O conteúdo do presente relatório é de única responsabilidade do(s) autor(es). The contents of this report are the sole responsibility of the author(s).

Uma Subclasse Subgrafo-Overfull dos Cografos

Marcelo M. Barbosa Célia P. de Mello
mmb@dcc.unicamp.br celia@dcc.unicamp.br

João Meidanis
meidanis@dcc.unicamp.br

Relatório Técnico IC-97-17

Uma Subclasse Subgrafo-Overfull dos Cografos

Marcelo M. Barbosa* mmb@dcc.unicamp.br

Célia P. de Mello[†] celia@dcc.unicamp.br João Meidanis[‡] meidanis@dcc.unicamp.br

Instituto de Computação Universidade Estadual de Campinas 13081-970, Campinas - SP

Sumário

O problema da classificação consiste em decidir se um grafo G pertence à Classe~1 ou à Classe~2. Uma condição suficiente para G pertencer à Classe~2 é G ser overfull (O), ou seja, o número de arestas de G excede o produto do grau máximo de G $(\Delta(G))$ por $\lfloor n/2 \rfloor$. Se G possuir um subgrafo overfull~H com $\Delta(G) = \Delta(H)$, dizemos que G é subgrafo-overfull~(SO). Se, ainda, H for um subgrafo gerado pela vizinhança de um vértice de G, dizemos que G é vizinhança-overfull~(NO). Se G é O ou NO, G é SO. Provamos para uma certa subclasse dos cografos que SO é equivalente a O ou a NO.

1 Introdução

Dada uma coloração C das arestas de um grafo G, dizemos que C é v'alida se cada duas arestas incidentes no mesmo vértice não possuem a mesma cor. Chamamos de 'indice crom'atico de G, $\chi'(G)$, o menor número de cores necessário para que uma coloração de arestas de G seja válida.

Vizing [11] mostrou que o índice cromático de um grafo é o seu maior grau $(\Delta(G))$ ou o seu maior grau acrescido de um $(\Delta(G) + 1)$. Dizemos que $G \in Classe$ 1 se $\chi'(G) = \Delta(G)$ e que $G \in Classe$ 2 caso contrário. Esse problema é conhecido como o problema da classificação. É sabido que este problema é NP-Completo [8].

Uma condição suficiente para G ser Classe 2 é G ser overfull (O), ou seja,

$$|A(G)| > \Delta(G) * \lfloor |V(G)|/2 \rfloor,$$

onde V(G) é o conjunto de vértices de G, A(G) o conjunto de arestas de G e $\Delta(G)$ é o maior grau dentre os vértices de G. Se G possuir um subgrafo overfull H com $\Delta(H) = \Delta(G)$, dizemos que G é subgrafo-overfull (SO). Se, ainda, H for um subgrafo gerado pela vizinhança de um vértice, dizemos que G é vizinhança-overfull (NO). É fácil ver que se G é O, então é SO e pertence à Classe 2 e, se G é NO, também é SO e Classe 2. A Figura 1 mostra exemplos de grafos com alguma(s) destas propriedades.

^{*}Pesquisa desenvolvida com suporte financeiro do CNPq sob projeto 137284/96-9.

[†]Pesquisa desenvolvida com suporte financeiro parcial do CNPq.

[‡]Pesquisa desenvolvida com suporte financeiro parcial do CNPq e FAPESP.

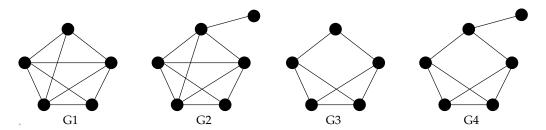


Figura 1: G_1 é O, SO e NO; G_2 é SO, NO e não O; G_3 é O, SO e não NO; G_4 é SO, não O e não NO.

A equivalência entre NO e SO é válida nos grafos split e nos grafos indiferença [4] e O e SO são equivalentes nos multipartidos completos [7], uma subclasse dos cografos.

Neste texto mostraremos que para uma certa subclasse dos cografos, SO é equivalente a O ou a NO.

Dizemos que um grafo simples G é um cografo se e somente se não possui P_4 (grafo caminho com 4 vértices) como subgrafo induzido. Por isso, um cografo também é conhecido como grafo sem P_4 . Também podem ser definidos, recursivamente, como ([1]):

- i. O grafo trivial é um cografo;
- ii. Se G_1, \ldots, G_k são cografos, então $G = G_1 \cup \ldots \cup G_k$ também é cografo.
- iii. Se G é cografo, então \bar{G} também é cografo.

Os cografos possuem uma única representação através de árvore: cotree ([2]). Esta representação é a chave para o reconhecimento linear da classe ([2]) e para a solução polinomial de alguns problemas clássicos como isomorfismo, número cromático, detecção de cliques, Hamiltonicidade, entre outros ([1]).

As folhas de uma cotree representam os vértices do cografo correspondente. Cada nodo interno representa uma operação $\bar{\cup}$ (união seguida de complemento); estes nodos internos são rotulados com 0 ou 1, de tal forma que esses rótulos se alternem por todo caminho que começa da raiz. Todo nodo terá dois ou mais filhos. Dois vértices x e y de um cografo são adjacentes se o "ancestral" mais próximo a x e a y na cotree, no sentido da raiz para as folhas, possui rótulo 1. A Figura 2 mostra um cografo e sua respectiva cotree.

Os cografos considerados neste texto são conexos. Portanto, toda *cotree* aqui descrita terá raiz com rótulo 1.

Na Seção, 2 mostramos resultados que traçam características de grafos que são O. Na Seção 3, localizamos os cografos como uma classe que pertence ao conjunto de grafos cercados pela conjectura de Hilton e Chetwind. Na Seção 4, apresentamos uma nomenclatura geral para os cografos. Na Seção 5, reescrevemos para uma certa subclasse dos cografos a condição de "overfulidade" usando a nomenclatura estabelecida e mostramos que nessa classe, grafos SO são O ou NO.

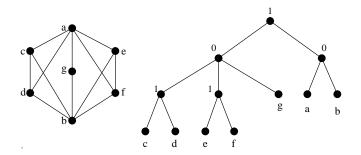


Figura 2: Exemplo de um cografo e sua respectiva cotree.

2 Características de Grafos Overfull

Nesta seção algumas características de grafos overfull serão relembradas.

Lema 1 Um grafo G é overfull se e somente se |V(G)| é impar e

$$\sum_{v \in V(G)} (\Delta(G) - gr_G(v)) \le \Delta(G) - 2.$$

Prova: Seja |A(G)| = m. Por definição, G é overfull se e somente se |V(G)| = n é impar e

$$m > \Delta(G) \frac{(n-1)}{2}$$

$$m \geq \Delta(G) \frac{(n-1)}{2} + 1$$

$$2m \geq \Delta(G)(n-1) + 2$$

$$-2m \leq -\Delta(G)(n+\Delta(G) - 2$$

$$\Delta(G)n - 2m \leq \Delta(G) - 2$$

$$\sum_{v \in V(G)} \Delta(G) - \sum_{v \in V(G)} gr_G(v) \leq \Delta(G) - 2$$

$$\sum_{v \in V(G)} (\Delta(G) - gr_G(v)) \leq \Delta(G) - 2$$

Definimos por vizinhança aberta de um vértice v em um grafo G, $N_G(v)$, ao conjunto de vértices que são adjacentes a v. A vizinhança fechada de v no grafo G, $N_G[v]$, é igual a $N_G(v) \cup \{v\}$.

Chamamos de grau de um vértice v em G, $gr_G(v)$, a cardinalidade de $N_G(v)$, ou seja, $gr_G(v) = |N_G(v)|$. Chamaremos v de Δ -vértice de G se $gr_G(v) = \Delta(G)$. O valor de $gr_G^*(v)$ é igual ao número de vértices em $N_G(v)$ que são Δ -vértices.

O Corolário 1 nos ajuda a verificar se um dado vértice de um grafo G pertence ao conjunto de vértices que gera um subgrafo overfull.

Corolário 1 Seja G um grafo overfull. Então para todo vértice $v \in V(G)$, $gr_G^*(v) \geq 2$.

Prova: Do Lema 1 temos que para todo $v \in V(G)$

$$\sum_{w \in N_{G}(v) \cup \{v\}} (\Delta(G) - gr_{G}(w)) \leq \Delta(G) - 2$$

$$\sum_{w \in N_{G}(v)} (\Delta(G) - gr_{G}(w)) + \Delta(G) - gr_{G}(v) \leq \Delta(G) - 2$$

$$gr_{G}(v) \geq 2 + \sum_{w \in N_{G}(v)} (\Delta(G) - gr_{G}(w))$$

A partir desta desigualdade, temos

$$gr_G(v) \geq 2 + gr_G(v) - gr_G^*(v)$$

$$0 \geq 2 - gr_G^*(v)$$

$$gr_G^*(v) \geq 2.$$

Se $S \subset V(G)$, chamamos de *corte de arestas*, $[S, \overline{S}]$, ao conjunto de arestas que une S aos demais vértices de G $(V(G)\backslash S)$. Usando o Lema 1, temos o seguinte resultado para a cardinalidade do corte de arestas de um subgrafo *overfull* H de G com $\Delta(H) = \Delta(G)$.

Corolário 2 Seja S um subconjunto dos vértices de G tal que $\Delta(G[S]) = \Delta(G)$. Se G[S] é overfull, então $|[S, \overline{S}]| \leq \Delta(G) - 2$.

Prova:

$$\begin{split} |[S, \bar{S}]| &= \sum_{v \in S} (gr_G(v) - gr_{G[S]}(v)) \\ |[S, \bar{S}]| &= \sum_{v \in S} (gr_G(v) + \Delta(G) - \Delta(G) - gr_{G[S]}(v)) \\ |[S, \bar{S}]| &= \sum_{v \in S} (\Delta(G) - gr_{G[S]}(v)) - \sum_{v \in S} (\Delta(G) - gr_{G}(v)). \end{split}$$

Por hipótese, G[S] é overfull. Então, pelo Lema 1, tem-se que

$$\begin{split} |[S,\bar{S}]| & \leq & \Delta(G[S]) - 2 - \sum_{v \in S} (\Delta(G) - gr_G(v)) \\ |[S,\bar{S}]| & \leq & \Delta(G) - 2 \end{split}$$

Outra preocupação envolvendo um grafo G que é SO, é acerca do número de subgrafos overfull com grau máximo igual a $\Delta(G)$ que G pode conter. Sabe-se que se este grafo tem grau máximo igual ou superior a |V(G)|/2, não conterá mais de um subgrafo overfull.

Teorema 1 ([9]) Seja G um grafo com $\Delta(G) \geq |V(G)|/2$. Se G possui um subgrafo overfull H com $\Delta(H) = \Delta(G)$, então H é único.

3 A Conjectura de Hilton\Chetwind e os Cografos

Conjectura 1 (Hilton e Chetwind [6]) Um grafo G com $\Delta(G) > \frac{|V(G)|}{3}$ pertence à Classe 2 se e somente se G é SO.

Esta conjectura foi evidenciada por vários autores, que trabalharam em casos específicos. M. Plantholt provou a veracidade da Conjectura 1 para grafos que possuem $\Delta(G) = n-1$ ([10]). A. G. Chetwynd e A. J. W. Hilton melhoraram este resultado, provando que a conjectura é verdadeira para grafos com $\Delta(G) \geq n-3$ ([9]). Além destes resultados, D. G. Hoffman e C. A. Rodger ([7]), demonstraram que os multipartidos completos, um subconjunto da família dos cografos, também satisfazem a conjectura.

Foi provado em [7] que um grafo multipartido G completo satisfaz $\Delta(G) > |V(G)|/3$. O teorema 2 estende esse resultado para a classe dos cografos.

Vamos chamar de $\alpha(i)$ ao conjunto de vértices pertencentes ao ramo i da cotree de G. Desta forma, uma cotree com r ramos definirá uma partição $(\alpha$ -partição) de V(G) com r elementos, $\alpha(1), \dots, \alpha(r)$. Considere $|\alpha(i)| = a(i)$.

Teorema 2 Se G é um cografo, então $\Delta(G) \geq n/2$.

Prova: Se G é um cografo, então admite uma *cotree* com r ramos. Teremos que $V(G) = \alpha(1) \cup \ldots \alpha(r)$.

Sem perda de generalidade, podemos supor $1 \le a(1) \le \ldots \le a(r)$.

Vamos construir um grafo G' da seguinte forma:

- 1. V(G') = V(G), e
- 2. $A(G') = A(G) \setminus \{(u, w) \mid u, w \in \alpha(i), \text{ para algum i, } 1 \le i \le r\}.$

Dessa forma temos que:

$$\Delta(G) \ge \Delta(G'). \tag{1}$$

Em G', os vértices que estão em $\alpha(1)$ tem grau $\Delta(G') = n - a(1)$.

$$\Delta(G') \ge^? \frac{n}{2}
n - a(1) \ge^? \frac{n}{2}
2 * a(1) \le^? n
a(1) + a(1) \le^? a(1) + a(2) + ... + a(r)
a(1) \le^? a(2) + a(3) + ... + a(r)$$

Como a(1) é o menor, então $a(1) \le a(2) + \ldots + a(r)$. Portanto

$$\Delta(G') \ge \frac{n}{2}.\tag{2}$$

De (1) e (2) temos que
$$\Delta(G) \geq \frac{n}{2}$$
.

Corolário 3 Se G é um cografo, então G possui no máximo um subgrafo H com $\Delta(H) = \Delta(G)$ que é overfull.

O Teorema 2 nos diz que todos os grafos pertencentes aos cografos estão dentro da Conjectura 1. Isto nos induz a procurar colorir com Δ cores, todos os cografos que não são SO.

4 Nomenclatura

Seja G um cografo e sua α -partição. Uma forma alternativa para formar $\alpha(i)$ é procurar o i-ésimo filho da raiz e, a partir deste nodo, verificar seu conjunto de folhas, sejam estas folhas "filhos", "netos", "bisnetos", etc. Denotaremos por f(i) o número de filhos daquele i-ésimo nodo. Se $f(i) \neq 0$, estenderemos nossa notação; denotaremos por $\beta(i,j)$ o conjunto de folhas do j-ésimo sub-ramo do i-ésimo nodo com $|\beta(i,j)| = b(i,j)$. Observe que $f(i) \leq a(i)$.

A Figura 2 exemplifica as definições acima: $\alpha(1) = \{c, d, e, f, g\}, \alpha(2) = \{a, b\},$ e como f(1) e $f(2) \geq 2$, temos $\beta(1,1) = \{c, d\}, \beta(1,2) = \{e, f\}, \beta(1,3) = \{g\}, \beta(2,1) = \{a\}$ e $\beta(2,2) = \{b\}.$

Note que os conjuntos definidos como $\beta(i,j)$ também formam uma partição para o conjunto de vértices de G. Neste caso, chamaremos esta decomposição de V(G) de β -partição.

Como estaremos trabalhando com G e, possivelmente, outro grafo H, usaremos "índices" pra diferenciar uma função ou conjunto de determinado grafo, por exemplo, $\alpha_G(i)$ é o i-ésimo elemento da α -partição de G, $f_H(i)$ é o número de filhos do i-ésimo elemento da α -partição de H. Quando os índices forem omitidos, estaremos fazendo referência ao grafo G.

Com esta notação, podemos escrever

$$|V(G)| = \sum_{i=1}^{r} a(i) = \sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j) = n.$$

5 Cografo de cotree completa de nível 3 - CCC3

Uma cotree de nível k é uma cotree com altura k. A raiz está no nível 0. Uma cotree completa de nível k é uma cotree de nível k com todas as folhas no nível k.

Um grafo trivial é um cografo de *cotree* de nível 0. Um grafo completo não trivial é um cografo de *cotree* de nível 1. Um grafo multipartido completo não trivial (algum conjunto independente é não trivial) é um cografo de *cotree* de nível 2.

Seja G um cografo com cotree completa de nível 3. Estamos estudando o comportamento de G em relação a coloração de arestas.

Para G temos sempre $f(i) \geq 2$, para $1 \leq i \leq r$, e $b(i,j) \geq 2$, para $1 \leq j \leq f(i)$. A Figura 3 mostra uma *cotree* completa de nível 3 genérica usando a nomenclatura acima.

O conjunto de arestas de G pode ser visto como o conjunto de arestas do grafo multipartido completo $(K_{\alpha(1),\dots,\alpha(r)})$ nos vértices da α -partição unido ao conjunto de arestas das cliques $(K_{\beta(i,j)})$ definidas pelos elementos da β -partição.

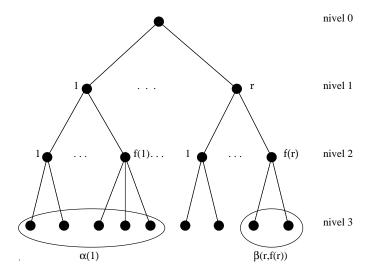


Figura 3: Árvore completa de nível 3.

Observe que os vértices de um mesmo elemento da β -partição possuem o mesmo grau. Dessa forma,

$$gr(i, j) = b(i, j) - 1 + n - a(i),$$

onde gr(i,j) é o grau dos vértices que pertencem ao j-ésimo elemento da β -partição que é o filho do i-ésimo elemento da α -partição. Observe que b(i,j)-1 é o grau destes vértices quando restrito à clique (que tem tamanho b(i,j)) e que n-a(i) é o grau no multipartido completo.

A cardinalidade de A(G) é dada por:

$$|A(G)| = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j)gr(i,j) = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j)(b(i,j) - 1 + n - a(i)) = m.$$

Vejamos o grau máximo de G.

$$\Delta(G) = \max_{i,j} gr(i,j) = \max_{i,j} (b(i,j) - 1 + n - a(i)).$$

Como 1 e n são constantes, podemos nos preocupar em maximizar b(i,j) - a(i), ou simplesmente, dado que $a(i) \ge b(i,j)$, minimizar a(i) - b(i,j) para saber quais elementos da α -partição possuem os vérticed de grau máximo em G.

Seja p(i,j) = a(i) - b(i,j). Consideremos uma ordenação dos elementos da β -partição, onde para cada elemento da α -partição $(\alpha(i)$ para $1 \leq i \leq r)$ $p(i,1) \leq p(i,2) \leq \cdots \leq p(i,f(i))$.

Seja $p(i) = min_{1 \le j \le f(i)} \{p(i,j)\}$. Consideremos uma ordenação tal que $p(1) \le p(2) \le \cdots \le p(r)$. Esta, origina uma ordenação nos elementos da α -partição. Dessa forma,

$$p(1) = min_{i,j}p(i,j),$$

o que faz

$$\Delta(G) = n - 1 - p(1).$$

Veja a Figura 4.

Reescrevendo, temos

$$|A(G)| = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j)(n-1-p(i,j)) = m.$$

Agora que temos uma notação para o número de arestas (m), para o número de vértices (n) e para o grau máximo $(\Delta(G))$ para G cografo de cotree completa de nível 3, podemos estudar de forma genérica quando este grafo é overfull.

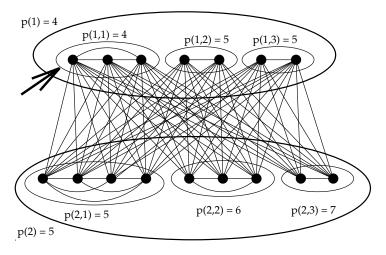


Figura 4: Cografo com as partições ordenadas por p(i, j) e p(i). O elemento $\beta(1, 1)$, indicado na figura, contém os vértices de grau Δ .

5.1 CCC3 Overfull

Seja m = |A(G)|. Usando a nomenclatura dada, temos que

$$m = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j)(n-1-p(i,j))$$

$$m = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} [(n-1)b(i,j) - b(i,j)p(i,j)]$$

$$m = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} (n-1)b(i,j) - \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j)p(i,j)$$

$$m = \frac{1}{2} (n-1)n - \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j)p(i,j)$$

Verifiquemos a condição para G ser overfull. O valor de n deve ser ímpar e

$$m > \frac{1}{2}\Delta(G)(n-1)$$

$$\frac{1}{2}(n-1)n - \frac{1}{2}\sum_{i=1}^{r}\sum_{j=1}^{f(i)}b(i,j)p(i,j) > \frac{1}{2}(n-1-p(1))(n-1)$$

$$\frac{1}{2}(n-1)n - \frac{1}{2}\sum_{i=1}^{r}\sum_{j=1}^{f(i)}b(i,j)p(i,j) > \frac{1}{2}(n-1)n + \frac{1}{2}(n-1)(-1-p(1))$$

$$\sum_{i=1}^{r}\sum_{j=1}^{f(i)}b(i,j)p(i,j) < (n-1)(1+p(1))$$

Lema 2 Seja G um cografo com cotree completa de nível 3 e n ímpar. Um grafo G é overfull se e somente se

$$\sum_{i=1}^{r} \sum_{j=1}^{f(i)} b(i,j)p(i,j) < (n-1)(1+p(1)).$$

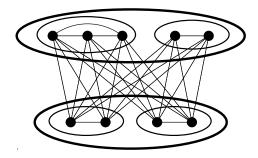


Figura 5: Cografo de *cotree* completa de nível 3 e *overfull* com a(1) = 5, a(2) = 4, b(1,1) = 3, b(1,2) = 2, b(2,1) = 2 e b(2,2) = 2.

A Figura 5 mostra o exemplo que um cografo que satisfaz o Lema 2.

5.2 CCC3 Subgrafo-Overfull

Nesta seção estaremos preocupados em encontrar cografos com cotrees completas de nível 3 que sejam SO.

O Corolário 3 (Seção 3) nos diz que se encontrarmos em algum cografo G um subgrafo overfull H com $\Delta(H) = \Delta(G)$, então H é o subgrafo overfull de G. Em [7] foi provado que todo cografo SO de cotree completa de nível 2 é, na verdade, O. Este resultado não se estende para cografos de cotree completa de nível 3. A Figura 6 mostra o exemplo de um cografo com 35 vértices distribuídos em a(1) = 30 com b(1,1) = 28 e b(1,2) = 2 e a(2) = 5 com b(2,1) = 2 e b(2,2) = 3. Este cografo não é overfull e possui um subgrafo próprio H gerado por $\beta(1,1) \cup \beta(2,1) \cup \beta(2,2)$ que é overfull. Logo, é SO. Observe que a cotree de H não é uma "subcotree" da cotree de G (Figura 7).

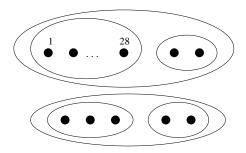


Figura 6: Cografo SO de cotree completa de nível 3.

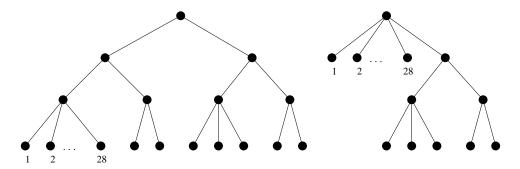


Figura 7: Cotree de G e cotree de $H = G \setminus \beta(1,2)$, respectivamente.

Lema 3 Sejam G um cografo de cotree completa de nível 3 e H um subgrafo induzido próprio de G com $\Delta(H) = \Delta(G)$. Então H é cografo de cotree de nível 3.

Prova: Seja H um subgrafo induzido de G com $\Delta(H) = \Delta(G)$, logo H é um cografo.

Como H é próprio $|V(G)\backslash V(H)|\geq 1$. Este conjunto $V(G)\backslash V(H)$ está contido em um único $\alpha(i),\ 1\leq i\leq r,\ \text{tal que }\alpha(i)\ \text{cont\'em}\ \Delta\text{-v\'ertices}$ de G, pois caso contrário, $\Delta(H)<\Delta(G)$. Sem perda de generalidade, seja i=1.

Por hipótese, G é um cografo de cotree completa de nível 3, então $r \geq 2$ e portanto H contém vértices no nível 3.

Lema 4 Sejam G um cografo com cotree completa de nível 3 e H subgrafo próprio induzido de G tal que $\Delta(G) = \Delta(H)$. Então todos os Δ -vértices de H pertencem a um único elemento da α -partição de G, $\alpha(i)$, e todo $v \in V(H) \backslash \alpha(i)$ satisfaz

$$gr_H(v) \le \Delta(G) - (|V(G)| - |V(H)|).$$

Prova: Sabemos que se $v \in \beta_G(i,j)$, então $gr_G(v) = n-1-p_G(i,j)$, onde $p_G(i,j) = a_G(i)-b_G(i,j)$ é o número de "primos" de v. Portanto, se $gr_G(v) = \Delta(G)$, $gr_H(v) = \Delta(H) = \Delta(G)$ e estamos retirando x vértices (|V(H)| = |V(G)| - x) para construir H, então esses x vértices devem ser retirados de $p_G(i,j)$ dentre os vértices que são "primos" de v.

Dessa forma os únicos vértices que tem grau $\Delta(G)$ também em H são aqueles para os quais $p_H(i,j) = p_G(i,j) - (|V(G)| - |V(H)|)$. Nestas condições o decréscimo em $p_G(i,j)$ deve ser igual ao decréscimo em n.

Para que $p_G(i,j)$ decresça o mesmo número de vértices que n, todos os vértices retirados devem ser primos de v. Dessa forma, todos os vértices que preservarem o grau máximo estão no mesmo elemento da α -partição de G.

Se $\alpha_H(i)$ é o elemento da α -partição de H que contém os $\Delta(H)$ -vértices e $w \in \alpha(i)$, então $qr_H(w) \leq \Delta(G) - (|V(G)| - |V(H)|)$.

Lema 5 Sejam G um cografo de cotree completa de nível 3 e H um subgrafo induzido overfull de G com $\Delta(H) = \Delta(G)$. Então todos os Δ -vértices de H estão em um único elemento da α -partição de G e nenhum vértice v deste elemento da partição com $gr_G(v) < \Delta$ pertence a H.

Prova: Pelo Lema 4, todos os Δ -vértices de H estão em um único elemento da α -partição de G.

Sem perda de generalidade, vamos supor que estes vértices estão em $\alpha_G(i)$. Seja $v \in \alpha_G(i)$, com $gr_G(v) < \Delta(G)$. Então, $gr_G^*(v) = 0$. Sendo H overfull, pelo Corolário 1, $v \notin V(H)$.

Teorema 3 Seja G um cografo SO com cotree completa de nível 3. Então, G é O ou G é NO.

Prova: Seja G um cografo SO de cotree completa de nível 3 que não é O. Então, G contém um subgrafo próprio $overfull\ H$ com $\Delta(G) = \Delta(H)$. Pela Lema 3, H é um cografo de cotree de nível 3.

Do Lema 5, todos os Δ -vértices de H pertencem a um único elemento da α -partição de G e nenhum vértice v deste elemento da partição com $gr_G(v) < \Delta$ pertence a H. Seja D(H) o conjunto dos Δ -vértices de H. Logo, $|D(H)| = kb_G(1,1)$, com $k \geq 1$.

Ainda, do Lema 4 temos que todo vértice $v \in V(H) \setminus \alpha_G(1)$ tem $gr_H(v) \leq \Delta(G) - x$, onde x = |V(G)| - |V(H)|. Sendo H um subgrafo próprio de G, x é um inteiro positivo.

Como H é overfull, então $|[V(H), \overline{V(H)}]| \leq \Delta(G) - 2$ (Corolário 2).

Uma vez que $|[V(H), \overline{V(H)}]| \ge x(|V(H)| - |D(H)|)$, nosso cálculo segue em $\Delta(G) - 2 \ge x(|V(H)| - D(H))$. (Lembrando que $\Delta(G) = |V(G)| - 1 - p_G(1) = |V(H)| - 1 - |D(H)| + b_G(1, 1)$.)

$$\Delta(G) - 2 \geq x(|V(H)| - |D(H)|)
\Delta(G) \geq x(\Delta(G) - b_G(1, 1) + 1) + 2
\Delta(G) \geq x\Delta(G) - x(b_G(1, 1) - 1) + 2
(x - 1)\Delta(G) \leq x(b_G(1, 1) - 1) - 2
\Delta(G) \leq \frac{x(b_G(1, 1) - 1) - 2}{(x - 1)}$$

Como, por hipótese, a cotree de G é completa, x>1. Observe, ainda, que $1<\frac{x}{(x-1)}\leq 2$. Temos que

$$\Delta(G) \le 2b_G(1,1) - 4.$$

Tome $w \in V(H) \setminus D(H)$; $gr_H(w) = kb_G(1,1) + q$, onde q é o número de vértices em sua vizinhança que não estão em D(H). Do Lema 4, tem-se que $gr_H(w) \leq \Delta(G) - x$. Logo, $gr_H(w) < \Delta(G)$ e

$$kb_G(1,1) + q < 2b_G(1,1) - 4$$

 $kb_G(1,1) - 2b_G(1,1) < -(q+4)$
 $b_G(1,1)(k-2) < -(q+4)$

Com a desigualdade acima, obrigatoriamente teremos

Logo k=1 e H será gerado pela vizinhança de um Δ -vértice. Portanto, G SO com subgrafo H próprio é NO.

6 Conclusão

Para os grafos multipartidos completos, uma subclasse dos cografos, sabíamos que O equivale a SO ([7]). Esta afirmação não é sempre verdadeira para os cografos. Mesmo para os que possuem cotree completa de nível 3, temos exemplos de grafos que são SO e não são O (veja Figura 6). O Teorema 3 afirma que estes cografos tem de ser NO.

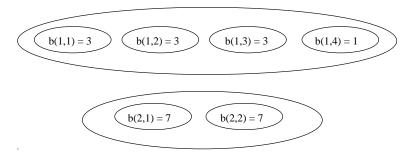


Figura 8: $G[V(G)\backslash\beta(1,4)]$ é overfull.

A Figura 8 mostra que o Teorema 3 não pode ser estendido para cografos que possuem cotree de nível 3 que não são completas. O exemplo exibe um cografo de cotree de nível 3 que é SO e possui subgrafo $H = G[V(G)\backslash\beta(1,4)]$ overfull com $f_H(1) = 3$. Logo G não é NO.

Um algoritmo para testar se um grafo é SO, necessita de encontrar um corte mínimo em um grafo especial ([5]). Para os cografos com *cotree* completa de nível 3, com uma simples contagem obteremos essa informação.

Nosso objetivo, agora, é verificar se a subclasse dos cografos com *cotree* completa de nível 3 é mais uma evidência para a conjectura de *Hilton* e *Chetwind*.

7 Agradecimentos

Agradecemos a Prof. Celina M. H. de Figueiredo (*Instituto de Matemática-UFRJ*, *Rio de Janeiro-RJ*) pelas sugestões e leitura cuidadosa durante a fase de preparação deste texto.

Referências

- [1] D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs. *Discrete Applied Mathematics*, 3:163–174, 1981.
- [2] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. Siam Journal on Computing, 14(4):926-934, 1985.
- [3] C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. On edge-colouring indifference graphs. *Theoretical Computer Science*, 181:91–106, 1997.
- [4] C. M. H. Figueiredo, J. Meidanis, and C. P. Mello. Local conditions for edge-colouring. Anais da II Oficina Nacional em Problemas Combinatórios: Teoria, Algoritmos e Aplicações, 1995. Submetido para Journal of Combinatorial Mathematics and Combinatorial Computing.
- [5] C. M. H. Figueiredo, J. Meidanis, and C. P. Mello. Coloração em grafos. In XVI Jornada de Atualização em Informática, pages 39–83. Sociedade Brasileira de Computação, 1997.
- [6] A. J. W. Hilton. Two conjectures on edge-colouring. *Discrete Mathematics*, 74:61–64, 1989
- [7] D. G. Hoffman and C. A. Rodger. The chromatic index of complete multipartite graphs. Journal of Graph Theory, 16(2):159–163, 1992.
- [8] I. Holyer. The NP-completeness of edge-colouring. Siam Journal on Computing, 10(4):718-720, 1981.
- [9] T. Niessen. How to find overfull subgraphs in graphs with large maximum degree. Discrete Applied Mathematics, 51:117–125, 1994.
- [10] M. J. Plantholt. The chromatic index of graphs with a spanning star. *Journal of Graph Theory*, 5:45–53, 1981.
- [11] V. G. Vizing. On an estimate of the chromatic class of a p-graph. *Diket. Analiz.*, 3:25–30, 1964. (In Russian).