O contelido do presente relatério é de (nica responsabilidade do(s) autor(es).
The contents of this report are the sole responsibility of the author(s).

Code Generation for Dual-Load-Execute
Architectures

Guido Araujo and Sharad Malik
Relatério Técnico IC-97-21

Novembro de 1997

Code Generation for Dual-Load-Execute Architectures

Guido Araujo and Sharad Malik

November 4, 1997

Abstract

This paper studies the problem of register allocation and scheduling for Dual-Load-
Frecute (DLE) architectures. These are architectures which can execute an ALU in-
struction and two memory transfer operations (load/store) in a single instruction cycle.
DLE architectures are extensively used in the design of Digital Signal Processors (DSPs)
like the Motorola 56000, Analog Devices ADSP-2100, and NEC pPD77016. This work
proves the existence of an efficient O(n) expression tree code generation algorithm for
DLE architectures which have homogeneous register sets. The algorithm is an exten-
sion of the Sethi-Ullman algorithm, and produces guaranteed optimal code for a large
number of expression trees in the program. The experimental results, using the NEC

pPD77016 as the target processor, show the efficacy of the approach.

1 Introduction

Digital Signal Processors (DSPs) are receiving increased attention recently due to their role
in the design of modern embedded systems like video cards, cellular telephones and other
multimedia and communication devices. DSPs are largely used in systems where general-
purpose architectures are not capable of meeting domain specific constraints. In the case
of portable devices, for example, the power consumption and cost may make the usage
of general-purpose processors prohibitive. Unfortunately, code generation for DSPs is a
much harder problem then generating code for general-purpose processors. This research
is part of a project directed towards developing compilation techniques that are capable of
producing quality code for such processors. The implementation of these techniques forms
the compiling infrastructure used in this work.

There is a large body of work done in code generation for general-purpose processors.
Code generation is, in general, a hard problem. Instruction selection for expressions sub-
sumes Directed Acyclic Graph (DAG) covering, which is an NP-complete problem [1]. Sethi
et al. [2, 3] showed that the problem of optimal code generation for DAGs is NP-complete
even for a single register machine. It remains NP-complete for expressions in which no
shared term is a subexpression of any other shared term [4]. Code generation for expression
trees has a number of O(n) solutions, where n is the number of nodes in the tree. These
algorithms offer solutions for the case of stack machines [5], register machines [6, 7, 8] and
machines with specialized instructions [9]. They form the basis of code generation for single
issue, in order execution, general-purpose architectures.

The problem of generating code for DSPs and embedded processors has not received
much attention though. This was probably due to the small size of the programs running
on these architectures, which enabled assembly programming. With the increasing com-
plexity of embedded systems, programming such systems without the support of high-level
languages has become impractical. Many of the problems associated with code generation
for DSPs were first brought to light by Lee in [10, 11], a comprehensive analysis of the archi-
tectural features of these processors. Code generation for DSP processors has been studied

in the past, but only more recently a number of interesting projects have tackled some of

its important problems. Marwedel et al. [12] proposed a tree-based mapping technique
for compiling algorithms into microcode architectures. Paulin et al. [13] uses a tree-based
approach for algorithm matching and instruction selection, where registers are organized in
classes and register allocation is based on a left-first algorithm. Datapath routing techniques
have also been proposed [14] to perform efficient register allocation. Wess [15] proposed the
usage of Normal Form Schedule for DSP architectures, and offered a combined approach for
register allocation and instruction selection using the concept of trellis diagrams [16]. An
overview of the current research work on code generation for DSP processors, and embedded
processors in general, can be found in [17].

The high performance requirement of DSP applications lead designers to make extensive
use of parallelism in the design of DSP datapaths. A very common technique, employed in
a number of processors [18, 19, 20], is to fetch the operands of the next instruction during
the execution of the current one. The idea here is to hide the latency of the memory access
by transferring the data from/to memory during the time when an instruction performs
a computation. The immediate consequence of that is an increase in the memory band-
width requirement. In order to meet this requirement, DSPs use memory banks, which

can be accessed in parallel. Although multi-ported memories!

are another way to achieve
the required bandwidth, they are usually not considered a design option because of their
large silicon area requirements. When memory banks are used, a dual-bank organization
is preferred, given that the majority of the instructions in a DSP application are binary
instructions. This architectural style allows the design of processors which can perform
an ALU operation together with two load (store) transfer operations from (into) memory.
Because of this feature these processors will be referred to as Dual-Load-FEzecute (DLE) ar-
chitectures in the sequel. This paper proposes an optimal O(n) code generation algorithm
for expression trees for a class of DLE architectures which have homogeneous register sets.
The NEC pPD77016 processor is a typical architecture of this class, and will be considered

the target machine during this work.

This paper is divided as follows. Sec. 2 describes the architectural model used to

! A multi-ported memory is a memory which allows more than one load/store operation to occur at the
same time.

represent the processor datapath. Sec. 3 gives an instance of the problem and discusses
its formulation. Sec. 4 states the basic concepts required for the rest of the paper. Sec.
5 proposes an algorithm for the expression tree code generation problem. Finally, Sec. 7

describes the experiments designed to show the efficacy of the algorithm.

2 Architectural Model

A key aspect in the design of a DSP architecture is how instructions in the processor
Instruction Set Architecture (ISA) make use of its datapath structures. A careful analysis
of the various types of DSP datapaths reveals a large variation of styles. The Register
Transfer Graph (RTG) model of a processor seeks to address this variety [21]. The RTG
representation of a processor exposes the storage locations in the processor datapath, and
captures how the instructions in the processor ISA use the transfer paths defined between
these locations to perform the required computation. The RTG is a directed labeled graph
where each node n; represents a register class in the processor and the edges are transfer
paths defined by the ISA. Each edge (n1,n2) in the RTG is labeled with those instructions
in the ISA which take operands from register class ny and store the result into register class
no. The nodes in the RTG represent two types of storage: single-register and multiple-
register. Multiple-register nodes are associated with a register class that can store multiple
operands. A single-register node (or simply register) is a register class of unitary capacity.
In the RTG, multiple-register nodes are distinguished from single-register nodes by means
of a double circle. Memory is assumed to be an infinitely large storage resource, and is not
represented in the RTG for simplicity. An arrowhead is used to indicate when a transfer path
exist between an RTG node and memory. The direction of the arrow shows the direction
of the transfer operation. An incoming (outgoing) arrow is associated with a load (store)
operation.

Datapaths of three commercial DSPs have been modeled using the RTG representation.
Table 1 (a - ¢) shows the datapath of the processor together with its RT'G representation and
a typical instruction. For the sake of simplicity, the instructions of the three processors are
described using the same syntax. In this syntax, a bar is present between two operations

that execute during the same instruction cycle. The TMS320C25 processor is shown in

Table 1(a). The fact that one operand is stored in memory is a major drawback in the
performance of this processor. In this processor, the latency of any instruction is the sum of
the memory access time plus the latency of the functional unit. This has a significant impact
on the cycle time of the processor, given that memory latency has become increasingly large.
The impact is reduced because memory in DSPs are static on-chip RAMs, which have faster
access times when compared with their dynamic versions. Unfortunately this is not enough
to compensate for the increasing gap between memory and register access times. The
solution for that is the use of register-register instructions. This is the case of the NEC
pPD77016 processor in Table 1(b). The uPD77016 has a single register file and can perform
two accesses to memory together with an ALU operation. Therefore, the NEC pPD77016
is a DLE architecture. The NEC pPD77016 has one multi-ported register file (R) and a
memory system based on two memory banks, MX and MY. This combination allows for
three accesses to registers in R to occur in a single machine cycle (e.g. MAC instruction).
A typical binary instruction in this architecture reads two registers Ry and Rj, and stores
the resulting computation into Rs. After that registers Ry and Ry load the operands for
the next instruction from banks MX and MY. The main drawback of this architecture is
the use of a multi-ported register file. Multi-ported register files are expensive in terms of
silicon area and design effort, both of which impact the final cost of the device. Observe that
instructions from this processor do not restrict the registers they use, hence the register set
is homogeneous, and we say that the NEC uPD77016 is a homogeneous DLE architecture.

Another variation of a DLE design is shown in Table 1(c). The idea now is to eliminate
the costly multi-ported register file, while maintaining the Dual-Load-Execute property.
In this case two registers files (RX and RY) are used to perform the dual-load operation.
The result of an instruction is always stored in the accumulator register file A. A typical
instruction in this architecture performs its operation using a register from A and the
current contents of a register from RX and/or RY. After that registers in RX and RY can
be loaded with the operands for the next instruction. Since registers in RX and RY are
separated from A, no multi-ported register file is required, which results in a reduction of
the total silicon area used by the processor. This was the approach adopted in the design

of the Motorola 56000 processor [18].

MEM BUS

MEM BUS

ADD M,
(b)
MX MY
<k
2 &
v
T 1
y y
ADD Ry, Rs,Rs | LD Ru,MXy | LD Rs, MY,
(c)

MY

a3

ADD Ay, RX; | LD RXo,MX, | LD RYy, MY,

0

Table 1: Architectural model and typical instructions for three commercial DSPs: (a) TI

TMS320C50; (b) NEC pPD77016; (¢) Motorola 56000.

The trade-off between architecture and code generation algorithms for DSPs becomes
clear when one analyzes the algorithms required to generate code for each architecture in
Table 1. A cycle in the RTG is a path starting and finishing at some node n;, which
traverses at least another distinct RTG node. Hence a self-loop is not an RTG cycle. It
has been shown [21] that an optimal O(n) expression tree code generation algorithm exists
for acyclic RT'Gs like the one described in Table 1(a). Unfortunately the problem for cyclic
RTG architectures, like the one in Table 1(c), seems to be NP-hard. Observe that the DLE
architecture of Table 1(b) has no RT'G cycles, hence it must admit an efficient algorithm.

The goal of this paper is to find this algorithm.

3 Problem Formulation

Consider a homogeneous DLE architecture like the one described in Table 1(b). Fig. 1(b)
shows the best code generated for the expression tree T of Fig. 1(a) on this architecture.
The code in Fig. 1(b) uses memory positions my —mg as operands to evaluate T'. The result

of the expression is stored into m7. As mentioned before DLE instructions are formed by

| LD R1,ml | LD R2, m2

MUL R1,R1,R2 | LD R2,m3 | LD R3,m4 |1,
ADD R2, R2, R3 | [I

SUB R1,R1,R2 | LD R2,m5 | LD R3,m6 ||

MUL R2,R2, R3 | | I
ADD R1,R2,R2 | | lg
| ST R1, m7 | I,

(@) (b)

Figure 1: (a) Expression tree T storing into mr7; (b) DLE code corresponding to 7

compacting an ALU operation, and two load/store operations into a single instruction. In
order to improve register utilization, it is desirable that the same registers which are used
as operands by the current ALU operation could also load the operands of the next ALU

operation, after the former is finished. To achieve this goal, DLE architectures are designed

such that registers are read in the beginning of the instruction cycle and written at the end
of the cycle. This allows a register to provide an operand to the ALU at the beginning of
the cycle, and be updated at the end of the same cycle. It also allows a result register to
be stored into memory at the beginning of the cycle, and be updated with a new result
at the end of the same instruction cycle. For example, instruction Iy of Fig. 1(b) loads
registers Ry and Rs (operands of [3) only after the multiplication in I3 is performed. On
the other hand, the store operation required to move R; into my; (instruction I7) cannot
execute during instruction Ig, since the new value of Ry is only available at the end of Ig.
In this case, a separate instruction is required (/7), to hold the store operation. Had the
store operation been compacted into Ig the value stored into m7 would be the old value of
register Ry.

The problem this paper addresses is: Given an expression tree T (e.g. Fig. 1(a))
determine the code that computes 7T’ in the minimum number of cycles and using the least
number of registers. Notice that a DLE architecture enables any program for an expression
tree to execute in p + 2 cycles, where p is the number of ALU operations in 72. This is
possible because all load operations for the operands of an ALU instruction, but the first one,
can be compacted into some previous ALU instruction. Furthermore, this is a consequence
of the fact that a DLE instruction enables two operands to be loaded at the same time, and
that the expression trees are binary. In addition to p cycles, one extra instruction cycle is
required to load the operands of the first instruction. In the case of Fig. 1(b), for example,
I loads the operands for I5. Yet another cycle is needed to store the result of the operation
at the root of the tree. Instruction I7 in Fig. 1 is used for that.

Observe that the optimal code from Fig. 1(b) can only be achieved iff the number of
registers required by the expression tree is minimized. If care is not taken to minimize the
number of registers, then the resulting program could require a memory spill, increasing
its execution time. Memory spill is the situation when there are not enough registers to
execute some operation in T'. As a consequence two memory operations have to be issued.
A store operation, to save the contents of a register, and a load operation to reload this

register later. Meanwhile, the vacant register can be used as the destination of the current

2 Assume, without loss of generality, that each instruction takes one machine cycle

operation.

For the sake of simplicity assume that no Global Register Allocation (GRA) is performed.
This assumption is not restrictive, since the goal here is to generate code for basic blocks,
and thus to minimize the number of registers allocated for temporaries. When GRA is used
the problem is exactly the same, with a smaller number of registers available for temporaries.
This is similar to the situation found when GRA is performed during code generation for

general-purpose processors [22].

4 The Basics

Before proceeding further we need to define concepts and terms that will be used throughout

this paper.
4.1 The Sethi-Ullman Algorithm

Let T be a binary expression tree in a homogeneous general-purpose architecture. Optimal
code for T' can be generated in O(n) by means of the Sethi-Ullman algorithm [6]. The ideas
proposed by this paper are built upon this algorithm. The Sethi-Ullman algorithm is based
on a labeling procedure which assigns a label to each node u in T. This label is known as the
Sethi-Ullman Number of the node, or SUN(u), and corresponds to the minimum number
of registers required to evaluate the subtree rooted at w. The SUN(u) can be computed
recursively using a bottom-up post-order traversal of the tree rooted in u. At each node u
with children u; (root of subtree T7) and ug (root of subtree T5) compute:

maz(SUN(uy), SUN(uz)) tf SUN(uy)# SUN(ug), (Fq.1)

SUN(u) =

SUN(uqp) +1 if SUN(uy)=SUN(uz). (Fq.2)
The labeling procedure minimizes the number of registers required to compute the subtree
rooted in w. This is done by giving priority to schedule first the subtree of u which uses
more registers. There are two cases to consider here. The first case (Eq. 1) occurs when
one of the subtrees (e.g. T1) uses more registers than the other (e.g. T%). In this case, T}
should be scheduled first followed by T5. SU N (uy) registers are used during the scheduling

of Ty. After Ty is scheduled, only one register is live to hold the result of operation u;.

Therefore, during the scheduling of T at most SUN (ug)+1 < SUN (uy) registers are used.
Hence, the minimum number of registers required to schedule the tree at u is the maximum
number of registers used by its subtrees. Now consider the case (Eq. 2) when the same
number of registers is needed by 77 and T5. In this case, no matter the subtree scheduled
first, the total number of registers required is one plus the number of registers used by
the subtrees. The Sethi-Ullman algorithm evaluates an expression tree contiguously, i.e.
the operations in subtree 17 (T3) are scheduled only after all operations in subtree T4 (17)
have been scheduled. Because of that we say that the Sethi-Ullman algorithm satisfies the
Contiguous Fvaluation Property [6].

4.2 Basic Definitions

Definition 1 Let T be a binary expression tree and P a program that evaluates T'. Register
R is said to be a load-register, at some point of the execution of P, iff the last operation to

modify R was a load operation.

Example 1 Consider, for example, the expression tree of Fig. 1(a) and its corresponding
code in Fig. 1(b). Notice that during the execution of instruction I3 only registers Ry and
Rs3 have been recently modified by load operations. Register Ry, on the other hand, was last
updated by the MU L operation. Therefore only R; and R3 can be considered load-registers
at that point of the program execution.

Without loss of generality, assume that operations and nodes in T form a one-to-one
relation, i.e. there exist a function op which maps a node u; € T into its corresponding

operation o;, i.e. 0; = op(u;). Operation o; is an ALU operation or a load/store operation.

Definition 2 A DLE instruction generated from an expression tree T, is a tuple I =
(01, 02,03), where o1 is an ALU operation, oy and o3 are load/store operations, or o; = ¢
(empty), i = 1,2,3. An empty operation is an operation which performs no task. An empty

operation o; is used to represent those cases where no operation can be compacted into field

v of 1.

Definition 3 A partial DLE instruction I' is a DLE instruction for which at least one of

the operations o;,1 = 1,2,3 have not been defined yet. In this case the underline symbol

10

(7_7) is used in the undefined field i of I'.

Partial DLE instructions are uncompacted DLE instructions. For example I}, = ("MUL
R1, R2, R3’,_, _) is the partial version of instruction I in Fig. 1(b), for which the load
operations ‘LD R2, m3’ and LD R3, m4’ have not been compacted yet. We say that a (partial)
DLE instruction is an ALU instruction if it contains an ALU operation, and a load/store

instruction otherwise.

5 Problem Solution

The goal of this section is to show that given an expression tree, in an homogeneous DLE
architecture, it is possible to generate optimal code for it in O(n), where n is the number

of nodes in T.

Lemma 1 LetT be a binary expression tree, and P the program which evaluates T obtained
after applying the Sethi-Ullman algorithm to schedule T'. At most two load-registers are live

at any time during the evecution of P.

Proof. Let h be the height of expression tree T'. Let Ty (1%) be a subtree of T, and
hi (hg) its corresponding height. Assume, for the sake of clarity, that Ty (T3) is the left
(right) subtree of T, rooted at uy (u2). Let R(u;) = r; be a function which maps node
u; € T to the register used to store the result of op(u;). Let [y, [and [be the number of
simultaneously live load-registers respectively used during the computation of 77, Ty and
T. We want to show that [< 2 for any expression tree T', provided that code is scheduled
using the Sethi-Ullman algorithm.

Basis. First, let us prove that [< 2 is true for 0 < A < 1. In this situation two cases have

to be considered, corresponding to trees of height zero and one.

(a) A tree T of height zero corresponds to a single leaf node, which is mapped to a load

operation. Hence [= 1 < 2.

(a) Consider a binary tree T" which is a single binary operation. In this case at most

two load-registers R(u;) = rq and R(ug) = 7y can be live at the same time. Hence

11

[=2 < 2. If the tree is formed by an unary operation then only one load-register is

used and therefore { =1 < 2.

A

Figure 2: (a) hy = h — 1 and/or hg = h —1,hy > 0,hy > 0; (b) hy = 0 and hy = h — 1; (¢)
hlzh—landhgzo.

Induction. Let SUN(u;) be the Sethi-Ullman Number of node u;. By definition [6]

SUN (u;) is the number of registers required to compute the subtree rooted at u;. Consider

Ty and T3 to be subtrees of 7" and hy (hg) the height of Ty (T3). Let the basis argument be

true for all trees with height h — 1. It is to be shown that this is also true for all trees of

height h. Consider now three cases:

(a)

This is the case when hy = h — 1 and/or hy = h — 1, and hy > 0,hy > 0. From
the induction hypothesis we know that [; < 2 and [, < 2. Therefore, at most two
load-registers become live at the same time during the execution of the instructions
in Ty or Ty. The Contiguous Fvaluation Property of the Sethi-Ullman algorithm [6]
guarantees that operations in subtree Ty (71%) (Fig. 2(a)) are only scheduled after
all operations in subtree Ty (7%). Given that uy (ug) is not a leaf node, then after
instructions in 77 (73) are finished, no load-register is live. Therefore at most two

load-registers will be used during the computation of T', and thus [< 2.

In this case (Fig. 2(b)) hy = h — 1 and hy = 0 (i.e. subtree 75 is composed of a single
leaf node). As before, 77 uses at most two simultaneously live load-registers (I3 < 2)
and SUN(uq1) > 1. On the other hand T uses just one register,i.e. SUN (uz) = 1 and
lo = 1. Hence SUN(uy) > SUN (uz), and according to the Sethi-Ullman algorithm
[6] subtree T} is scheduled first followed by T,. Given that [; < 2 and no load-register

is live after all operations in 7} are completed, then [= [; < 2.

12

(c) This case (Fig. 2(c)) is the symmetric of case (b). Since SUN (uz) > SUN (uq), then
T; is scheduled before T7 [6] . Similarly as before, no load-register is live after the

operations in Ty are executed. Given that [, < 2, then [=1, < 2.

Corollary 1 Program P’, as defined in Lemma 1, has no more than two load instructions
in between a pair of consecutive ALU instructions I and I]‘. Moreover each load instruction

s used to load an operand of I]‘.

Proof. Assume that the first assertion is not true. Let I and I be a pair of consecutive
ALU instructions such that there exist more than two load instructions in between them. In
this case more than two load-registers are live at the same time in P/, what is a contradiction
of Lemma 1. Now assume that there exist an instruction I}, which follows I]‘ in P, such
that one of the load instructions in between I/ and [} loads an operand for it. This is
only possible if the Sethi-Ullman algorithm generates code first for a leaf-node u (i.e. load
instruction), and then generates code for an inner-node (i.e. ALU instruction), which is not
the parent of u. Given that the Sethi-Ullman algorithm satisfies the Contiguous Evaluation
Property (Sec. 4.1), then this is only possible in cases (b) or (¢) of Lemma 1. But in case
(b) ((c)) code is generated first for the inner-node u; (u3) and then for the leaf-node uy
(u1). Therefore no such instruction [} exist.]

Now consider the following algorithm to generate code for an expression tree T. This
algorithm is an extension of the Sethi-Ullman algorithm [6] for the case of homogeneous

DLE architectures.

Algorithm 1 [Sethi-Ullman DLE]
Let T be an expression tree containing n nodes. The optimal program P which evaluates T

in a homogeneous DLE architecture can be determined as follows:

1) Use the Sethi-Ullman algorithm to generate the optimal sequential program P’ =
L, 0, ..., I, which evaluates T. FEach instruction I/,1 < i < n is a partial DLE

instruction, which contains a single operation o; = op(u;),u; € T'.

13

2) Let I} be the first ALU instruction scheduled in program P'. Consider now two cases.
First, consider the set of all ALU instructions in P’ but Iy, i.e. the set {I,j # f}.
Compact the load instructions between I and ALU instruction I} into I, where i =

max

~~

k), f <k <j—1. In other words, compact the load instructions for the operands
of I} into the first ALU instruction Ij that can be found by traversing P’ backwards

from I} to I}. Finally, compact the load operations for the operands of I into I7.

LD R1, ml I'

LD R2, m2 I'

MUL R1, R1, R2 I

ADD R2, R2, R3 I's [[Lb R, m1]j[LD R2, m2] 1,
SUB RL,RL, R2 r MUL R1,R1,R2 [[LD R2, m3 ||[LD R3, m4] I,
'y ADD R2, R2,R3 | | I
'y SUB R1,R1,R2 |[LD R2, m5 ||[LD R3,m6] I,
MUL R2, R2, R3 1o MUL R2,R2,R3 | | ls
ADD R1, R2, R2 I ADD R1,R2,R2 | | lg
ST R1,m7 (I |ST RL,m7 | I,

@ (b)

Figure 3: (a

S~—r

Code after step 1 of SU-DLE; (b) Code after step 2 of SU-DLE.

Example 2 Consider, for example, applying the Sethi-Ullman DLE (SU-DLFE) algorithm
to the expression tree in Fig. 1(a). The code resulting after the execution of step 1 is

shown in Fig. 3(a). Notice that there exist at most two load instructions in between two

~—r

consecutive ALU instructions and that these instructions load the operands for the following
ALU instruction. For example, instructions I and If load the operands for instruction 1.
The first ALU instruction in the program is I35 (i.e. I; = I%). All load instructions from
I} to Ij, are compacted into some ALU instruction (74 and I%), and the load instructions
for I§ (i.e. I and I}) are compacted into I{. Fig. 3(b) shows the resulting code after the
compaction step 2 is performed. The compacted load operations are highlighted is boxes.

The final code executes in 7 (i.e. p+ 2) steps, and uses 3 registers.

14

Remark 1 For the sake of simplicity we have assumed that the architecture can reutilize a
source register as the destination register for the operation result. This might not always be
true for some architecture. In this case, it is enough to modify the Sethi-Ullman algorithm

such as to increase by one the number of registers required at each subtree.

Theorem 1 Algorithm SU-DLFE generates an optimal program which evaluates T using the

least number of registers.

Proof. From step 1 of the SU-DLE algorithm P’ is the optimal sequential program
which evaluates 7. If each ALU operation executes in one cycle, then P’ takes n cycles
to execute and uses SUN(root(T')) registers, where root(1’) is the root node of 7. Now
consider step 2 of the SU-DLE algorithm. Two situations have to be analyzed here. First,
consider the case of ALU instructions I]‘,j # f. If the ALU operation in I]‘ is an unary
(binary) operation then the instructions that load its operand(s) can always be compacted
into some previous ALU instruction I]. The existence of I] is guaranteed from Corollary
1, since at most two load instructions can exist between instructions I and I]‘, and these
are the instructions that load the operands of I]‘. Therefore all load instructions in P’ from
instruction I} to instruction I/ can be compacted into some ALU instruction by traversing
P’ bottom-up. The just compacted sequence of ALU instructions has length p, where p
is the number of non-leaf nodes (i.e. ALU operations) inside 7. Now consider the case of
instruction Ij’c. The operands of I} can be loaded simultaneously in the beginning of P’,
but cannot be compacted into another ALU instruction. Hence one cycle is needed to load
the operands of Ij’c. Assume above that the allocation of memory variables to the memory
banks is such that it permits the parallel access of the compacted load operations. Now
observe that instruction I/ uses one cycle to store the result of the operation in root(7') into
memory. Therefore, the final program which evaluates T is a sequence of DLE instructions
P =1,I...0,41,1,42 of length p + 2. Assuming that each ALU operation takes one
cycle to execute, then P execution time is p + 2 cycles. As discussed before, this is the
minimum number of cycles required by any program to evaluate T in an homogeneous DLE
architecture. The compaction of the load operations does not change the liveness of the

registers in P'. Between two ALU instructions I] and I in the uncompacted program P’

15

there are two live load-registers which load the operands of I]‘. The compaction step does
not change the liveness of these or other registers. Therefore, the minimum number of
registers needed to evaluate T', using the compacted code P, is the same as the minimum

number of registers needed by the uncompacted code P’,i.e SUN (root(T)) registers. O
Theorem 2 Algorithm SU-DLE is O(n), where n is the number of nodes in T.

Proof. It takes O(n) steps to schedule operations u; from 7" using the Sethi-Ullman
algorithm. It takes at most two steps to compact two load operations for each one of the
p,p < n, ALU instructions of P. Thus the execution time of SU-DLE can be bounded by
O(n)+2x O(p) = O(n). O

. .

. .
.
0. .

(@) (b)

Figure 4: (a) Expression tree T uses more registers than available; (b) The result of
operation uq is restored from memory position m;.

6 Dealing with Spilling

This section studies the situation when a memory spill is required during the evaluation
of T'. Let |R| be the number of registers available in the architecture and 7" an expression
tree. Assume that the evaluation of subtree T5 = 77 (JT5 from Fig. 4(a) needs more than
the number of registers available in the architecture, i.e. SUN(u3z) > |R|. According to
the Sethi-Ullman algorithm this can only occur when SUN (u1) = SUN(ug) = |R|. In this

case, code is first generated for one of the subtrees of T5. Let 77 be the chosen subtree. The

16

result of the operation at w4 is stored into some memory position, e.g. mq, and sub-tree Ty
is substituted by a leaf-node m;. Code is then generated for the remaining subtree shown
in Fig. 4(b). In general subtrees of 1" rooted in u, for which SUN (u) = |R|, are scheduled
first, followed by the schedule of the remaining operations of T'. Let P, (Pj) be the program
which evaluates 77 (7%), such that Py is scheduled just after Py in program order. Fig. 5
shows this situation. We want to study the possibility of compacting instructions from Py
and Py, such as to minimize the overhead due to the uncompacted load (store) instructions
at the beginning (end) of these programs. This problem occurs not only when 77 and T} are
subtrees of the same tree, as in the case of spilling, but also when they are unrelated trees
which have been scheduled consecutively during the generation of code for a basic block.
Notice that one can always compact the load operation(s) from the first instruction of
Py, i.e. Is, into the last ALU instruction of Py, i.e. I1. By doing so, all the load instructions
in a basic block, but the first instruction, can be compacted into some ALU instruction.

Another improvement that can be achieved here is related with the compaction of the last

apD RLR2R3 [=— [=—]| 1 ADD R1,R2,R3 | I N

[sT R, mal] R |ST RL, my | L

[LD R2, m2 ||[LD R3,m3 ||| 15 Lo R2, m2 |j[LD R3, m3 || I
MUL R1,R2,R3|LD R2,m2 | l, MUL R1,R2,R3|LD R2,m2 | LD R3,m3 |l
Py Py

(@) (b)

Figure 5: (a) Load and store operations are completely compacted; (b) Only load operations
are compacted.

instruction in program P;. The last instruction of Py, i.e. I3, stores into memory position

my the value computed by instruction I;. From the definition of a DLE architecture,

17

an instruction cannot store the result of its ALU operation into a register and save the
contents of this register into memory during the same instruction cycle. Thus I, cannot
be compacted into I;. We have to consider two cases here. First, assume that the second
instruction from P has only one of its fields compacted. Therefore the store operation in
I can be compacted into I4 as in Fig. 5(b). This is only possible if the architecture has at
least three registers. The reason for that has to do with the fact that if I is compacted then
three registers will be live just before the execution of I3 (Ry, Rz, and Rs). In this case,
the store operation cannot use any of the registers required by the load operations in I5.
Compacting I into I, does not affect the order in which register Ry is accessed by Iy and
I;. In a DLE architecture the compacted store operation is executed before the execution of
the ALU operation in the instruction. Hence, if I3 is compacted into I, register Ry is saved
before it receives the result of the MU L operation. Now consider the case when both fields
of Iy are occupied (Fig. 5(b)). In this case the store operation cannot be compacted. An
interesting question is if the store operation can be compacted into some other instruction
I; (¢ > 4), which follows I, without increasing the number of registers needed to compute
the code. Apparently, there is no way to find this instruction in polynomial time, since
this would imply in evaluating all possible schedules of T, including all non-contiguous
schedules. Therefore, the optimality of algorithm SU-DLE cannot be guaranteed for this
case. Nevertheless, the argument above does not preclude the possibility that some useful
instruction could be found using a fast linear search of the generated code.

Since a large number of expression trees in DSP applications have few nodes [23], it is
expected that the number of non-spilling expression trees that result in optimal code will
be high. On the other hand, if the number of nodes in an expression tree is small, one could
think that the registers in the processor might be enough for the evaluation of the majority
of trees, no matter the schedule algorithm used for that. This is an incorrect conclusion
though. The number of registers in a DSP processor is usually small, and even when more
registers are available, a fraction of those are needed for global register allocation, leaving
only few registers to use during the evaluation of expression trees. On the other hand, for
the reasons discussed before, code for DSP applications most have high quality and the

SU-DLE algorithm guarantees that for a large fraction of expression trees in the program.

18

For those trees which result in spilling, a heuristic based on searching an instruction to

compact the store operation can always be used.

7 Experimental Results

The experimental evaluation of the SU-DLE algorithm was performed using the DSP-
stone [24] benchmark. DSPstone is a benchmark designed to evaluate the code quality
generated by compilers for different DSPs. DSPstone is divided into three benchmark
suites: Application, DSP-kernel and C-kernel. The Application benchmark consists of the
program adpcm, a well-known speech coding algorithm. The DSP-kernel benchmark con-
sists of a number of code fragments, which cover a large number of algorithms often used
in DSP applications [24]. The C-kernel suite aims to test typical C program statements.
DSPstone is heavily based on kernels and not on complete applications. Actually, this ten-
dency in benchmarking programs for DSP applications can also be observed in other well
publicized benchmarks, like the BDT Benchmark [25]. The reasoning behind that is based
on three major facts. First, kernels play a very important role in the execution of a DSP
program, more than in other application domains. Second, DSP programs are traditionally
written in assembly. As a result, the reference assembly code for a complete application
benchmark could take years of engineering effort [25]. Third, the large majority of the
application programs developed for DSPs are proprietary. Furthermore, many of those in
the public domain are designed using floating-point variables for the purpose of simulation
only. Hence, they are not suitable for compiling in fixed-point machines (e.g. programs for
cellular telephone standards like GSM and 1S54). Algorithm SU-DLE was used to produce
NEC puPD77016 code for two expression trees extracted from each DSP-kernel benchmark
in DSPstone. Machine code was also generated for each tree using Left-Right and Right-Left
contiguous schedulers. In a Left-Right (Right-Left) scheduler code is first generated for the
left (right) subtree of a node, followed by the code for the right (left) subtree. Left-Right
and Right-Left are typical scheduling algorithms employed in the design of many code gen-
erators. They usually result in good code quality and are easy to implement. Nevertheless,
as shown below, they can produce less than optimal code for a number of expression trees

in a homogeneous DLE architecture. The metric used to compare the code produced by

19

Scheduling Algorithms
Tree Origin Left-Right | Right-Left | SU-DLE
1 biquad_N 4 3 3
2 4 3 3
3 biquad_one 3 3 3
4 4 3 3
5 complex_multiply 3 3 3
6 3 3 3
7 complex_update 2 3 2
8 2 3 2
9 convolution 2 3 2
10 2 2 2
11 | dot_product 3 2 2
12 2 2 2
13 | Tt 4 3 3
14 2 2 2
15 | fir 3 2 2
16 2 2 2
17 | fir2dim 3 2 2
18 2 3 2
19 | int02save 6 4 3
20 2 4 2
21 | lms 4 3 2
22 3 2 2
23 | longint 3 5 2
24 2 6 2
25 | matrix_1 3 2 2
26 2 2 2
27 | matrix_1x3 3 2 2
28 2 2 2
29 | n_complex_updates 3 3 3
30 3 2 2
31 | n_real_updates 2 2 2
32 2 2 2
33 | real_update 2 3 2
34 2 2 2

Table 2: Number of registers needed to evaluate expression trees using: Left-Right, Right-
Left and SU-DLE scheduling.

20

the different schedulers was the number of registers needed by the program which computes
the expression tree. From what was said in Sec. 3, any program for an expression tree T,
which does not result in spilling, will be executed in the p+ 2 cycles, where p is the number
of ALU operations in T'. Thus, the number of cycles is not a good metric in this case. Since
the final code quality will be much dependent on the occurrence of spilling, the number
of registers used in each schedule is a better metric. The experimental results are shown
in Table 2. Fach DSPstone kernel is represented by a pair of trees. Observe, from Table
2, that algorithm SU-DLE results in code that uses the least number of registers, when
compared with the code produced by the other two schedulers. Although these schedulers
can sometimes result in the least number of registers (e.g. when Left-Right scheduler is
applied to expression tree 20), there is no guaranteed that this will always be true for all
expression trees in the program. On the contrary, for some expression trees neither Left-
Right nor Right-Left can guarantee the minimum number of registers (e.g. expression trees
19 e 23). The only way to guarantee that the least number of registers is used in the code,
and therefore that spilling is avoided as much as possible, is through the use of the SU-DLE
algorithm. For many expression trees the use of algorithm SU-DLE makes no difference.
Based on that, it may be felt that the final impact of SU-DLE is negligible for a large ap-
plication. Nevertheless, it is important to mention that DSP applications demand the best
possible code. The fact that inner loop kernels are extremely critical for these applications

reinforces the thesis that optimality must be guaranteed.

8 Conclusions

This paper proposes a linear time code generation algorithm for expression tress for ho-
mogeneous DLE architectures. Optimality is guaranteed for a large number of expression
trees in typical DSP programs. The SU-DLE algorithm is an extension of the Sethi-Ullman
algorithm for homogeneous register set architectures. The existence of an efficient algorithm
for a homogeneous DLI architectures, like the NEC uPD77016, suggest that heterogeneous
DLE architectures like the Motorola 56000, and the Analog Device ADSP-2100 might also
have similar efficient solutions in polynomial time. An optimal algorithm for any expression

tree is improbable though, but one which can guarantee optimality for the majority of the

21

trees, and close to optimal code for the rest of them is possible and desirable. Finding these

algorithms is a natural extension of this work.

22

References

[1]

[10]

[11]

M.R. Garey and D.S. Johnson. Computers and Intractability. W. H. Freeman and
Company, New York, 1979.

J.L. Bruno and R. Sethi. Code generation for one-register machine. Journal of the

ACM, 23(3):502-510, 7 1976.

R. Sethi. Complete register allocation problems. SIAM J. Computing, 4(3):226-248,
September 1975.

A.V. Aho, S.C. Johnson, and J.D. Ullman. Code generation for expressions with
common subexpressions. Journal fo the ACM, 24(1):146-160, January 1977.

J.L. Bruno and R. Sethi. The generation of optimal code for stack machines. Journal

of the ACM, 22(3):382-396, July 1975.

R. Sethi and J.D. Ullman. The generation of optimal code for arithmetic expressions.

Journal of the ACM, 17(4):715-728, October 1970.

A.V. Aho and S.C. Johnson. Optimal code generation for expression trees. Journal of

the ACM, 23(3):488-501, July 1976.

AW. Appel and K.J. Supowit. Generalizations of the Sethi-Ullman algorithm for
register allocation. Software — Practice and Experience, 17(3):417-421, June 1987.

A.V. Aho, S.C. Johnson, and J.D. Ullman. Code generation for machines with mul-
tiregister operations. In Proc. fth ACM Symposium on Principles of Programming
Languages, pages 21-28, January 1977.

E. A. Lee. Programmable DSP architectures: Part I. IEFE ASSP Magazine, pages
4-19, October 1988.

E. A. Lee. Programmable DSP architectures: Part II. IFEF ASSP Magazine, pages
4-14, January 1989.

23

[12] P. Marwedel. Tree-based mapping of algorithms to predefined structures. In Int. Conf.
on Computer-Aided Design, pages 586-593, 1993.

[13] C. Liem, Trevor M, and Paulin P. Instruction-set matching and selection for DSP and
ASIP code generation. In Furopean Design and Test Conference, pages 31-37, 1994.

[14] D. Lanner, M. Cornero, G. Goosens, and H. De Man. Data routing: a paradigm for
efficient data-path synthesis and code generation. In High-Level Synthesis Symposium,
pages 17-22, 1994.

[15] B. Wess. On the optimal code generation for signal flow computation. In Proc. Int.

Conf. Circuits and Systems, volume 1, pages 444-447, 1990.

[16] B. Wess. Automatic instruction code generation based on trellis diagrams. In Proc.

Int. Conf. Circuits and Systems, volume 2, pages 645648, 1992.

[17] Marwedel and Goosens, editors. Code Generation for Embedded Processors. Kluwer

Academic Publishers, Massachusetts, 1995.
[18] Motorola. DSP56000/DSP56001 Digital Signal Processor User’s Manual, 1990.
[19] Analog Devices. ADSP-2100 Family User’s Manual, 1995.
[20] NEC. uPD77016 User’s Manual, 1993.

[21] G. Araujo and S. Malik. Optimal code generation for embedded memory non-
homogeneous register architectures. In Proc. 8" International Symposium on System

Synthesis, pages 3641, September 1995.

[22] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques and Tools.
Addison Wesley, Boston, 1988.

[23] G. Araujo, S. Malik, and M. Lee. Using register-transfer paths in code generation
for heterogeneous memory-register architectures. In Proc. 33"% Design Automation

Conference, pages 591-596, June 1996.

24

[24] V. Zivojnovic, J.M. Velarde, and C. Sclaager. DSPstone, a DSP benchmarking method-

ology. Technical report, Aachen University of Thecnology, August 1994.

[25] P. Lapsley, J. Bier, and E. A. Lee. Buyer’s guide to DSP processors. IEEE ASSP

Magazine, pages 4-14, January 1989.

25

