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Abstract. In this paper we consider a labour constrained scheduling problem which is a simplification of
a practical problem arising in the industry. Jobs are subject to precedence constraints and have specified
processing times. Moreover, for each job the labour requirement varies as the job is processed. Given
the amount of labour available in each period, the problem is to finish all the jobs as soon as possible
(minimise makespan, subject to the precedence and labour constraints). Several Integer Programming (IP)
formulations for this problem are discussed and valid inequalities for these different models are introduced.
We point out to the major drawbacks in using the IP approach which are essentially due to the weakness of
the lower bound relaxations. However, we report computational experiments showing how IP can be used
to provide good feasible solutions and we indicate directions for further investigations which may turn IP

techniques an interesting tool for solving such a problem.
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1 Introduction

The labour constrained scheduling problem involves sequencing a set of jobs subject to
precedence constraints represented by a digraph where each job has a labour profile. Thus
each job has a specified processing time, and the labour requirement varies as the job is
processed. Given the amount of labour available in each period, the problem is to finish
all the jobs as soon as possible (minimise makespan, subject to the precedence and labour
constraints).

The problem motivating this study appears in Heipcke [7] and is a simplification of an
industrial problem from BASF. The instances we study are tightly constrained. For these
instances Cavalcante and de Souza [2] have developed tabu search heuristics, Heipcke has
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developed a constraint logic approach [8] and Savelsbergh, Wang and Wolsey [10] have de-
veloped a heuristic integer programming approach, based on the order of the jobs suggested
by the linear programming solution. This idea appears in [12], and has recently been the
subject of several worst case heuristic analyses [6],[9]. Other than using the longest path
lower bound just based on the processing times and precedence digraph, these approaches
provide no guarantee of the quality of the solution found. Wang and Wolsey [13] have stu-
died integer programming formulations and cutting planes in an attempt to improve these
lower bounds, but their results are limited.

Therefore, a major motivation for studying integer programming approaches to the problem
is to provide performance guarantees (lower bounds on the optimal makespan) as well as
good feasible schedules (upper bounds on the optimal makespan).

To date, the approach via Integer Programming cannot be judged a success for the following
reasons:

(i) in spite of the development of several alternative formulations for the problem, the
weak lower bounds provided by the longest path is not significantly improved.

(ii) one 24 job instance has been solved to optimality using strong valid inequalities.
However, the inequalities are very instance specific and appear difficult to generalize.

(iii) the systems used to solve the integer programs have great difficulty in finding feasible
solutions when the instances are tightly constrained. The quality of the solutions that
are found is worse than those provided by the tabu, CLP heuristics and LP order
heuristics.

(iv) the improvements in the lower bound that can be obtained using IP are small, and
it appears likely that the heuristic solutions are close to optimal, whereas the lower
bounds are not.

Below we discuss the previous and our more recent attempt to tackle the problem using
integer programming. In Section 2 we discuss formulations. One feature of the test instances
is that there exist chains of identical jobs. Formulations are designed precisely to treat such
instances.

In Section 3 we discuss known valid inequalities for the problem. Those of Wang and Wolsey
are presented as well as some that can be obtained from partial relaxations of a problem
instance.

In Section 4 we discuss various nonstandard ways in which the IP formulation can be used
both to improve on the weak LP lower bound and to find feasible solutions.

The reasons for the relative weakness of general IP approach are discussed in Section 5, and
some ideas for the construction of a special purpose branch-and-bound code are presented.

2 Formulations

Because of the labour requirements, any explicit integer programming formulation requires
knowledge of the period in which each job starts. The data consists of a set N = {1,...,n}



of jobs, a digraph D = (N, A) representing the precedence constraints, the processing time
p; and labour profile (£;1,¢;2,...,{;; ) of each job j € N. The labour capacity is I in each
period. A time horizon T must be chosen. Periods are 1,2,...,7T representing the intervals
[0,1],[1,2],....[T = 1,T].

In this section we discuss various different formulations for the processing times, precedence
constraints and makespan objective, that are independent of the labour constraints.

2.1 The basic time-indexed start-time z-formulation

Let £ denote the objective value (makespan+1), v an upper bound on the makespan, z;; = 1
if job j starts in period ¢ and s; the start time of job j.
Now the problem can be formulated as:

€ = 1l+ming (1)
> sj+p; JEN, (2)
T
Yoaj = 1 jeEN, (3)
t=1
T
D trjy = s; jEN, (4)
t=1
sj =2 sitpi (6,5) €A, (5)
i t+p;
wis = > wis (1) € Atell,... T (6)
s=1 s=1
n Py
Zzﬁj,uxj,t—u-l—l < L tell,..., 1], (7)
j=1u=1
21 € 40,1} jeENtel,....T). (8)

Constraint (2) imposes that g is an upper bound on the makespan, constraint (3) that each
job j is carried out, and (4) links the s; and x;; variables. Clearly the s; variables can
be eliminated by substitution. Constraint (5) is a simple representation of the precedence
constraints, whereas (6) is a tighter representation involving a large number of constraints.
Finally (7) is the labour constraint.

To minimise makespan, one approach is to introduce a final dummy job which starts in the
period when all the real jobs have terminated. From now on, we assume that the definition
of N and D have been modified, the dummy job is a successor of all real jobs and it is job
n.

The formulation now becomes:

£ = min s, subject to,(3),(4),(5) or (6),(7) and (8).

Note also that the labour constraint also can be modified giving;:



n—1 Py t

SN luwiicupr + LD wns < Lite[l,.. T, (9)

7=1 u=1 s=1
Also based on the precedence constraints and the time horizon T, it is easy to calculate
earliest and latest start times for each job j € N by forward and backward longest path
calculations in the digraph D using the processing times p;, 7 € N. Variables x;; are then
only defined fort = e(j),e(5)+1,..., f(j),and all the constraints are modified appropriately.
Thus, ignoring the labour constraints, we are interested in formulations for the feasible
region 57 = {(z,s) : (3),(4),(5) or (6),(8)} for which we have two possible formulations,
the “weak”formulation: Qf = {(z,s):(3),(4),(5),0< z;, < 1,e(j) <t < f(j),j € N} and
the “strong” one: Q% = {(z,s):(3),(4),(6),0< z;, < 1l,e(j) <t < f(j),j € N}.
The term strong is justified by the following result that will be proved in the next section
and says that all extreme points of ()3 are integral.

Proposition 1 @3 is integral.

The proposition also tells us that every valid inequality for 5% is a nonnegative linear
combination of inequalities describing Q5.

Proposition 2 Consider a sequence of jobs ji,j2,...,Jr € N with (ji,jiv1) € A fori =
Lo.o,r=1. Forallty >ty > ...>t,, withe(j;) <t; < f(ji), i =1,...,7 =1,

r  Pj;

Z Z Tjiti—ut1 < 1 (10)

=1 u=1

s valid for S%.

Again the proof will be simpler with the notation of the following subsection. The path
inequalities (10) are redundant for ()3, but may be useful perhaps witht =t =t; = ... =1,
to tighten formulation )7 without introducing too many new constraints.

2.2 The cumulative start time z-formulation

A standard time-indexed variable reformulation involves the replacement of the start-time
variables z ;¢ by the cumulative variables z;;. Specifically we define: z;; = 1 if job j starts
in or before period t.

Clearly,

¢
Zig= Y winfor t=e(f),.... f(j),
s=e(J)
and conversely x; .y = zj.;) » and @, = zj4 — 7,1 for t = e(j) + 1,..., f(j). Now
constraint (3) becomes:
Zgp =1 JEN,
and from z;; > 0 we get

hei) = o S 2550
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with z;; € {0,1}. The precedence constraints (6) become
Zig Z Zjtp;

and one gets,

1) 1) 5
5; = Z trj; = Z t(Z]‘Jg — 2’]‘715_1) = f(]) +1- Z 24

/)
t=e(4) t=e(4) t=e(J)

Thus, we immediately obtain the set 57 and the formulations )5, Q3 in the z-space corres-
ponding to S¥, Q7 and ()3 respectively.

Q; = {(s.2):
f(9)
u=e(j)
Zigg) = 1 JeN, (12)
Zit—1 — %4t < 0 ]GNvtze(])—l_lvvf(])v (13)
—Zjei) < 0 JEN, (14)
Zig = Zgkp = 0 ()€ Ae(t) St < f(a)e(j) <t+pi < f(J)} (15)

If (15) is replaced by (5) in the definition of Q5 we obtain ()7. Note that S* = {(z,s) €
Q7 : z integer}.

Proposition 3 The polyhedron ()3 is integral.

Proof: The matrix described by (12), (13), (14) and (15) is totally unimodular as each
constraint contains either a single entry, or two nonzero entries that are +1 and —1. a

As there is a bijection between @) and ()3, Proposition 1 follows.

Proposition 4 (11) Subject to the conditions of Proposition 2, the path inequality

Z(Zji7ti - ij‘,tz‘—p“) <1 (16)

=1

s valid for S*.
Proof: The LHS of the inequality can be written as:

. r=1¢_. . .
Ziiaty Zi:l (Z]iﬂfi—p“ Z]i+17ti+1) Zirtr—pjy,

IA

Ziiaty Zgz_ll(zjmti—p“ - Zji+17ti) - Zgz_ll(zjwlii - Zji+17ti+1) = Zirtr—pj, 1
as Zj <1 by (12) and (13)7 Zhiti—py, T Fdir1t >0 by (15)7 ittt T Flitativa >0 by (13)
as t; > tiyq, and zj, 4 >0 by (13) and (14). a

Again Proposition 2 follows immediately.



2.8 The Block Formulation

A block B is a sequence of npg identical jobs ji,..., j,, with (j;,jit1) € A,i=1,...,np—1
of the same length and same labour profile. We abuse notation by using e(B) = e(j1),
f(B) = f(jny) for the earliest and latest times for some job in the block to start, and
PB = Pjy> {Bu = {j,  for the processing times and labour profiles of the jobs in block B.
Throughout this section we assume that the problem is modelled with blocks such that any
precedence constraint (¢,7) € A between job ¢ in a block B and job j in a block B, B # B’
is such that ¢ is the last job in block B and j is the first job in block B’. Thus we obtain
a block precedence graph D with arc set given by A. Figure 1 gives an example of the
notation we use.

Bl‘l% 2—= 3—=4—>5— g——=>

B2[8— 9—=10— 1\ B9

B4 B5
e3 [12 | [13] b 7

B7 B8

B6 |15~ 16= 17 [18= 19 = 20+ |21= 22= 23> 24

Figure 1: Example of blocks

Define a block variable Xp; = ZjeB z; so that Xp; = 1 if some job of block B starts at
time 7.
To obtain a representation of the feasible region in the X-space, we obtain

(B)
> Xp: = np, VYBeERB (17)

t=e(B)
Xpt€{0,1} VBeB t=1,...,T, (18)

from (3) and (8) respectively, where B is the set of all blocks.
The labour constraint (7) becomes

PB
Z ZKB,uXB,t—u—I—l < L. (19)
BeBu=1

To model the precedence constraints is less obvious. The path inequality (10) with ¢ =

t1,12,...,1,, when limited to jobs in block B becomes

PB

> Xpi—upr < 1. (20)

u=1

To describe other precedence constraints it is simplest to first introduce cumulative block
variables. For this, let Zp; = ZjeB z; ¢ be the number of jobs of block B that have started



in or before period ¢. Note that Zp ; is also the cumulative variable for the block start time
variable Xp  so that

1
ZB,t: Z )(73757 t:e(B),...,f(B).
s=e(B)

In the absence of precedence constraints between blocks, constraints (17), (18) and (20)
now lead to the formulation R*:

ZB,§(B) = "B
ZBt—ZBi+1 < 0
—ZB ¢(B) <0
ZBt— LBi—py < 1
Proposition 5 The formulation R* is integral.
Proof: As in the proof of Proposition 1, the matrix is totally unimodular. O

Theoretically, at least we also can find the convex hull of the set SZ of feasible solutions to
the block formulation in the presence of precedence constraints between blocks.

Let @ = {(2,7): zy =1 1=1,...,n
2t~ Zig4l < 0 r=1,...,n,t=1,...,T -1
—Zie(i) < 0 1=1,...,n
—Zigt Zagp <0 V(i,j)e A, t=1,....,T —p;

Z]EB Zj,t ZBJ VB E B, t = e(B)7 .. 7f‘(B)}

Proposition 6 Projz(®) = conv(S5%).

Proof: This is an immediate corollary of the integrality of ()3. a

We now derive inequalities to represent precedence constraints between blocks. For a path
of blocks, By, Ba, ..., B, with (B;, Bi11) € Afori=1,...,r, we immediately obtain a path
block inequality from Proposition 4 and (20).

Proposition 7 (11) The inequality

r

Z(ZBM@‘ - ZBm—pBi) <1, (21)

=1
with t; >ty > ... > t, is valid for 7.

Proposition 8 Let B and C' be two blocks with (B,C) € A. The inequality

nc np
Z ZB7t+(u—1)pc Z Z ZC,t-I-upB-I-(nc—l)pc (22)
u=1 u=1

is valid for SZ.



Proof: Let B = {by,...,b,,}and C' ={cy,...,¢,.}. The precedence constraints between
jobs imply that for 1 <u < npg and 1 < s < ng,

ch,t-l-upB-I-(nC—l)pC S ch—l,t+upB+(nC—2)pC S ttt S ch,t-l-upB-I-(nC—s)pC
< < ... <
S Pgit(u-tippting—spe S P goutd b (ng —o)pe
Summing over u = 1,...,np gives
ng np
Z ch,t+upB+(nC—1)pC S Z anB—u-I-l,t-I-(nC—s)pC:ZB,t-I-(nC—S)pC .
u=1 u=1
Now summing over s = 1,...,n¢ and changing the order of summation gives
ng ng np nc nc
: : : :ch,t-l-upB-I-(nC—l)pc = :: Z07t+upB+(nC_1)pC S Z Zth‘l'(nC_S)pC = Z ZB,IH—(’U,—I)])@‘
u=1 s=1 u=1 s=1 u=1

a
In the special case when either |B| = 1, or |C| = 1, this result appears in [12].

2.4 The block-job formulation

An alternative to reducing the size of blocks so as to just impose the precedence constraints
between blocks is to make blocks as large as possible, but retain every job involved in a
precedence constraint between two blocks. Such jobs are called special.

Again we have the x;;, z;; variables for the special jobs and Xp; and Zp; variables for
the blocks.

All precedence constraints between blocks can be handled by the special jobs, so for (¢,7) €
A with ¢ and j in different blocks, we have:

Zit Z Zit4pis = 1,...,T.

Precedence constraints between special jobs in the same block can be handled as follows:
Let B = {1,...,np} be a block with special jobs ji,. .., j, in positions 1 < ¢;, < ... < g;, <
npg. For any two consecutive special jobs in B, js, jet1, { = 1,...,7 — 1, the precedence
inequality below holds:

t=1,...,T.

Zj[vt Z Zj[-l-l 7t+(qjg+1 _qu)pB

Proposition 9 If block B = {1,...,np} contains special jobs ji,...,j. in positions 1 <
¢, <...<gq;, <np, then

951 935 —951 Qjr —495,_1
ZBi 2 Y Zi k=t T Do Ziatu—tps Tt D Zh b u—)pss (23)
u=1 u=1 u=1

r q]'u-l-l —4yy

ZB,t S ((]]1 - 1) —I_ Z Z Zjv,t—(u—l)pB' (24)
v=1 u=1

with qj,,, = ng + 1.



ZB,t = (Zl,t + 2.t + ...+ Zjl,t) + (Z]‘1_|_17t + ...+ Z]‘27t) + ...
+(zj 410+ - Znpt)
2 Zjat(ay—Dps T Fntt(a,—2)ps T Fin
T Zitt (=15, 1) T Tt (e, —a5, —2)ps T oo T Zhat
+ 0
(ii)
Zt = (gt 2tz F Gt oot 210+
< (q]i - 1) + (Z]Lt + 2y t—pp T T 2 715—(!1]2—%1)2?]3)
_I_

An example of the previous inequality is given below.
Example:

i1l 1 —= 2 —= 3= 4 —= 5

N
[m] -

B, | 6—= 7—>= 8—= 9—=10—> 11— |

There are three blocks: By with jobs from 1 to 5, B with jobs from 6 to 11 and Bz with job 12 (dummy).
The special jobs are 1, 3, 5, 7, 10, 11 and 12.
For B> we obtain the inequality:

ZBy¢ 2 (27,t4pm, T 27,) + (210,042p5, + 210,t4pp, T Z10,6) + (211,)

and
Zpye 1+ (210 + 27,0—pp, + 270—2pp, ) + (210,6) + (211,¢)-

Note that path inequalities can again be applied to the blocks.

3 Labour Constraints and Inequalities

3.1 Knapsack inequalities for blocks (or jobs)

The labour constraints (19) with the path constraints (20) for each block form together a
knapsack with GUB (generalized upper bound) structure. Let (B!, u!)/_y, Bl € B, 1 <u <
pp: be a GUB cover with the {B;}'_, distinct and Y~7_, {pr,» > L.



Proposition 10 The GUB cover inequality

r
Yoo > Xpi—unt 3 aBuXBioup1 <T—1  (25)
=1 ungi,ung/.,u/. Bg{Bl7~~~7Br}:£B,uZmaXi{£B{ u’}

[ [

is valid for the block model with ap, = 1.
Note that the blocks can be replaced by disjoint block paths.

Corollary 1 If (g, = L for some (B,u) and (g, > 0, then (B,u) and (B',u') form a
cover. Hence for any path P not containing B

Z Z Xpri—wi1 + XBi—ut1 < 1. (26)
B'ePu'Lpg ,>0

The next inequality for job or block models uses much more of the problem structure, but
requires very strict conditions.
We consider k£ > 3 jobs such that the following hold for some values «a, 3, £, t*:

1. £ = minj,{{;,} > 0;

2. Ly, > B for some 1 < u < py;

3. Fori=1,...,k—1, dintegers h; <t such that {;, > aforu=1,...,h;
4. 2a>L,a+p< Lia++&> L.

Proposition 11 [13] For any integer ¢* with t* < ¢* < min{p; : j=1,...,k— 1}, the
inequality
k. min{p;,q*+h;} ¢

Z Yo wian STy +yt =)+ oyt - (I =Dr) (27

is valid for ST where y(t) =1 — Zﬁkzwmzﬁ Tkt

Proof: Job i is said to be active in period ¢ if Zznili{pi’q*-l_hi} Tit—ut1 = L.

We suppose w.l.o.g. that jobs 1,2,...,m < k — 1 are active at ¢, and that job ¢ 4+ 1 starts
before ¢ fore =m —1,...,1.

Let To = {t,t = T*,...,t — ([£] — 1)t*}.

Thus the left hand side of the inequality takes the value of the number of active jobs m,
and the right hand side is 14+ 3~ .7, y(7).

We now make a series of simple observations:

Observation 1: As job i+ 1 requires a labour units for h; periods and 2a > L, s;—s; +1 >
h; +1.

Observation 2: As job m is active, s,, > t—min{p,,, ¢*+h; }+1. Thus, s, > t—¢*—h,, +1.

10



Observation 3: From observations 1 and 2, 8,,,_1 > S, + hypy > — ¢* + 1.

We now associate the interval T; = {s;,s; + 1,...,min[t, s; + t* — 1]} with each job. i =
1,....,m—1.

Observation 4: All the jobs m,m — 1,...,¢ + 1 started before job ¢, are still active in
period ¢, and thus they are active during the interval 7.

Observation 5: The intervals T; are disjoint because the last period of T;4q is s;41 +* =1,
and the first of T} is s;. From Observation 1, s;4 1+ —1 < s, —hjp1 +17 -1 < ;=1 < 5.
Observation 6: During interval T;, the labour available for job k < L —a — £ < 3 as job
m is active throughout T;.

Observation 7: The last element s,,_1 +¢* — 1 of T,,,_1 satisfies

Sme1+ =1 > t—qg"+ 14+t =1 (by Observation 3)
— 4t — g
= (&% -1
> 1= ([&] -1

Claim: Fori =1,...,m—1, 3 distinct integers f; € {0,..., [3—:} —1} such that y(t— f;t*) =
1.

Proof of the claim: We have shown that the disjoint intervals 1,,_1,7T,,_2,...,17 are of
length ¢*, except possibly for 7.

The periods in Ty are also equally spaced at intervals t* between ¢ — (4 — 1)t* and t*. T),_y

either contains ¢ — (3—: — 1)t* or lies in [t — [%—:} — )t* + 1,1

Tmay ooy Ty lie in [t — ([%] — 1T 1.

Ty either contains ¢, or is of length ¢* and lies in [t — [3—:} — 1)t*,1].

Thus, there exists f; such that t — f;t* € T} .

Now, by Observation 6, less than [ units of labour are available in ¢ — f;t* and thus
y(t = fit) = 1.

Finally, the right-hand side

(141-1) m-1)
1+ Z y(t—rt*)Zl—l—Zy(t—fit*)Zm,
r=0 =1
and the inequality is valid. a

3.2 Surrogate Inequalities

To find inequalities maximising the number of jobs started in the first 7 periods, it suffices

Y = max{z Zxﬁ t(x,s) € ST}

JEN LT

to solve

11



An upper bound 7, can be obtained by partially dropping the integrality constraints on the
variables z ;, for example for ¢ > 7. The result is a valid inequality

Y > i <

JEN t<T

For values of 7 < 20, 4, is obtained rapidly, and the resulting inequality has some effect in
tightening the formulation.

A similar idea is to examine the maximum amount of labour used, or the number of jobs
active in any interval of p periods.

4 Computational Results with a Standard MIP System

As indicated in the Introduction, it has been observed that for tightly constrained instances
where the makespan exceeds the longest path bound &pp,

1. typically &pp = €pp for all the formulations weak or strong presented in Section 2

2. using a commercial MIP system with standard dichotomous branching on variables
Xty Xity 25t O Lz, the best lower bound hardly moves during thousands or tens of
thousands of nodes.

3. MIP fails to find feasible solutions unless the horizon 7' is significantly greater than
the makespan.

4. at least three heuristic approaches have been developed

(a) constraint logic programming [7]
(b) tabu search [2]

(c) Order Heuristics based on i) using the LP solution to obtain an ordering of
the jobs ii) use the ordering to construct a feasible solution iii) iterate using an
exchange heuristic on the ordering iv) insert into a specialised Branch and Bound
routine in which the heuristic is called at each node and specialised branching
choices are implemented [10].

All three heuristics appear to perform well in that each of them finds an optimal
solution of instance b24 presented below.

5. Earlier work with an integer programing approach has shown that the knapsack ine-
qualities of Proposition 10 can be added easily to the model, but have little immediate
effect on the lower bounds. For instance b24, the inequalities of Propositions 7 and
11 are applicable. Combined with the block formulation and strong precedence cons-
traints, the initial lower bound is raised from 59 to 65, and optimality has been proven
for this instance [13].

Below we present our recent results obtained with an MIP system (XPRESS) running on a
PC (Pentium, 166 MHz) workstation. First we attempt to tackle the problem directly.

12



4.1 Direct MIP Approach

The direct approach is to solve the MIP for a certain time of number of nodes, and then
examine the quality of the best lower and upper bounds obtained. In Tables 1 and 2 we
show results obtained using the weak and strong precedence formulations. For each instance
PB denotes the longest path lower bound, T the time horizon chosen for the instance, m,n
the number of rows and columns, LP the linear programming bound, LB and UB the
lower and upper bounds on termination, and secs the time spent in branch and bound. For
the weak formulation (Table 1), the number of nodes was set to 10000, and for the strong
formulation (Table 2) to 5000. The formulations are the basic z formulation with just the a
priori addition of simple knapsack cuts from Proposition 10 with » = 1, except for instance
b21m where some inequalities with r = 2 have also been added.

Instance | PB | T m n LP LB | UB || secs
b21 39 | 50 || 221 | 410 || 39.4 | 44.0 | - 1104
b24 59 | 70 || 211 | 497 || 59.0 | 59.1 | - 2029
b27 54 | 70 || 228 | 637 || 5b4.1 | 56.0 | - 2522

b27m12 | 54 | 61 || 210 | 385 || 54.0 | 55.0 | - 1389

Table 1: MIP Results: Weak Precedence Formulation- 10000 nodes

Instance | PB | T m n LP LB | UB secs
b21 39 | 50 || 615 | 410 || 39.6 | 43.3 | 48 1834
b24 59 | 70 || 624 | 497 || 59.0 | 59.5 | - 1993
b27 B4 | 70 || 878 | 637 || 5b4.2 | 55.2 | - 13775*

b27m12 | 54 | 61 || 536 | 385 || 54.0 | 54.7 | - 2498

* stopped after 3000 nodes

Table 2: MIP Results: Strong Precedence Formulation - 5000 nodes

4.2 MIP Heuristics providing Lower and Upper Bounds

Here we describe our efforts to develop MIP based heuristics that provide nontrivial lower
and upper bounds in a reasonable time. Throughout we use the basic job z-formulation.
On certain instances, improvements can be obtained by switching to the block formulation.

The Modified Objective Heuristic

The heuristic given below is based on the z-formulation with weak precedence constraints
(5) as described in Section 2.1. The objective function is modified so that £ equals to
max Y, t* xjt, or max /min )" s; = 3, t T

13



Heuristic:
Step 0: Choose an initial time horizon 7.
Step 1: Solve the resulting IP.

Step 2: If IP is infeasible increase T to T+ 1, and return to Step 1.
Otherwise stop the solution of IP when a feasible solution is found. If £ is the
makespan of this feasible solution, decrease T below £, and return to 3 Step 1.

As motivation for this heuristic, we have

(i) the LP is solved much quicker with the weak formulation, so the LP should only
be tightened with strong valid inequalities that significantly affect the bounds or the
running time

(i1) the LP solves much quicker with the modified objective than with the makespan
objective.

One possible reason for (ii) is that the LP with the makespan objective is highly degenerate,
and the objective function is flat. The LP bound does not change from one node to the next,
and as a result no intelligent branching choices are made. With the modified objective, the
LP bound decreases from node to node, and so branching decision remain coherent from
one branch to the next.

The behaviour of the heuristic on 4 instances is shown in Table 3.

The Relax and Fix heuristic

Consider a partition (71,75, ...,T,) of the interval [1,7T], or a partition (N1, Na,..., N,) of
the job set N. Let (z',...,2") be a corresponding partition of the variables .

Relax and Fix heuristic:
Step i: Solve (MIP") given by
€ =min(st(n) : (z,st) € Pyad = 29(i) j=1,...,i—1,2' € Zy)

with optimal solution z(¢).
If z(r) is a feasible solution of MTP", ¢ < £". As MIP! is a relaxation, £ > £,

Clearly the difficulty in solving each problem MIP* depends on the size of the intervals T° or
Ni. In Table 4 we show the results obtained with 7 = 3 using equally spaced time intervals.
Problem MIP! was run to optimality, while problems M IP? and MIP? were limited to 15
minutes in the branch-and-bound phase. The heuristic was programmed using EMOSL [5],
a combined modelling and optimisation language, designed to facilitate the development of
new algorithmic approaches. In the Table we give the lower bound LB provided by the first
problem MIP', and the upper bound UB provided by the last problem MIP3. T denotes
the time horizon used for the instance. The weak formulation was used.

The test instances we have used are available in [3].
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Instance | T £ secs | nodes
b21 47 47 32 489
b21 46 | Infeasible || 320 6373
b24 73 73 63 188
b24 70 70 340 958
b24 62 | Infeasible || 534 1837
b24 60 | Infeasible 4 17
b27 73 72 25 40
b27 71 70 25 44
b27 68 68 7520 | 10271
b27 62 | Infeasible | 738 961

b27m12 | 68 67 24 460

b27m12 | 66 66 21 476

b27m12 | 64 64 19 439

b27m12 | 61 61 142 4681

b27m12 | 59 59 6468 | 208734

b27m12 | 57 | Infeasible || 3338 | 112105

b27m12 | 56 | Infeasible || 221 9231

Table 3: Modified Objective Heuristic

Instance | LB | UB | T
b21 39.6 | 47 | 50
b24 61.0 | 73 | 75
b27 60.0 | 74 | 74

b27m12 | 55 60 | 64

Table 4: Relax and Fix Heuristic
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5 Further Work

From the above results, the large number of variables and constraints in the LPs and the very
long solution times for these LPs, especially with the makespan objective, it is very clear that
to provide good lower bounds a dedicated branch-and-bound approach is necessary. Such a
system would need to eliminate all superfluous variables (i.e. when a new feasible solution is
found of value £, or branching occurs) all variables z;; with ¢ > £ should be eliminated, and
the earliest and latest start times e(j) and f(j) updated. In addition branching on variables
xj; is clearly unsatisfactory. GUB branching is one possibility, but initial experiments were
not convincing. The use of logical implications together with branching may be helpful,
and higher priorities for branching on variables on the critical path may also be important.
It is also clear that heuristic solutions should be incorporated to branch-and-bound pro-
cedures. LP orders like those described in [6] should be used as primal heuristic solutions
during the execution of the algorithm. Moreover, these orders could also be used as initial
solutions for tabu search heuristics ([2]) which could produce tighter upper bounds.

We are also implementing a modified tree enumeration procedure without bounding which
will allow us to complete the modified objective heuristic in a single pass.

Acknowledgements

The authors are very grateful to Cristina Cavalcante for pointing out to some mistakes on
earlier versions of this paper and also for the help in putting the text in its final form.

16



References

[1]

[11]

[12]

[13]

M. Bartusch, R.H. Moehring and F.J. Rademacher, “Scheduling Project Networks with
resource constraints and time windows”,

C. C. B. Cavalcante, C. C. de Souza, “A Tabu Search Approach for Scheduling Problem
Under Labour Constraints”. Technical Report 1C-97-13, IC-UNICAMP, October 1997.

C. C. B. Cavalcante. WWW page: http://www.dcc.unicamp.br/ cris/SPLC.html.

E. Demeulemeester and W. Herroelen, A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem, Management Science 38, 1803-1818

(1992).

Entity Modelling and Optimisation Subroutine Library, XPRESS-MP, Draft Reference
Manual, Dash Associates, Leamington Spa, September 1997.

M.X. Goemans, “Improved approximations algorithms for scheduling with release da-
tes”. 8" ACM-SIAM Symposium on Discrete Algorithms, 1997.

S. Heipcke, “Resource constrained job-shop scheduling with constraint nets - two case
studies”, Diploma thesis, Mathematisch Geographiische Fakultaet, Katholische Uni-
versitaet Eichstaett, January 1995.

S. Heipcke and Y. Colambani, “A New Constraint Programming Approach to Large
Scale Resource Constrained Scheduling”, Workshop on Models and Algorithms for
Planning and Scheduling Problems, Cambridge, UK, April 1997.

M. Queyranne and A. S. Schulz, “Polyhedral approaches to machine scheduling”, Pre-
print 408/1994, Department of Mathematic, Technical University of Berlin, Berlin,
Germany, 1994.

M. Savelsbergh, Y. Wang and L.A. Wolsey, “Computational experiments with a large-
scale resource constrained project scheduling problem”, Note, Georgia Institute of Te-
chnology, August 1996.

Sousa J., Wolsey L.A.: Time-indexed formulations of non-preemptive single machine
scheduling problems. Mathematical Programming 54 (1992) 353-367.

van den Akker M.: LP-based solution methods for single-machine scheduling problems.
Ph.D thesis, Technical University of Findhoven, December 1994.

Y. Wang, L.A. Wolsey, Scheduling with labour constraints, Note, CORE, Université
Catholique de Louvain, May 1996.

17



