
O conte�udo do presente relat�orio �e de �unica responsabilidade do(s) autor(es).The contents of this report are the sole responsibility of the author(s).
Using B+-Trees in a Two Disk-SingleProcessor Architecture to E�ciently ProcessInclusion Spatial QueriesMario A. Nascimento Margaret H. DunhamRelat�orio T�ecnico IC{97-23Novembro de 1997

Using B+-Trees in a Two Disk-Single Processor Architectureto E�ciently Process Inclusion Spatial Queries�Mario A. Nascimentoy Margaret H. DunhamzAbstractIn this paper we address the problem of indexing spatial data, in particular twodimensional rectangles. We propose an approach which uses two B+-trees, each ofthem indexing the projected sides of the given rectangles. The approach, which wename 2dMAP21, can also be easily parallelized using two disks { but still a singleprocessor { each holding the trees indexing the projected sides on either axes. Wefocus on queries of the type \�nd all rectangles included within another (reference)rectangle". Nevertheless, 2dMAP21 can processe other types of queries as well. Wecompare our approach to the R�-tree, known as the most e�cient R-tree derivative.Our investigation shows that, if the queries have the same spatial distribution of thedata, the non-parallel 2dMAP21 may be a competitive alternative to the R�-tree insome cases, whereas the parallelized version of 2dMAP21 outperforms that structurevirtually always. 2dMAP21 may consume a little more or less storage space than theR�-tree, depending primarily on the spatial distribution on the indexed MBRs. Theuse of B+-trees renders our approach to be actually implementable using commercialDBMSs.1 IntroductionThe indexing of multidimensional data is needed in many application domains, e.g., spatialdatabases and geographical information systems [Sam90]. One widely used way of model-ing such type of data is via n-dimensional minimum bounding rectangles (MBR). A twodimensional MBR is the smallest rectangle in which we can �t the two dimensional objectbeing modeled, where such rectangles have sides parallel to the X and Y axes.Indexing MBRs have received quite some attention in the literature. Among the struc-tures proposed to deal with this problem, the R-tree [Gut84] is certainly the most popularone. The R-tree uses a framework which is similar to the B+-tree, in the sense that it is�A shorter version of this paper was published and presented at the V ACM Intl. Workshop on Geographi-cal Information Systems, Las Vegas, USA, Nov/97. Research initiated at Southern Methodist Univeristy andfurther developed as part of GEOTEC's e�ort, a ProTem-CC project sponsored by the Brazilian NationalCouncil of Research (CNPq).yInvited lecturer at the Institute of Computing, State University of Campinas, Brazil,mario@dcc.unicamp.br. Also a researcher at the Brazilian Agency for Agricultural Research, Campinas,Brazil, mario@cnptia.embrapa.br.zAssociate Professor at the Southern Methodist University, Dallas, USA, mhd@seas.smu.edu.1

2 Nascimento & Dunham
C D E F G H I J

A B

J

F
D

E

C

I

G

H

B

A Figure 1: A set of MBRs and the resulting R-tree.paged, balanced, and has the leaf nodes (at the same level) pointing to the actual datarecords. Non leaf nodes point to either leaf nodes or represent a super-MBR which containother super-MBRs or MBRs. Figure 1 (adapted from [SRF87]) shows an example set ofMBRs (C, D, ..., J) and super-MBRs (A and B) and the resulting R-tree. (For now ignorethe dotted rectangle.)More e�cient variants of the R-tree, such as the R+-tree [SRF87] and the R�-tree[BKSS90], have been proposed. The R+-tree aims to reduce the overlap among the super-MBRs by clipping the MBRs. The trade-o� is that some \clipped" MBRs will now appearin more than one super-MBR and this will cause the index size to be greater than theR-tree's. The R�-tree makes use of a more carefully designed policy for splitting a node,using the concept of deferred split and forced re-insertion. Results in [BKSS90] have shownthe R�-tree to be overall the most e�cient R-tree derivative, and as such, we will be usingit to compare our approach later in the paper.Other structures/approaches have been proposed for indexing and querying spatial data.Next we brie
y review some of them. The interested reader is referred to Samet's book[Sam90], which surveys several others.Some work has been done regarding parallel R-trees [KF92]. Even though that researchhas shown that parallel R-trees may yield much better performance than a non-parallelR-tree, it is likely that a number (more than two) of parallel R-trees would be needed toprovide performance comparable to a single (non-parallel) R�-tree. As we shall see later inthe paper our approach requires only two disks to outperform the R�-tree. To our knowledgeno research has been done on parallelizing the R+-tree or the R�-tree.In [FR91] the authors present an approach (named DOT) based on fractal functionswhich is also capable of transforming MBRs in two or higher dimensions to points in one-dimensional space. Thus DOT (as well as our approach) uses a B+-tree to index MBRs.Although DOT is shown to outperform the classical R-tree [Gut84] it is doubtful whether itcan outperform the R�-tree (given the results in [FR91]). The issue of parallelizing DOT'sapproach was not investigated.The use of B+-trees to index MBRs has also been suggested in [TP95]. However, in thatpaper, the authors propose the use of four B+-trees, each one indexing one of the cornercoordinates that determine the MBRs. We propose the use of only two such trees instead.Moreover, the idea of parallelizing access to the the host B+-trees was not touched upon in[TP95].Unfortunately, the R-tree, as well as the R�-tree, is not very \smart" to process \inclu-sion" type of queries. In an inclusion query, one is interested in �nding all MBRs totally

Using B+-Trees to Process Spatial Inclusion Queries 3included within a reference MBR. Next we sketch the R-tree's algorithms for this particulartype of query1. We use R to denote the root of the R-tree indexing all MBRs, � to bethe reference MBR used in the query. All entries in the nodes are super-MBRs (if internalnodes) or actual MBRs (if leaf nodes). Finally, assume that each entry in a super-MBRpoints to either a super-MBR or MBR r.Algorithm 1 P = Rtree-Inc(R;�)1. For each entry r in node R(a) If R is an internal node and r intersects � thenP = Rtree-Inc(r;�)(b) If R is a leaf node and r is included in � thenP = P [rFor an illustration of the algorithm's behavior refer to Figure 1 where the dotted rect-angle represents the reference MBR �. When processing the query the algorithm noticesthat both A and B intersect with �. Therefore both sub-R-trees rooted at A and B aretraversed. When inspecting the leaf entries at A and B it is easy to see that no MBR isactually included in �. That is, even though the answer was empty, the entire tree wassearched. Although the illustration is quite simple, it is not hard to see that sets of largeMBRs will also imply large super-MBRs, thus an increased amount of overlap among them,and consequently among them and the query MBR. This ultimately will lead to a highnumber of sub-R-trees being traversed, potentially uselessly.Note that, in addition to such shortcoming, the R-tree (as well as its derivatives) is quitea specialized data structure, not available in most DBMSs.The contribution of this paper is to address both issues raised above. Firstly, we addressthe problem of indexing MBRs subject to a more common framework, namely B+-trees (e.g.,[EN94, Chapter 5]). We thus aim at allowing traditional (i.e., existing) DBMSs to indexspatial data. Secondly, centering our discussion on the inclusion type of query, we provide asimple yet competitive way (when compared to the R�-tree) of using two B+-trees (possiblybut not necessarily hosted under distinct disks) to process such type of queries.In our previous work [ND97] we designed an indexing approach, built on top of a B+-tree, which allows the indexing of temporal ranges. Such an approach, named MAP21, isbased on mapping the two end points of a range to a single point and using this as theindexing value for the range. We have shown that under simple assumptions MAP21 canprocess e�ciently several types of queries.To extend MAP21 to index MBRs we represent the MBR by the projection of its sidesonto the X and Y axes. We may then use two B+-trees (possibly hosted in distinct disks)to index such projections, which are equivalent to temporal ranges. Processing a query is amatter of returning the intersection of the answer provided by the processing of both trees.The main advantage of such an approach, which we call 2dMAP21, is that to index andquery MBRs, all one needs is two B+-trees, available in virtually any commercial DBMS.1Note that the algorithm is exactly the same for an R�-tree.

4 Nascimento & DunhamThis paper extends the work presented in [ND96] in several ways. In [ND96] we presentedpreliminary investigations on the 2dMAP21, which showed it to be superior to Guttman'sR-tree. In this paper we compare 2dMAP21 to the R�-tree, recognized by the relatedliterature at large as the most e�cient R-tree derivative. In [ND96] we investigated theintersection query. For that type of query however, 2dMAP21 needs to know the upperbound for the length of the indexed ranges in either axis. In fact 2dMAP21's performancedid depend on such upper bound, the largest it was, the slower the query processing time.As we shall see shortly, processing inclusion queries (which is the focus of this paper) donot depend on such upper bound. We also derive a simple formula for 2dMAP21's expectedquery processing time. Finally, in [ND96] only synthetic data sets were used, in this paperwe explore 2dMAP21's performance using real data sets.In the next Section we present a review of the MAP21 approach (for a thorough intro-duction we refer the reader to [ND97]). In Section 3, we present the 2dMAP21 approach,focusing on the inclusion type of query (notice that others can be processed as well). Sec-tion 4 presents a performance analysis, using both synthetic and real data. We concludethe paper in Section 5.2 Review of the MAP21 ApproachMAP21 maps the two end points of a range Rk = [Rks ; Rke] into a single value and uses thisone as an indexing value for the range. We assume the following:� � is the maximum number of digits needed to represent any range end value and thus� The starting and ending points of an \indexable" range are: (a) Non-negative integervalues and (b) Upper-bounded. I.e., Rk = [Rks ; Rke]) 0 � Rks � Rke � 10� � 1.Therefore, any range Rk = [Rks ; Rke] can be indexed using a unique value provided bythe mapping function: �(Rk) = �(Rks ; Rke) = Rks10� + Rke Note that, in practical terms,what the function �(Rk) does is to \left-shift" the start of the range. It is straightforwardto obtain the original range given its mapping, namely: V k = [��1s (�(V k));��1e (�(V k))]where: ��1s (�(V k)) = (�(V k) � �(V k)%10�)=10�, ��1e (�(V k)) = �(V k)%10� and % isthe traditional remainder operator. In addition, the following holds [ND97]:Proposition 1 The above de�ned function �(:) maps distinct ranges into distinct points.Given Rk = [Rks ; Rke] and Rl = [Rls; Rle] then �(Rk) = �(Rl), Rks = Rls and Rke = Rle.Proposition 2 The ordered points in the resulting index represent a lexicographical orderof the ranges. Given Rk = [Rks ; Rke], Rl = [Rls; Rle], and �(V) as de�ned above, Rks < Rls)�(Rk) < �(Rl); and if Rks = Rls then Rke < Rle) �(Rk) < �(Rl).We �nally de�ne:De�nition 1 A MAP21 tree is a B+-tree indexing point values, which represent ranges,and were created using the �(:) function described above.

Using B+-Trees to Process Spatial Inclusion Queries 5Due to the underlying B+-tree structure, MAP21 usesO(Nr) space and requires O(logBNr)I/Os to process and update (deletions included), where B is the page size and Nr is thenumber of indexed ranges. Furthermore it inherits all previous research results devoted toB+-trees, such as concurrency and recovery [JS93]. It is noteworthy pointing out that notmuch research has been done regarding concurrency and recovery of R-trees in general.2.1 Processing the Inclusion QueryUsing the MAP21 tree one can process several types of ranges based queries [ND97]. How-ever, as we are primarily interested in an approach that will allow us to process the rectangleinclusion problem, we review the case of the inclusion query only. Proposition 1 will beimportant as it guarantees that each range appears once and only once in the indexing tree.Proposition 2 ensures that the search in the tree can be done in one-pass. The algorithmswe present show how to collect all pointers needed to actually access the data records, hencewe are not describing how to access the data records themselves (that was also the casewith the R-tree algorithm presented earlier).The inclusion query takes as input a range [Qs; Qe] and returns the pointers associatedto records which have a range R = [Rs; Re], such that Qs � Rs � Re � Qe. In what followswe use the following notation: ddTee (bbTcc) is the smallest (greatest) indexed value greater(smaller) than or equal to T .Lemma 1 Given that the indexed ranges are in lexigraphical order in the leaf nodes of theMAP21 tree, to �nd all ranges that are contained in [Qs; Qe] one needs only to scan theranges between ranges [Qs; Qs] and [Qe; Qe]. ([ND97]).We use the above Lemma to derive the following algorithm to answer an inclusion query(where we denote the MAP21 tree by M):Algorithm 2 P = MAP21-Inc(M;Qs; Qe)1. P ;2. Traverse M to the leaf entry indexing ddQs10� +Qsee3. Scan all the leaf entries forward(a) If the entry value �(Rk) is such that ��1e (�(Rk)) � Qe thenP = P [fpointers associated to this entryg4. Until the leaf entry indexing bbQe10� + Qecc.5. Return PNotice that the algorithm may read ranges that do not belong to the answer, but nofurther overhead is imposed when the actual data records in the answer are retrieved.\Useless" data records are �ltered out of the algorithm output and thus only data recordsbelonging to the actual response will be accessed. Nonetheless, similar shortcoming alsooccurs in the R-tree and the R�-tree. As we shall see in the performance analysis, theR�-tree's performance degenerates faster with the query MBR's size than 2dMAP21's.

6 Nascimento & Dunham2.2 Expected PerformanceIn this section we to derive the expected number of I/Os yielded when processing inclusionqueries using the MAP21 approach.Let us �rst assume a B+-tree with nodes that can �t B values (and thus B+1 pointers),a query range Q = [Qs; Qe] and that all ranges are located in a \maximal" range [0; Lmax].At each point in the line [0; Lmax] there is a number of ranges starting on that very point.Given that we have N such ranges we have that = N=(Lmax + 1) is thus the averagenumber of ranges starting at any point in the maximal range [0; Lmax].Due to the linear scan in the leaf nodes, for each and every point in the range [Qs; Qe�1]an average of ranges (which are actually points in the B+-tree leaves) are inspected. Notethat the range [Qe; Qe] is the last one inspected and by construction the only range startingat Qe inspected by the algorithm. Therefore, denoting Lq = Qe �Qs, the algorithm aboveinspects (Lq � 1) + 1 ranges, or mapped ranges, i.e., points linearly ordered in the index.We must now translate this into number of tree nodes (disk blocks) accessed. In general,a B+-tree node with capacity to hold B values actually holds B ln 2 values [Yao78], due tothe way nodes are split and merged. Therefore, in average, all index points to be inspectedimply ((Lq � 1) + 1)=(B ln 2) I/Os, i.e., tree nodes or disk blocks accessed.Finally, if N is the number of indexed values (i.e., mapped ranges) then logBN su�cesto traverse such a tree from its root downward to a leaf node.Hence, logBN + ((Lq � 1) + 1)=(B ln 2) is the expected number of I/Os needed toperform an inclusion query of length Lq using MAP21. Later in Section 4, we shall verifythat such expected value is accurate. It is interesting to note that, unlike we veri�ed in[ND96], the length of the indexed ranges does not play any role in query processing time.3 The 2dMAP21 ApproachConsidering that a MBR �, with sides parallel to the X and Y axes and determined by itslower left and upper right corners (denoted by (�xl; �yl) and (�xu; �yu) respectively), maybe uniquely determined by the projection of both of its sides, onto the X and Y axes, i.e.,��x = [�xl; �xu] and ��y = [�yl; �yu], let us now discuss how the MAP21 approach can beextended to index two dimensional MBRs.One tree is used to index each axis, we thus set up twoMAP21 trees,Mx andMy , beforeany MBR is input. Once an MBR � is input, we compute its X and Y projections. ��x and��y . We then use the mapping function �(:) de�ned earlier to compute the indexing valueof both projections, i.e., �(��x), which is input into Mx, and �(��y), which is input intoMy. Figure 2 shows an example of how the projections are obtained while Figure 3 showsthe resulting MAP21 trees (internal nodes are omitted for simplicity). Note that there isno need to duplicate the actual data records.Extending the algorithm MAP21-Inc to search for rectangle inclusions is simple. Theheart of the algorithm is that if a reference MBR � includes another MBR � then �'sprojections, on both axes, must also include �'s projections, on both axes, as well. Beforepresenting the algorithm let us use the following notation: � is the reference MBR (i.e., theone with which we want to �nd all others that are included in) with lower left and upper

Using B+-Trees to Process Spatial Inclusion Queries 7
J

F

H

D

E

C

I

G

Ex
Dx Ix

Gx
Jx

Hx
Fx

Cx

Ey

Iy

Jy

Cy
DyFy

Hy

GyFigure 2: The MBRs of Figure 1 and its projections.
Cx Ex Fx Dx Hx Ix Gx Jx Iy Hy Jy Ey Gy Cy Fy Dy

C D E F G H JI

X projections Y projections

Figure 3: The MAP21 trees indexing the projections in Figure 2.

8 Nascimento & Dunhamright corners (�xl;�yl) and (�xu;�yu) and Mx and My are the MAP21 trees indexing theMBR projections on axes X and Y.Algorithm 3 P = 2dMAP21-Inc(Mx;My;�)1. Px = Px [MAP21-Inc(Mx;�xl;�xu)2. Py = Py [MAP21-Inc(My;�yl;�yu)3. RETURN P = Px \ PyIt is important to note that Mx and My are rather independent. This allows us tohost them under distinct disks, and thus update and, more importantly, search them inparallel. Notice however, that we do not require more than one processor, i.e., all we needto parallelize 2dMAP21 is to place each index in a di�erent disk, so that they can besearched in parallel. We assume that the last step in the algorithm, i.e., computing Px\Py ,can be done in main memory. Note that we are dealing with pointer values only, which arerather small data types. In the worst case, we assume a relatively small number of I/Osshould su�ce in most cases to compute such intersection.4 Performance AnalysisTo validate the 2dMAP21 approach we have actually implemented and compared it againstan implementation of the R�-tree (as described in [BKSS90]). We �rst evaluate the struc-tures' performance with respect to synthetic data and then real data sets.For both cases the disk block size (i.e., the size of a node in the tree) was set to 1,024bytes. Recall that a B+-tree node must hold B indexing values plus B + 1 pointers. Thedata type used to represent the non-negative indexed values uses 4 bytes, and so do thepointers (to data or other nodes). This yields 4B + 4(B + 1) = 1; 024, hence (a rounded)B = 127.We simulated the parallel implementation by neglecting any CPU overhead and takingthe maximum number of I/Os yielded by any single tree (i.e., worst performance) as theoverall performance indicator. Recall that we assume that the intersection of the setsreturned by each call to MAP21-Inc can be processed in main memory (i.e., without anyfurther I/O).4.1 Indexing Synthetic DataSimilarly to the analysis conducted in [P+95], we use three sets MBRs: small, mediumand large ones. The areas of the MBRs in each set average, respectively, 0.02%, 0.1% and0.2% of the total area. As [TP95, P+95, KSCL95, FR91] have done, we populate each setwith 10,000 MBRs. Notice that this implies that the sum of the areas covered by eachset averages 2, 10 and 20 times as big as the total area. This allows us to appreciate theperformance of the indexing structures with respect to the overlap ratio rather than only

Using B+-Trees to Process Spatial Inclusion Queries 9
(a) Small MBRs. (b) Large MBRs.Figure 4: Sample MBRs from the synthetic data sets.with respect to the size of the indexing set. For a better idea of the data sets Figures 4.1(a)and (b) depict sample of the data sets containing small and large sized MBRs.We assume that the indexed MBRs are uniformly spread over the map of interest. Thedata (area size) has an exponential distribution, which we believe to be more realistic thana uniform distribution. The queries, i.e., the reference MBRs, were also generated using thesame type of distributions and sizes. The results show the average number of I/Os requiredto process 250 queries, using each of the described query area sizes.The formula derived in Section 2.2 applies for each tree, that is, for each set of projectedranges. The expected number of I/Os when both trees are hosted in the same disk, andthus accessed serially, can be obtained by doubling the expected number for one disk.Figures 5, 6 and 7 show how 2dMAP21 and the R�-tree perform when indexing MBRswith a given average MBR area and varying query area. 2dMAP21-P denotes the resultsobtained by querying the two underlying MAP21 trees in parallel.The �rst observation we can draw is that the R�-tree performance degrades much fasterthan 2dMAP21's with the increase in the size of the indexed MBRs. This can be explainedby the fact that the larger the indexed MBRs the larger the overlap ratio among them andeventually among them and the query MBR. This ultimately leads to a large number of\false hits", i.e., sub-R-trees that must be traversed without collaborating with the �nalanswer.Careful observation reveals that for a �xed size of MBRs, 2dMAP21's performance suf-fers a little more than R�-tree's with the increase of the query's area. That is, 2dMAP21'scurve is a little more steep than 2dMAP21-P's and the R�-tree's. This suggests that2dMAP21 is more sensitive, although not much more, to the query area than the R�-tree. For instance, for a set of small MBRs (Figure 5), we note note that when varying theaverage size of the indexed MBRs from small to large this results in 2dMAP21 (which isnon-parallelized) being worst at the beginning and better at the end.

10 Nascimento & Dunham
0

2

4

6

8

10

12

14

Small Medium Large

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Average Area of Query

2dMAP21 (actual)
2dMAP21 (expected)
2dMAP21-P (actual)

2dMAP21-P (expected)
R*-treeFigure 5: Query processing when indexing Small MBRs.

0

2

4

6

8

10

12

14

Small Medium Large

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Average Area of Query

2dMAP21 (actual)
2dMAP21 (expected)
2dMAP21-P (actual)

2dMAP21-P (expected)
R*-treeFigure 6: Query processing when indexing Medium MBRs.

Using B+-Trees to Process Spatial Inclusion Queries 11
0

2

4

6

8

10

12

14

Small Medium Large

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Average Area of Query

2dMAP21 (actual)
2dMAP21 (expected)
2dMAP21-P (actual)

2dMAP21-P (expected)
R*-treeFigure 7: Query processing when indexing Large MBRs.From Figure 5 we see that the R�-tree is faster than 2dMAP21 (45% in average), whereasit was basically comparable to 2dMAP21-P (it ranged from being 25% slower to 10% faster).When indexing medium MBRs (Figure 6), 2dMAP21-P averaged 50% less processing timethan the R�-tree. While for small queries both 2dMAP21 and the R�-tree delivered nearlythe same performance, the R�-tree was 30% faster for large queries. Finally, for the case ofFigure 7 (indexing large MBRs), 2dMAP21-P was again 50% faster, in average, than theR�-tree. The R�-tree average performance was close to 2dMAP21's (with little advantageto the latter), R�-tree's performance ranged from 30% slower (small queries) to 10% faster(large queries).Even though not shown we have observed that increasing the number of indexed MBRsthe relative performance among the investigated structures has not changed substantially.That is, 2dMAP21-P yields faster query processing time virtually always, whereas 2dMAP21is quite competitive for indexing a set of large MBRs. We also veri�ed that the expectednumber of I/Os for 2dMAP21-P, is rather accurate.Note that as the areas of indexed MBRs increase so does the gap between 2dMAP21-P's performance and the R�-tree. Thus, even if the intersection between Px and Py (seeAlgorithm 2dMAP21-Inc) cannot be performed in main memory there is some \perfor-mance gain" that could be spent with disk I/Os to compute such intersection and stillyield 2dMAP21-P faster than the R�-tree. An exception to such observation is the case ofindexing small MBRs.Taking these issues into consideration we believe that 2dMAP21 is a competitive alter-native to the R�-tree. We have veri�ed (but not shown in this paper) that 2dMAP21 out-performs, by a rather large margin, the classical R-tree. We also conjecture that 2dMAP21can outperform the R+-tree as well.In addition, and unlike the majority of alternatives to index spatial data, 2dMAP21needs nothing else than commonly available B+-trees and some sort of embedded SQL(e.g., [EN94, Chapter 7]) to be functional.

12 Nascimento & DunhamThe total size of the MAP21 trees used by the 2dMAP21 approach is about a 25% largerthan R�-tree. 2dMAP21's size ranged from 201 to 228 tree (disk) nodes while R�-tree's sizesvaried little around 172 tree nodes.It is important to mention that we did take into account that the data type used to holdMAP21's mapped range is twice as big a data type needed to hold a single end-of-range(i.e., a coordinate) value under the R-tree.. Consider that b bytes are needed to hold anycoordinate value. The R-trees, must keep four coordinates per MBR, thus using 4b bytes.2dMAP21 must keep two projections (in both axes), each consuming 2b bytes, hence usinga total of 4b bytes as well2. Therefore, using a larger data type is not a shortcoming ofMAP21.4.2 Indexing Real DataWe close this section analysing the performance of the investigated structures when indexingreal data sets. For that we used two data sets, named MG and LB. MG and LB containabout 40,000 and 53,000 MBRs respectively, representing actual roads somewhere in theUSA. A sample of both data sets are shown respectively in Figures 8(a) and (b). ThoseMBRs are not uniformly distributed. We again generated 250 small, medium and largequeries, with the same relative area sizes we used earlier and still being uniformily spreadover the total area. The results are shown in in Table 1.In this case, 2dMAP21-P, which had been thus far the best performer, was nearly 100%slower than the R�-tree. This can be explained as follows. As the data MBRs are notuniformly spread there may be \holes" in the total area of interest where no MBR exists.Consequently when a query MBR falls into such holes, the R�-tree can quickly determinethat no data MBR can be included in that one and return an empty answer without goingfurther down in the tree. 2dMAP21, on the other hand does not have a spatial view of thedata, but rather two one-dimensional views, which are not related, as fas as the 2dMAP21approach goes. Hence, using such views, 2dMAP21 will investigate where each of them couldpossibly contribute to the query's answer, and only after each view has been completelyprocessed would the actual answer (possibly empty) be found.We have then experimented to use query MBRs with the same non-uniform spatialdistribution as the indexed data set. As the MBRs in the real data sets have a non-trivialspatial distribution we used 500 randomly chosen MBRs from the data sets themselves asthe query MBRs. The results are shown in Table 2. In that case we again have 2dMAP21-P yielding smaller query processing time than the R�-tree. We therefore conclude that inorder for 2dMAP21 be competitive we should be able to avoid querying holes in the dataspace. If one assumes that the user queries data he/she knows, querying holes may not bevery likely.It was interesting to note that for the real data sets, the two resulting MAP21 treesare overall smaller than the R�-tree, consuming respectively 517 and 882 disk nodes for theMG data set and 673 and 1054 for the LB data set. This happens because many of theprojections of the data MBRs coincide and as such are indexed only once. The R�-treecannot take advantage of such \coincidences", unless the MBRs are identical.2For our experiments using b = 2 su�ced.

Using B+-Trees to Process Spatial Inclusion Queries 13
(a) MG's MBRs. (b) LB's MBRs.Figure 8: Sample MBRs from the real data sets.Table 1: Average query processing time when using real data sets and queries uniformilydistributed. MG data setQuery Size R�-tree 2dMAP21-P 2dMAP21Small 3.44 7.16 13.10Medium 5.72 12.42 23.20Large 7.22 15.57 30.00LB data setQuery Size R�-tree 2dMAP21-P 2dMAP21Small 3.44 7.73 15.56Medium 5.07 13.76 17.69Large 8.20 17.88 39.28Table 2: Average query processing time when using real data sets and queries extractedfrom the same data set.Data set R�-tree 2dMAP21-P 2dMAP21MG 4.28 3.87 7.60LB 4.20 4.04 7.85

14 Nascimento & Dunham5 ConclusionsAccess structures for spatial data in general and R-trees in particular are not widely availablein commercial DBMSs, despite being well known. Our goal in this paper was to addressthis gap by using a framework widely available on existing DBMSs, namely B+-trees. Ourproposed approach, named 2dMAP21, is based on two standard (and potentially parallel)B+-trees, each indexing projected sides of MBRs. Even though we have addressed only theinclusion query, 2dMAP21 can process several other types of queries. Its algorithms arestraigthforward extensions of those used for 2dMAP21. For some types of queries, however,such as intersection, query performance depends on the length of the longest indexed range.This dependence may been dealt with by partitioning the data set into several disjoint sets[ND97]3. As we have seen in this paper such dependence does not exist in the case ofinclusion queries in particular.We should stress that presenting a simple indexing approach that outperforms a wellknown spatial indexing approach, is not the only contribution of this paper. Just as impor-tant is the fact that the proposed 2dMAP21 approach can be implemented on top of mostexisting DBMS facilities in a straigthforward manner.We have shown that the proposed approach, which we call 2dMAP21, virtually alwaysoutperforms the R�-tree in terms of query processing time when the host B+-trees areaccessed in parallel, and in many situations when not. One notable exception happens whenthe query MBRs have a distribution di�erent than the data MBRs. In such case, 2dMAP21pays the price of not having a two-dimensional view but rather two one-dimensional views.We therefore conclude that, in order to avoid performance problems due to the lack of2dMAP21's \global view", it is better to use it when both data and query have the samespatial distribution.When indexing uniformly spread data 2dMAP21 used about a quarter more storage.As storage is a much less expensive commodity than time in most application domains, weconclude that 2dMAP21 is a very attractive approach for this problem. Nevertheless, whenindexing the real data set 2dMAP21 was actually smaller than the R�-tree.Future e�orts should be devoted towards: (1) extending this approach to higher dimen-sional space { where we believe it can be more advantageous as this would yield a decreasein the R�-tree fan-out and subsequently increase its height; and (2) actually implement the2dMAP21 approach using embedded SQL, thus allowing a standard DBMS to index andquery spatial data.AcknowledgmentsThe authors wish to thank: Yannis Theodoridis for the R�-tree source code and commentson an earlier draft of this paper; and Ibrahim Kamel for providing the MG and LB data sets.We acknowledge the use of Jan Janninck's source code for the B+-tree used as MAP21'sframework [Jan95]. We also thank Aalborg University's Dept. of Computer Science (es-3Preliminary studies have shown that as much as 6 parallel disks (3 disks for the partitions on each axis)may be needed to outperform the R�-tree with respect to intersection queries.

Using B+-Trees to Process Spatial Inclusion Queries 15pecially Prof. Christian S. Jensen) for the facilities provided during a visit by the �rstauthor.References[BKSS90] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: Ane�cient and robust access method for points and rectangles. In Proceedings ofthe 1990 ACM SIGMOD International Conferencee on Management of Data,pages 322{331, Atlantic City, NJ, June 1990.[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Ben-jamin/Cummings, Redwood City, CA, 2nd edition, 1994.[FR91] C. Faloutsos and Y. Rong. DOT: A spatial access method using fractals. InProceedings of the Seventh International Conference on Data Engineering, pages152{159, Kobe, Japan, April 1991.[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-ceedings of the 1984 ACM SIGMOD International Conferencee on Managementof Data, pages 47{57, Jun 1984.[Jan95] J. Janninck. Implementing deletions in B+-trees. ACM SIGMOD Record,24(1):6{8, March 1995.[JS93] T. Jonhson and D. Shasha. The performance of current data structure algo-rithms. ACM Transactions on Database Systems, 18(1):51{101, March 1993.[KF92] I. Kamel and C. Faloutsos. Parallel R-trees. In Proceedings of the 1992 ACMSIGMOD International Conferencee on Management of Data, pages 195{204,San Diego, CA, June 1992.[KSCL95] M.S. Kim, Y.S. Shin, M.J. Cho, and K.J. Li. A comparative study of spatialaccess methods. In Proceedings of the Third ACM International Workshop onAdvances in Geographic Information Systems (ACM-GIS'95), pages 29{36, Bal-timore, MD, December 1995.[ND96] M.A. Nascimento and M.H. Dunham. Using B+-trees as a practical alternative tothe classical R-tree. In Proceedings of the 11th Brazilian Symposium on Databases(SBBD'96), pages 187{200, S~ao Carlos, Brazil, October 1996. Available at URLhttp://www.cnptia.embrapa.br/�mario/Papers/tr-96-cse-05.ps.[ND97] M.A. Nascimento and M. H. Dunham. Indexing valid time databases via B+-trees { the MAP21 approach. Technical Report CSE-97-08, School of Engineeringand Applied Sciences, Southern Methodist University, 1997. Available at URLhttp://www.cnptia.embrapa.br/�mario/Papers/tr-97-cse-08.ps.

16 Nascimento & Dunham[P+95] D. Papadias et al. Topological relations in the world of minimum boundingrectangles: A study with R-trees. In Proceedings of the 1995 ACM SIGMODInternational Conferencee on Management of Data, pages 92{103, San Jose, CA,June 1995.[Sam90] H. Samet. The Design and Analysis of Spatial Data Strucutures. Addison-Wesley,Reading, MA, 1990.[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index formultidimensional objects. In Proceedings of the Thirteenth Very Large DatabasesConference, pages 507{518, Brighton, England, September 1987.[TP95] Y. Theodoridis and D. Papadias. Range queries involving spatial relations: Aperformance analysis. In Proceedings of the Second International Conference onSpatial Information Theory (COSIT'95), Semmering, Austria, September 1995.[Yao78] A. Yao. 2-3 trees. Acta Informatica, 2(9):159{170, 1978.

