
O onte�udo do presente relat�orio �e de �unia responsabilidade do(s) autor(es).The ontents of this report are the sole responsibility of the author(s).

Expression Tree Based Algorithms for CodeCompression on Embedded RISCArhiteturesGuido Araujo Paulo CentoduatteRodolfo Azevedo Riardo PannainRelat�orio T�enio IC{00-01
Janeiro de 2000

Expression Tree Based Algorithms for Code Compression onEmbedded RISC ArhiteturesGuido Araujo Paulo Centoduatte Rodolfo Azevedo Riardo PannainAbstratReduing program size has beome an important goal in the design of modern em-bedded systems target to mass prodution. This problem has driven a number of e�ortsaimed at designing proessors with shorter instrution formats (e.g. ARM Thumb andMIPS16), or that are able to exeute ompressed ode (e.g. IBM CodePak PowerPC).This paper proposes three ode ompression algorithms for embedded RISC arhite-tures. In all algorithms, the enoded symbols are extrated from program expressiontrees. The algorithms di�er on the granularity of the enoded symbol, whih are seletedfrom whole trees, parts of trees or single instrutions. Ditionary based deompressionengines are proposed for eah ompression algorithm. Experimental results, based onSPEC CINT95 programs running on the MIPS R4000 proessor, reveal an averageompression ratio of 53.6% (31.5%) if the area of the deompression engine is (not)onsidered.1 IntrodutionAs embedded systems are beoming more omplex, the size of embedded programs aregrowing onsiderably large. The result are systems in whih program memories aountfor the largest share of the total die area, more than the area of the miroproessor oreand other on-hip modules. As a onsequene, minimizing program size has beome animportant part of the design e�ort (ost) of an embedded system. A way to ahieve that isto restrit the size of instrutions. This is the approah used in the design of the Thumb [1℄and MIPS16 [2℄ proessors. Shorter instrutions are obtained mainly by restriting thenumber of bits that enode registers and immediates. Fewer registers imply in less free-dom for the ompiler to perform important tasks, like global register alloation. It alsomeans more instrutions to perform the same amount of omputation. The net result are30%-40% smaller programs running 15%-20% slower than programs using standard RISCinstrutions [3℄. Another way to redue the size of a program is to design proessors thatan exeute ompressed ode. In order to do that, the deompression engine has to performreal-time ode deompression. Moreover, beause programs have branh instrutions, theengine must allow for random odeword deompression. These are the two major featuresthat distinguish ode ompression from other data ompression problems.This paper is divided as follows. Setion 2 disusses prior work on the problem of odeompression. The experimental framework used in this work is desribed in Setion 3.1

2 G. Araujo, P. Centoduatte, R. Azevedo and R. PannainAll algorithms proposed here use expression trees or parts of expression trees to performompression. Setion 4 explains how expression trees are determined and why we believethey lead to improved ompression. Compression algorithms and their orresponding ex-periments are disussed in Setion 5 (Tree Based Compression), Setion 6 (Pattern BasedCompression), and Setion 7 (Instrution Based Compression). The goal of the experimentsis to measure the �nal ompression ratio1, inluding the deompression engine size over-head. Setion 8 summarizes the work and Setion 9 proposes new diretions and possibleextensions.2 Related WorkThis paper deals with the problem of �nding ode ompression tehniques that allow eÆ-ient implementations of real-time deompression engines. One might be tempted to believethat this problem is a natural extension of the data ompression problem, for whih thereis an extensive literature[4℄. Although data ompression algorithms form the basis of odeompression, they annot be diretly applied. For example, almost all pratial ditionarybased ompression tools of today are based on the work of Lempel and Ziv (LZ)[5℄ andits variations[6℄[7℄[8℄[9℄. In LZ ompression, the ditionary is enoded together with theompressed string. Pointers to previously parsed substrings are used to enode the urrentsubstring. Deompression is then performed by substituting a pointer by the substringit points to. For the ase of real-time deompression, this is a major drawbak though.Instrutions that are target of branh instrutions are reahable from more than one in-strution path, and the path is only determined at exeution time. Therefore, there is noway to know, at ompression time, whih instrution path should be ompressed. For therest of this setion, we disuss ode ompression tehniques that have been proposed tosolve the real-time deompression problem.The �rst studies on ode ompression date bak to the 70's, when memory was sareand instrution sets were designed to minimize memory utilization. In 1972, the designersof the Borroughs B1700 [10℄ developed an approah, based on instrution utilization, todetermine the size of instrution �elds. Short (long) instrution �elds were assigned to very(un)frequent instrutions using Hu�man enoding [11℄. On a variation of this approah,programs dynamially olleted instrution �eld utilization, suh that �eld sizes ould beassigned at exeution time.The �rst approah for ode ompression in a RISC arhiteture was originally proposedby Wolfe and Channin [12℄. The proessor desribed in there is alled Code Compres-sion RISC Proessor (CCRP). In the CCRP, ode is ompressed one ahe-line at a time.Compressed ahe lines are fethed from main-memory, unompressed and put into theinstrution ahe. Instrutions in the ahe are exatly as in the original unompressedprogram. This requires a new design for the instrution ahe re�ll engine, but no modi-�ation in the ore proessor. The main advantage of ompressing ahe lines is that thelateny of the deompression engine is amortized aross many ahe hits. In CCRP, pro-gram target addresses have di�erent values if the line is in main-memory or in ahe. The1ompression ratio = size of ompressed program / size of unompressed program

Algorithms for Code Compression 3CCRP uses a main-memory based Line Address Table (LAT) to map (unompressed ode)addresses in the ahe to (ompressed ode) addresses in main-memory. A Cahe LineAddress Lookaside Bu�er (CLB) is used to store sets of reently fethed LAT entries. Theompression algorithm for the CCRP is based on enoding byte long symbols using Hu�-man odewords[11℄, and results in 73% ompression ratio for the MIPS R2000 instrutionset [12℄ and [13℄. This ompression ratio does not take into onsideration the size of thedeompression engine.Lefurgy et al. [3℄ proposed a ode ompression tehnique based on ditionary enoding.In [3℄ objet ode is parsed and ommon sequenes of instrutions are replaed by a singleodeword. Only frequent sequenes are ompressed. Esape bits are used to distinguishbetween a odeword and an unompressed instrution. The instrutions orresponding toeah odeword are stored into a ditionary in the deompression engine. Codeword bitsare used to index the ditionary entries. The deompression engine expands odewordsinto their original instrution sequenes in the ditionary. Sine the ompressed programis omposed of odewords and unompressed instrutions, branh targets are reomputedso as to reet their new loation in the program. The target address bits is divided intotwo parts: the address of the ompressed word and an o�set from the beginning of theompressed word. The target address is omputed by adding these two, a tehnique thatrequires modi�ations in the ontrol unit of the proessor ore. Lefurgy et al. studied twoompression tehniques. The �rst approah is based on �xed-length odewords. Betterompression ratios were ahieved by a seond approah that uses nibble aligned variablelength enoding. In this ase, average ompression ratios of 61%, 66%, and 74% have beenreported for the PowerPC, ARM and i386 proessors respetively [3℄.Wolf and Lekatsas [14℄[15℄ studied two di�erent methods for ode ompression. Thebest ompression ratio is produed by the SADC method. In SADC, symbols are assoiatedto instrution opode and operand �elds. During ompression, instrution sequenes areseleted and a stream of bits is derived for eah sequene of instrution �elds. Eah streamis then enoded using Hu�man odewords. The average ompression ratio ahieved by thismethod on a MIPS arhiteture is 51%. It is not lear from [14℄ if this number takes intoonsideration an estimate of the size of the deompression engine.The CodePak PowerPC proessor [16℄ is an arhiteture designed to exeute ompressedode. The ompression approah found at CodePak is similar to the one proposed in thispaper. They di�er on how symbols are seleted and enoded though. Hu�man odewordsare used to enode esape bits, while symbols are seleted from sequenes of instrution bitsin a ahe-line. The CodePak approah results in an average 60%-65% ompression ratio,not inluding the size of the deompression engine ore.Liao et al. [17℄ proposed a ompression tehnique based on ditionaries. The main idea in[17℄ is the substitution of ommon instrution sequenes by sub-routine alls. A hardwaremehanism is proposed to minimize the ost of the sub-routine return instrution. Theaverage ompression ratio reported for the TMS320C25 proessor was 82%.

4 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannain3 Experimental FrameworkThe algorithms we propose have been tested using programs from the SPEC CINT95 benh-mark running on the MIPS R4000 proessor. The R4000 is a lassial RISC arhiteture,that has most of the features of a modern RISC proessor. It is also one of the mostused RISC arhitetures in the embedded systems arena. Benhmark programs were ross-ompiled for the R4000 using g version 2.8.1 on a Sun Enterprise E450 mahine. Objetode was generated using ompiler options -O2 and -Os, for MIPS instrution sets mips1and mips2. Option -O2 generates ode target to performane and inludes all major om-piler optimizations. Flag -Os selets from the optimizations available in -O2, only thosewhih do not inrease program size. The resulting ode size is shown in Table 1. In gen-eral, optimizing for performane leads to ode that is approximately the same size of thoseresulting from size optimization. In Table 1, the -mips2 option produes smaller programsthan when -mips1 is used. In mips1 arhitetures (e.g. R2000), delayed branhes are han-dled by the ompiler/assembler (resulting in many nop instrutions). This is not the aseof interloked pipelined arhitetures like the mips2 (e.g. R4000) [18℄. For this work, thebenhmark programs were ompiled using options -mips2 -Os.Program -mips1 -O2 -mips1 -Os -mips2 -O2 -mips2 -Osompress 2304 2304 2164 2152g 409204 407636 364524 363560go 79776 80284 73908 72516ijpeg 52816 52336 48548 47988li 20832 20652 18616 18448perl 80308 79676 70228 69536vortex 167212 167384 151476 151348Table 1: Compiler parameters and number of instrutions generated.4 Expression TreesIn ompression, symbol is the basi unit used to form the text to be ompressed, and analphabet is the set of all symbols. This work studies three ode ompression tehniques forRISC arhitetures. The basi idea of all algorithms is the restrition we made that analphabet must ontain only symbols that are expression trees or parts of expression trees.In other words, a sequene of instrutions that is not entirely ontained in any program treeannot be onsidered a symbol. What distinguishes one algorithm from another is the waytrees are deomposed into alphabet symbols.In the �rst algorithm (Setion 5), symbols are whole trees and the alphabet is formed byall distint trees in the program. In the seond algorithm (Setion 6), trees are deomposedinto smaller distint parts (i.e. patterns), whih are then enoded. Finally, in the thirdalgorithm (Setion 7), the alphabet is the set of all distint instrutions from all trees in the

Algorithms for Code Compression 5program. We use expression trees as the basis for ompression beause ompilers tend togenerate similar expression trees during the translation of soure program statements. Thisis explained by: (a) the redued number of instrutions in a RISC instrution set; (b) thesmall size of the majority of the expression trees, and therefore, the small number of possibleways in whih instrutions an be ombined; () the deterministi way in whih ompilersgenerate ode for abstrat syntax tree onstruts, like if-then-else and for statements .Expression trees are onstruted as in [19℄. An instrution is the root of an expressiontree [19℄ if one of the following is true: (a) the instrution stores into memory; (b) thedestination operand of the instrution is the soure of more than one instrution insidethe basi blok; () the destination operand of the instrution is the soure of at least oneinstrution outside the basi blok; (d) the instrution is the �rst instrution in the basiblok; (e) the instrution is a branh. Expression trees do not ross basi blok boundaries.Examples of expression trees are listed in Figure 1.addiu $29, $29, 256 addiu $2, $2, 60sw $28, 16($29) lw $4, 0($2)slti $4, $4, 17bne $4, $0, 16(a) (b)Figure 1: Typial expression trees.5 Tree Based Compression (TBC)In Tree Based Compression (TBC) the alphabet is formed by all unique expression trees inthe program. Instrutions are ollapsed into sequenes, eah satisfying the expression treede�nition in Setion 4. The set of distint trees was determined and the results were listedin Table 2. From Table 2, the number of distint trees in a program is muh smaller thanProgram Total DistintTrees Trees (%)ompress 1844 832 (45.1)g 291758 51186 (17.5)go 62423 12460 (20.0)ijpeg 40621 11264 (27.7)li 15509 3072 (19.8)perl 52276 12793 (24.5)vortex 130336 17463 (13.4)Table 2: Number of distint trees in a program. Numbers in parentheses are perentagewith respet to the total number of trees.

6 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannainthe total number of trees. On average, distint expression trees orrespond to only 24% ofall trees in a program.5.1 The TBC AlgorithmThe seletion of the best method to enode trees depends on how they ontribute to theprogram size. In order to determine that, we ordered the set of distint trees based on howfrequent they show up in eah program. The umulative distribution of the distint trees inthe programs was omputed. The result is shown in the graph of Figure 2. In the horizontalaxis of the graph, trees are ordered in dereasing frequeny. Notie from Figure 2, that thefrequeny distribution of distint trees in all programs is very non-uniform. Atually, treeshave exponential frequeny distributions. On average, 80% of all program trees are overedby only 20% of the most frequent ones.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 T

re
es

 C
ov

er
ed

Unique Expression Trees (Decreasing frequency)

compress

li

gcc

perl

go

vortex

ijpeg

Figure 2: Perentage of program trees overed by distint trees.This suggests that expression trees should be ompressed using an enoding that assignssmaller (larger) odewords to (un)frequent trees. Hu�man enoding [4℄ is suh an algorithm.In [20℄ we studied four enoding methods based on variations of Hu�man. The experimentalresults reveal an average 37% ompression ratio for the same set of programs studied here.Unfortunately, designing fast Hu�man deoders is ompliated, and it usually results indeoders that are more expensive than if �xed-length odewords had been used [21℄[22℄.In order to simplify the design of the deompression engine, we developed a ompressionalgorithm, based on �xed-length odewords, that explores the exponential nature of the treefrequeny distribution, while produing very high ompression. The algorithm divides the

Algorithms for Code Compression 7set of distint trees into n lasses, eah lass k having nk trees. The number of lasses (n)is determined exhaustively, by exploring all possible partitions from two to eight lasses. Foreah partition of a given number of lasses, we determine (again exhaustively) all possibleombinations of lass sizes and measure their ompression ratio. The ombination, from allpossible partitions, that results in the smaller ompression ratio is then seleted as the bestpartition for the tree set. One an think of this approah as a form of disrete Hu�manenoding. From this perspetive, the goal of the ompression algorithm is to perform apieewise disretization of the frequeny distribution shown in Figure 2, so as to minimizethe �nal ompression ratio.Fixed-length odewords of size dlog2nke are then assigned to the trees in lass k. For eahodeword we append a pre�x of size dlog2ne bits, that is used by the deoder to identifythe lass. The �nal odeword enoding of a tree is shown in Figure 3. The ompressionalgorithm substitutes eah expression tree in the program by its orresponding odeword.
codewordclass

 log n log n 2 k 2 cFigure 3: Tree enoding.Consider, for example, program li and a partition of the tree set into four lasses.Table 3 shows all possible ombinations of odeword sizes using a four lasses partition (I-IV). The best ompression ratio2 (23.4%), highlighted in Table 3, assigns 1/5/8/12 bits tolasses I/II/II/IV. The ombination of four lasses, that minimizes the ompression ratio forprogram li, divides the urve of li (Figure 4) into four intervals, eah interval orrespondingto a lass. From the disretization perspetive, the new value of the umulative distributionin eah interval (i.e. lass) is onstant and is omputed using the average frequeny of thetrees in that interval.One the best ompression ratio for a given partition is determined, we repeat thealgorithm for other partitions. Figure 5 shows the resulting ompression ratio when thetree set for eah of the programs in the benhmark is partitioned into 2-8 lasses. Notiethat the ompression ratio dereases as the number of lasses inreases, until it reahesa minimum, after whih it starts to inrease again. This ours beause the algorithmautomatially assigns smaller (larger) odewords to lasses for whih the trees have a high(low) average frequeny distribution. The more lasses are added, the lower is the averagefrequeny di�erene between two neighbor lasses, and the larger is the overhead due tothe new pre�x bits required by the new lasses. Eventually, the bene�t gained by thedisretization is o�set by the pre�x bits overhead, and the ompression ratio starts toinrease. It is interesting to notie that, for almost all programs, the minimum ompressionratio is ahieved when the partition is performed using four lasses. In some ases (e.g. go)the best ompression ratio ours for �ve lasses. Nevertheless, the average di�erene of2All ompression ratio numbers take into onsideration the pre�x size.

8 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannain
Codeword size Compr.I II III IV Ratio1 1 1 12 30.31 1 2 12 29.2.1 5 8 12 23.41 5 9 12 23.5.9 9 8 12 31.29 9 9 12 30.5Table 3: All possible odeword size ombinations for li using four lasses.

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20

P
ro

gr
am

 T
re

es
 (

%
)

Trees (%) -- Decreasing frequency

I

II

III

IV

Figure 4: Disretization of the frequeny distribution for program li after lass partitioning.Class I (IV) has < 1% (> 9%) of all distint trees.

Algorithms for Code Compression 9

20

25

30

35

40

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

Number of ClassesFigure 5: Compression ratio for di�erent partitions.the ompression ratio between lasses �ve and four is only 0.09%. The best ompressionratio for eah partition is then determined (minima in Figure 5). Table 4 shows, for eahprogram, the best ompression ratio using four lasses. The average ompression ratio forall programs studied was 27.2%.Program Codeword size Compr.Name I II III IV Ratioompress 1 5 8 10 22.9g 2 8 12 16 29.4go 3 8 11 14 28.8ijpeg 3 8 11 14 29.9li 2 6 9 12 23.2perl 2 7 10 14 27.3vortex 1 6 10 14 28.4Table 4: Class partition that results in the best ompression ratio for four lasses.Codewords are allowed to split at the end of eah 32-bit words, and bits from splitodewords are spilled into the next word. We notied that large ompression ratios anonly be ahieved if we allow this to happen. The reason, also notied in [3℄, is that manyommon trees are originated from a single instrution word (see Setion 7 for details).Therefore, onstraining odewords to a single word onsiderably limits the ompression

10 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannain
In

TGENTc

C
O

M
P

R
E

SS
E

D
 T

R
E

E

ld

END

0
0
1

INSTR

sw $1 0($4)

addui $4 $4 1
lui $1 0

TDtdaddr

tdaddr

sw
 $

1
 0

($
4)

lu
i

$1
 0

ad
di

u
 $

4
 $

4
 1

INC

Figure 6: Deompression engine for Tree Based Compression (TBC).

 SHIFT

OFFSET
5 bits

 ADDR
w bits

Mask
Address

bi
ts

S
ig

ni
fic

an
t

2 bits
3 bits
1 bit

unused

Processor Address
Requested

 Word

 Word

Memory

Address
Translated

Address 1
Address 2
Address 3

Offset 1
Offset 2
Offset 3

ATT
Offset Codeword

k
lin

es

Address Fill

Word

Figure 7: Address Translation Table (ATT).

Algorithms for Code Compression 11ratio. This implies that the deompression engine should be able to keep trak of odewordboundaries inside the urrent memory word, and to put together piees of a split odewordduring two onseutive memory fethes.5.2 The TBC Deompression EngineThis setion proposes a deoding engine for the TBC ompression algorithm (Figure 6).The deompression engine works in two phases. First, tree odewords T are extratedfrom a memory word. Seond, T is deoded by logi TGEN and onverted to addresstdaddr. Address tdaddr points to the entry in the Tree Ditionary (TD) that stores the�rst instrution of the deompressed tree. Eah TD entry is omposed of two �elds: INSTRand END. Field INSTR is 32 bits wide and ontains one instrution of the deompressedexpression tree. Bit-�eld END is used to hek for the last instrution in the tree beingdeompressed. If END = 1 (0) the urrent entry is (not) the last instrution of the urrenttree. END is used as a load input to the Inrementer (INC). If the urrent instrution is notthe last instrution of the urrent tree, INC inrements and the output of INC points to thenext tree instrution, otherwise it loads a new tdaddr to start deoding the next ompressedtree. Address translation for branh and jump instrutions is performed by the AddressTranslation Table (ATT) (Figure 7) disussed in Setion 5.3 below. A fair assessment of the
ATT Overhead

Program compression

TD Overhead

F
in

al
C

om
pr

es
si

on
 r

at
io

 (
%

)

gcc go liijpeg perl vortex

10

20

30

40

50

60

70

80

90

100

compressFigure 8: Final ompression ratio for TBC.ompression eÆieny of the TBC algorithm needs to take into onsideration the silionarea of the deompression engine. To determine the size of the deompression engine weassume that the area of the extration logi and the rest of the deompression engine is

12 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannainmuh smaller than the size of its tables (TD and ATT). Figure 8 shows the �nal ompressionratio of the TBC algorithm when the deompression engine modules overhead is onsidered.The average size of the deompression engine, with respet to the unompressed programis 33.5%. The �nal average ompression ratio for the TBC algorithm is 60.7%.5.3 Address Translation TableIn our arhiteture model, the proessor exeutes unompressed instrutions that generateunompressed address requests, while memory stores ompressed instrutions (i.e. trees).During the exeution of branh/jump instrutions the address requested to memory bythe proessor hanges from the address of the next instrution to some arbitrary (unom-pressed) address. In order to satisfy this request the deompression engine should be able tomap (unompressed) proessor addresses to (ompressed) memory addresses. To make thispossible, we propose the address translation module shown in Figure 7, where the mappingis performed using an Address Translation Table (ATT).When the proessor fethes an instrution, it �rst looks for the requested word in theinstrution ahe. If there is a ahe miss, the proessor requests one ahe-line frommemory. The proessor Requested Address is then used to generate an address to ATT.The address of ATT is omputed from Requested Address by masking out 6 bits: 2 bits thatare used for byte-o�set, 3 bits to address the word in the ahe-line (assuming 8 word ahe-lines), and one extra bit to redue the number of entries (size) of ATT. As a onsequeneof this extra bit, ATT an only address one every two onseutive ompressed ahe-lines inmemory, inreasing the response time of the engine to a memory request. Therefore, thereis a trade-o�, that an be explored by the designer, between the size of ATT and the latenyof the deompression engine.After the mask operation is �nished Signifiant bits are used to point to ATT. EahATT entry has two �elds: ADDR and OFFSET. The ADDR �eld is the address of the memoryword (Word) that ontains the ompressed expression tree requested by the proessor. Byde�nition of expression tree, the target of any branh/jump instrution is the root of a tree(Setion 4). Notie that the TBC algorithm an ompress more than one expression tree intoa single memory word, and these an start at any one of its 32-bit positions. Field OFFSET(5 bits) is used by the SHIFT module to determine the position of the requested ompressedtree in Word.The lateny of this address translation approah is mainly a result of the time requiredto feth, from memory, the sequene of words up to the requested tree, plus the time todeode it. After that, the deompression engine fethes, using an internal ounter, the re-maining words that are required by the proessor to omplete the ompressed ahe-line.Speed an be improved if the deompressor engine runs faster than memory, allowing theengine to feed more instrutions to the proessor than the memory system, sine ode-words are smaller than instrutions and there is more than one odeword in eah memoryword. The size of the address translation engine is basially the size of ATT. There are k =Program Size=(4 + 8 + 2) lines in ATT, eah line ontaining w = log2(Compressed Size)ADDR bits and 5 OFFSET bits.

Algorithms for Code Compression 136 Pattern-Based Compression (PBC)In the previous setion, expression trees were divided into subsets and the trees in eahset enoded using �xed-length odewords, the size of whih is dependent on the averagefrequeny of the trees in the set. In this setion, we disuss a ompression algorithm forwhih the alphabet is omposed of parts of expression trees.6.1 The PBC AlgorithmThe key idea of this approah is an operation that fators out the operands (operand-patterns) from the expression trees of a program. The fatored expression trees are alledtree-patterns. We all the task of removing operands from an expression tree operand fa-torization. Operand fatorization is not a new onept though. It has been proposed in[23℄ as an enoding tehnique for intermediate representation in ompilers. Variations ofoperand fatorization have been used in [24℄[25℄. Consider, for example, the expression treeaddiu $4, $4, 1 addiu *, *, *lui $1, 0 lui *, *sw $1, 0($4) sw *, *(*)(a) (b)[$4,$4,1,$1,0,$1,0,$4℄()Figure 9: (a) Expression tree; (b) Tree-pattern; () Operand-pattern.of Figure 9(a). Figure 9(b) shows the tree-pattern resulting after operand fatorization isapplied to it. Stars (wild-ards) are used in plae of the original operands. An operand-pattern is formed by traversing the instrution sequenes in the expression tree, listing theoperands when they are enountered. Figure 9() shows the operand-pattern determinedafter the expression tree in Figure 9(a) is fatored.Table 5 lists the number of expression trees and patterns for our program set. In Table 5,g has 291758 di�erent expression trees, that an be represented by only 921 (45469) tree(operand) patterns. In other words, the tree (operand) patterns from only 0.3% (15.6%)of all trees in g are enough to represent the remaining trees. Interesting enough, smallprograms seem to be muh less redundant than large programs. In ompress (the smallestprogram studied), tree-patterns orrespond to 5.8% of all possible trees in the program,while operand-patterns are 41.6% of all operand sequenes.At this point, it is interesting to determine what makes expression trees di�erent. Twoexpression trees are distint if they have at least one di�erent instrution. Two instrutionsare di�erent if they have di�erent tree and/or operand patterns. Column (III) of Table 5shows the number of distint trees in eah program. Notie that, for all programs, there isa strong orrelation between the number of distint trees and operand-patterns (V). Thisorrelation an be measured by the di�erene (III) - (IV) shown in Column (VI), that results

14 G. Araujo, P. Centoduatte, R. Azevedo and R. PannainProgram # Trees # Distint Tree- Operand- (III) - (IV)Name (I) (II) Trees (III) Patterns (IV) Patterns (V) (VI)ompress 1844 832 107 (5.8) 767 (41.6) 8.5g 291758 51186 921 (0.3) 45469 (15.6) 12.6go 62423 12460 256 (0.4) 11373 (18.2) 9.6ijpeg 40621 11264 348 (0.9) 9907 (24.4) 13.7li 15509 3072 169 (1.1) 2840 (18.3) 8.2perl 57276 12793 547 (1.0) 11579 (20.2) 10.5vortex 130336 17493 324 (0.2) 15592 (12.0) 12.2Average 85681 15585 382 (1.4) 13932 (17.4) 10.8Table 5: Number of tree and operand patterns in a program. Numbers in parentheses areperentage with respet to the total number of expression trees.in an average 10.8%. Hene, for the majority of the programs, given an operand patternthere is usually a single tree-pattern assoiated to it. In other words, operand-patterns arethe main ause for the large diversity of program expression trees. This is not a surprise,given the large number of ways that registers and immediates an be ombined, when om-pared with the number of ombinations of instrution opodes in a RISC arhiteture. Theorrelation between distint trees and operand-patterns is not one-to-one though. In thisase, there is still some opportunities for ompression, by dividing a tree into its patterns.In order to determine the form patterns ontribute to a program we omputed the fre-queny ontribution of all patterns. The individual frequenies of eah unique tree-patternwas determined. Tree-patterns were then ordered in a dereasing order of frequeny, andthe umulative perentage of the expression trees overed by these patterns was omputed.The results are shown in Figure 10(a). The frequeny of eah tree-pattern is the derivativeof the graph in Figure 10(a). Based on that, we reah the onlusion that the frequeny ofa tree-pattern dereases almost exponentially as the pattern beomes less and less frequent.On average 20% of the tree-patterns orrespond to almost all trees in a program. This ruleworks for all programs in Figure 10(a) but ompress. The distribution of expression trees inompress is smoother. A similar graph was also derived for operand-patterns. Figure 10(b)shows the umulative number of trees in a program that are overed by distint operand-patterns. On average, 20% of the operand-patterns aount for about 80% of all operandsequenes in a program. As before, ompress numbers di�er from the other programs.Operand fatorization reognizes the fat that any enoding tehnique that intermixesopode and operand bits during ompression misses the opportunity to apture the highorrelation exhibited by tree and operand patterns. For example, an algorithm that per-forms sequential ompression, like LZ [5℄, will not be able to detet the simple tree-pattern[lw *,*,* : add *,*,*℄. Any non-sequential algorithm whih onsiders a program as aset of bit strings will also miss that. Consider for example, the tree-pattern [lw *,*,*℄ anda proessor that enodes the opode and the destination register (in this order) using 6 bitseah. If a byte is hosen as the enoding symbol, the �rst byte of instrutions [lw $2,*,*℄

Algorithms for Code Compression 15

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
ro

gr
am

 E
xp

re
ss

io
n

T
re

es
 (

%
)

Tree-patterns (%) -- Decreasing frequency

(a)

compress

li

gcc

perl

go

vortex

ijpeg

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
ro

gr
am

 E
xp

re
ss

io
n

T
re

es
 (

%
)

Operand-patterns (%) -- Decreasing frequency

(b)

compress

li

gcc

perl

go

vortex

ijpeg

Figure 10: Cumulative perentage of expression trees overed by: (a) tree-patterns; (b)operand-patterns.

16 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannainand [lw $15,*,*℄ are enoded as two di�erent odewords, even if pattern [lw *,*,*℄aounts for a onsiderable share of the program bits. Moreover, operand fatorization anidentify operand-patterns that are shared by two di�erent instrutions. For example, in goperand-pattern [$2, $0, $4℄ is used by expression trees [subu $2, $0, $4℄ and [nor$2, $0, $4℄.Tree and operand patterns are enoded separately using the same algorithm disussedin Setion 5.1. Expression trees are enoded as odeword pairs [Tp;Op℄, where Tp (Op) isthe odeword for a tree (operand) pattern. Pairs [Tp;Op℄ are then appended sequentially toform a list of odeword pairs that results in the ompressed program. As before, Figure 11(a-b) shows how the ompression ratio varies aording to the number of lasses used todivide eah pattern set. Notie that for tree-patterns the best enoding is ahieved for 3lasses. This ertainly has to do with the sharp exponential distribution for three-patternsin Figure 10(a). Few tree-patterns over the majority of the trees in a program and theseare assigned to a single lass. The rest of the trees have similar (small) ontributions, andtherefore there is no point in assigning them to more than a ouple of lasses, sine this onlyinreases the overhead due to the extra pre�x bits required to enode the additional lasses.On the other hand, the ompression ratio di�erene when 4 lasses are used instead of 3is only 0.49%. The frequeny distribution for operand-patterns (Figure 10(b)) is smootherthan for tree-patterns, resulting in a better ompression if the set of operand-patterns isdivided into more lasses. In general this number is four, but for some programs (e.g. g)the ompression using �ve lasses is better. Here again, the ompression ratio di�erenebetween both partitions is only 0.1%.Similarly for the ase of TBC (Setion 5), patterns that do not �t into a single word arespilled to the next word. This is an additional problem for the deompression engine, giventhat it now should be able to realign two odewords, one for eah pattern. The ompressionProgram Tp Compr Op Compr. ComposedName Ratio Ratio Ratioompress 22.8 13.2 35.9g 29.1 13.3 42.4go 28.6 12.5 41.1ijpeg 29.5 14.1 43.6li 22.9 12.1 35.0perl 27.1 13.3 40.4vortex 27.5 12.7 40.2Table 6: Composed ompression ratio when Tree-pattern (Tp) and Operand-pattern (Op)odewords are ombined.ratio for tree (operand) patterns is on average 13.0% (26.8%), and is ahieved when tree(operand) patterns are divided into 4 lasses. Table 6 shows the �nal ompression ratio(average 39.8%), when the odewords for both patterns are ombined.

Algorithms for Code Compression 17

10

15

20

25

30

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

(a)

Number of Classes

20

25

30

35

40

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

(b)

Number of ClassesFigure 11: (a) Tree-pattern ompression ratio for di�erent partitions; (b) Operand-patternompression ratio for di�erent partitions.

18 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannain6.2 The PBC Deompression EngineThis setion proposes a deoding engine for the PBC Algorithm (Figure 12). As before thedeompression engine works in two phases. First, �elds Tp and Op are extrated from theompressed word. Seond, Tp is mapped into a sequene of unompressed instrutions, andOp is used to generate registers and immediate bits for them. This information is fed intothe Instrution Assembly Bu�er (IAB) that assembles the deompressed instrutions. Inthe following setions we desribe eah module of the deompression engine.
C

O
M

P
R

E
S

S
E

D
 T

R
E

E

TGEN

RGEN

TPD

addiu
lui

0 0 00

0 0 0 0

0 0 0 1

Tp

Op

IAB

RS1
RS2
RD

IMB

IGEN

BSEL

BADDR
Mux

IMD

2 4
8

2
n

sw
 $

1,
 0

($
4)

lu
i

$1
, 0

ad
d

iu
 $

4,
 $

4,
 1

ITYPE ENDOPECODE

raddr

$1, $4
$1
$4, $4

REGD

sw

tpaddr

Figure 12: Deompression engine for Pattern Based Compression (PBC).

Algorithms for Code Compression 196.2.1 Tree-pattern DitionaryThe Tree-pattern Ditionary (TPD) stores the opodes enoded by eah tree-pattern ode-word. Tp is deoded by the Tree-pattern Generator (TGEN) into a TPD address tpaddr. Theopode �elds enoded by Tp are then fethed from a sequene of TPD entries starting attpaddr. Eah TPD entry is omposed of three �elds: OPCODE, ITYPE, and END. Field OPCODEarries the opode bits of an instrution in the tree-pattern. Field ITYPE enodes the type(i.e. format) of the instrution. The information stored in ITYPE is used by IAB to deidehow to assemble a deompressed instrution. The IAB puts together OPCODE, register (RS1,RS2, RD) and immediate (IMB) bits to form an instrution. Bit-�eld END is used to hekfor the last instrution in a tree-pattern. On average, TPD area is only 0.9% of the originalprogram size.6.2.2 Register DitionaryThe Register Ditionary (REGD) deodes the Op �eld of the inoming ompressed word,into a sequene of operand registers required by the instrutions in the tree-pattern. Theoutput of REGD is formed by three (register) buses: RS1, RS2 and RD, that generate the bitsorresponding to the instrution soure and destination registers. An estimate of the sizeof REGD was determined by adding up the size (in bits) of all register �elds in the operand-patterns. In this ase, the average size of REGD, with respet to the unompressed program,is 3.8%.6.2.3 Immediate DitionaryThe IMD module in Figure 12 stores the immediates used by the program. A single entry inIMD is reated for eah distint immediate in the program, no matter whih instrution usesit, or how many times it shows up. For example, a single onstant 4 is stored for instrutions[bgez $5, 4℄, [lw $6, 4($29)℄, and [srl $5, $3, 4℄. We use the variation on the sizeof immediates to minimize the number of bits stored in IMD. An evaluation of the size of theimmediates reveals that, on average, more than 70% of the immediates in a program anbe enoded into less than 16 bits. Immediates are lustered into memory banks aordingto the number of bits they use. Memory bank address BADDR and bank seletion BSEL aregenerated by the IGEN module from odeword Op. This approah onsiderably redues theaverage number of distint immediates in a program (26.7%). As a result, the average shareof the ompression ratio due to IMD is 13%.The sizes of the immediate (IMD), tree-pattern (TPD) and register ditionaries (REGD)are easy to estimate. As before we assume that the size of the extration logi and the restof the deompressor is muh smaller than the size of the ditionaries. The size of ATT isomputed as desribed in Setion 5.3. The �nal ompression ratio, inluding the overheadof the deompression engine modules is shown in Figure 13. The total area overhead ofthe deompression engine ontributes on average 21.5% to the �nal ompression ratio. The�nal ompression ratio using PBC is 61.3%.

20 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannain
ATT Overhead

REGD Overhead

IMD Overhead

TPD Overhead

Program compression

C
om

pr
es

si
on

 r
at

io
 (

%
)

F
in

al

10

20

30

40

50

60

70

80

90

100

compress gcc go li perl vortexijpegFigure 13: Final ompression ratio for the PBC algorithm.7 Instrution-Based Compression (IBC)In the two previous setions, ompression was performed using whole expression trees (Se-tion 5) and parts of expression trees (Setion 6) for symbols. In this setion, the alphabetused in ompression is formed by instrutions. This approah is motivated by the large per-entage of expression trees that are omposed of single instrutions, as shown in Figure 14.The horizontal axis of Figure 14 lists the set of distint expression trees, ordered by theirfrequeny in the program, and the vertial axis the size of the trees in instrutions. Theexperimental results reveal that, in general, frequent trees have very few instrutions, themost frequent of them being single instrution trees. Rare trees are also fairly small, whilemedium frequeny trees are larger (2-4 instrutions). This on�rms, at an instrution level,the observation made in [3℄ about the role played by small bit strings in program ode.The number of distint instrutions in a program is very small, as shown in Table 7. Onaverage, all instrutions in a program are replia of only 18.3% of its instrutions. This ismainly due to the regularity and orthogonality of the instrutions in a RISC arhiteture.This level of ode redundany annot be found, for example, in irregular instrutions sets,like those found in DSP arhitetures [26℄. It remains to be shown that instrutions preservethe exponential frequeny property shown by whole trees and patterns. Similarly as before,the graph of Figure 15 shows the umulative frequeny distribution of the instrutions in thebenhmark programs. On average 20% of the most frequent instrutions over almost 80%of all instrution of a program. It is exatly this exponential behavior, at the instrution

Algorithms for Code Compression 21

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

T
re

e
si

ze
 (

in
 in

st
ru

ct
io

ns
)

Unique Expression Trees (Decreasing frequency)

compress
gcc
go

ijpeg
li

perl
vortex

Figure 14: Distribution of the average tree size (Bezier approximation).
Program Program UniqueName Size Instrutions (%)ompress 2152 846 (39.3)g 363560 38600 (10.6)go 73908 10267 (13.9)ijpeg 47988 10536 (22.0)li 18448 2959 (16.0)perl 69536 11178 (16.1)vortex 151348 15200 (10.0)Table 7: Number of distint instrutions in a program. Numbers in parentheses are per-entage with respet to the total number of instrutions.

22 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannainlevel, that explains the similar behavior for larger symbols like whole trees and patterns.The ombination of small instrution sets with a deterministi ompiler does result in veryredundant ode.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
ro

gr
am

 In
st

ru
ct

io
ns

 (
%

)

Instructions (%) -- Decreasing frequency

compress

li

gcc

perl

go

vortex

ijpeg

Figure 15: Cumulative instrution frequeny distribution.7.1 The IBC AlgorithmThe same ompression algorithm employed in Setion 5 and Setion 6 is used here to enodeinstrutions. The �nal ompression ratio, for all possible instrution partitions from 2-8lasses is shown in Figure 16. The ompression ratio is on average 31.5%, and again it isahieved using only four lasses. For some programs, the best ompression is ahieved for�ve lasses, but the di�erene with respet to four lasses is insigni�ant (0.1%).7.2 The IBC Deompression EngineThe ompression algorithm proposed in this setion assoiates an instrution odeword toa single unompressed instrution. The deompression engine design (Figure 17) in thisase is very simple. A odeword I is extrated from a memory word, and deoded by theInstrution Generator (IGEN) that outputs a pointer (iaddr) to the Instrution Ditionary(ID). Eah entry in ID stores a single unompressed instrution, that is passed to theproessor. The area used by the deompression engine is basially the size of ditionary ID(average 18.3%) plus the size of the ATT (average 3.8%), omputed as in Setion 5.3. The�nal ompression ratio, if the size of the deompression engine is onsidered, is shown in

Algorithms for Code Compression 23

26

28

30

32

34

36

38

40

42

2 3 4 5 6 7 8

C
om

pr
es

si
on

 R
at

io
 (

%
)

compress
li

gcc
perl
go

vortex
ijpeg

Number of ClassesFigure 16: Compression ratio for various partitions.
sw

 $
1

 0
($

4)

lu
i

$1
 0

ad
di

u
 $

4
 $

4
 1

IGEN

INSTR

sw $1 0($4)
lui $1 0
addui $4 $4 1

Ic

C
O

M
P

R
E

SS
E

D
 T

R
E

E

iaddr

ID

Figure 17: Deompression engine for Instrution Based Compression (IBC).

24 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannain

10

20

30

40

50

60

70

80

90

100

Program compression

ATT Overhead

ID Overhead

Fi
na

l
C

om
pr

es
si

on
 r

at
io

 (
%

)

go li compress perl gcc vortex ijpegFigure 18: Final ompression ratio for IBC.Figure 18. The average overhead of the deompression engine for all programs is 22.1%,and the �nal ompression ratio for the IBC algorithm is 53.6%.8 ConlusionsThis paper proposes a set of three ode ompression algorithms for programs running onRISC arhitetures. All algorithms are based on expression trees. Symbols used for ompres-sion are whole expression trees, parts of expression trees (patterns) or single instrutions.We show that, no matter the granularity of the symbol used for ompression, symbol dis-tribution is exponential. The entral idea, in all three approahes, is the partition of thesymbols into lasses, based on the average frequeny distribution of the symbols in eahlass. Symbols in eah lass are assigned odewords of same length. We show that, ingeneral, the best ompression ratio is ahieved when symbols are divided into four lasses.Figure 19 shows the �nal ompression ratios for all programs, using all three algorithms.The average ompression ratio for TBC/PBC/IBC are respetively 60.7%/61.3%/53.6%(27.2%/39.8%/31.5%) if the deompression engine overhead is (not) inluded. IBC pro-dues the best ratio. There is not muh di�erene between TBC and IBC ratios if theengine overhead is not inluded. The reason is that a large number of trees in a programhave one single instrution. The di�erene between TBC and IBC grows when the engineoverhead is added. This is basially aused by two reasons. First, eah entry in TD (Figure 6)has an the extra END bit required to mark the end of a tree. Seond, entries in a TD ditio-nary (Figure 6) store whole trees, whih an have repeated instrutions, while entries in IDare single instrutions. This result in TD ditionaries that are larger than IBC ditionaries.The reason PBC is outperformed by IBC/TBC is muh more subtle. Although separating

Algorithms for Code Compression 25
IBC

TBC

PBC

F
in

al
C

om
pr

es
si

on
 r

at
io

 (
%

)

10

20

30

40

50

60

70

80

90

100

compress gcc go liijpeg vortexperlFigure 19: Final ompression ratio for TBC/PBC/IBC.expression trees into tree and operand patterns might result in some gain, the improvementis o�set by the overhead resulting from using two sets of pre�x bits, one for eah patternodeword. Moreover, as disussed in Setion 6, there is a strong orrelation between thenumber of distint trees in a program and the number of distint operand-patterns.A preliminary design of the deompression engine is under way. The design is based ona synthesizable VHDL model of the deompression engine proposed for the IBC algorithm(Setion 7.2). Preliminary performane tests have been arried out, using Exemplar/MGCLeonardo Compiler, and the results reveal minimum operation frequenies of 120MHz arossall programs.
9 Future WorkThis work an be improved in two ways. First, trees enode the same temporary registertwie. If the ompiler shedules expression trees in a pre-order shedule, it is possible toeliminate the seond referene to a temporary, minimizing the size of the tree ditionary inTBC. In this ase, the deompression engine should be able to keep trak of the temporaryregisters, and to perform loal register alloation at deompression time. There is evidenethat other forms of dividing expression trees into symbols an result in better ompression.For example, instrution lw usually appears together with operand $29 (stak-pointer). Athorough analysis of this kind of orrelation might reveal new patterns, that ould eventuallyresult in better ompression.

26 G. Araujo, P. Centoduatte, R. Azevedo and R. Pannain10 AknowledgmentsThis researh was supported in part by a grant from CNPq under ontrat 300156/97-9, a grant from FAPESP under ontrat 1997/10982-0, a FAPESP researh fellowship(98/13728-0), and a grant from CNPq/NSF 1998 Collaborative Researh Projet. Thiswork would not be possible without the tools and resoures provided by Mentor GraphisCorporation, through their Eduational Program.Referenes[1℄ A. van Someren and A. Atak, The ARM RISC Chip: A Programmer's Guide, Addison-Wesley, 1994.[2℄ K. D. Kissell, \MIPS16: High{density MIPS for the embedded market,," in Real TimeSystem'97, 1997.[3℄ Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor Mudge, \Improving odedensity using ompression tehniques," in Proeedings of MICRO{30: The 30th AnnualInternational Symposium on Miroarhiteture, Deember 1997, pp. 194{203.[4℄ Timothy C. Bell, Jhon G. Cleary, and Ian H. Witten, Text Compression, AdvanedReferene Series. Prentie Hall, New Jersey, 1990.[5℄ A. Lempel and J. Ziv, \On the omplexity of �nite sequenes," IEEE Transation onInformation Theory, vol. IT{22, no. 1, pp. 75{81, January 1976.[6℄ J. Ziv and A. Lempel, \A universal algorithm for sequential data ompression," Trans-ations on Information Theory, vol. 23, pp. 337{343, 1977.[7℄ J. Ziv and Lempel A., \A universal algorithm for sequential data ompression," IEEETransation on Information Theory, vol. 23, no. 3, pp. 337{343, May 1977.[8℄ J. Ziv and Lempel A., \Compression of individual sequenes via variable{rate oding,"IEEE Transation on Information Theory, vol. 24, no. 5, pp. 337{343, September 1978.[9℄ Welh, \A tehnique for high-performane data ompression," IEE Computer, vol. 17,no. 6, pp. 8{19, July 1984.[10℄ W. T. Wilner, \Burroughs B1700 memory utilization," in Fall Joint Computer Con-ferene, 1972, pp. 579{586.[11℄ D. A. Hu�man, \A method for the onstrution of minimum{redundany odes,"Proeedings of the IRE, vol. 40(9), pp. 1098{1101, September 1952.[12℄ Andrew Wolfe and Alex Channin, \Exeuting ompressed programs on an embeddedRISC arhiteture," in Proeedings of MICRO{25: The 25th Annual InternationalSymposium on Miroarhiteture, Deember 1992, pp. 81{91.

Algorithms for Code Compression 27[13℄ Mihael Kozuh and Andrew Wolfe, \Compression of embedded system programs," inProeedings of the IEEE International Conferene on Computer Design, Otober 1994,pp. 270{277.[14℄ H. Lekatsas and W. Wolf, \Code ompression for embedded systems," in Pro. of 35thACM Design Automation Conferene, 1998.[15℄ H. Lekatsas and W. Wolf, \Random aess deompression using arithmeti oding,"in Pro. of the Data Compression Conferene, Marh 1999.[16℄ IBM Corporarion, CodePak PowerPC Code Compression Utility User's Manual, 1998,Version 3.0.[17℄ S. Liao, S. Devadas, and K. Keutzer, \A text-ompression-based method for ode sizeminimization in embedded systems," ACM Transations on Design Automation ofEletroni Systems, vol. 4, no. 1, pp. 12{38, 1998.[18℄ Gerry Kane and Joe Heinrih, MIPS RISC Arhiteture, Prentie Hall, New Jersey,1992.[19℄ A.V. Aho, R. Sethi, and J.D. Ullman, Compilers, Priniples, Tehniques and Tools,Addison Wesley, Boston, 1988.[20℄ Guido Araujo, Paulo Centoduatte, Mario Cortes, and Riardo Pannain, \Code om-pression based on operand fatorization," in Proeedings of MICRO{31: The 31thAnnual International Symposium on Miroarhiteture, Deember 1998, pp. 194{201.[21℄ Martin Bene�s, Andrew Wolfe, and Steven M. Nowik, \A high{speed asynhronousdeompression iruit for embedded proessors," in Proeedings of 17th Conferene onAdvaned Researh in VLSI, Los Alamitos, CA, 1997, IEEE Soiety Press.[22℄ Martin Bene�s, Steven M. Nowik, and Andrew Wolfe, \A fast asynhronous hu�mandeoder for deompressed{ode embedded proessors," in Asyn98. 1998, ACM.[23℄ Todd A. Proebsting, \Optimizing an ANSI C interpreter with superoperators," inACMConferene on Priniples of Programming Languages, January 1995, pp. 322{332.[24℄ Mihael Franz and Kistler Thomas, \Slim binaries," Communiation of the ACM, vol.40, no. 12, pp. 87{94, deember 1997.[25℄ Jean Ernst, William Evans, Christopher W. Fraser, Steven Luo, and Todd A. Proeb-sting, \Code ompression," in SIGPLAN Programming Languages Design and Imple-mentation, 1997.[26℄ P. Centoduatte, G. Araujo, and R. Pannain, \Compressed ode exeution on dsparhiteture," in To appear in Pro. of 12th International Symposium on System Syn-thesis, November 1999.

