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Abstract

In this paper, we investigate the effectiveness of selective discard in a multiplexer subject to a

long-range dependent process. We consider loss conserving disciplines, and we evaluate the

impact of the input process traffic characteristics such as the Hurst parameter and variance into

the per class loss rate and the loss gap. We found out that the Complete Sharing discipline is

clearly worth adopting whereas Complete Sharing with Guaranteed Queue Minimum may be not.

Furthermore, we show that the choice of push out policy may impact significantly the perceived

QoS.
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I) Introduction
Several studies [1]-[4] have claimed that different types of network traffic,e.g. local area net-

work traffic (LAN), can be accurately modeled by a self-similar process. Even though the self-

similar nature of network traffic has not been fully understood, a self-similar process is able to

capture the long-range dependence (LRD) phenomenon exhibited by this traffic. Moreover, a

series of simulation and analytical studies [5]-[10] demonstrated that this phenomenon might

have a pervasive effect on queueing performance,i.e., there is clear evidence that it can poten-

tially cause massive cell losses in ATM networks. In fact, Norros [8] and Duffield [11] showed

that the buffer overflow probability for an ATM queueing system with fractional Brownian arriv-

als follows a Weibull distribution. Furthermore, this queueing system suffers from the buffer inef-

ficacy phenomenon [7], [12],i.e., by just increasing the buffer size we are not able to decrease the

buffer overflow probability considerably.

Different multimedia applications have diverse loss requirements. For instance, a telephone

conversation my afford a loss rate of 10-3, whereas an MPEG video transmission may tolerate a

loss rate of the order of 10-9. Coping with different loss requirements is a challenging task. Selec-

tive discard is a congestion control mechanism aimed at enabling the network to deal with diverse

loss requirements [13], [14]. In a selective discard mechanism cells are discarded in an overflow

situation according to their priority level. Selective discard has been studied in the past few years.

However, most of these studies considered short-range dependent processes.

In this paper, we investigate the effectiveness of selective discard mechanism in a multiplexer

subject to a long-range dependent process. We consider loss conserving disciplines, and we eval-

uate the impact of the input process traffic characteristics such as the Hurst parameter and vari-

ance into the per class loss rate and the loss gap length [15]. We found out that the Complete

Sharing discipline is clearly worth adopting, whereas Complete Sharing with Guaranteed Queue

Minimum [16] may be not. Furthermore, we show that the choice of push out policy may signifi-

cantly impact the perceived QoS. Our study is a first step in understanding end-to-end loss phe-

nomenon in networks driven by realistic LRD processes [17], [18].

This paper is organized as follows: Section II introduces the Fractional Brownian Motion pro-

cess. Section III explains the buffer inefficacy phenomenon. Section IV briefly introduces selec-

tive discard mechanisms. Section V describes the traffic generator used in this paper. In Section

VI the main findings are discussed. Finally, conclusions are drawn in section VII.
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II) Fractional Brownian Motion

The ordinary Brownian motion,B(t), describes the movement of a particle in a liquid sub-

jected to collisions and other forces [19]. It is a real random function with independent Gaussian

increments such that

Mandelbrot defines fractional Brownian motion (fBm) as being the moving average of dB(t)

in which past increments ofB(t) are weighted by the kernel(t-s)h - 1/2[20].

Definition:

Let H be such that0 < H < 1. The fBm is defined as the Weyl’s fractional integral ofB(t).

This equation leads to the ordinary Brownian motion ifH = 1/2. Its self-similar property is

based on the fact thatBH(ρs) is identical in distribution toρh * BH(s). The increments of the fBm,

Yj form a stationary sequence called fractional Gaussian noise (fGn):

We should note that these increments are not independent unless you have pure Brownian

motion, i.e., H = 1/2. Moreover, Hurst law states thatVar[BH(t+s) - BH(t)]= σs2H, i.e., a fBm

arrival model is also able to capture the inherent highvariability exhibited by real network traffic.

III) The Buffer Inefficacy Phenomenon

The buffer inefficacy phenomenon is the queueing phenomenon in which by just increasing

the buffer size, we are not able to decrease the buffer overflow probabilityconsiderably. This phe-

nomenon has been reported earlier by several other studies [7],[12], [21]. In this section, we

present a very intuitive explanation for it and show that it is of particular importance when the

traffic source exhibits long-range dependence.

We model an ATM node as a deterministic queueing system with constant departure rate

given byc and finite buffer size given byb. The input traffic is given by the stochastic processA(t)

with mean input rate . It defines the aggregate number of cell arrivals up to time .
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Assume that the buffer overflow occurs at timet so that we can write . Moreover,

.

By the law of large numbers, the average arrival rate  converges to its mean . There-

fore, the probability that it exceeds the term  decreases witht

In other words,  is a decreasing function with time. The buffer inefficacy phenomenon

occurs, if the buffer overflow probability given by  decaysslowly with t, i.e. if  is non-

negligible for larget. In this case, sincet is large, the term  is negligible. Therefore, even if

we increase the buffer size, we are not able to increase the term  significantly in order to

decrease the cell loss probability. Intuitively, this phenomenon occurs if the arrival process is able

to transmit athigh rates for very long periods of time,i.e. if it converges slowly to its mean. We

show that a LRD source can transmit athigh rates for very long periods of time. Following Nor-

ros’ work [8], assume that the arrival process  is a fractional Brownian motion (fBm) pro-

cess given by  where  is the mean input rate,  is the standard

deviation,  is the self-similar (Hurst) parameter andZ(t) is a normalized fractional

Brownian motion. WhenH=1/2, we have the special case of the ordinary Brownian motion. The

probability that over a time interval of lengtht the source  can overcome the potential ser-

vice ct and further exceed a buffer levelb is given by:

By the self-similarity property , we have:

where  is the residual distribution function of the standard Gaussian

distribution. In fact, using the approximation:

we obtain:
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 (1)

We compute Equation 1 for two sources with same mean, standard deviation and Hurst

parameterH=0.50andH=0.85 respectively. We choose the link bandwidth so that the link utiliza-

tion given by is50%. Figure 1 shows the results. We can see that the probability of buffer over-

flow for the LRD source decays very slowly with time. Therefore, increasing the buffer size is not

enough to accommodate the strong low-frequency component of this source in order to avoid cell

losses. On the other hand,ψ decays very fast in the case of uncorrelated arrivals (Brownian

motion).

We also find a minimizer  so that the overflow probability is maximized.

This corresponds to a likely time scale on which overflow occurs in this system. Therefore,  is

given by

The same result was derived independently by Addie in [24] and Ryu in [25]. We note that

since the probability of buffer overflow for the LRD source decreases slowly with time, the prob-

ability of buffer overflow at time  is not an accurate estimate for the buffer overflow probability

at steady state. In other words, if we estimate the buffer overflow probability in a queueing system

driven by a LRD source by the overflow probability at time  we might not capture the heavy tail

exhibited by Equation 1 leading to inaccurate results.

IV) Selective Discard Mechanism

Due to the bursty nature of multimedia sources, cell loss always occurs in networks based on

statistical multiplexing, such as ATM networks. The only way to avoid loss is to allocate band-

width based on a source peak rate which, obviously, makes statistical multiplexing ineffective.

The QoS requirements of an application are usually translated into two main performance met-

rics: the loss rate (the ratio between the lost cells and the total number of transmitted cells) and the

length of the gap loss (the number of cells consecutively lost). Different multimedia applications

have different loss requirements. Coping with different requirements is a challenging task. Selec-

tive discard is a mechanism aimed at enabling the network to deal with diverse loss requirements.
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In a selective discard mechanism cells are discarded in overflow situations according to their pri-

ority level.

Although the loss rate is a meaningful and measurable parameter, it is an average value and it

does not entirely describe the loss process. The number of cells consecutively lost (loss gap) gives

a more detailed description of the loss process. For a certain value of loss rate, cells may be lost in

several different ways. For instance, for a loss rate of 0.25, we may lose one cell out of every four

cells or we may lose a quarter of the total number of cells in a role. Depending on the signal

recovery procedure at the receiver side, the length of the loss gap may have different impact on

user’s perceived QoS.

Selective discard is related only to the management of the buffer space and not to the trans-

mission order. A selective discard mechanism is completely specified by a buffer organization

policy and by a push-out policy. A buffer organization policy defines which buffer slot may be

occupied by which cell, a push-out policy chooses a cell to be discarded among the cells with the

lowest priority.

Our investigation considers two buffer policies: Complete Sharing (CS) with Push out and

Complete Sharing with Guaranteed Queue Minimum (CSGQM). In a CS policy low priority cells

are pushed out from the buffer in an overflow situation. Similarly to CS, in a CSGQM, low prior-

ity cells are discarded during buffer overflows, however, we guarantee a minimum queue length

to the low priority cells in an overflow scenario. Both CS and CSGQM are loss conserving disci-

pline. In a loss conserving discipline, (fixed size) cells are lost only in overflow situations. In

other words, a loss-conserving discipline always admits a cell into the buffer if there is available

space. An example of non-work-conserving discipline is Partial Sharing in which low priority

cells can occupy up to a certain buffer position. Loss-conserving queues are of special interest

because they minimize the overall cell loss and consequently maximizes the throughput.

The priority level of a cell can be defined either statically or dynamically. If statically

assigned, the priority level indicates the importance of a cell. Cells which carry important infor-

mation in a traffic stream, such as MPEG I frames cells, should have high priority. Moreover, if all

cells of an application have the same priority level, they indicate the loss requirements of that

application. Dynamically assigned priorities are usually related to the discrepancy between the

negotiated and the actual transmission pattern of a connection, i.e., a policing mechanisms marks

as low priority cells whose transmission time corresponds to violation periods (periods in which
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the transmission characteristics of a connection do not conform to the values negotiated at the

connection admission time) [26].

In order to capture the priority pattern of dynamically assigned priorities, we consider that the

probability of a cell belonging to a certain priority class (priority probability) depends on the pri-

ority of the previous cell in the flow. After a period with no-arrivals, the priority probability of the

first arriving cell is independent of any other cell in the flow. Thus, the “memory” of the priority

classification exists between two no-arrival periods. Let us define:

P (high / no)- is the probability that the first cell after a period with no arrivals be high prior-

ity;

P (high / high)- is the probability of a cell being high priority given that the previous one was

also high priority;

P (low / low)- is the probability of a cell being low priority given that the previous one was

also low priority;

We define a correlation measureγ asP (high / high)+ P (low / low)- 1. If P (high / no)=

P (high / high) = 1 -P (low / low)(and consequentlyγ = 0) we have independent priorities. A pos-

itive value ofγ indicates that cells of at least one of the classes tend to be agglutinated in bursts,

meanwhile a negative value ofγ shows that for at least one class there is no tendency of burst for-

mation. The maximum value ofγ (=1) happens whenP (high / high)= P (low / low)= 1 and cor-

responds to the situation in which we have whole bursts of just one priority level.

A push-out policy selects a cell to be dropped among the low priority cell. The most common

policies are Last-In-First-Drop (LIFD), First-In-First-Drop (FIFD), Random selection (RAND)

and Modified-FIFD (M-FIFD). The modified-FIFD [27] policy always drops the oldest low prior-

ity cells to make room for an arriving cell irrespective of its class. Dropping low priority cells at

different positions define different queue distribution over a certain period of time and conse-

quently may differently affect the perceived QoS. Let us give an example (Figure 2). Let us sup-

pose that there are two low priority cells in the queue, one at the tail and the other at the head of

the queue. An incoming high priority cell finds the buffer full. According to the LIFD policy, the

low priority cell at the tail of the queue will be dropped, and according to the FIFD policy the one

at the head of the queue will be the one dropped. Sometime later, after several high priority arriv-

als, the buffer is full again and a high priority arrival occurs. In the LIFD, the cell at the head of



9

the queue at the previous high priority arrival (which was not dropped) has already been transmit-

ted, and consequently the high priority cell is lost. For FIFD, however, the low priority cell at the

tail of the queue at the previous high priority arrival was not dropped and can now be dropped to

make space for the new high priority cell. M-FIFD brings the difference between FIFD and LIFD

to its maximum because M-FIFD tries to concentrate the low priority cells at the tail of the queue

and consequently maximize the likelihood that a low priority cell be dropped. Consequently, M-

FIFD minimizes the high priority loss rate [27].

An in-depth view of selective discard mechanism can be found in [13].

V) A Fractional Gaussian Noise Generator

There are several algorithms for generating a fBm trace [28],[29]. More recently, new meth-

ods were developed. Huang [9] proposes a simulation method based on importance sampling,

Pruthi [31] uses nonlinear chaotic maps and Lau [30] uses a random midpoint displacement algo-

rithm. In this work we decide to use an algorithm proposed originally by Mandelbrot and

improved latter by Chi [32]. It generates a discrete-time fGn sample. Our decision is based on the

following factors: i) this algorithm is based on a sum of Markov processes, therefore our future

work will investigate possible numerical solutions for this system, ii) the fBm samples are com-

posed of a sum of a low and a high-frequency processes, hence it is suitable to investigate the con-

tributions of each frequency component to the system performance, iii) it is a relative fast

algorithm, it takes about 4 minutes to generate a million sample points on a Pentium 90 machine.

Discrete fractional Gaussian noise processes normalized to have zero mean and unit variance

are Gaussian random processes having the autocovariance function [18]:

 =

The method proposed by Chi [16, 17] approximates the fGn by a sum of a low-frequency and

a high-frequency Markov process. The resulting aggregate process has an autocovariance func-

tion very similar to [1]. We should point out that the autocorrelation of a single Markov process

decays exponentially while the fGn autocorrelation decays linearly. Therefore, we need a sum of

independent Markov processes in order to obtain this same correlation structure. An arbitrary
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value of autocorrelation, approximately1/3, is chosen as a threshold value to separate the low and

high frequency components. Consider:

whereXL andXH denote low and high frequency terms respectively.Xf is the aggregate pro-

cess. For large lags (s) the covariance ofXL(t), CL(s;H), is approximately:

Instead of approximating the low-frequency term by a single Markov process, a weighted sum

of N standardized Markov-Gauss processes is used.

The Markov-Gauss,M(n)(t), are assumed to be pairwise uncorrelated. The objective is to cal-

culateWn so that the covariance ofXL(t) matchesCL(s;H). Therefore, after some calculation we

get:

for , where  is the gamma function.

The deficiency due to the approximation isD(s;H) = C(s;H) - CL(s;H).

We use another Markov-Gauss process to make-up the high-frequency deficiency [7]. This

process should have varianceD(0;H) and lag one covarianceD(1;H) so that the covariance of the

sum of the low frequency and high frequency process will have a self-similar structure [1]. The

approximation of the fGn is given by:

VI) Numerical Examples

To evaluate the efficacy of selective discard mechanisms under LRD processes, we analyze a

queue fed by a fbm which is generated by the procedure described in section V. We consider

queues with Complete Sharing and with Complete Sharing with Guaranteed Queue Minimum.
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We evaluate the impact of traffic parameters such as mean, variance and the Hurst parameter on

the per class loss rate and loss gap length. Furthermore, we also investigated the influence of

queue parameters such as buffer size, level of protection (level of guaranteed queue minimum)

and push-out policy on the mentioned performances.

Figure 3 shows the loss rate as a function of the buffer size for different values of the Hurst

parameterH considering a CS queue with FIFD push out policy (if not mentioned otherwise,

FIFD is the push out policy for all examples in this section). The mean arrival rate (ρ) the vari-

ance (σ2), P (high / high) andγ for this figure are 0.8, 1.0, 0.7, and 0.0, respectively (note that

whenγ = 0.0 we haveP (high / high) = P (high / no) = 1 - P (low / low)). We notice that for high

values of the Hurst parameter (H > 0.8) the high priority loss rate is almost insensitive to the

buffer size. Therefore, introducing selective discard has a minor impact for this range of the Hurst

parameter. For lower values ofH, the high loss rate decreases as we increase the buffer size. For

instance, we are able to reduce the loss rate in this specific example of an order of magnitude

every 200 buffer slots. The low priority loss rate is in the order of the total loss rate. Figure 4 and

5 shows the high priority and the low priority loss rate for the CSGQM discipline. We notice that

for a protection level of 10% (of the total buffer size) CSGQM gives almost the same results of

the results given by CS. For a level of protection of 20%, we are still able to offer differentiated

services. However, a level of protection of 30% high and low priority classes have almost the

same loss rate,i.e., we completely eliminate the advantage of selective discard. Furthermore, we

point out that guaranteeing a minimum buffer space for the low priority class slightly decreases its

loss rate. In other words, under LRD processes, CSGQM increases the high loss rate and does not

decrease the low priority loss rate significantly.

In Figure 6 we evaluate the loss rate as a function of the variance for different values of the

Hurst parameter considering a CS queue. As we increase the variance, we also increase the high

priority loss rate irrespective of the Hurst parameter value since the buffer overflow probability

given by Equation (1) increases with the variance. We point out that we are able to offer a selec-

tive service for high variance values only for low values of the Hurst parameter. Figure 7 and 8

shows the high and low priority loss rate for the CSGQM discipline, respectively. We note that for

a protection level of 10% CSGQM gives similar results to CS. As we increase the protection level

to 20% for higher values of the variance there is almost no difference between the high and the

low priority loss rate specially for high values of the Hurst parameter. For low values ofH the dif-
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ference is not highly significant (two orders of magnitude). For a level of protection of 30% the

two loss rates have almost the same value. Moreover, for the low priority class, the protection

level has no influence on the loss rate for high variance values. This lack of sensitiveness to the

level of protection may be due to the fact that most of the low priority loss may occur in long

bursts.

In Figure 9 we analyze the relationship between the Hurst parameter and the priority correla-

tion of a flow. In Figure 9.a we consider different values ofγ by varyingP (high / high). We

observe that the high priority loss rate for higher values ofP (high / high) is always greater than

for lower values ofP (high / high) because for higher values ofP (high / high) we have longer

burst of high priority cells, and consequently we have longer high priority bursts in overflow situ-

ations. As we increase the Hurst parameter, we increase the overall loss rate and the difference

between the loss rate given by a high value ofP (high / high) and a low value ofP (high / high)

decreases. For high values of the Hurst parameter (H = 0.85) the difference in the high priority

loss rate forP (high / high) values of 0.8 and 0.6 can be of two orders of magnitude, whereas for

lower values ofH, the difference is of three order of magnitude. In Figure 9.b we increaseγ by

increasingP (low / low). Again, as we increaseH, we increase the overall loss rate, and conse-

quently the high priority loss rate. For higher values ofP(low/low) we have lower values of the

high priority loss rate since we increase the probability that a high priority cell finds long

enqueued bursts of low priority cells in overflow situations. The difference on the high priority

loss rate given by aP (low / low) of 0.8 and by aP (low / low) of 0.5 can be of four orders of mag-

nitude. Similar behavior was observed for CSGQM except that as we increase the level of protec-

tion we increase the high priority loss rate.

To evaluate how the introduction of different push out policies may affect the per class perfor-

mance in a network with LRD traffic we compare the Last-in-First-Drop, Random selection,

First-in-First-Drop and Modified-First-in-First-Drop disciplines. As explained in section IV, dis-

tinct queue distribution produced by different push out policies may mainly influence the high pri-

ority loss rate and the low priority loss gap length. We initially discuss the relationship between

the push out policies and the high priority loss rates.

In Figure 10.a we plot the high priority loss rate as a function of the buffer size. It is evident

that the push out policy has a major impact on the high priority loss rate. The difference between

the results given by LIFD and the results given by M-FIFD can be as high as three orders of mag-
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nitude for large buffer size and as low as one order of magnitude for small buffer sizes. We also

observe that FIFD and M-FIFD give similar results. In Figure 10.b we show results for CSGQM

with a protection level of 20%. It is possible to reduce the high loss rate by an order of magnitude

when we use M-FIFD. This advantage disappear with higher degree of protection.

When investigating the dependence of the high priority loss rate on the variance, we verify

that for low values of the variance it is possible to obtain a difference of an order of magnitude.

However, it is almost non-existing for high variance value.

Figure 11 indicates that for short burst of high priority cells (P (high / high) =0.6) it is possi-

ble to have a difference of two orders of magnitude while for long bursts (P (high / high) =0.8),

there is no significant difference in the result produced by these policies. This happens because

with longer bursts of high priority cells we lose a higher percentage of high priority cells in over-

flow situations. Finally, we observe that the difference of the high priority loss rate produced by

these policies is almost constant if we vary the offered load maintaining constant the other traffic

parameters (Figure 12). In summary, we can state that thePhigh (LIFD) > Phigh (RAND) >

Phigh (FIFD) > Phigh (M-FIFD) wherePhigh is the high priority loss rate, and that FIFID and M-

FIFD produce quite similar results.

Although useful the loss rate is an average value which does not fully describe the loss pro-

cess. On the other hand, the length of the loss gap provides more information about the loss pro-

cess. Using the average gap length to compare different policies may be misleading given that

most of the loss gap are of small size which brings the mean to a value which hides relevant infor-

mation. Therefore, we focus our discussion on the gap length distribution and specially on the

maximum values of the gap length. In the following figure we display a set of distributions associ-

ated with one replication run of our simulation experiment. We show the set of distributions

which best represents the average pattern observed among all the replications.

Figure 13 shows the LIFD, FIFD and M-FIFD distributions for a buffer size of 100. We notice

that the maximum gap length of FIFD and M-FIFD are twice the value of LIFD maximum value.

The maximum value for RAND (not shown) is close to the LIFD maximum value. We notice that

by increasing the buffer size the difference between the maximum value decreases. M-FIFD

always gives the highest maximum value followed closely by FIFD and then by RAND and

finally by LIFD. For instance, for a buffer size of 800 the maximum gap length for LIFD, RAND,

FIFD and M-FIFD are 730, 750, 870 and 990, respectively. LIFD always gives the lowest maxi-
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mum value because an eventual transmission of a cell close to the head of the queue breaks down

a long loss burst. Conversely, M-FIFD always tries to concentrate the low priority cells at the tail

of the queue increasing their chance of being dropped, and consequently gives the highest maxi-

mum value. Figure 14 shows the same scenario for CSGQM with 20% of buffer protection. We

notice that guaranteeing a certain percentage of the buffer space for the low priority cells brings

down the maximum gap length for all policies except for M-FIFD. As the buffer size increases,

the maximum gap length also increases, however, to lower values when compared to CS. For

instance, the maximum length with a buffer size of 800 for LIFD, RAND, FIFD and M-FIFD are

130, 150, 400 and 500, respectively. We observe that the low priority gap length is highly sensi-

tive to the Hurst parameter. Figure 15a and 15.b show the M-FIFD distributions forH = 0.75 and

H = 0.8, respectively. We found out that the FIFD (~ 1800) and the M-FIFD (1800) maximum val-

ues forH = 0.8 are almost three times the value forH = 0.7 (~ 600). For LIFD and RAND disci-

plines the maximum gap length value forH = 0.8 (~500) is almost twice the maximum value for

H = 0.75 (~ 250).

The offered load obviously affects the low priority gap length. For a CS queue and an arrival

rate of 0.75 the maximum gap length for LIFD, RAND, FIFD and M-FIFD are 400, 400, 450 and

500, respectively, whereas they are 500, 600, 800 and 850 for an offered load of 0.85. For a

CSGQM queue with 20% of buffer protection and same traffic parameters these values are 50, 70,

140 and 250 for an offered load of 0.75 and 70, 90, 400 and 500 for an offered load of 0.85.

The gap length is also highly sensitive to the variance of the input process. For a CS queue

and variance of 1.0 the maximum length of LIFD, RAND, FIFD and M-FIFD are 100, 120, 500

and 1000, respectively, whereas for a variance value of 2.5 they are 4500, 4700, 5300 and 9000.

For CSGQM these values are 100, 120, 470 and 950 for a variance value of 1.0 and 150, 190,

1400 and 5000 for a variance of value 2.5. These values clearly indicates the benefits of buffer

protection for the low priority class.

VI) Conclusions

In this paper, we investigated the effectiveness of selective discard mechanisms based on

Complete Sharing with Push out and Complete Sharing with Guaranteed Queue Minimum in pro-

viding differentiated services under long-range dependent processes.

Results based on the assumption of having a FIFD push out policy indicated that the Hurst
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parameter has a major influence on the efficacy of selective discard mechanism based on the CS

discipline. For high values of the Hurst parameter (H > 0.8) there is a slight decrease on the high

priority loss rate even for large buffers (> 800). Conversely, for low values of the Hurst parameter,

the high priority loss rate decreases as we increase the buffer size. For queues based on CSGQM,

the high priority loss rate significantly increases with a level of protection of 20%. Additionally,

no significant impact on the low priority loss rate was observed. These findings indicate that

selective discard based on CS is worth adopting for low values of the Hurst parameter (< 0.8)

while it does not make sense at all for the CSGQM discipline.

We also pointed out that the push out policy has a great impact on the results. The M-FIFD

discipline minimizes the high priority loss rate and it can give a loss rate three order of magnitude

lower than does LIFD. Results based on FIFD are very close to those given by M-FIFD which

reinforce the conclusions drawn above. FIFD is less complex to implement since it requires less

buffer shifting than M-FIFD does. Thus, FIFD is an attractive option for implementing in an ATM

switch. Regarding the maximum gap length, we verified that M-FIFD can give a value which may

be three times higher than the maximum loss gap given by LIFD. We also observe that the buffer

protection mechanism (CSGQM) can reduce significantly the maximum gap length. Furthermore,

the maximum loss gap is very sensitive to the Hurst parameter. Finally, we mention that findings

for long-range dependent processes are quite different from results for short-range dependent pro-

cesses [15].
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Figure 1: The Buffer Inefficacy Phenomenon.
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Figure 2: An Example of a Cell Loss due to Different Queue Length Distributions Produced by

the LIFD and the FIFD Push out Policies.
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Figure 3: Loss Ratex Buffer Size for Different Values of the Hurst Parameter and a CS Queue,

ρ = 0.8,σ2 = 1,P (high / high) = 0.7,γ = 0.0.
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Figure 4:, High Priority Loss Ratex Buffer Size for Different values of the Hurst Parameter and a
CSGQM Queue with Different Levels of Protection: 10% (Figure 4.a), 20% (Figure4.b) and 30%

(Figure 4.c),ρ = 0.8,σ2 = 1,P (high / high) = 0.7,γ = 0.0.
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Figure 5:, Low Priority Loss Ratex Buffer Size for Different Values of the Hurst Parameter and a
CSGQM queue with Different Levels of Protection: 10% (Figure 5.a), 20% (Figure 5.b) and

30% (Figure 5.c),ρ = 0.8, σ2 = 1, P (high / high)= 0.7,γ = 0.0
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Figure 6: Loss Ratex Variance for Different Values of the Hurst Parameter and a CS Queue,
Buffer Size = 400,ρ = 0.8,P (high / high) = 0.7,γ = 0.0.
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Figure 7:  High Priority Loss  Ratex Variance for Different Values of the Hurst Parameter and a
CSGQM Queue with different Levels of Protection: 10%  (Figure 7.a) ,  20% (Figure 7.b) and

30% (Figure 7.c) Buffer Size = 400,ρ = 0.8, P (high / high) = 0.7,γ = 0.0.
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Figure 8:  Low  Priority Loss  Ratex Variance  for Different Values of the Hurst Parameter and a
CSGQM Queue with Different Levels of Protection: 10%  (Figure 8.a) , 20% (Figure 8.b) and

30% (Figure 8.c) Buffer Size = 400,ρ = 0.8, P (high / high) = 0.7,γ = 0.0.
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Figure 9: High Priority Loss Ratex Hurst Parameter for Different Values ofP(high / high) and
P(low / low)= 0.5 (Figure 9.a) and for different values ofP(low / low)and

P (high / high) = 0.8 (Figure 9.b) and a CS queue, Buffer Size = 250,ρ = 0.8, σ2 = 1.
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Figure 10: High Priority Loss Ratex Buffer Size for Different Push out Policies a CS Queue
(Figure 10.a) and a CSGQM (Figure 10.b) Queue with 20% of Protection Level,H = 0.75,

ρ = 0.8, σ2 = 1,P (high / high) = 0.7,γ = 0.0.
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Figure 11: High Priority Loss Rate x P (high / high) for Different Push out Policies and a CS
Queue (Figure 11.a) and a CSGQM Queue (Figure 11.b), Buffer Size = 400,H = 0.8, ρ = 0.8,

σ2 = 1,P (low / low) = 0.5.
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Figure 12: High Priority Loss Ratex Offered Load for Different Push out Policies and a CS
Queue (Figure 12.a) and a CSGQM with Level of Protection of 20% (Figure 12.b),

Buffer SIze = 250, H = 0.75,σ2 = 1,P(high / high) = 0.7,γ = 0.0.
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Figure 13: Low Priority Loss Gap Size x ith gap for Different Push ou Policies:
FIFD (Figure 13.a), LIFD (Figure 13.b) and M-FIFD (Figure 13.c)  for a CS Queue,

Buffer Size = 100,H =  0.75 ρ = 0.8,σ2 = 1,P(high / high)= 0.7,γ = 0.0
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Figure 14:  Low Priority Loss Gap Size x ith gap for Different Push ou Policies:FIFD
(Figure 14.a), LIFD (Figure 14.b) and M-FIFD (Figure 14.c)  for a CSGQM Queue with a Level

of Protection of 20%, Buffer Size = 100,H =  0.75 ρ = 0.8,σ2 = 1,P(high / high) = 0.7,γ = 0.0
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Figure 15: Low Priority Loss Gap Size x ith gap for M-FIFD and Different Values ofH: H = 0.7

(Figure 15.a) andH = 0.8 (Figure 15.b), Buffer Size = 400,ρ =0.8,σ2=1 P(high / high) = 0.7,γ= 1
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