luding the size of the de
ompression engine
ore.Liao et al. [17℄ proposed a
ompression te
hnique based on di
tionaries. The main idea in[17℄ is the substitution of
ommon instru
tion sequen
es by sub-routine
alls. A hardwareme
hanism is proposed to minimize the
ost of the sub-routine return instru
tion. Theaverage
ompression ratio reported for the TMS320C25 pro
essor was 82%.

4 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannain3 Experimental FrameworkThe algorithms we propose have been tested using programs from the SPEC CINT95 ben
h-mark running on the MIPS R4000 pro
essor. The R4000 is a
lassi
al RISC ar
hite
ture,that has most of the features of a modern RISC pro
essor. It is also one of the mostused RISC ar
hite
tures in the embedded systems arena. Ben
hmark programs were
ross-
ompiled for the R4000 using g

 version 2.8.1 on a Sun Enterprise E450 ma
hine. Obje
t
ode was generated using
ompiler options -O2 and -Os, for MIPS instru
tion sets mips1and mips2. Option -O2 generates
ode target to performan
e and in
ludes all major
om-piler optimizations. Flag -Os sele
ts from the optimizations available in -O2, only thosewhi
h do not in
rease program size. The resulting
ode size is shown in Table 1. In gen-eral, optimizing for performan
e leads to
ode that is approximately the same size of thoseresulting from size optimization. In Table 1, the -mips2 option produ
es smaller programsthan when -mips1 is used. In mips1 ar
hite
tures (e.g. R2000), delayed bran
hes are han-dled by the
ompiler/assembler (resulting in many nop instru
tions). This is not the
aseof interlo
ked pipelined ar
hite
tures like the mips2 (e.g. R4000) [18℄. For this work, theben
hmark programs were
ompiled using options -mips2 -Os.Program -mips1 -O2 -mips1 -Os -mips2 -O2 -mips2 -Os
ompress 2304 2304 2164 2152g

 409204 407636 364524 363560go 79776 80284 73908 72516ijpeg 52816 52336 48548 47988li 20832 20652 18616 18448perl 80308 79676 70228 69536vortex 167212 167384 151476 151348Table 1: Compiler parameters and number of instru
tions generated.4 Expression TreesIn
ompression, symbol is the basi
 unit used to form the text to be
ompressed, and analphabet is the set of all symbols. This work studies three
ode
ompression te
hniques forRISC ar
hite
tures. The basi
 idea of all algorithms is the restri
tion we made that analphabet must
ontain only symbols that are expression trees or parts of expression trees.In other words, a sequen
e of instru
tions that is not entirely
ontained in any program tree
annot be
onsidered a symbol. What distinguishes one algorithm from another is the waytrees are de
omposed into alphabet symbols.In the �rst algorithm (Se
tion 5), symbols are whole trees and the alphabet is formed byall distin
t trees in the program. In the se
ond algorithm (Se
tion 6), trees are de
omposedinto smaller distin
t parts (i.e. patterns), whi
h are then en
oded. Finally, in the thirdalgorithm (Se
tion 7), the alphabet is the set of all distin
t instru
tions from all trees in the

Algorithms for Code Compression 5program. We use expression trees as the basis for
ompression be
ause
ompilers tend togenerate similar expression trees during the translation of sour
e program statements. Thisis explained by: (a) the redu
ed number of instru
tions in a RISC instru
tion set; (b) thesmall size of the majority of the expression trees, and therefore, the small number of possibleways in whi
h instru
tions
an be
ombined; (
) the deterministi
 way in whi
h
ompilersgenerate
ode for abstra
t syntax tree
onstru
ts, like if-then-else and for statements .Expression trees are
onstru
ted as in [19℄. An instru
tion is the root of an expressiontree [19℄ if one of the following is true: (a) the instru
tion stores into memory; (b) thedestination operand of the instru
tion is the sour
e of more than one instru
tion insidethe basi
 blo
k; (
) the destination operand of the instru
tion is the sour
e of at least oneinstru
tion outside the basi
 blo
k; (d) the instru
tion is the �rst instru
tion in the basi
blo
k; (e) the instru
tion is a bran
h. Expression trees do not
ross basi
 blo
k boundaries.Examples of expression trees are listed in Figure 1.addiu $29, $29, 256 addiu $2, $2, 60sw $28, 16($29) lw $4, 0($2)slti $4, $4, 17bne $4, $0, 16(a) (b)Figure 1: Typi
al expression trees.5 Tree Based Compression (TBC)In Tree Based Compression (TBC) the alphabet is formed by all unique expression trees inthe program. Instru
tions are
ollapsed into sequen
es, ea
h satisfying the expression treede�nition in Se
tion 4. The set of distin
t trees was determined and the results were listedin Table 2. From Table 2, the number of distin
t trees in a program is mu
h smaller thanProgram Total Distin
tTrees Trees (%)
ompress 1844 832 (45.1)g

 291758 51186 (17.5)go 62423 12460 (20.0)ijpeg 40621 11264 (27.7)li 15509 3072 (19.8)perl 52276 12793 (24.5)vortex 130336 17463 (13.4)Table 2: Number of distin
t trees in a program. Numbers in parentheses are per
entagewith respe
t to the total number of trees.

6 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannainthe total number of trees. On average, distin
t expression trees
orrespond to only 24% ofall trees in a program.5.1 The TBC AlgorithmThe sele
tion of the best method to en
ode trees depends on how they
ontribute to theprogram size. In order to determine that, we ordered the set of distin
t trees based on howfrequent they show up in ea
h program. The
umulative distribution of the distin
t trees inthe programs was
omputed. The result is shown in the graph of Figure 2. In the horizontalaxis of the graph, trees are ordered in de
reasing frequen
y. Noti
e from Figure 2, that thefrequen
y distribution of distin
t trees in all programs is very non-uniform. A
tually, treeshave exponential frequen
y distributions. On average, 80% of all program trees are
overedby only 20% of the most frequent ones.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 T

re
es

 C
ov

er
ed

Unique Expression Trees (Decreasing frequency)

compress

li

gcc

perl

go

vortex

ijpeg

Figure 2: Per
entage of program trees
overed by distin
t trees.This suggests that expression trees should be
ompressed using an en
oding that assignssmaller (larger)
odewords to (un)frequent trees. Hu�man en
oding [4℄ is su
h an algorithm.In [20℄ we studied four en
oding methods based on variations of Hu�man. The experimentalresults reveal an average 37%
ompression ratio for the same set of programs studied here.Unfortunately, designing fast Hu�man de
oders is
ompli
ated, and it usually results inde
oders that are more expensive than if �xed-length
odewords had been used [21℄[22℄.In order to simplify the design of the de
ompression engine, we developed a
ompressionalgorithm, based on �xed-length
odewords, that explores the exponential nature of the treefrequen
y distribution, while produ
ing very high
ompression. The algorithm divides the

Algorithms for Code Compression 7set of distin
t trees into n

lasses, ea
h
lass k having nk trees. The number of
lasses (n
)is determined exhaustively, by exploring all possible partitions from two to eight
lasses. Forea
h partition of a given number of
lasses, we determine (again exhaustively) all possible
ombinations of
lass sizes and measure their
ompression ratio. The
ombination, from allpossible partitions, that results in the smaller
ompression ratio is then sele
ted as the bestpartition for the tree set. One
an think of this approa
h as a form of dis
rete Hu�manen
oding. From this perspe
tive, the goal of the
ompression algorithm is to perform apie
ewise dis
retization of the frequen
y distribution shown in Figure 2, so as to minimizethe �nal
ompression ratio.Fixed-length
odewords of size dlog2nke are then assigned to the trees in
lass k. For ea
h
odeword we append a pre�x of size dlog2n
e bits, that is used by the de
oder to identifythe
lass. The �nal
odeword en
oding of a tree is shown in Figure 3. The
ompressionalgorithm substitutes ea
h expression tree in the program by its
orresponding
odeword.
codewordclass

 log n log n 2 k 2 cFigure 3: Tree en
oding.Consider, for example, program li and a partition of the tree set into four
lasses.Table 3 shows all possible
ombinations of
odeword sizes using a four
lasses partition (I-IV). The best
ompression ratio2 (23.4%), highlighted in Table 3, assigns 1/5/8/12 bits to
lasses I/II/II/IV. The
ombination of four
lasses, that minimizes the
ompression ratio forprogram li, divides the
urve of li (Figure 4) into four intervals, ea
h interval
orrespondingto a
lass. From the dis
retization perspe
tive, the new value of the
umulative distributionin ea
h interval (i.e.
lass) is
onstant and is
omputed using the average frequen
y of thetrees in that interval.On
e the best
ompression ratio for a given partition is determined, we repeat thealgorithm for other partitions. Figure 5 shows the resulting
ompression ratio when thetree set for ea
h of the programs in the ben
hmark is partitioned into 2-8
lasses. Noti
ethat the
ompression ratio de
reases as the number of
lasses in
reases, until it rea
hesa minimum, after whi
h it starts to in
rease again. This o

urs be
ause the algorithmautomati
ally assigns smaller (larger)
odewords to
lasses for whi
h the trees have a high(low) average frequen
y distribution. The more
lasses are added, the lower is the averagefrequen
y di�eren
e between two neighbor
lasses, and the larger is the overhead due tothe new pre�x bits required by the new
lasses. Eventually, the bene�t gained by thedis
retization is o�set by the pre�x bits overhead, and the
ompression ratio starts toin
rease. It is interesting to noti
e that, for almost all programs, the minimum
ompressionratio is a
hieved when the partition is performed using four
lasses. In some
ases (e.g. go)the best
ompression ratio o

urs for �ve
lasses. Nevertheless, the average di�eren
e of2All
ompression ratio numbers take into
onsideration the pre�x size.

8 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannain
Codeword size Compr.I II III IV Ratio1 1 1 12 30.31 1 2 12 29.2.1 5 8 12 23.41 5 9 12 23.5.9 9 8 12 31.29 9 9 12 30.5Table 3: All possible
odeword size
ombinations for li using four
lasses.

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20

P
ro

gr
am

 T
re

es
 (

%
)

Trees (%) -- Decreasing frequency

I

II

III

IV

Figure 4: Dis
retization of the frequen
y distribution for program li after
lass partitioning.Class I (IV) has < 1% (> 9%) of all distin
t trees.

Algorithms for Code Compression 9

20

25

30

35

40

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

Number of ClassesFigure 5: Compression ratio for di�erent partitions.the
ompression ratio between
lasses �ve and four is only 0.09%. The best
ompressionratio for ea
h partition is then determined (minima in Figure 5). Table 4 shows, for ea
hprogram, the best
ompression ratio using four
lasses. The average
ompression ratio forall programs studied was 27.2%.Program Codeword size Compr.Name I II III IV Ratio
ompress 1 5 8 10 22.9g

 2 8 12 16 29.4go 3 8 11 14 28.8ijpeg 3 8 11 14 29.9li 2 6 9 12 23.2perl 2 7 10 14 27.3vortex 1 6 10 14 28.4Table 4: Class partition that results in the best
ompression ratio for four
lasses.Codewords are allowed to split at the end of ea
h 32-bit words, and bits from split
odewords are spilled into the next word. We noti
ed that large
ompression ratios
anonly be a
hieved if we allow this to happen. The reason, also noti
ed in [3℄, is that many
ommon trees are originated from a single instru
tion word (see Se
tion 7 for details).Therefore,
onstraining
odewords to a single word
onsiderably limits the
ompression

10 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannain
In

TGENTc

C
O

M
P

R
E

SS
E

D
 T

R
E

E

ld

END

0
0
1

INSTR

sw $1 0($4)

addui $4 $4 1
lui $1 0

TDtdaddr

tdaddr

sw
 $

1
 0

($
4)

lu
i

$1
 0

ad
di

u
 $

4
 $

4
 1

INC

Figure 6: De
ompression engine for Tree Based Compression (TBC).

 SHIFT

OFFSET
5 bits

 ADDR
w bits

Mask
Address

bi
ts

S
ig

ni
fic

an
t

2 bits
3 bits
1 bit

unused

Processor Address
Requested

 Word

 Word

Memory

Address
Translated

Address 1
Address 2
Address 3

Offset 1
Offset 2
Offset 3

ATT
Offset Codeword

k
lin

es

Address Fill

Word

Figure 7: Address Translation Table (ATT).

Algorithms for Code Compression 11ratio. This implies that the de
ompression engine should be able to keep tra
k of
odewordboundaries inside the
urrent memory word, and to put together pie
es of a split
odewordduring two
onse
utive memory fet
hes.5.2 The TBC De
ompression EngineThis se
tion proposes a de
oding engine for the TBC
ompression algorithm (Figure 6).The de
ompression engine works in two phases. First, tree
odewords T
 are extra
tedfrom a memory word. Se
ond, T
 is de
oded by logi
 TGEN and
onverted to addresstdaddr. Address tdaddr points to the entry in the Tree Di
tionary (TD) that stores the�rst instru
tion of the de
ompressed tree. Ea
h TD entry is
omposed of two �elds: INSTRand END. Field INSTR is 32 bits wide and
ontains one instru
tion of the de
ompressedexpression tree. Bit-�eld END is used to
he
k for the last instru
tion in the tree beingde
ompressed. If END = 1 (0) the
urrent entry is (not) the last instru
tion of the
urrenttree. END is used as a load input to the In
rementer (INC). If the
urrent instru
tion is notthe last instru
tion of the
urrent tree, INC in
rements and the output of INC points to thenext tree instru
tion, otherwise it loads a new tdaddr to start de
oding the next
ompressedtree. Address translation for bran
h and jump instru
tions is performed by the AddressTranslation Table (ATT) (Figure 7) dis
ussed in Se
tion 5.3 below. A fair assessment of the
ATT Overhead

Program compression

TD Overhead

F
in

al
C

om
pr

es
si

on
 r

at
io

 (
%

)

gcc go liijpeg perl vortex

10

20

30

40

50

60

70

80

90

100

compressFigure 8: Final
ompression ratio for TBC.
ompression eÆ
ien
y of the TBC algorithm needs to take into
onsideration the sili
onarea of the de
ompression engine. To determine the size of the de
ompression engine weassume that the area of the extra
tion logi
 and the rest of the de
ompression engine is

12 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannainmu
h smaller than the size of its tables (TD and ATT). Figure 8 shows the �nal
ompressionratio of the TBC algorithm when the de
ompression engine modules overhead is
onsidered.The average size of the de
ompression engine, with respe
t to the un
ompressed programis 33.5%. The �nal average
ompression ratio for the TBC algorithm is 60.7%.5.3 Address Translation TableIn our ar
hite
ture model, the pro
essor exe
utes un
ompressed instru
tions that generateun
ompressed address requests, while memory stores
ompressed instru
tions (i.e. trees).During the exe
ution of bran
h/jump instru
tions the address requested to memory bythe pro
essor
hanges from the address of the next instru
tion to some arbitrary (un
om-pressed) address. In order to satisfy this request the de
ompression engine should be able tomap (un
ompressed) pro
essor addresses to (
ompressed) memory addresses. To make thispossible, we propose the address translation module shown in Figure 7, where the mappingis performed using an Address Translation Table (ATT).When the pro
essor fet
hes an instru
tion, it �rst looks for the requested word in theinstru
tion
a
he. If there is a
a
he miss, the pro
essor requests one
a
he-line frommemory. The pro
essor Requested Address is then used to generate an address to ATT.The address of ATT is
omputed from Requested Address by masking out 6 bits: 2 bits thatare used for byte-o�set, 3 bits to address the word in the
a
he-line (assuming 8 word
a
he-lines), and one extra bit to redu
e the number of entries (size) of ATT. As a
onsequen
eof this extra bit, ATT
an only address one every two
onse
utive
ompressed
a
he-lines inmemory, in
reasing the response time of the engine to a memory request. Therefore, thereis a trade-o�, that
an be explored by the designer, between the size of ATT and the laten
yof the de
ompression engine.After the mask operation is �nished Signifi
ant bits are used to point to ATT. Ea
hATT entry has two �elds: ADDR and OFFSET. The ADDR �eld is the address of the memoryword (Word) that
ontains the
ompressed expression tree requested by the pro
essor. Byde�nition of expression tree, the target of any bran
h/jump instru
tion is the root of a tree(Se
tion 4). Noti
e that the TBC algorithm
an
ompress more than one expression tree intoa single memory word, and these
an start at any one of its 32-bit positions. Field OFFSET(5 bits) is used by the SHIFT module to determine the position of the requested
ompressedtree in Word.The laten
y of this address translation approa
h is mainly a result of the time requiredto fet
h, from memory, the sequen
e of words up to the requested tree, plus the time tode
ode it. After that, the de
ompression engine fet
hes, using an internal
ounter, the re-maining words that are required by the pro
essor to
omplete the
ompressed
a
he-line.Speed
an be improved if the de
ompressor engine runs faster than memory, allowing theengine to feed more instru
tions to the pro
essor than the memory system, sin
e
ode-words are smaller than instru
tions and there is more than one
odeword in ea
h memoryword. The size of the address translation engine is basi
ally the size of ATT. There are k =Program Size=(4 + 8 + 2) lines in ATT, ea
h line
ontaining w = log2(Compressed Size)ADDR bits and 5 OFFSET bits.

Algorithms for Code Compression 136 Pattern-Based Compression (PBC)In the previous se
tion, expression trees were divided into subsets and the trees in ea
hset en
oded using �xed-length
odewords, the size of whi
h is dependent on the averagefrequen
y of the trees in the set. In this se
tion, we dis
uss a
ompression algorithm forwhi
h the alphabet is
omposed of parts of expression trees.6.1 The PBC AlgorithmThe key idea of this approa
h is an operation that fa
tors out the operands (operand-patterns) from the expression trees of a program. The fa
tored expression trees are
alledtree-patterns. We
all the task of removing operands from an expression tree operand fa
-torization. Operand fa
torization is not a new
on
ept though. It has been proposed in[23℄ as an en
oding te
hnique for intermediate representation in
ompilers. Variations ofoperand fa
torization have been used in [24℄[25℄. Consider, for example, the expression treeaddiu $4, $4, 1 addiu *, *, *lui $1, 0 lui *, *sw $1, 0($4) sw *, *(*)(a) (b)[$4,$4,1,$1,0,$1,0,$4℄(
)Figure 9: (a) Expression tree; (b) Tree-pattern; (
) Operand-pattern.of Figure 9(a). Figure 9(b) shows the tree-pattern resulting after operand fa
torization isapplied to it. Stars (wild-
ards) are used in pla
e of the original operands. An operand-pattern is formed by traversing the instru
tion sequen
es in the expression tree, listing theoperands when they are en
ountered. Figure 9(
) shows the operand-pattern determinedafter the expression tree in Figure 9(a) is fa
tored.Table 5 lists the number of expression trees and patterns for our program set. In Table 5,g

 has 291758 di�erent expression trees, that
an be represented by only 921 (45469) tree(operand) patterns. In other words, the tree (operand) patterns from only 0.3% (15.6%)of all trees in g

 are enough to represent the remaining trees. Interesting enough, smallprograms seem to be mu
h less redundant than large programs. In
ompress (the smallestprogram studied), tree-patterns
orrespond to 5.8% of all possible trees in the program,while operand-patterns are 41.6% of all operand sequen
es.At this point, it is interesting to determine what makes expression trees di�erent. Twoexpression trees are distin
t if they have at least one di�erent instru
tion. Two instru
tionsare di�erent if they have di�erent tree and/or operand patterns. Column (III) of Table 5shows the number of distin
t trees in ea
h program. Noti
e that, for all programs, there isa strong
orrelation between the number of distin
t trees and operand-patterns (V). This
orrelation
an be measured by the di�eren
e (III) - (IV) shown in Column (VI), that results

14 G. Araujo, P. Centodu
atte, R. Azevedo and R. PannainProgram # Trees # Distin
t Tree- Operand- (III) - (IV)Name (I) (II) Trees (III) Patterns (IV) Patterns (V) (VI)
ompress 1844 832 107 (5.8) 767 (41.6) 8.5g

 291758 51186 921 (0.3) 45469 (15.6) 12.6go 62423 12460 256 (0.4) 11373 (18.2) 9.6ijpeg 40621 11264 348 (0.9) 9907 (24.4) 13.7li 15509 3072 169 (1.1) 2840 (18.3) 8.2perl 57276 12793 547 (1.0) 11579 (20.2) 10.5vortex 130336 17493 324 (0.2) 15592 (12.0) 12.2Average 85681 15585 382 (1.4) 13932 (17.4) 10.8Table 5: Number of tree and operand patterns in a program. Numbers in parentheses areper
entage with respe
t to the total number of expression trees.in an average 10.8%. Hen
e, for the majority of the programs, given an operand patternthere is usually a single tree-pattern asso
iated to it. In other words, operand-patterns arethe main
ause for the large diversity of program expression trees. This is not a surprise,given the large number of ways that registers and immediates
an be
ombined, when
om-pared with the number of
ombinations of instru
tion op
odes in a RISC ar
hite
ture. The
orrelation between distin
t trees and operand-patterns is not one-to-one though. In this
ase, there is still some opportunities for
ompression, by dividing a tree into its patterns.In order to determine the form patterns
ontribute to a program we
omputed the fre-quen
y
ontribution of all patterns. The individual frequen
ies of ea
h unique tree-patternwas determined. Tree-patterns were then ordered in a de
reasing order of frequen
y, andthe
umulative per
entage of the expression trees
overed by these patterns was
omputed.The results are shown in Figure 10(a). The frequen
y of ea
h tree-pattern is the derivativeof the graph in Figure 10(a). Based on that, we rea
h the
on
lusion that the frequen
y ofa tree-pattern de
reases almost exponentially as the pattern be
omes less and less frequent.On average 20% of the tree-patterns
orrespond to almost all trees in a program. This ruleworks for all programs in Figure 10(a) but
ompress. The distribution of expression trees in
ompress is smoother. A similar graph was also derived for operand-patterns. Figure 10(b)shows the
umulative number of trees in a program that are
overed by distin
t operand-patterns. On average, 20% of the operand-patterns a

ount for about 80% of all operandsequen
es in a program. As before,
ompress numbers di�er from the other programs.Operand fa
torization re
ognizes the fa
t that any en
oding te
hnique that intermixesop
ode and operand bits during
ompression misses the opportunity to
apture the high
orrelation exhibited by tree and operand patterns. For example, an algorithm that per-forms sequential
ompression, like LZ [5℄, will not be able to dete
t the simple tree-pattern[lw *,*,* : add *,*,*℄. Any non-sequential algorithm whi
h
onsiders a program as aset of bit strings will also miss that. Consider for example, the tree-pattern [lw *,*,*℄ anda pro
essor that en
odes the op
ode and the destination register (in this order) using 6 bitsea
h. If a byte is
hosen as the en
oding symbol, the �rst byte of instru
tions [lw $2,*,*℄

Algorithms for Code Compression 15

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
ro

gr
am

 E
xp

re
ss

io
n

T
re

es
 (

%
)

Tree-patterns (%) -- Decreasing frequency

(a)

compress

li

gcc

perl

go

vortex

ijpeg

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
ro

gr
am

 E
xp

re
ss

io
n

T
re

es
 (

%
)

Operand-patterns (%) -- Decreasing frequency

(b)

compress

li

gcc

perl

go

vortex

ijpeg

Figure 10: Cumulative per
entage of expression trees
overed by: (a) tree-patterns; (b)operand-patterns.

16 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannainand [lw $15,*,*℄ are en
oded as two di�erent
odewords, even if pattern [lw *,*,*℄a

ounts for a
onsiderable share of the program bits. Moreover, operand fa
torization
anidentify operand-patterns that are shared by two di�erent instru
tions. For example, in g

operand-pattern [$2, $0, $4℄ is used by expression trees [subu $2, $0, $4℄ and [nor$2, $0, $4℄.Tree and operand patterns are en
oded separately using the same algorithm dis
ussedin Se
tion 5.1. Expression trees are en
oded as
odeword pairs [Tp;Op℄, where Tp (Op) isthe
odeword for a tree (operand) pattern. Pairs [Tp;Op℄ are then appended sequentially toform a list of
odeword pairs that results in the
ompressed program. As before, Figure 11(a-b) shows how the
ompression ratio varies a

ording to the number of
lasses used todivide ea
h pattern set. Noti
e that for tree-patterns the best en
oding is a
hieved for 3
lasses. This
ertainly has to do with the sharp exponential distribution for three-patternsin Figure 10(a). Few tree-patterns
over the majority of the trees in a program and theseare assigned to a single
lass. The rest of the trees have similar (small)
ontributions, andtherefore there is no point in assigning them to more than a
ouple of
lasses, sin
e this onlyin
reases the overhead due to the extra pre�x bits required to en
ode the additional
lasses.On the other hand, the
ompression ratio di�eren
e when 4
lasses are used instead of 3is only 0.49%. The frequen
y distribution for operand-patterns (Figure 10(b)) is smootherthan for tree-patterns, resulting in a better
ompression if the set of operand-patterns isdivided into more
lasses. In general this number is four, but for some programs (e.g. g

)the
ompression using �ve
lasses is better. Here again, the
ompression ratio di�eren
ebetween both partitions is only 0.1%.Similarly for the
ase of TBC (Se
tion 5), patterns that do not �t into a single word arespilled to the next word. This is an additional problem for the de
ompression engine, giventhat it now should be able to realign two
odewords, one for ea
h pattern. The
ompressionProgram Tp Compr Op Compr. ComposedName Ratio Ratio Ratio
ompress 22.8 13.2 35.9g

 29.1 13.3 42.4go 28.6 12.5 41.1ijpeg 29.5 14.1 43.6li 22.9 12.1 35.0perl 27.1 13.3 40.4vortex 27.5 12.7 40.2Table 6: Composed
ompression ratio when Tree-pattern (Tp) and Operand-pattern (Op)
odewords are
ombined.ratio for tree (operand) patterns is on average 13.0% (26.8%), and is a
hieved when tree(operand) patterns are divided into 4
lasses. Table 6 shows the �nal
ompression ratio(average 39.8%), when the
odewords for both patterns are
ombined.

Algorithms for Code Compression 17

10

15

20

25

30

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

(a)

Number of Classes

20

25

30

35

40

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

(b)

Number of ClassesFigure 11: (a) Tree-pattern
ompression ratio for di�erent partitions; (b) Operand-pattern
ompression ratio for di�erent partitions.

18 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannain6.2 The PBC De
ompression EngineThis se
tion proposes a de
oding engine for the PBC Algorithm (Figure 12). As before thede
ompression engine works in two phases. First, �elds Tp and Op are extra
ted from the
ompressed word. Se
ond, Tp is mapped into a sequen
e of un
ompressed instru
tions, andOp is used to generate registers and immediate bits for them. This information is fed intothe Instru
tion Assembly Bu�er (IAB) that assembles the de
ompressed instru
tions. Inthe following se
tions we des
ribe ea
h module of the de
ompression engine.
C

O
M

P
R

E
S

S
E

D
 T

R
E

E

TGEN

RGEN

TPD

addiu
lui

0 0 00

0 0 0 0

0 0 0 1

Tp

Op

IAB

RS1
RS2
RD

IMB

IGEN

BSEL

BADDR
Mux

IMD

2 4
8

2
n

sw
 $

1,
 0

($
4)

lu
i

$1
, 0

ad
d

iu
 $

4,
 $

4,
 1

ITYPE ENDOPECODE

raddr

$1, $4
$1
$4, $4

REGD

sw

tpaddr

Figure 12: De
ompression engine for Pattern Based Compression (PBC).

Algorithms for Code Compression 196.2.1 Tree-pattern Di
tionaryThe Tree-pattern Di
tionary (TPD) stores the op
odes en
oded by ea
h tree-pattern
ode-word. Tp is de
oded by the Tree-pattern Generator (TGEN) into a TPD address tpaddr. Theop
ode �elds en
oded by Tp are then fet
hed from a sequen
e of TPD entries starting attpaddr. Ea
h TPD entry is
omposed of three �elds: OPCODE, ITYPE, and END. Field OPCODE
arries the op
ode bits of an instru
tion in the tree-pattern. Field ITYPE en
odes the type(i.e. format) of the instru
tion. The information stored in ITYPE is used by IAB to de
idehow to assemble a de
ompressed instru
tion. The IAB puts together OPCODE, register (RS1,RS2, RD) and immediate (IMB) bits to form an instru
tion. Bit-�eld END is used to
he
kfor the last instru
tion in a tree-pattern. On average, TPD area is only 0.9% of the originalprogram size.6.2.2 Register Di
tionaryThe Register Di
tionary (REGD) de
odes the Op �eld of the in
oming
ompressed word,into a sequen
e of operand registers required by the instru
tions in the tree-pattern. Theoutput of REGD is formed by three (register) buses: RS1, RS2 and RD, that generate the bits
orresponding to the instru
tion sour
e and destination registers. An estimate of the sizeof REGD was determined by adding up the size (in bits) of all register �elds in the operand-patterns. In this
ase, the average size of REGD, with respe
t to the un
ompressed program,is 3.8%.6.2.3 Immediate Di
tionaryThe IMD module in Figure 12 stores the immediates used by the program. A single entry inIMD is
reated for ea
h distin
t immediate in the program, no matter whi
h instru
tion usesit, or how many times it shows up. For example, a single
onstant 4 is stored for instru
tions[bgez $5, 4℄, [lw $6, 4($29)℄, and [srl $5, $3, 4℄. We use the variation on the sizeof immediates to minimize the number of bits stored in IMD. An evaluation of the size of theimmediates reveals that, on average, more than 70% of the immediates in a program
anbe en
oded into less than 16 bits. Immediates are
lustered into memory banks a

ordingto the number of bits they use. Memory bank address BADDR and bank sele
tion BSEL aregenerated by the IGEN module from
odeword Op. This approa
h
onsiderably redu
es theaverage number of distin
t immediates in a program (26.7%). As a result, the average shareof the
ompression ratio due to IMD is 13%.The sizes of the immediate (IMD), tree-pattern (TPD) and register di
tionaries (REGD)are easy to estimate. As before we assume that the size of the extra
tion logi
 and the restof the de
ompressor is mu
h smaller than the size of the di
tionaries. The size of ATT is
omputed as des
ribed in Se
tion 5.3. The �nal
ompression ratio, in
luding the overheadof the de
ompression engine modules is shown in Figure 13. The total area overhead ofthe de
ompression engine
ontributes on average 21.5% to the �nal
ompression ratio. The�nal
ompression ratio using PBC is 61.3%.

20 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannain
ATT Overhead

REGD Overhead

IMD Overhead

TPD Overhead

Program compression

C
om

pr
es

si
on

 r
at

io
 (

%
)

F
in

al

10

20

30

40

50

60

70

80

90

100

compress gcc go li perl vortexijpegFigure 13: Final
ompression ratio for the PBC algorithm.7 Instru
tion-Based Compression (IBC)In the two previous se
tions,
ompression was performed using whole expression trees (Se
-tion 5) and parts of expression trees (Se
tion 6) for symbols. In this se
tion, the alphabetused in
ompression is formed by instru
tions. This approa
h is motivated by the large per-
entage of expression trees that are
omposed of single instru
tions, as shown in Figure 14.The horizontal axis of Figure 14 lists the set of distin
t expression trees, ordered by theirfrequen
y in the program, and the verti
al axis the size of the trees in instru
tions. Theexperimental results reveal that, in general, frequent trees have very few instru
tions, themost frequent of them being single instru
tion trees. Rare trees are also fairly small, whilemedium frequen
y trees are larger (2-4 instru
tions). This
on�rms, at an instru
tion level,the observation made in [3℄ about the role played by small bit strings in program
ode.The number of distin
t instru
tions in a program is very small, as shown in Table 7. Onaverage, all instru
tions in a program are repli
a of only 18.3% of its instru
tions. This ismainly due to the regularity and orthogonality of the instru
tions in a RISC ar
hite
ture.This level of
ode redundan
y
annot be found, for example, in irregular instru
tions sets,like those found in DSP ar
hite
tures [26℄. It remains to be shown that instru
tions preservethe exponential frequen
y property shown by whole trees and patterns. Similarly as before,the graph of Figure 15 shows the
umulative frequen
y distribution of the instru
tions in theben
hmark programs. On average 20% of the most frequent instru
tions
over almost 80%of all instru
tion of a program. It is exa
tly this exponential behavior, at the instru
tion

Algorithms for Code Compression 21

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

T
re

e
si

ze
 (

in
 in

st
ru

ct
io

ns
)

Unique Expression Trees (Decreasing frequency)

compress
gcc
go

ijpeg
li

perl
vortex

Figure 14: Distribution of the average tree size (Bezier approximation).
Program Program UniqueName Size Instru
tions (%)
ompress 2152 846 (39.3)g

 363560 38600 (10.6)go 73908 10267 (13.9)ijpeg 47988 10536 (22.0)li 18448 2959 (16.0)perl 69536 11178 (16.1)vortex 151348 15200 (10.0)Table 7: Number of distin
t instru
tions in a program. Numbers in parentheses are per-
entage with respe
t to the total number of instru
tions.

22 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannainlevel, that explains the similar behavior for larger symbols like whole trees and patterns.The
ombination of small instru
tion sets with a deterministi

ompiler does result in veryredundant
ode.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
ro

gr
am

 In
st

ru
ct

io
ns

 (
%

)

Instructions (%) -- Decreasing frequency

compress

li

gcc

perl

go

vortex

ijpeg

Figure 15: Cumulative instru
tion frequen
y distribution.7.1 The IBC AlgorithmThe same
ompression algorithm employed in Se
tion 5 and Se
tion 6 is used here to en
odeinstru
tions. The �nal
ompression ratio, for all possible instru
tion partitions from 2-8
lasses is shown in Figure 16. The
ompression ratio is on average 31.5%, and again it isa
hieved using only four
lasses. For some programs, the best
ompression is a
hieved for�ve
lasses, but the di�eren
e with respe
t to four
lasses is insigni�
ant (0.1%).7.2 The IBC De
ompression EngineThe
ompression algorithm proposed in this se
tion asso
iates an instru
tion
odeword toa single un
ompressed instru
tion. The de
ompression engine design (Figure 17) in this
ase is very simple. A
odeword I
 is extra
ted from a memory word, and de
oded by theInstru
tion Generator (IGEN) that outputs a pointer (iaddr) to the Instru
tion Di
tionary(ID). Ea
h entry in ID stores a single un
ompressed instru
tion, that is passed to thepro
essor. The area used by the de
ompression engine is basi
ally the size of di
tionary ID(average 18.3%) plus the size of the ATT (average 3.8%),
omputed as in Se
tion 5.3. The�nal
ompression ratio, if the size of the de
ompression engine is
onsidered, is shown in

Algorithms for Code Compression 23

26

28

30

32

34

36

38

40

42

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

Number of ClassesFigure 16: Compression ratio for various partitions.
sw

 $
1

 0
($

4)

lu
i

$1
 0

ad
di

u
 $

4
 $

4
 1

IGEN

INSTR

sw $1 0($4)
lui $1 0
addui $4 $4 1

Ic

C
O

M
P

R
E

SS
E

D
 T

R
E

E

iaddr

ID

Figure 17: De
ompression engine for Instru
tion Based Compression (IBC).

24 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannain

10

20

30

40

50

60

70

80

90

100

Program compression

ATT Overhead

ID Overhead

Fi
na

l
C

om
pr

es
si

on
 r

at
io

 (
%

)

go li compress perl gcc vortex ijpegFigure 18: Final
ompression ratio for IBC.Figure 18. The average overhead of the de
ompression engine for all programs is 22.1%,and the �nal
ompression ratio for the IBC algorithm is 53.6%.8 Con
lusionsThis paper proposes a set of three
ode
ompression algorithms for programs running onRISC ar
hite
tures. All algorithms are based on expression trees. Symbols used for
ompres-sion are whole expression trees, parts of expression trees (patterns) or single instru
tions.We show that, no matter the granularity of the symbol used for
ompression, symbol dis-tribution is exponential. The
entral idea, in all three approa
hes, is the partition of thesymbols into
lasses, based on the average frequen
y distribution of the symbols in ea
h
lass. Symbols in ea
h
lass are assigned
odewords of same length. We show that, ingeneral, the best
ompression ratio is a
hieved when symbols are divided into four
lasses.Figure 19 shows the �nal
ompression ratios for all programs, using all three algorithms.The average
ompression ratio for TBC/PBC/IBC are respe
tively 60.7%/61.3%/53.6%(27.2%/39.8%/31.5%) if the de
ompression engine overhead is (not) in
luded. IBC pro-du
es the best ratio. There is not mu
h di�eren
e between TBC and IBC ratios if theengine overhead is not in
luded. The reason is that a large number of trees in a programhave one single instru
tion. The di�eren
e between TBC and IBC grows when the engineoverhead is added. This is basi
ally
aused by two reasons. First, ea
h entry in TD (Figure 6)has an the extra END bit required to mark the end of a tree. Se
ond, entries in a TD di
tio-nary (Figure 6) store whole trees, whi
h
an have repeated instru
tions, while entries in IDare single instru
tions. This result in TD di
tionaries that are larger than IBC di
tionaries.The reason PBC is outperformed by IBC/TBC is mu
h more subtle. Although separating

Algorithms for Code Compression 25
IBC

TBC

PBC

F
in

al
C

om
pr

es
si

on
 r

at
io

 (
%

)

10

20

30

40

50

60

70

80

90

100

compress gcc go liijpeg vortexperlFigure 19: Final
ompression ratio for TBC/PBC/IBC.expression trees into tree and operand patterns might result in some gain, the improvementis o�set by the overhead resulting from using two sets of pre�x bits, one for ea
h pattern
odeword. Moreover, as dis
ussed in Se
tion 6, there is a strong
orrelation between thenumber of distin
t trees in a program and the number of distin
t operand-patterns.A preliminary design of the de
ompression engine is under way. The design is based ona synthesizable VHDL model of the de
ompression engine proposed for the IBC algorithm(Se
tion 7.2). Preliminary performan
e tests have been
arried out, using Exemplar/MGCLeonardo Compiler, and the results reveal minimum operation frequen
ies of 120MHz a
rossall programs.
9 Future WorkThis work
an be improved in two ways. First, trees en
ode the same temporary registertwi
e. If the
ompiler s
hedules expression trees in a pre-order s
hedule, it is possible toeliminate the se
ond referen
e to a temporary, minimizing the size of the tree di
tionary inTBC. In this
ase, the de
ompression engine should be able to keep tra
k of the temporaryregisters, and to perform lo
al register allo
ation at de
ompression time. There is eviden
ethat other forms of dividing expression trees into symbols
an result in better
ompression.For example, instru
tion lw usually appears together with operand $29 (sta
k-pointer). Athorough analysis of this kind of
orrelation might reveal new patterns, that
ould eventuallyresult in better
ompression.

26 G. Araujo, P. Centodu
atte, R. Azevedo and R. Pannain10 A
knowledgmentsThis resear
h was supported in part by a grant from CNPq under
ontra
t 300156/97-9, a grant from FAPESP under
ontra
t 1997/10982-0, a FAPESP resear
h fellowship(98/13728-0), and a grant from CNPq/NSF 1998 Collaborative Resear
h Proje
t. Thiswork would not be possible without the tools and resour
es provided by Mentor Graphi
sCorporation, through their Edu
ational Program.Referen
es[1℄ A. van Someren and A. Ata
k, The ARM RISC Chip: A Programmer's Guide, Addison-Wesley, 1994.[2℄ K. D. Kissell, \MIPS16: High{density MIPS for the embedded market,," in Real TimeSystem'97, 1997.[3℄ Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor Mudge, \Improving
odedensity using
ompression te
hniques," in Pro
eedings of MICRO{30: The 30th AnnualInternational Symposium on Mi
roar
hite
ture, De
ember 1997, pp. 194{203.[4℄ Timothy C. Bell, Jhon G. Cleary, and Ian H. Witten, Text Compression, Advan
edReferen
e Series. Prenti
e Hall, New Jersey, 1990.[5℄ A. Lempel and J. Ziv, \On the
omplexity of �nite sequen
es," IEEE Transa
tion onInformation Theory, vol. IT{22, no. 1, pp. 75{81, January 1976.[6℄ J. Ziv and A. Lempel, \A universal algorithm for sequential data
ompression," Trans-a
tions on Information Theory, vol. 23, pp. 337{343, 1977.[7℄ J. Ziv and Lempel A., \A universal algorithm for sequential data
ompression," IEEETransa
tion on Information Theory, vol. 23, no. 3, pp. 337{343, May 1977.[8℄ J. Ziv and Lempel A., \Compression of individual sequen
es via variable{rate
oding,"IEEE Transa
tion on Information Theory, vol. 24, no. 5, pp. 337{343, September 1978.[9℄ Wel
h, \A te
hnique for high-performan
e data
ompression," IEE Computer, vol. 17,no. 6, pp. 8{19, July 1984.[10℄ W. T. Wilner, \Burroughs B1700 memory utilization," in Fall Joint Computer Con-feren
e, 1972, pp. 579{586.[11℄ D. A. Hu�man, \A method for the
onstru
tion of minimum{redundan
y
odes,"Pro
eedings of the IRE, vol. 40(9), pp. 1098{1101, September 1952.[12℄ Andrew Wolfe and Alex Channin, \Exe
uting
ompressed programs on an embeddedRISC ar
hite
ture," in Pro
eedings of MICRO{25: The 25th Annual InternationalSymposium on Mi
roar
hite
ture, De
ember 1992, pp. 81{91.

Algorithms for Code Compression 27[13℄ Mi
hael Kozu
h and Andrew Wolfe, \Compression of embedded system programs," inPro
eedings of the IEEE International Conferen
e on Computer Design, O
tober 1994,pp. 270{277.[14℄ H. Lekatsas and W. Wolf, \Code
ompression for embedded systems," in Pro
. of 35thACM Design Automation Conferen
e, 1998.[15℄ H. Lekatsas and W. Wolf, \Random a

ess de
ompression using arithmeti

oding,"in Pro
. of the Data Compression Conferen
e, Mar
h 1999.[16℄ IBM Corporarion, CodePa
k PowerPC Code Compression Utility User's Manual, 1998,Version 3.0.[17℄ S. Liao, S. Devadas, and K. Keutzer, \A text-
ompression-based method for
ode sizeminimization in embedded systems," ACM Transa
tions on Design Automation ofEle
troni
 Systems, vol. 4, no. 1, pp. 12{38, 1998.[18℄ Gerry Kane and Joe Heinri
h, MIPS RISC Ar
hite
ture, Prenti
e Hall, New Jersey,1992.[19℄ A.V. Aho, R. Sethi, and J.D. Ullman, Compilers, Prin
iples, Te
hniques and Tools,Addison Wesley, Boston, 1988.[20℄ Guido Araujo, Paulo Centodu
atte, Mario Cortes, and Ri
ardo Pannain, \Code
om-pression based on operand fa
torization," in Pro
eedings of MICRO{31: The 31thAnnual International Symposium on Mi
roar
hite
ture, De
ember 1998, pp. 194{201.[21℄ Martin Bene�s, Andrew Wolfe, and Steven M. Nowi
k, \A high{speed asyn
hronousde
ompression
ir
uit for embedded pro
essors," in Pro
eedings of 17th Conferen
e onAdvan
ed Resear
h in VLSI, Los Alamitos, CA, 1997, IEEE So
iety Press.[22℄ Martin Bene�s, Steven M. Nowi
k, and Andrew Wolfe, \A fast asyn
hronous hu�mande
oder for de
ompressed{
ode embedded pro
essors," in Asyn
98. 1998, ACM.[23℄ Todd A. Proebsting, \Optimizing an ANSI C interpreter with superoperators," inACMConferen
e on Prin
iples of Programming Languages, January 1995, pp. 322{332.[24℄ Mi
hael Franz and Kistler Thomas, \Slim binaries," Communi
ation of the ACM, vol.40, no. 12, pp. 87{94, de
ember 1997.[25℄ Jean Ernst, William Evans, Christopher W. Fraser, Steven Lu

o, and Todd A. Proeb-sting, \Code
ompression," in SIGPLAN Programming Languages Design and Imple-mentation, 1997.[26℄ P. Centodu
atte, G. Araujo, and R. Pannain, \Compressed
ode exe
ution on dspar
hite
ture," in To appear in Pro
. of 12th International Symposium on System Syn-thesis, November 1999.

