
O conte�udo do presente relat�orio �e de �unica responsabilidade do(s) autor(es).The contents of this report are the sole responsibility of the author(s).
Code Generation for Dual-Load-ExecuteArchitecturesGuido Araujo and Sharad MalikRelat�orio T�ecnico IC{97-21Novembro de 1997

Code Generation for Dual-Load-Execute ArchitecturesGuido Araujo and Sharad MalikNovember 4, 1997AbstractThis paper studies the problem of register allocation and scheduling for Dual-Load-Execute (DLE) architectures. These are architectures which can execute an ALU in-struction and two memory transfer operations (load/store) in a single instruction cycle.DLE architectures are extensively used in the design of Digital Signal Processors (DSPs)like the Motorola 56000, Analog Devices ADSP-2100, and NEC �PD77016. This workproves the existence of an e�cient O(n) expression tree code generation algorithm forDLE architectures which have homogeneous register sets. The algorithm is an exten-sion of the Sethi-Ullman algorithm, and produces guaranteed optimal code for a largenumber of expression trees in the program. The experimental results, using the NEC�PD77016 as the target processor, show the e�cacy of the approach.

1 IntroductionDigital Signal Processors (DSPs) are receiving increased attention recently due to their rolein the design of modern embedded systems like video cards, cellular telephones and othermultimedia and communication devices. DSPs are largely used in systems where general-purpose architectures are not capable of meeting domain speci�c constraints. In the caseof portable devices, for example, the power consumption and cost may make the usageof general-purpose processors prohibitive. Unfortunately, code generation for DSPs is amuch harder problem then generating code for general-purpose processors. This researchis part of a project directed towards developing compilation techniques that are capable ofproducing quality code for such processors. The implementation of these techniques formsthe compiling infrastructure used in this work.There is a large body of work done in code generation for general-purpose processors.Code generation is, in general, a hard problem. Instruction selection for expressions sub-sumes Directed Acyclic Graph (DAG) covering, which is an NP-complete problem [1]. Sethiet al. [2, 3] showed that the problem of optimal code generation for DAGs is NP-completeeven for a single register machine. It remains NP-complete for expressions in which noshared term is a subexpression of any other shared term [4]. Code generation for expressiontrees has a number of O(n) solutions, where n is the number of nodes in the tree. Thesealgorithms o�er solutions for the case of stack machines [5], register machines [6, 7, 8] andmachines with specialized instructions [9]. They form the basis of code generation for singleissue, in order execution, general-purpose architectures.The problem of generating code for DSPs and embedded processors has not receivedmuch attention though. This was probably due to the small size of the programs runningon these architectures, which enabled assembly programming. With the increasing com-plexity of embedded systems, programming such systems without the support of high-levellanguages has become impractical. Many of the problems associated with code generationfor DSPs were �rst brought to light by Lee in [10, 11], a comprehensive analysis of the archi-tectural features of these processors. Code generation for DSP processors has been studiedin the past, but only more recently a number of interesting projects have tackled some of2

its important problems. Marwedel et al. [12] proposed a tree-based mapping techniquefor compiling algorithms into microcode architectures. Paulin et al. [13] uses a tree-basedapproach for algorithm matching and instruction selection, where registers are organized inclasses and register allocation is based on a left-�rst algorithm. Datapath routing techniqueshave also been proposed [14] to perform e�cient register allocation. Wess [15] proposed theusage of Normal Form Schedule for DSP architectures, and o�ered a combined approach forregister allocation and instruction selection using the concept of trellis diagrams [16]. Anoverview of the current research work on code generation for DSP processors, and embeddedprocessors in general, can be found in [17].The high performance requirement of DSP applications lead designers to make extensiveuse of parallelism in the design of DSP datapaths. A very common technique, employed ina number of processors [18, 19, 20], is to fetch the operands of the next instruction duringthe execution of the current one. The idea here is to hide the latency of the memory accessby transferring the data from/to memory during the time when an instruction performsa computation. The immediate consequence of that is an increase in the memory band-width requirement. In order to meet this requirement, DSPs use memory banks, whichcan be accessed in parallel. Although multi-ported memories1 are another way to achievethe required bandwidth, they are usually not considered a design option because of theirlarge silicon area requirements. When memory banks are used, a dual-bank organizationis preferred, given that the majority of the instructions in a DSP application are binaryinstructions. This architectural style allows the design of processors which can performan ALU operation together with two load (store) transfer operations from (into) memory.Because of this feature these processors will be referred to as Dual-Load-Execute (DLE) ar-chitectures in the sequel. This paper proposes an optimal O(n) code generation algorithmfor expression trees for a class of DLE architectures which have homogeneous register sets.The NEC �PD77016 processor is a typical architecture of this class, and will be consideredthe target machine during this work.This paper is divided as follows. Sec. 2 describes the architectural model used to1A multi-ported memory is a memory which allows more than one load/store operation to occur at thesame time. 3

represent the processor datapath. Sec. 3 gives an instance of the problem and discussesits formulation. Sec. 4 states the basic concepts required for the rest of the paper. Sec.5 proposes an algorithm for the expression tree code generation problem. Finally, Sec. 7describes the experiments designed to show the e�cacy of the algorithm.2 Architectural ModelA key aspect in the design of a DSP architecture is how instructions in the processorInstruction Set Architecture (ISA) make use of its datapath structures. A careful analysisof the various types of DSP datapaths reveals a large variation of styles. The RegisterTransfer Graph (RTG) model of a processor seeks to address this variety [21]. The RTGrepresentation of a processor exposes the storage locations in the processor datapath, andcaptures how the instructions in the processor ISA use the transfer paths de�ned betweenthese locations to perform the required computation. The RTG is a directed labeled graphwhere each node ni represents a register class in the processor and the edges are transferpaths de�ned by the ISA. Each edge (n1; n2) in the RTG is labeled with those instructionsin the ISA which take operands from register class n1 and store the result into register classn2. The nodes in the RTG represent two types of storage: single-register and multiple-register. Multiple-register nodes are associated with a register class that can store multipleoperands. A single-register node (or simply register) is a register class of unitary capacity.In the RTG, multiple-register nodes are distinguished from single-register nodes by meansof a double circle. Memory is assumed to be an in�nitely large storage resource, and is notrepresented in the RTG for simplicity. An arrowhead is used to indicate when a transfer pathexist between an RTG node and memory. The direction of the arrow shows the directionof the transfer operation. An incoming (outgoing) arrow is associated with a load (store)operation.Datapaths of three commercial DSPs have been modeled using the RTG representation.Table 1 (a - c) shows the datapath of the processor together with its RTG representation anda typical instruction. For the sake of simplicity, the instructions of the three processors aredescribed using the same syntax. In this syntax, a bar is present between two operationsthat execute during the same instruction cycle. The TMS320C25 processor is shown in4

Table 1(a). The fact that one operand is stored in memory is a major drawback in theperformance of this processor. In this processor, the latency of any instruction is the sum ofthe memory access time plus the latency of the functional unit. This has a signi�cant impacton the cycle time of the processor, given that memory latency has become increasingly large.The impact is reduced because memory in DSPs are static on-chip RAMs, which have fasteraccess times when compared with their dynamic versions. Unfortunately this is not enoughto compensate for the increasing gap between memory and register access times. Thesolution for that is the use of register-register instructions. This is the case of the NEC�PD77016 processor in Table 1(b). The �PD77016 has a single register �le and can performtwo accesses to memory together with an ALU operation. Therefore, the NEC �PD77016is a DLE architecture. The NEC �PD77016 has one multi-ported register �le (R) and amemory system based on two memory banks, MX and MY. This combination allows forthree accesses to registers in R to occur in a single machine cycle (e.g. MAC instruction).A typical binary instruction in this architecture reads two registers R1 and R2, and storesthe resulting computation into R3. After that registers R4 and R5 load the operands forthe next instruction from banks MX and MY. The main drawback of this architecture isthe use of a multi-ported register �le. Multi-ported register �les are expensive in terms ofsilicon area and design e�ort, both of which impact the �nal cost of the device. Observe thatinstructions from this processor do not restrict the registers they use, hence the register setis homogeneous, and we say that the NEC �PD77016 is a homogeneous DLE architecture.Another variation of a DLE design is shown in Table 1(c). The idea now is to eliminatethe costly multi-ported register �le, while maintaining the Dual-Load-Execute property.In this case two registers �les (RX and RY) are used to perform the dual-load operation.The result of an instruction is always stored in the accumulator register �le A. A typicalinstruction in this architecture performs its operation using a register from A and thecurrent contents of a register from RX and/or RY. After that registers in RX and RY canbe loaded with the operands for the next instruction. Since registers in RX and RY areseparated from A, no multi-ported register �le is required, which results in a reduction ofthe total silicon area used by the processor. This was the approach adopted in the designof the Motorola 56000 processor [18]. 5

(a)
MEM

t

MUL

p

MEM BUS

ALU

a

MUX

SHIFTER1

SHIFTER3

SHIFTER2

MEM BUS

a p tADD M1(b)
R

MX MY

MAC ALU
BARREL
SHIFTER

RADD R1; R2; R3 j LD R4;MX0 j LD R5;MY0(c)
MX

RX

MY

RY

ALU

A

MUL

p

MUX

MUX MUX

A

RX

RYADD A0; RX1 j LD RX0;MX0 j LD RY0;MY0Table 1: Architectural model and typical instructions for three commercial DSPs: (a) TITMS320C50; (b) NEC �PD77016; (c) Motorola 56000.6

The trade-o� between architecture and code generation algorithms for DSPs becomesclear when one analyzes the algorithms required to generate code for each architecture inTable 1. A cycle in the RTG is a path starting and �nishing at some node ni, whichtraverses at least another distinct RTG node. Hence a self-loop is not an RTG cycle. Ithas been shown [21] that an optimal O(n) expression tree code generation algorithm existsfor acyclic RTGs like the one described in Table 1(a). Unfortunately the problem for cyclicRTG architectures, like the one in Table 1(c), seems to be NP-hard. Observe that the DLEarchitecture of Table 1(b) has no RTG cycles, hence it must admit an e�cient algorithm.The goal of this paper is to �nd this algorithm.3 Problem FormulationConsider a homogeneous DLE architecture like the one described in Table 1(b). Fig. 1(b)shows the best code generated for the expression tree T of Fig. 1(a) on this architecture.The code in Fig. 1(b) uses memory positions m1�m6 as operands to evaluate T . The resultof the expression is stored into m7. As mentioned before DLE instructions are formed by
1 2 4 5

11

3 6

7

m2m1 m3 m4

8 9

m5 m6

(a)

10

(b)

	 	 | LD R1, m1 | LD R2, m2 I1

MUL R1, R1, R2 | LD R2, m3 | LD R3, m4 I2

ADD R2, R2, R3 | | I3

SUB R1, R1, R2 | LD R2, m5 | LD R3, m6 I4

MUL R2, R2, R3 | | I5

ADD R1, R2, R2 | | I6

 | ST R1, m7 | I7Figure 1: (a) Expression tree T storing into m7; (b) DLE code corresponding to T ;compacting an ALU operation, and two load/store operations into a single instruction. Inorder to improve register utilization, it is desirable that the same registers which are usedas operands by the current ALU operation could also load the operands of the next ALUoperation, after the former is �nished. To achieve this goal, DLE architectures are designed7

such that registers are read in the beginning of the instruction cycle and written at the endof the cycle. This allows a register to provide an operand to the ALU at the beginning ofthe cycle, and be updated at the end of the same cycle. It also allows a result register tobe stored into memory at the beginning of the cycle, and be updated with a new resultat the end of the same instruction cycle. For example, instruction I2 of Fig. 1(b) loadsregisters R2 and R3 (operands of I3) only after the multiplication in I2 is performed. Onthe other hand, the store operation required to move R1 into m7 (instruction I7) cannotexecute during instruction I6, since the new value of R1 is only available at the end of I6.In this case, a separate instruction is required (I7), to hold the store operation. Had thestore operation been compacted into I6 the value stored into m7 would be the old value ofregister R1.The problem this paper addresses is: Given an expression tree T (e.g. Fig. 1(a))determine the code that computes T in the minimum number of cycles and using the leastnumber of registers. Notice that a DLE architecture enables any program for an expressiontree to execute in p + 2 cycles, where p is the number of ALU operations in T 2. This ispossible because all load operations for the operands of an ALU instruction, but the �rst one,can be compacted into some previous ALU instruction. Furthermore, this is a consequenceof the fact that a DLE instruction enables two operands to be loaded at the same time, andthat the expression trees are binary. In addition to p cycles, one extra instruction cycle isrequired to load the operands of the �rst instruction. In the case of Fig. 1(b), for example,I1 loads the operands for I2. Yet another cycle is needed to store the result of the operationat the root of the tree. Instruction I7 in Fig. 1 is used for that.Observe that the optimal code from Fig. 1(b) can only be achieved i� the number ofregisters required by the expression tree is minimized. If care is not taken to minimize thenumber of registers, then the resulting program could require a memory spill, increasingits execution time. Memory spill is the situation when there are not enough registers toexecute some operation in T . As a consequence two memory operations have to be issued.A store operation, to save the contents of a register, and a load operation to reload thisregister later. Meanwhile, the vacant register can be used as the destination of the current2Assume, without loss of generality, that each instruction takes one machine cycle8

operation.For the sake of simplicity assume that no Global Register Allocation (GRA) is performed.This assumption is not restrictive, since the goal here is to generate code for basic blocks,and thus to minimize the number of registers allocated for temporaries. When GRA is usedthe problem is exactly the same, with a smaller number of registers available for temporaries.This is similar to the situation found when GRA is performed during code generation forgeneral-purpose processors [22].4 The BasicsBefore proceeding further we need to de�ne concepts and terms that will be used throughoutthis paper.4.1 The Sethi-Ullman AlgorithmLet T be a binary expression tree in a homogeneous general-purpose architecture. Optimalcode for T can be generated in O(n) by means of the Sethi-Ullman algorithm [6]. The ideasproposed by this paper are built upon this algorithm. The Sethi-Ullman algorithm is basedon a labeling procedure which assigns a label to each node u in T . This label is known as theSethi-Ullman Number of the node, or SUN(u), and corresponds to the minimum numberof registers required to evaluate the subtree rooted at u. The SUN(u) can be computedrecursively using a bottom-up post-order traversal of the tree rooted in u. At each node uwith children u1 (root of subtree T1) and u2 (root of subtree T2) compute:SUN(u) = 8><>: max(SUN(u1); SUN(u2)) if SUN(u1) 6= SUN(u2); (Eq:1)SUN(u1) + 1 if SUN(u1) = SUN(u2): (Eq:2)The labeling procedure minimizes the number of registers required to compute the subtreerooted in u. This is done by giving priority to schedule �rst the subtree of u which usesmore registers. There are two cases to consider here. The �rst case (Eq. 1) occurs whenone of the subtrees (e.g. T1) uses more registers than the other (e.g. T2). In this case, T1should be scheduled �rst followed by T2. SUN(u1) registers are used during the schedulingof T1. After T1 is scheduled, only one register is live to hold the result of operation u1.9

Therefore, during the scheduling of T2 at most SUN(u2)+1 � SUN(u1) registers are used.Hence, the minimum number of registers required to schedule the tree at u is the maximumnumber of registers used by its subtrees. Now consider the case (Eq. 2) when the samenumber of registers is needed by T1 and T2. In this case, no matter the subtree scheduled�rst, the total number of registers required is one plus the number of registers used bythe subtrees. The Sethi-Ullman algorithm evaluates an expression tree contiguously, i.e.the operations in subtree T1 (T2) are scheduled only after all operations in subtree T2 (T1)have been scheduled. Because of that we say that the Sethi-Ullman algorithm satis�es theContiguous Evaluation Property [6].4.2 Basic De�nitionsDe�nition 1 Let T be a binary expression tree and P a program that evaluates T . RegisterR is said to be a load-register, at some point of the execution of P , i� the last operation tomodify R was a load operation.Example 1 Consider, for example, the expression tree of Fig. 1(a) and its correspondingcode in Fig. 1(b). Notice that during the execution of instruction I3 only registers R2 andR3 have been recently modi�ed by load operations. Register R1, on the other hand, was lastupdated by theMUL operation. Therefore only R2 and R3 can be considered load-registersat that point of the program execution.Without loss of generality, assume that operations and nodes in T form a one-to-onerelation, i.e. there exist a function op which maps a node ui 2 T into its correspondingoperation oi, i.e. oi = op(ui). Operation oi is an ALU operation or a load/store operation.De�nition 2 A DLE instruction generated from an expression tree T , is a tuple I =(o1; o2; o3), where o1 is an ALU operation, o2 and o3 are load/store operations, or oi = �(empty), i = 1; 2; 3. An empty operation is an operation which performs no task. An emptyoperation oi is used to represent those cases where no operation can be compacted into �eldi of I.De�nition 3 A partial DLE instruction I 0 is a DLE instruction for which at least one ofthe operations oi; i = 1; 2; 3 have not been de�ned yet. In this case the underline symbol10

(" ") is used in the unde�ned �eld i of I 0.Partial DLE instructions are uncompacted DLE instructions. For example I 02 = ('MULR1, R2, R3', ,) is the partial version of instruction I2 in Fig. 1(b), for which the loadoperations 'LD R2, m3' and 'LD R3, m4' have not been compacted yet. We say that a (partial)DLE instruction is an ALU instruction if it contains an ALU operation, and a load/storeinstruction otherwise.5 Problem SolutionThe goal of this section is to show that given an expression tree, in an homogeneous DLEarchitecture, it is possible to generate optimal code for it in O(n), where n is the numberof nodes in T .Lemma 1 Let T be a binary expression tree, and P the program which evaluates T obtainedafter applying the Sethi-Ullman algorithm to schedule T . At most two load-registers are liveat any time during the execution of P .Proof. Let h be the height of expression tree T . Let T1 (T2) be a subtree of T , andh1 (h2) its corresponding height. Assume, for the sake of clarity, that T1 (T2) is the left(right) subtree of T , rooted at u1 (u2). Let R(ui) = ri be a function which maps nodeui 2 T to the register used to store the result of op(ui). Let l1, l2 and l be the number ofsimultaneously live load-registers respectively used during the computation of T1, T2 andT . We want to show that l � 2 for any expression tree T , provided that code is scheduledusing the Sethi-Ullman algorithm.Basis. First, let us prove that l � 2 is true for 0 � h � 1. In this situation two cases haveto be considered, corresponding to trees of height zero and one.(a) A tree T of height zero corresponds to a single leaf node, which is mapped to a loadoperation. Hence l = 1 � 2.(a) Consider a binary tree T which is a single binary operation. In this case at mosttwo load-registers R(u1) = r1 and R(u2) = r2 can be live at the same time. Hence11

l = 2 � 2. If the tree is formed by an unary operation then only one load-register isused and therefore l = 1 � 2.
(a) (b)

u2u1

u3

u1

u3

u2
u1

u3

(c)

T1 T2 T1

u2

T2Figure 2: (a) h1 = h � 1 and/or h2 = h� 1; h1 > 0; h2 > 0; (b) h1 = 0 and h2 = h� 1; (c)h1 = h� 1 and h2 = 0.Induction. Let SUN(ui) be the Sethi-Ullman Number of node ui. By de�nition [6]SUN(ui) is the number of registers required to compute the subtree rooted at ui. ConsiderT1 and T2 to be subtrees of T and h1 (h2) the height of T1 (T2). Let the basis argument betrue for all trees with height h � 1. It is to be shown that this is also true for all trees ofheight h. Consider now three cases:(a) This is the case when h1 = h � 1 and/or h2 = h � 1, and h1 > 0; h2 > 0. Fromthe induction hypothesis we know that l1 � 2 and l2 � 2. Therefore, at most twoload-registers become live at the same time during the execution of the instructionsin T1 or T2. The Contiguous Evaluation Property of the Sethi-Ullman algorithm [6]guarantees that operations in subtree T1 (T2) (Fig. 2(a)) are only scheduled afterall operations in subtree T2 (T1). Given that u1 (u2) is not a leaf node, then afterinstructions in T1 (T2) are �nished, no load-register is live. Therefore at most twoload-registers will be used during the computation of T , and thus l � 2.(b) In this case (Fig. 2(b)) h1 = h� 1 and h2 = 0 (i.e. subtree T2 is composed of a singleleaf node). As before, T1 uses at most two simultaneously live load-registers (l1 � 2)and SUN(u1) � 1. On the other hand T2 uses just one register, i.e. SUN(u2) = 1 andl2 = 1. Hence SUN(u1) � SUN(u2), and according to the Sethi-Ullman algorithm[6] subtree T1 is scheduled �rst followed by T2. Given that l1 � 2 and no load-registeris live after all operations in T1 are completed, then l = l1 � 2.12

(c) This case (Fig. 2(c)) is the symmetric of case (b). Since SUN(u2) � SUN(u1), thenT2 is scheduled before T1 [6] . Similarly as before, no load-register is live after theoperations in T2 are executed. Given that l2 � 2, then l = l2 � 2. 2Corollary 1 Program P 0, as de�ned in Lemma 1, has no more than two load instructionsin between a pair of consecutive ALU instructions I 0i and I 0j. Moreover each load instructionis used to load an operand of I 0j.Proof. Assume that the �rst assertion is not true. Let I 0i and I 0j be a pair of consecutiveALU instructions such that there exist more than two load instructions in between them. Inthis case more than two load-registers are live at the same time in P 0, what is a contradictionof Lemma 1. Now assume that there exist an instruction I 0k , which follows I 0j in P 0, suchthat one of the load instructions in between I 0i and I 0j loads an operand for it. This isonly possible if the Sethi-Ullman algorithm generates code �rst for a leaf-node u (i.e. loadinstruction), and then generates code for an inner-node (i.e. ALU instruction), which is notthe parent of u. Given that the Sethi-Ullman algorithm satis�es the Contiguous EvaluationProperty (Sec. 4.1), then this is only possible in cases (b) or (c) of Lemma 1. But in case(b) ((c)) code is generated �rst for the inner-node u1 (u2) and then for the leaf-node u2(u1). Therefore no such instruction I 0k exist. 2Now consider the following algorithm to generate code for an expression tree T . Thisalgorithm is an extension of the Sethi-Ullman algorithm [6] for the case of homogeneousDLE architectures.Algorithm 1 [Sethi-Ullman DLE]Let T be an expression tree containing n nodes. The optimal program P which evaluates Tin a homogeneous DLE architecture can be determined as follows:1) Use the Sethi-Ullman algorithm to generate the optimal sequential program P 0 =I 01; I 02; : : : ; I 0n which evaluates T . Each instruction I 0i; 1 � i � n is a partial DLEinstruction, which contains a single operation oi = op(ui); ui 2 T .13

2) Let I 0f be the �rst ALU instruction scheduled in program P 0. Consider now two cases.First, consider the set of all ALU instructions in P 0 but If , i.e. the set fI 0j ; j 6= fg.Compact the load instructions between I 0j and ALU instruction I 0i into I 0i, where i =max(k); f � k � j�1. In other words, compact the load instructions for the operandsof I 0j into the �rst ALU instruction I 0i that can be found by traversing P 0 backwardsfrom I 0j to I 0f . Finally, compact the load operations for the operands of I 0f into I 01.
	 	 | LD R1, m1 | LD R2, m2 I1

MUL R1, R1, R2 | LD R2, m3 | LD R3, m4 I2

ADD R2, R2, R3 | | I3

SUB R1, R1, R2 | LD R2, m5 | LD R3, m6 I4

MUL R2, R2, R3 | | I5

ADD R1, R2, R2 | | I6

 | ST R1, m7 | I7

(b)

LD R1, m1 I'1

LD R2, m2 I'2

MUL R1, R1, R2 I'3

LD R2, m3 I'4

LD R3, m4 I'5

ADD R2, R2, R3 I'6

SUB R1, R1, R2 I'7

LD R2, m5 I'8

LD R3, m6 I'9

MUL R2, R2, R3 I'10

ADD R1, R2, R2 I'11

ST R1, m7 I'12

(a)Figure 3: (a) Code after step 1 of SU-DLE; (b) Code after step 2 of SU-DLE.Example 2 Consider, for example, applying the Sethi-Ullman DLE (SU-DLE) algorithmto the expression tree in Fig. 1(a). The code resulting after the execution of step 1 isshown in Fig. 3(a). Notice that there exist at most two load instructions in between twoconsecutive ALU instructions and that these instructions load the operands for the followingALU instruction. For example, instructions I 04 and I 05 load the operands for instruction I 06.The �rst ALU instruction in the program is I 03 (i.e. If = I 03). All load instructions fromI 04 to I 012 are compacted into some ALU instruction (I 03 and I 07), and the load instructionsfor I 03 (i.e. I 01 and I 02) are compacted into I 01. Fig. 3(b) shows the resulting code after thecompaction step 2 is performed. The compacted load operations are highlighted is boxes.The �nal code executes in 7 (i.e. p+ 2) steps, and uses 3 registers.14

Remark 1 For the sake of simplicity we have assumed that the architecture can reutilize asource register as the destination register for the operation result. This might not always betrue for some architecture. In this case, it is enough to modify the Sethi-Ullman algorithmsuch as to increase by one the number of registers required at each subtree.Theorem 1 Algorithm SU-DLE generates an optimal program which evaluates T using theleast number of registers.Proof. From step 1 of the SU-DLE algorithm P 0 is the optimal sequential programwhich evaluates T . If each ALU operation executes in one cycle, then P 0 takes n cyclesto execute and uses SUN(root(T)) registers, where root(T) is the root node of T . Nowconsider step 2 of the SU-DLE algorithm. Two situations have to be analyzed here. First,consider the case of ALU instructions I 0j ; j 6= f . If the ALU operation in I 0j is an unary(binary) operation then the instructions that load its operand(s) can always be compactedinto some previous ALU instruction I 0i. The existence of I 0i is guaranteed from Corollary1, since at most two load instructions can exist between instructions I 0i and I 0j , and theseare the instructions that load the operands of I 0j . Therefore all load instructions in P 0 frominstruction I 0f to instruction I 0n can be compacted into some ALU instruction by traversingP 0 bottom-up. The just compacted sequence of ALU instructions has length p, where pis the number of non-leaf nodes (i.e. ALU operations) inside T . Now consider the case ofinstruction I 0f . The operands of I 0f can be loaded simultaneously in the beginning of P 0,but cannot be compacted into another ALU instruction. Hence one cycle is needed to loadthe operands of I 0f . Assume above that the allocation of memory variables to the memorybanks is such that it permits the parallel access of the compacted load operations. Nowobserve that instruction I 0n uses one cycle to store the result of the operation in root(T) intomemory. Therefore, the �nal program which evaluates T is a sequence of DLE instructionsP = I1; I2; : : : Ip+1; Ip+2 of length p + 2. Assuming that each ALU operation takes onecycle to execute, then P execution time is p + 2 cycles. As discussed before, this is theminimum number of cycles required by any program to evaluate T in an homogeneous DLEarchitecture. The compaction of the load operations does not change the liveness of theregisters in P 0. Between two ALU instructions I 0i and I 0j in the uncompacted program P 015

there are two live load-registers which load the operands of I 0j . The compaction step doesnot change the liveness of these or other registers. Therefore, the minimum number ofregisters needed to evaluate T , using the compacted code P , is the same as the minimumnumber of registers needed by the uncompacted code P 0, i.e SUN(root(T)) registers. 2Theorem 2 Algorithm SU-DLE is O(n), where n is the number of nodes in T .Proof. It takes O(n) steps to schedule operations ui from T using the Sethi-Ullmanalgorithm. It takes at most two steps to compact two load operations for each one of thep; p < n, ALU instructions of P . Thus the execution time of SU-DLE can be bounded byO(n) + 2� O(p) = O(n). 2
u2u1

u3

u5

u4

T
2

T
3

un

T
n

T
1

u
n+1

u2m1

u3

u5

u4

T
2

T
3

un

T
n

u
n+1

(a) (b)Figure 4: (a) Expression tree T1 uses more registers than available; (b) The result ofoperation u1 is restored from memory position m1.6 Dealing with SpillingThis section studies the situation when a memory spill is required during the evaluationof T . Let jRj be the number of registers available in the architecture and T an expressiontree. Assume that the evaluation of subtree T3 = T1ST2 from Fig. 4(a) needs more thanthe number of registers available in the architecture, i.e. SUN(u3) > jRj. According tothe Sethi-Ullman algorithm this can only occur when SUN(u1) = SUN(u2) = jRj. In thiscase, code is �rst generated for one of the subtrees of T3. Let T1 be the chosen subtree. The16

result of the operation at u1 is stored into some memory position, e.g. m1, and sub-tree T1is substituted by a leaf-node m1. Code is then generated for the remaining subtree shownin Fig. 4(b). In general subtrees of T rooted in u, for which SUN(u) = jRj, are scheduled�rst, followed by the schedule of the remaining operations of T . Let P1 (Pk) be the programwhich evaluates T1 (Tk), such that Pk is scheduled just after P1 in program order. Fig. 5shows this situation. We want to study the possibility of compacting instructions from P1and Pk , such as to minimize the overhead due to the uncompacted load (store) instructionsat the beginning (end) of these programs. This problem occurs not only when T1 and Tk aresubtrees of the same tree, as in the case of spilling, but also when they are unrelated treeswhich have been scheduled consecutively during the generation of code for a basic block.Notice that one can always compact the load operation(s) from the �rst instruction ofPk, i.e. I3, into the last ALU instruction of P1, i.e. I1. By doing so, all the load instructionsin a basic block, but the �rst instruction, can be compacted into some ALU instruction.Another improvement that can be achieved here is related with the compaction of the last
ADD R1, R2, R3 | |

		 | ST R1, m1 |

 | LD R2, m2 | LD R3, m3

MUL R1, R2, R3 | LD R2, m2 |

I1
ADD R1, R2, R3 | |

		 | ST R1, m1 |

 | LD R2, m2 | LD R3, m3

MUL R1, R2, R3 | LD R2, m2 | LD R3, m3

(a) (b)

I2

I3

I4

P1P1

PkPk

I1

I2

I3

I4Figure 5: (a) Load and store operations are completely compacted; (b) Only load operationsare compacted.instruction in program P1. The last instruction of P1, i.e. I2, stores into memory positionm1 the value computed by instruction I1. From the de�nition of a DLE architecture,17

an instruction cannot store the result of its ALU operation into a register and save thecontents of this register into memory during the same instruction cycle. Thus I2 cannotbe compacted into I1. We have to consider two cases here. First, assume that the secondinstruction from Pk has only one of its �elds compacted. Therefore the store operation inI2 can be compacted into I4 as in Fig. 5(b). This is only possible if the architecture has atleast three registers. The reason for that has to do with the fact that if I2 is compacted thenthree registers will be live just before the execution of I3 (R1, R2, and R3). In this case,the store operation cannot use any of the registers required by the load operations in I3.Compacting I2 into I4 does not a�ect the order in which register R1 is accessed by I2 andI4. In a DLE architecture the compacted store operation is executed before the execution ofthe ALU operation in the instruction. Hence, if I2 is compacted into I4, register R1 is savedbefore it receives the result of the MUL operation. Now consider the case when both �eldsof I4 are occupied (Fig. 5(b)). In this case the store operation cannot be compacted. Aninteresting question is if the store operation can be compacted into some other instructionIi (i > 4), which follows I4, without increasing the number of registers needed to computethe code. Apparently, there is no way to �nd this instruction in polynomial time, sincethis would imply in evaluating all possible schedules of T , including all non-contiguousschedules. Therefore, the optimality of algorithm SU-DLE cannot be guaranteed for thiscase. Nevertheless, the argument above does not preclude the possibility that some usefulinstruction could be found using a fast linear search of the generated code.Since a large number of expression trees in DSP applications have few nodes [23], it isexpected that the number of non-spilling expression trees that result in optimal code willbe high. On the other hand, if the number of nodes in an expression tree is small, one couldthink that the registers in the processor might be enough for the evaluation of the majorityof trees, no matter the schedule algorithm used for that. This is an incorrect conclusionthough. The number of registers in a DSP processor is usually small, and even when moreregisters are available, a fraction of those are needed for global register allocation, leavingonly few registers to use during the evaluation of expression trees. On the other hand, forthe reasons discussed before, code for DSP applications most have high quality and theSU-DLE algorithm guarantees that for a large fraction of expression trees in the program.18

For those trees which result in spilling, a heuristic based on searching an instruction tocompact the store operation can always be used.7 Experimental ResultsThe experimental evaluation of the SU-DLE algorithm was performed using the DSP-stone [24] benchmark. DSPstone is a benchmark designed to evaluate the code qualitygenerated by compilers for di�erent DSPs. DSPstone is divided into three benchmarksuites: Application, DSP-kernel and C-kernel. The Application benchmark consists of theprogram adpcm, a well-known speech coding algorithm. The DSP-kernel benchmark con-sists of a number of code fragments, which cover a large number of algorithms often usedin DSP applications [24]. The C-kernel suite aims to test typical C program statements.DSPstone is heavily based on kernels and not on complete applications. Actually, this ten-dency in benchmarking programs for DSP applications can also be observed in other wellpublicized benchmarks, like the BDT Benchmark [25]. The reasoning behind that is basedon three major facts. First, kernels play a very important role in the execution of a DSPprogram, more than in other application domains. Second, DSP programs are traditionallywritten in assembly. As a result, the reference assembly code for a complete applicationbenchmark could take years of engineering e�ort [25]. Third, the large majority of theapplication programs developed for DSPs are proprietary. Furthermore, many of those inthe public domain are designed using
oating-point variables for the purpose of simulationonly. Hence, they are not suitable for compiling in �xed-point machines (e.g. programs forcellular telephone standards like GSM and IS54). Algorithm SU-DLE was used to produceNEC �PD77016 code for two expression trees extracted from each DSP-kernel benchmarkin DSPstone. Machine code was also generated for each tree using Left-Right and Right-Leftcontiguous schedulers. In a Left-Right (Right-Left) scheduler code is �rst generated for theleft (right) subtree of a node, followed by the code for the right (left) subtree. Left-Rightand Right-Left are typical scheduling algorithms employed in the design of many code gen-erators. They usually result in good code quality and are easy to implement. Nevertheless,as shown below, they can produce less than optimal code for a number of expression treesin a homogeneous DLE architecture. The metric used to compare the code produced by19

Scheduling AlgorithmsTree Origin Left-Right Right-Left SU-DLE1 biquad N 4 3 32 4 3 33 biquad one 3 3 34 4 3 35 complex multiply 3 3 36 3 3 37 complex update 2 3 28 2 3 29 convolution 2 3 210 2 2 211 dot product 3 2 212 2 2 213 �t 4 3 314 2 2 215 �r 3 2 216 2 2 217 �r2dim 3 2 218 2 3 219 int02save 6 4 320 2 4 221 lms 4 3 222 3 2 223 longint 3 5 224 2 6 225 matrix 1 3 2 226 2 2 227 matrix 1x3 3 2 228 2 2 229 n complex updates 3 3 330 3 2 231 n real updates 2 2 232 2 2 233 real update 2 3 234 2 2 2Table 2: Number of registers needed to evaluate expression trees using: Left-Right, Right-Left and SU-DLE scheduling. 20

the di�erent schedulers was the number of registers needed by the program which computesthe expression tree. From what was said in Sec. 3, any program for an expression tree T ,which does not result in spilling, will be executed in the p+2 cycles, where p is the numberof ALU operations in T . Thus, the number of cycles is not a good metric in this case. Sincethe �nal code quality will be much dependent on the occurrence of spilling, the numberof registers used in each schedule is a better metric. The experimental results are shownin Table 2. Each DSPstone kernel is represented by a pair of trees. Observe, from Table2, that algorithm SU-DLE results in code that uses the least number of registers, whencompared with the code produced by the other two schedulers. Although these schedulerscan sometimes result in the least number of registers (e.g. when Left-Right scheduler isapplied to expression tree 20), there is no guaranteed that this will always be true for allexpression trees in the program. On the contrary, for some expression trees neither Left-Right nor Right-Left can guarantee the minimum number of registers (e.g. expression trees19 e 23). The only way to guarantee that the least number of registers is used in the code,and therefore that spilling is avoided as much as possible, is through the use of the SU-DLEalgorithm. For many expression trees the use of algorithm SU-DLE makes no di�erence.Based on that, it may be felt that the �nal impact of SU-DLE is negligible for a large ap-plication. Nevertheless, it is important to mention that DSP applications demand the bestpossible code. The fact that inner loop kernels are extremely critical for these applicationsreinforces the thesis that optimality must be guaranteed.8 ConclusionsThis paper proposes a linear time code generation algorithm for expression tress for ho-mogeneous DLE architectures. Optimality is guaranteed for a large number of expressiontrees in typical DSP programs. The SU-DLE algorithm is an extension of the Sethi-Ullmanalgorithm for homogeneous register set architectures. The existence of an e�cient algorithmfor a homogeneous DLE architectures, like the NEC �PD77016, suggest that heterogeneousDLE architectures like the Motorola 56000, and the Analog Device ADSP-2100 might alsohave similar e�cient solutions in polynomial time. An optimal algorithm for any expressiontree is improbable though, but one which can guarantee optimality for the majority of the21

trees, and close to optimal code for the rest of them is possible and desirable. Finding thesealgorithms is a natural extension of this work.

22

References[1] M.R. Garey and D.S. Johnson. Computers and Intractability. W. H. Freeman andCompany, New York, 1979.[2] J.L. Bruno and R. Sethi. Code generation for one-register machine. Journal of theACM, 23(3):502{510, 7 1976.[3] R. Sethi. Complete register allocation problems. SIAM J. Computing, 4(3):226{248,September 1975.[4] A.V. Aho, S.C. Johnson, and J.D. Ullman. Code generation for expressions withcommon subexpressions. Journal fo the ACM, 24(1):146{160, January 1977.[5] J.L. Bruno and R. Sethi. The generation of optimal code for stack machines. Journalof the ACM, 22(3):382{396, July 1975.[6] R. Sethi and J.D. Ullman. The generation of optimal code for arithmetic expressions.Journal of the ACM, 17(4):715{728, October 1970.[7] A.V. Aho and S.C. Johnson. Optimal code generation for expression trees. Journal ofthe ACM, 23(3):488{501, July 1976.[8] A.W. Appel and K.J. Supowit. Generalizations of the Sethi-Ullman algorithm forregister allocation. Software { Practice and Experience, 17(3):417{421, June 1987.[9] A.V. Aho, S.C. Johnson, and J.D. Ullman. Code generation for machines with mul-tiregister operations. In Proc. 4th ACM Symposium on Principles of ProgrammingLanguages, pages 21{28, January 1977.[10] E. A. Lee. Programmable DSP architectures: Part I. IEEE ASSP Magazine, pages4{19, October 1988.[11] E. A. Lee. Programmable DSP architectures: Part II. IEEE ASSP Magazine, pages4{14, January 1989. 23

[12] P. Marwedel. Tree-based mapping of algorithms to prede�ned structures. In Int.Conf.on Computer-Aided Design, pages 586{593, 1993.[13] C. Liem, Trevor M, and Paulin P. Instruction-set matching and selection for DSP andASIP code generation. In European Design and Test Conference, pages 31{37, 1994.[14] D. Lanner, M. Cornero, G. Goosens, and H. De Man. Data routing: a paradigm fore�cient data-path synthesis and code generation. In High-Level Synthesis Symposium,pages 17{22, 1994.[15] B. Wess. On the optimal code generation for signal
ow computation. In Proc. Int.Conf. Circuits and Systems, volume 1, pages 444{447, 1990.[16] B. Wess. Automatic instruction code generation based on trellis diagrams. In Proc.Int. Conf. Circuits and Systems, volume 2, pages 645{648, 1992.[17] Marwedel and Goosens, editors. Code Generation for Embedded Processors. KluwerAcademic Publishers, Massachusetts, 1995.[18] Motorola. DSP56000/DSP56001 Digital Signal Processor User's Manual, 1990.[19] Analog Devices. ADSP-2100 Family User's Manual, 1995.[20] NEC. �PD77016 User's Manual, 1993.[21] G. Araujo and S. Malik. Optimal code generation for embedded memory non-homogeneous register architectures. In Proc. 8th International Symposium on SystemSynthesis, pages 36{41, September 1995.[22] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques and Tools.Addison Wesley, Boston, 1988.[23] G. Araujo, S. Malik, and M. Lee. Using register-transfer paths in code generationfor heterogeneous memory-register architectures. In Proc. 33rd Design AutomationConference, pages 591{596, June 1996. 24

[24] V. Zivojnovic, J.M. Velarde, and C. Scl�aager. DSPstone, a DSP benchmarking method-ology. Technical report, Aachen University of Thecnology, August 1994.[25] P. Lapsley, J. Bier, and E. A. Lee. Buyer's guide to DSP processors. IEEE ASSPMagazine, pages 4{14, January 1989.

25

