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Scheduling Projects with Labour Constraints yC. C. de Souzaz L. A. WolseyxInstituto de Computa�c~aoUniversidade Estadual de Campinas | UNICAMPCaixa Postal 6176 { CEP: 13083-970 { Campinas, SP { BrasilOctober 1997Abstract. In this paper we consider a labour constrained scheduling problem which is a simpli�cation ofa practical problem arising in the industry. Jobs are subject to precedence constraints and have speci�edprocessing times. Moreover, for each job the labour requirement varies as the job is processed. Giventhe amount of labour available in each period, the problem is to �nish all the jobs as soon as possible(minimise makespan, subject to the precedence and labour constraints). Several Integer Programming (IP)formulations for this problem are discussed and valid inequalities for these di�erent models are introduced.We point out to the major drawbacks in using the IP approach which are essentially due to the weakness ofthe lower bound relaxations. However, we report computational experiments showing how IP can be usedto provide good feasible solutions and we indicate directions for further investigations which may turn IPtechniques an interesting tool for solving such a problem.Keywords: Scheduling, Labour Constraints, Integer Programming, Valid Inequalities, Heuristics.1 IntroductionThe labour constrained scheduling problem involves sequencing a set of jobs subject toprecedence constraints represented by a digraph where each job has a labour pro�le. Thuseach job has a speci�ed processing time, and the labour requirement varies as the job isprocessed. Given the amount of labour available in each period, the problem is to �nishall the jobs as soon as possible (minimise makespan, subject to the precedence and labourconstraints).The problem motivating this study appears in Heipcke [7] and is a simpli�cation of anindustrial problem from BASF. The instances we study are tightly constrained. For theseinstances Cavalcante and de Souza [2] have developed tabu search heuristics, Heipcke hasyThis research was supported by FAPESP (grant number 97/02990-3) and by CNPq (grant number300883/94-3)zInstitute of Computing { State University of Campinas { S~ao Paulo { BrazilxCenter for Operations Research and Econometrics { UCL { Louvain la Neuve { Belgium1



developed a constraint logic approach [8] and Savelsbergh, Wang and Wolsey [10] have de-veloped a heuristic integer programming approach, based on the order of the jobs suggestedby the linear programming solution. This idea appears in [12], and has recently been thesubject of several worst case heuristic analyses [6],[9]. Other than using the longest pathlower bound just based on the processing times and precedence digraph, these approachesprovide no guarantee of the quality of the solution found. Wang and Wolsey [13] have stu-died integer programming formulations and cutting planes in an attempt to improve theselower bounds, but their results are limited.Therefore, a major motivation for studying integer programming approaches to the problemis to provide performance guarantees (lower bounds on the optimal makespan) as well asgood feasible schedules (upper bounds on the optimal makespan).To date, the approach via Integer Programming cannot be judged a success for the followingreasons:(i) in spite of the development of several alternative formulations for the problem, theweak lower bounds provided by the longest path is not signi�cantly improved.(ii) one 24 job instance has been solved to optimality using strong valid inequalities.However, the inequalities are very instance speci�c and appear di�cult to generalize.(iii) the systems used to solve the integer programs have great di�culty in �nding feasiblesolutions when the instances are tightly constrained. The quality of the solutions thatare found is worse than those provided by the tabu, CLP heuristics and LP orderheuristics.(iv) the improvements in the lower bound that can be obtained using IP are small, andit appears likely that the heuristic solutions are close to optimal, whereas the lowerbounds are not.Below we discuss the previous and our more recent attempt to tackle the problem usinginteger programming. In Section 2 we discuss formulations. One feature of the test instancesis that there exist chains of identical jobs. Formulations are designed precisely to treat suchinstances.In Section 3 we discuss known valid inequalities for the problem. Those of Wang and Wolseyare presented as well as some that can be obtained from partial relaxations of a probleminstance.In Section 4 we discuss various nonstandard ways in which the IP formulation can be usedboth to improve on the weak LP lower bound and to �nd feasible solutions.The reasons for the relative weakness of general IP approach are discussed in Section 5, andsome ideas for the construction of a special purpose branch-and-bound code are presented.2 FormulationsBecause of the labour requirements, any explicit integer programming formulation requiresknowledge of the period in which each job starts. The data consists of a set N = f1; : : : ; ng2



of jobs, a digraph D = (N;A) representing the precedence constraints, the processing timepj and labour pro�le (`j;1; `j;2; : : : ; `j;pj) of each job j 2 N . The labour capacity is L in eachperiod. A time horizon T must be chosen. Periods are 1; 2; : : : ; T representing the intervals[0; 1]; [1; 2]; : : : ; [T � 1; T ].In this section we discuss various di�erent formulations for the processing times, precedenceconstraints and makespan objective, that are independent of the labour constraints.2.1 The basic time-indexed start-time x-formulationLet � denote the objective value (makespan+1), � an upper bound on the makespan, xj;t = 1if job j starts in period t and sj the start time of job j.Now the problem can be formulated as:� = 1 +min� (1)� � sj + pj j 2 N; (2)TXt=1 xj;t = 1 j 2 N; (3)TXt=1 txj;t = sj j 2 N; (4)sj � si + pi (i; j) 2 A; (5)tXs=1 xi;s � t+piXs=1 xj;s (i; j) 2 A; t 2 [1; : : : ; T ]; (6)nXj=1 pjXu=1 `j;uxj;t�u+1 � L t 2 [1; : : : ; T ]; (7)xj;t 2 f0; 1g j 2 N; t 2 [1; : : : ; T ]: (8)Constraint (2) imposes that � is an upper bound on the makespan, constraint (3) that eachjob j is carried out, and (4) links the sj and xj;t variables. Clearly the sj variables canbe eliminated by substitution. Constraint (5) is a simple representation of the precedenceconstraints, whereas (6) is a tighter representation involving a large number of constraints.Finally (7) is the labour constraint.To minimise makespan, one approach is to introduce a �nal dummy job which starts in theperiod when all the real jobs have terminated. From now on, we assume that the de�nitionof N and D have been modi�ed, the dummy job is a successor of all real jobs and it is jobn.The formulation now becomes:� = min sn; subject to; (3); (4); (5) or (6); (7) and (8):Note also that the labour constraint also can be modi�ed giving:3



n�1Xj=1 pjXu=1 `j;uxj;t�u+1 + L tXs=1 xn;s � L; t 2 [1; : : : ; T ]: (9)Also based on the precedence constraints and the time horizon T , it is easy to calculateearliest and latest start times for each job j 2 N by forward and backward longest pathcalculations in the digraph D using the processing times pj , j 2 N . Variables xj;t are thenonly de�ned for t = e(j); e(j)+1; : : : ; f(j), and all the constraints are modi�ed appropriately.Thus, ignoring the labour constraints, we are interested in formulations for the feasibleregion Sx = f(x; s) : (3); (4); (5) or (6); (8)g for which we have two possible formulations,the \weak"formulation: Qx1 = f(x; s) : (3); (4); (5); 0� xj;t � 1; e(j)� t � f(j); j 2 Ng andthe \strong" one: Qx2 = f(x; s) : (3); (4); (6); 0� xj;t � 1; e(j)� t � f(j); j 2 Ng.The term strong is justi�ed by the following result that will be proved in the next sectionand says that all extreme points of Qx2 are integral.Proposition 1 Qx2 is integral.The proposition also tells us that every valid inequality for Sx is a nonnegative linearcombination of inequalities describing Qx2 .Proposition 2 Consider a sequence of jobs j1; j2; : : : ; jr 2 N with (ji; ji+1) 2 A for i =1; : : : ; r� 1. For all t1 � t2 � : : :� tr, with e(ji) � ti � f(ji), i = 1; : : : ; r� 1,rXi=1 pjiXu=1 xji;ti�u+1 � 1 (10)is valid for Sx.Again the proof will be simpler with the notation of the following subsection. The pathinequalities (10) are redundant forQx2, but may be useful perhaps with t = t1 = t2 = : : : = tnto tighten formulation Qx1 without introducing too many new constraints.2.2 The cumulative start time z-formulationA standard time-indexed variable reformulation involves the replacement of the start-timevariables xj;t by the cumulative variables zj;t. Speci�cally we de�ne: zj;t = 1 if job j startsin or before period t.Clearly, zj;t = tXs=e(j) xj;t; for t = e(j); : : : ; f(j);and conversely xj;e(j) = zj;e(j) , and xj;t = zj;t � zj;t�1 for t = e(j) + 1; : : : ; f(j). Nowconstraint (3) becomes: zj;f(j) = 1 j 2 N;and from xj;t � 0 we get 0 � zj;e(j) � : : :� zj;f(j)4



with zj;t 2 f0; 1g. The precedence constraints (6) becomezi;t � zj;t+piand one gets, sj = f(j)Xt=e(j) txj;t = f(j)Xt=e(j) t(zj;t � zj;t�1) = f(j) + 1� f(j)Xt=e(j) zj;t:Thus, we immediately obtain the set Sz and the formulations Qz1; Qz2 in the z-space corres-ponding to Sx; Qx1 and Qx2 respectively.Qz2 = f(s; z) :sj = f(j) + 1� f(j)Xu=e(j) zj;u j 2 N; (11)zj;f(j) = 1 j 2 N; (12)zj;t�1 � zj;t � 0 j 2 N; t = e(j) + 1; : : : ; f(j) ; (13)�zj;e(j) � 0 j 2 N; (14)zi;t � zj;t+pi � 0 (i; j) 2 A; e(i) � t � f(i); e(j)� t + pi � f(j)g (15)If (15) is replaced by (5) in the de�nition of Qz2 we obtain Qz1. Note that Sz = f(z; s) 2Qz1 : z integerg.Proposition 3 The polyhedron Qz2 is integral.Proof: The matrix described by (12), (13), (14) and (15) is totally unimodular as eachconstraint contains either a single entry, or two nonzero entries that are +1 and �1. 2As there is a bijection between Qx2 and Qz2, Proposition 1 follows.Proposition 4 (11) Subject to the conditions of Proposition 2, the path inequalityrXi=1(zji;ti � zji;ti�pji ) � 1 (16)is valid for Sz.Proof: The LHS of the inequality can be written as:zj1;t1 �Pr�1i=1 (zji;ti�pji � zji+1 ;ti+1)� zjr ;tr�pjr =zj1;t1 �Pr�1i=1 (zji;ti�pji � zji+1 ;ti)�Pr�1i=1 (zji+1;ti � zji+1 ;ti+1)� zjr ;tr�pjr � 1as zj1;t1 � 1 by (12) and (13), zji;ti�pji � zji+1 ;ti � 0 by (15), zji+1 ;ti � zji+1 ;ti+1 � 0 by (13)as ti � ti+1, and zjr ;tr�pjr � 0 by (13) and (14). 2Again Proposition 2 follows immediately. 5



2.3 The Block FormulationA block B is a sequence of nB identical jobs j1; : : : ; jnB with (ji; ji+1) 2 A, i = 1; : : : ; nB�1of the same length and same labour pro�le. We abuse notation by using e(B) = e(j1),f(B) = f(jnB) for the earliest and latest times for some job in the block to start, andpB = pj1 , `B;u = `j1;u for the processing times and labour pro�les of the jobs in block B.Throughout this section we assume that the problem is modelled with blocks such that anyprecedence constraint (i; j) 2 A between job i in a block B and job j in a block B0, B 6= B0is such that i is the last job in block B and j is the �rst job in block B0. Thus we obtaina block precedence graph D with arc set given by A. Figure 1 gives an example of thenotation we use.
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B9Figure 1: Example of blocksDe�ne a block variable XB;t = Pj2B xj;t so that XB;t = 1 if some job of block B starts attime t.To obtain a representation of the feasible region in the X-space, we obtainf(B)Xt=e(B)XB;t = nB ; 8B 2 B (17)XB;t 2 f0; 1g 8B 2 B t = 1; : : : ; T; (18)from (3) and (8) respectively, where B is the set of all blocks.The labour constraint (7) becomesXB2B pBXu=1 `B;uXB;t�u+1 � L: (19)To model the precedence constraints is less obvious. The path inequality (10) with t =t1; t2; : : : ; tnB when limited to jobs in block B becomespBXu=1XB;t�u+1 � 1: (20)To describe other precedence constraints it is simplest to �rst introduce cumulative blockvariables. For this, let ZB;t =Pj2B zj;t be the number of jobs of block B that have started6



in or before period t. Note that ZB;t is also the cumulative variable for the block start timevariable XB;t so that ZB;t = tXs=e(B)XB;s; t = e(B); : : : ; f(B):In the absence of precedence constraints between blocks, constraints (17), (18) and (20)now lead to the formulation Rz : ZB;f(B) = nBZB;t � ZB;t+1 � 0�ZB;e(B) � 0ZB;t � ZB;t�pB � 1:Proposition 5 The formulation Rz is integral.Proof: As in the proof of Proposition 1, the matrix is totally unimodular. 2Theoretically, at least we also can �nd the convex hull of the set SZ of feasible solutions tothe block formulation in the presence of precedence constraints between blocks.Let � = f(z; Z) : zi;(fi) = 1 i = 1; : : : ; nzi;t � zi;t+1 � 0 i = 1; : : : ; n; t = 1; : : : ; T � 1�zi;e(i) � 0 i = 1; : : : ; n�zi;t + zj;t+pi � 0 8(i; j) 2 A; t = 1; : : : ; T � piPj2B zj;t = ZB;t 8B 2 B; t = e(B); : : : ; f(B):gProposition 6 ProjZ(�) = conv(SZ).Proof: This is an immediate corollary of the integrality of Qz2. 2We now derive inequalities to represent precedence constraints between blocks. For a pathof blocks, B1; B2; : : : ; Br with (Bi; Bi+1) 2 �A for i = 1; : : : ; r, we immediately obtain a pathblock inequality from Proposition 4 and (20).Proposition 7 (11) The inequalityrXi=1(ZBi;ti � ZBi;t�pBi ) � 1; (21)with t1 � t2 � : : :� tr is valid for SZ.Proposition 8 Let B and C be two blocks with (B;C) 2 A. The inequalitynCXu=1ZB;t+(u�1)pC � nBXu=1ZC;t+upB+(nC�1)pC (22)is valid for SZ. 7



Proof: Let B = fb1; : : : ; bnBg and C = fc1; : : : ; cnCg. The precedence constraints betweenjobs imply that for 1 � u � nB and 1 � s � nC ,zcs;t+upB+(nC�1)pC � zcs�1;t+upB+(nC�2)pC � : : : � zc1;t+upB+(nC�s)pC� zbnB;t+(u�1)pB+(nC�s)pC � : : : � zbnB�u+1;t+(nC�s)pCSumming over u = 1; : : : ; nB givesnBXu=1 zcs;t+upB+(nC�1)pC � nBXu=1 zbnB�u+1;t+(nC�s)pC=ZB;t+(nC�s)pC :Now summing over s = 1; : : : ; nC and changing the order of summation givesnBXu=1 nCXs=1 zcs;t+upB+(nC�1)pC = nBXu=1ZC;t+upB+(nC�1)pC � nCXs=1ZB;t+(nC�s)pC = nCXu=1ZB;t+(u�1)pC :2In the special case when either jBj = 1, or jCj = 1 , this result appears in [12].2.4 The block-job formulationAn alternative to reducing the size of blocks so as to just impose the precedence constraintsbetween blocks is to make blocks as large as possible, but retain every job involved in aprecedence constraint between two blocks. Such jobs are called special.Again we have the xj;t, zj;t variables for the special jobs and XB;t and ZB;t variables forthe blocks.All precedence constraints between blocks can be handled by the special jobs, so for (i; j) 2A with i and j in di�erent blocks, we have:zi;t � zj;t+pi ; t = 1; : : : ; T:Precedence constraints between special jobs in the same block can be handled as follows:Let B = f1; : : : ; nBg be a block with special jobs j1; : : : ; jr in positions 1 � qj1 < : : : < qjr �nB. For any two consecutive special jobs in B, j`; j`+1; ` = 1; : : : ; r � 1, the precedenceinequality below holds: zj` ;t � zj`+1;t+(qj`+1�qj`)pB t = 1; : : : ; T:Proposition 9 If block B = f1; : : : ; nBg contains special jobs j1; : : : ; jr in positions 1 �qj1 < : : : < qjr � nB, thenZB;t � qj1Xu=1 zj1;t+(u�1)pB + qj2�qj1Xu=1 zj2 ;t+(u�1)pB + : : :+ qjr�qjr�1Xu=1 zjr ;t+(u�1)pB ; (23)ZB;t � (qj1 � 1) + rXv=1 qjv+1�qjvXu=1 zjv ;t�(u�1)pB : (24)with qjr+1 = nB + 1. 8



Proof:(i) ZB;t = (z1;t + z2;t + : : :+ zj1;t) + (zj1+1;t + : : :+ zj2;t) + : : :+(zjr+1;t + : : :+ znB ;t)� zj1;t+(qj1�1)pB + zj1;t+(qj1�2)pB + : : :+ zj1;t+ zj2;t+(qj2�qj1�1)pB + zj2;t+(qj2�qj1�2)pB + : : :+ zj2;t+ : : :+ 0(ii) ZB;t = (z1;t + z2;t + : : :+ zj1�1;t) + (zj1;t + : : :+ zj2�1;t) + : : :� (qj1 � 1) + (zj1;t + zj1;t�pB + : : :+ zj1;t�(qj2�qj1)pB)+ : : : 2An example of the previous inequality is given below.Example:
876 9 10 11

2
B

12 B
3

1 2 3 4 5B 
1There are three blocks: B1 with jobs from 1 to 5, B2 with jobs from 6 to 11 and B3 with job 12 (dummy).The special jobs are 1, 3, 5, 7, 10, 11 and 12.For B2 we obtain the inequality:ZB2 ;t � (z7;t+pB2 + z7;t) + (z10;t+2pB2 + z10;t+pB2 + z10;t) + (z11;t)and ZB2;t � 1 + (z7;t + z7;t�pB2 + z7;t�2pB2 ) + (z10;t) + (z11;t): 2Note that path inequalities can again be applied to the blocks.3 Labour Constraints and Inequalities3.1 Knapsack inequalities for blocks (or jobs)The labour constraints (19) with the path constraints (20) for each block form together aknapsack with GUB (generalized upper bound) structure. Let (B0i; u0i)ri=1, B0i 2 B, 1 � u �pB0i be a GUB cover with the fB0igri=1 distinct and Pri=1 `B0i;u0i > L.9



Proposition 10 The GUB cover inequalityrXi=1 Xu:`Bi;u�`B0i ;u0i XBi;t�u+1 + XB 62fB1;:::;Brg:`B;u�maxif`B0i;u0ig�B;uXB;t�u+1 � r � 1 (25)is valid for the block model with �B;u = 1.Note that the blocks can be replaced by disjoint block paths.Corollary 1 If `B;u = L for some (B; u) and `B0;u0 > 0, then (B; u) and (B0; u0) form acover. Hence for any path P not containing BXB02P Xu0:`B0 ;u>0XB0;t�u0+1 +XB;t�u+1 � 1: (26)The next inequality for job or block models uses much more of the problem structure, butrequires very strict conditions.We consider k � 3 jobs such that the following hold for some values �, �, �, t�:1. � = minj;uf`j;ug > 0;2. `k;u � � for some 1 � u � pk;3. For i = 1; : : : ; k� 1, 9 integers hi � t� such that `i;u � � for u = 1; : : : ; hi;4. 2� > L, � + � � L, �+ � + � > L.Proposition 11 [13] For any integer q� with t� � q� � minfpj : j = 1; : : : ; k � 1g, theinequality kXi=1 minfpi;q�+higXu=1 xj;t�u+1 � 1 + y(t) + y(t� t�) + : : :+ y(t � (dq�t�e � 1)t�) (27)is valid for Sx where y(t) = 1�Ppku=1:`k;u�� xk;t�u+1.Proof: Job i is said to be active in period t if Pminfpi;q�+higu=1 xi;t�u+1 = 1.We suppose w.l.o.g. that jobs 1; 2; : : : ; m � k � 1 are active at t, and that job i+ 1 startsbefore i for i = m� 1; : : : ; 1.Let T0 = ft; t� T �; : : : ; t� (d q�t� e � 1)t�g.Thus the left hand side of the inequality takes the value of the number of active jobs m,and the right hand side is 1 +P�2T0 y(�).We now make a series of simple observations:Observation 1: As job i+1 requires � labour units for hi periods and 2� > L, si�si+1 �hi + 1.Observation 2: As jobm is active, sm � t�minfpm; q�+hig+1. Thus, sm � t�q��hm+1.10



Observation 3: From observations 1 and 2, sm�1 � sm + hm � t� q� + 1.We now associate the interval Ti = fsi; si + 1; : : : ;min[t; si + t� � 1]g with each job. i =1; : : : ; m� 1.Observation 4: All the jobs m;m � 1; : : : ; i + 1 started before job i, are still active inperiod t, and thus they are active during the interval Ti.Observation 5: The intervals Ti are disjoint because the last period of Ti+1 is si+1+ t��1,and the �rst of Ti is si. From Observation 1, si+1+ t�� 1 � si�hi+1 + t�� 1 � si� 1 < si.Observation 6: During interval Ti, the labour available for job k � L� � � � < � as jobm is active throughout Ti.Observation 7: The last element sm�1 + t� � 1 of Tm�1 satis�essm�1 + t� � 1 � t� q� + 1 + t� � 1 (by Observation 3)= t+ t� � q�= t� ( q�t� � 1)t�� t� (d q�t� e � 1)t�Claim: For i = 1; : : : ; m�1, 9 distinct integers fi 2 f0; : : : ; d q�t� e�1g such that y(t�fit�) =1.Proof of the claim: We have shown that the disjoint intervals Tm�1; Tm�2; : : : ; T1 are oflength t�, except possibly for T1.The periods in T0 are also equally spaced at intervals t� between t� ( q�t� � 1)t� and t�. Tn�1either contains t� ( q�t� � 1)t� or lies in [t� d q�t� e � 1)t� + 1; t].Tm�2; : : : ; T2 lie in [t� (d q�t� e � 1)T �; t].T1 either contains t, or is of length t� and lies in [t� d q�t� e � 1)t�; t].Thus, there exists fi such that t� fit� 2 Ti .Now, by Observation 6, less than � units of labour are available in t � fit� and thusy(t� fit�) = 1.Finally, the right-hand side1 + (d q�t� e�1)Xr=0 y(t� rt�) � 1 + m�1)Xi=1 y(t� fit�) � m;and the inequality is valid. 23.2 Surrogate InequalitiesTo �nd inequalities maximising the number of jobs started in the �rst � periods, it su�cesto solve 
� = maxfXj2NXt�� xjt : (x; s) 2 Sxg:11



An upper bound �
� can be obtained by partially dropping the integrality constraints on thevariables xjt, for example for t > � . The result is a valid inequalityXj2NXt�� xjt � �
� :For values of � � 20, �
� is obtained rapidly, and the resulting inequality has some e�ect intightening the formulation.A similar idea is to examine the maximum amount of labour used, or the number of jobsactive in any interval of � periods.4 Computational Results with a Standard MIP SystemAs indicated in the Introduction, it has been observed that for tightly constrained instanceswhere the makespan exceeds the longest path bound �PB,1. typically �LP = �PB for all the formulations weak or strong presented in Section 22. using a commercial MIP system with standard dichotomous branching on variablesxit; Xit; zit or Zit, the best lower bound hardly moves during thousands or tens ofthousands of nodes.3. MIP fails to �nd feasible solutions unless the horizon T is signi�cantly greater thanthe makespan.4. at least three heuristic approaches have been developed(a) constraint logic programming [7](b) tabu search [2](c) Order Heuristics based on i) using the LP solution to obtain an ordering ofthe jobs ii) use the ordering to construct a feasible solution iii) iterate using anexchange heuristic on the ordering iv) insert into a specialised Branch and Boundroutine in which the heuristic is called at each node and specialised branchingchoices are implemented [10].All three heuristics appear to perform well in that each of them �nds an optimalsolution of instance b24 presented below.5. Earlier work with an integer programing approach has shown that the knapsack ine-qualities of Proposition 10 can be added easily to the model, but have little immediatee�ect on the lower bounds. For instance b24, the inequalities of Propositions 7 and11 are applicable. Combined with the block formulation and strong precedence cons-traints, the initial lower bound is raised from 59 to 65, and optimality has been provenfor this instance [13].Below we present our recent results obtained with an MIP system (XPRESS) running on aPC (Pentium, 166 MHz) workstation. First we attempt to tackle the problem directly.12



4.1 Direct MIP ApproachThe direct approach is to solve the MIP for a certain time of number of nodes, and thenexamine the quality of the best lower and upper bounds obtained. In Tables 1 and 2 weshow results obtained using the weak and strong precedence formulations. For each instancePB denotes the longest path lower bound, T the time horizon chosen for the instance, m;nthe number of rows and columns, LP the linear programming bound, LB and UB thelower and upper bounds on termination, and secs the time spent in branch and bound. Forthe weak formulation (Table 1), the number of nodes was set to 10000, and for the strongformulation (Table 2) to 5000. The formulations are the basic x formulation with just the apriori addition of simple knapsack cuts from Proposition 10 with r = 1, except for instanceb21m where some inequalities with r = 2 have also been added.Instance PB T m n LP LB UB secsb21 39 50 221 410 39.4 44.0 - 1104b24 59 70 211 497 59.0 59.1 - 2029b27 54 70 228 637 54.1 56.0 - 2522b27m12 54 61 210 385 54.0 55.0 - 1389Table 1: MIP Results: Weak Precedence Formulation- 10000 nodesInstance PB T m n LP LB UB secsb21 39 50 615 410 39.6 43.3 48 1834b24 59 70 624 497 59.0 59.5 - 1993b27 54 70 878 637 54.2 55.2 - 13775�b27m12 54 61 536 385 54.0 54.7 - 2498� stopped after 3000 nodesTable 2: MIP Results: Strong Precedence Formulation - 5000 nodes4.2 MIP Heuristics providing Lower and Upper BoundsHere we describe our e�orts to develop MIP based heuristics that provide nontrivial lowerand upper bounds in a reasonable time. Throughout we use the basic job x-formulation.On certain instances, improvements can be obtained by switching to the block formulation.The Modi�ed Objective HeuristicThe heuristic given below is based on the x-formulation with weak precedence constraints(5) as described in Section 2.1. The objective function is modi�ed so that � equals tomaxPt t2 xjt, or max =minPj sj =Pt t xjt.13



Heuristic:Step 0: Choose an initial time horizon T .Step 1: Solve the resulting IP.Step 2: If IP is infeasible increase T to T + 1, and return to Step 1.Otherwise stop the solution of IP when a feasible solution is found. If � is themakespan of this feasible solution, decrease T below �, and return to 3 Step 1.As motivation for this heuristic, we have(i) the LP is solved much quicker with the weak formulation, so the LP should onlybe tightened with strong valid inequalities that signi�cantly a�ect the bounds or therunning time(ii) the LP solves much quicker with the modi�ed objective than with the makespanobjective.One possible reason for (ii) is that the LP with the makespan objective is highly degenerate,and the objective function is 
at. The LP bound does not change from one node to the next,and as a result no intelligent branching choices are made. With the modi�ed objective, theLP bound decreases from node to node, and so branching decision remain coherent fromone branch to the next.The behaviour of the heuristic on 4 instances is shown in Table 3.The Relax and Fix heuristicConsider a partition (T1; T2; : : : ; Tr) of the interval [1; T ], or a partition (N1; N2; : : : ; Nr) ofthe job set N . Let (x1; : : : ; xr) be a corresponding partition of the variables x.Relax and Fix heuristic:Step i: Solve (MIP i) given by�i = min(st(n) : (x; st) 2 P; xj = xj(i) j = 1; : : : ; i� 1; xi 2 Z+)with optimal solution x(i).If x(r) is a feasible solution of MIP r, � � �r. As MIP 1 is a relaxation, � � �1.Clearly the di�culty in solving each problemMIP i depends on the size of the intervals T i orN i. In Table 4 we show the results obtained with r = 3 using equally spaced time intervals.Problem MIP 1 was run to optimality, while problems MIP 2 and MIP 3 were limited to 15minutes in the branch-and-bound phase. The heuristic was programmed using EMOSL [5],a combined modelling and optimisation language, designed to facilitate the development ofnew algorithmic approaches. In the Table we give the lower bound LB provided by the �rstproblem MIP 1, and the upper bound UB provided by the last problem MIP 3. T denotesthe time horizon used for the instance. The weak formulation was used.The test instances we have used are available in [3].14



Instance T � secs nodesb21 47 47 32 489b21 46 Infeasible 320 6373b24 73 73 63 188b24 70 70 340 958b24 62 Infeasible 534 1837b24 60 Infeasible 4 17b27 73 72 25 40b27 71 70 25 44b27 68 68 7520 10271b27 62 Infeasible 738 961b27m12 68 67 24 460b27m12 66 66 21 476b27m12 64 64 19 439b27m12 61 61 142 4681b27m12 59 59 6468 208734b27m12 57 Infeasible 3338 112105b27m12 56 Infeasible 221 9231Table 3: Modi�ed Objective Heuristic
Instance LB UB Tb21 39.6 47 50b24 61.0 73 75b27 60.0 74 74b27m12 55 60 64Table 4: Relax and Fix Heuristic15



5 Further WorkFrom the above results, the large number of variables and constraints in the LPs and the verylong solution times for these LPs, especially with the makespan objective, it is very clear thatto provide good lower bounds a dedicated branch-and-bound approach is necessary. Such asystem would need to eliminate all super
uous variables (i.e. when a new feasible solution isfound of value �, or branching occurs) all variables xjt with t > � should be eliminated, andthe earliest and latest start times e(j) and f(j) updated. In addition branching on variablesxjt is clearly unsatisfactory. GUB branching is one possibility, but initial experiments werenot convincing. The use of logical implications together with branching may be helpful,and higher priorities for branching on variables on the critical path may also be important.It is also clear that heuristic solutions should be incorporated to branch-and-bound pro-cedures. LP orders like those described in [6] should be used as primal heuristic solutionsduring the execution of the algorithm. Moreover, these orders could also be used as initialsolutions for tabu search heuristics ([2]) which could produce tighter upper bounds.We are also implementing a modi�ed tree enumeration procedure without bounding whichwill allow us to complete the modi�ed objective heuristic in a single pass.AcknowledgementsThe authors are very grateful to Cristina Cavalcante for pointing out to some mistakes onearlier versions of this paper and also for the help in putting the text in its �nal form.
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