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The Edge-Weighted Clique Problem: valid inequalities, facets
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Abstract. Let K,, = (V, E) be the complete undirected graph with weights ¢, associated to the
edges in E. We consider the problem of finding the subclique C' = (U, F') of K, such that the sum
of the weights of the edges in F' is maximized and |U| < b, for some b € [1,...,n]. This problem
is called the Maximum Edge-Weighted Clique Problem (MEWCP) and is NP-hard. In this paper
we investigate the facial structure of the polytope associated to the MEWCP and introduce new
classes of facets for this polytope. Computational experiments with a branch-and-cut algorithm
are reported confirming the strength of these inequalities. All instances with up to 48 nodes could
be solved without entering into the branching phase. Moreover, we show that some of these new
inequalities also define facets of the Boolean Quadric Polytope and generalize previously known
inequalities for this polytope.

Key Words: Edge-Weighted Cliques, Polyhedral Combinatorics, Branch-and-Cut, Boolean Quadric
Polytope

1 Introduction

Let K, = (V, F) be the complete undirected graph with weights ¢, associated to the edges
in E. We consider the problem of finding the subclique C' = (U, F') of K,, such that the sum
of the weights of the edges in F' is maximized and |U| < b, for some integer b € [1,...,n].
This problem is called the Maximum Edge-Weighted Clique Problem (MEWCP).

The MWECP can be easily seen to be NP-hard, since the usual MAX-CLIQUE problem
reduces polynomially to it. Heuristic algorithms based on local search have been proposed
in [13] to find good suboptimal solutions for this problem.

Exact algorithms based on Integer Programming formulations have been proposed in
[5], [6] and [11]. The natural formulation presented in [5] uses only binary variables cor-
responding to the edges of K. The authors investigate the problem from a polyhedral
point of view. Several facet defining inequalities are introduced and computational results
obtained by a cutting-plane algorithm using these inequalities are reported. From their
computational experiments, the authors conclude that the cutting-plane approach was not
suitable to solve the MEWCP even for moderate sized instances. The largest instance they
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solve refers to a graph on 25 nodes but extremely poor performances are reported for quite
smaller instances.

In [6], an extended formulation is proposed that includes binary variables not only for
the edges but also for the nodes in K,. In this paper, no polyhedral investigation on this
new model has been conducted. A polyhedral investigation of the extended formulation is
done in [11] where several classes of facet defining inequalities for the associated polytope
are presented. The authors also proved that the lower bounds provided by the extended
formulation are better than those coming from the natural formulation on the edge variables.
The computational results reported by the authors are much more encouraging than those
reported in [5]. The instances tested include graphs with up to 30 nodes and most of them
have been solved to optimality by pure cutting-planes (no branching was necessary).

Many facet defining inequalities introduced in [11] are based upon facet defining inequa-
lities for the Boolean Quadric Polytope (BQP) investigated in [10]. In fact, the polytope
associated to the extended formulation of MEWCP is contained in the BQP and, therefore,
any inequality valid for the BQP is also valid for the polytope associated to MEWCP.

In this paper we go further in investigating the facial structure of the polytope associated
to the extended formulation of the MEWCP in order to have a better understanding of it.
For this, we introduce new classes of valid and facet defining inequalities for this polytope.
In the first class of valid inequalities proposed here, we start by an inequality defining facet
for the BQP. We generalize this inequality and we prove that it belongs to a more general
class of inequalities defining facets for the MEWCP polytope. Moreover, we show that the
inequalities in this new class are also valid for the BQP and generalize previously known
classes of facets of the latter polytope.

A second class of inequalities generalize the tree inequalities originally introduced in [8]
and further studied in [11]. The generalization goes in two different directions. In both
of them we have been able to proof that some special cases correspond to facet defining
inequalities for the MEWCP.

Besides the search for new classes of facet defining inequalities, we also have carried out
computational experiments with a branch-and-cut algorithm that we have implemented.
The main goals with these experiments were to evaluate the strength of the new inequalities
introduced here and to compare different cutting-plane strategies based on the inequalities
found in the literature. Instances with up to 48 nodes were tested and the results confirm
that at least one class of inequalities we introduce is computationally useful. If the algorithm
is restricted to use cutting-planes (without branching) the strategy using this new class of
inequalities was the only one able to solve all the instances in the sample.

The paper is organized as follows. In the next section we give the extended Integer
Programming formulation for the MEWCP and summarize the main polyhedral results
from the literature which are important for our work. Section 3 describes the first class
of inequalities we propose, namely, the («, 3)-inequalities. Section 4 discusses two possible
generalizations of the tree inequalities leading to two distinct classes of valid inequalities for
the MEWCP. In Section 5 we describe a branch-and-cut algorithm that uses some of the
inequalities introduced in the previous section and report our computational results.



2 An Extended Integer Programming Formulation for MEWCP

In this section we describe the Integer Programming formulation for MEWCP. Given the
complete undirected graph K, = (V, F), the variables in the formulation are divided into
two sets: the edge variables, denoted by y;; for each (i,j) € £, and the node variables,
denoted by z; for each ¢ € V.. More formally, if C' = (U, F) is a clique in K,,, we have that:

{LiMMMEa
r; =

0, otherwise.

{Lﬁw@@ﬂeﬂ
Yij =

0, otherwise.

(IP)

max Z CiiYij
1,7,8<J

Subject to:
Yij < V(i,j)eF i<} ()
Yij < @y V({i,je E i<y (IT)
rit+a;—y; <1 V({i,je E i<y (11IT)
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n

yi; € {0,1}7, where m = ( 5 )
xz; €4{0,1}"

Inequalities (I) and (II) ensure that an edge is not in the clique if one of its endnodes is
not in the clique. Inequality (III) says that the edge is in the clique if both its endnodes are
in the clique and, finally, inequality (IV) limits the number of edges incident to each node i
to either 0 or (b— 1) depending if node ¢ is in the clique or is not in the clique, respectively.
Note that by dropping the constraints in (IV), we obtain the linearization for formulating
the Boolean Quadric Problem [10].

Let us denote by Pc(b) the convex hull of all incidence vectors of cliques in K, with at
most b nodes and by Pp the convex hull of 0-1 vectors satisfying constraints (I), (II) and
(IIT). Therefore, Pp is the Boolean Quadric Polytope and we have that Pc(b) C Pg. From
this observation, it turns out that any valid inequality for Pp is also valid for Pc(b) but,
clearly, the facetness property may be lost.

Below we summarize some results that are known for Pc(b) which we will use later.
Proofs of these results can be found in [11].

The convention adopted to represent the support graphs of the inequalities given in this
text is the following: (i) dashed circles indicate nodes with negative coefficients, (ii) circles



filled in grey indicate nodes with null coefficient, (iii) full-line circles indicate nodes with
positive coefficients, (iv) dash lines indicate edges with negative coefficients and (v) full
lines indicate edges with positive coefficients. For sake of brevity, we shall use simply the
term support to refer to the support graph of an inequality.

Proposition 2.1 Given the complete undirected graph K, = (V,F) with |V| = n and
|El=m = ( ; ), the dimension of Pc(b) is given by:

dim(Pe(b)) = { Z_|_ m ZQ < Il;g n.

Thus, for nontrivial instances of the problem, the polytope is full-dimensional. It follows
that, if we want to prove that the face F defined by a valid inequality 7(z,y) < mo for Pe(b)
is a facet, we only have to show that any other inequality defining a face that contains F
is a (positive) scalar multiple of m(z,y) < mg (cf,[9]). The proofs in this text are based on
this technique.

The next two propositions establish the conditions under which the inequalities in the
original formulation are facet defining for P (b).

Proposition 2.2 Letn > 3. For every two distinct nodes v, j € V, the inequalities y;; —x; <
0 and z; + z; — y;; < 1 define facets of Pc(b) if and only if b > 3.

Proposition 2.3 For every node ¢ € V, the star inequality,
> i —(b-1)z; <0
jeV—{i}

defines a facet of Pc(b) if and only if b<n — 1.

The above inequality is called a star inequality since its support graph is a tree with a
single node of degree higher than one (which by definition is a star graph).

Proposition 2.4 Let T'C V be a subset of nodes in K,,. If |T| >3 and 1 < g < |T| -2,
the clique inequality

BY wi— Y y <BB+1)/2 (1)

€T e€E(T)

defines a facet of Pc(b) if and only T =V or § <b— 2.

A special case of the clique inequalities is given when |T'| = 3 and 3 = 1 which are called
the clique triangle inequalities. The support graph of such an inequality is given in Figure

1(a).



@ (b)

Figure 1: (a) Support graph of clique triangle inequality with 7" = {¢,7,k} e 8 = 1. The
clique triangle inequality corresponding is z; + x; + 25 — yi; — vik — Y55 < 1. (b) Support
graph of cut triangle inequality with S = {i} e T = {j,k}. The cut triangle inequality
corresponding is y;; + yir — yjr — ¥ < 0.

Proposition 2.5 Let S CV and T CV — 5 be two disjoint subset of nodes in K,. For
|S|=s>1and|T|=1t> 2, the cut inequality

Z Ye — Z Ye — Z ye_zxigo (2)

e€E(S:T) e€E(S) e€E(T) 1€S
defines a facet of Pc(b) if and only |S| =1 and b > 3 or|S| > 2 and b > 4.

When s = 1 and ¢t = 2, we have the cut triangle inequalities whose support is shown
in Figure 1(b). Like the clique inequalities, the cut inequalities were introduced for the
Boolean Quadric Polytope in [10].

In the next section we generalize the cut inequalities and obtain a large class of facet
defining inequalities for Po(b). Moreover all the inequalities in this new class are shown to
be valid for Pp and include both the clique and the cut inequalities.

We close this section by presenting the tree inequalities. They have been first introduced
in [8] and further studied in [11]. The proposition below appears in the latter paper.

Proposition 2.6 LetT = (W, H) be a tree in K,, = (V, E) such that, |W|=0b+1. Ifb>3

then the tree inequality
dye— Y (di—1)z; <0 (3)
eeH €W
where d; is the degree of node i in T, defines a facet of Pc(b) if and only ifb=n—-1or T
1s not a star.

Note that, among the inequalities presented here, tree and star inequalities are the only
ones who deal with the cardinality b of the largest feasible clique.

In Section 4 we generalize the tree inequalities in two different ways and obtain large
classes of valid inequalities of Pc(b) which are also related to b, the maximum cardinality of
a feasible clique. We show that, at least for some special cases, the generalized inequalities

define facets of Pc(b).



3 Generalization of the Cut Inequalities

In this section we present a new class of facet defining inequalities for Pc(b) which can
be viewed as a generalization of the cut inequalities given in Proposition 2.5. We start by
introducing the (s, t)-cut inequalities which were originally proposed in [10] for the polytope
Pp. The proposition below gives necessary conditions under which these inequalities are

valid for P (b).

Proposition 3.1 Let S CV and T CV — 5 be two disjoint subset of nodes in K,, where
|S| = s and |T| =t. The (s,t)-cut inequality

Z Ye — Z Ye — Z Ye+ (s—1) Zx + (t—s—1) sz_ (t—s)(t—s—1) (4)

e€E(S:T) e€E(T) e€E(S) €8 €T
is valid for Pc(b).

Proof: Let C' = (U, I') be any feasible clique in K, (i.e., |[U| < b). Suppose that |[UNS| = §
and |U NT| = {. Thus, for the incidence vector of C inequality (4) gives:

3—1(1-1)/2-3E-1)2+(s—1)3+(t—s— 1< (t—s)(t—s—1)/2.

311 -1)/2-3E-1)2+(s-1)3+(t—-s—1)I<(t—s8)(t—s—1)/2
—%[F—Qig—i—Q(t—s—Uﬂg?—g—z(s—t)§+(t—s)(t—s—1)]go
—%[?—zfg—i—z(t—s—1)£+g2+g(—2(s—t)—1)+(t—s)(t—s—1)]go

After factorizing the second order polynomium in § and the terms in ¢, we get:

1 N
—§[£2—t(2§+2t—25—1)+(§+t—s)(§+t—s—1)) <0

By factorizing the second order polynomium in ¢ we obtain:

IA
o

_%[(f—(é—l—t—s))(f—(é-l-t—S—1))]
—%(f—é—t—l—s)(f—é—t—l—S-l-l) < 0

Sincet—§—t+sandf—§—1t+ s+ 1 are consecutive integers, the inequality must hold.
Od

Before proving that the (s,t)-cut inequalities define facets of Pc(b), we give the lemma
below characterizing the vectors which are roots of such inequalities (i.e, the vectors liying
on the face defined by this inequality in Pc(b)). This will be useful in proving the facetness

property.



Lemma 3.1 Let C = (U, F) be a cliqgue of K,, = (V, ) with |U| < b. Moreover, let S CV
and T CV — 5 be two disjoint subsets of nodes defining an (s,t)-cut inequality where | S| = s
and |T| = t. Assume that 3 =|U N S| and t = |UNT|. Then,

(i) If t > s, the roots of (4) are incidence vectors of cliques C such that t = (t — s) + 3 or
t=(t—s)+35-1.

(ii) If s > t, the roots of (4) are incidence vectors of cliques C' such that § = (s —t+1)+1
oréz(s—t—l—l)—l—f—l.

Proof: Immediate from the previous proof.
O

The next proposition states that the (s,?)-cut inequalities introduced earlier are facet

defining for Pc(b).

Proposition 3.2 Let S CV andT CV =5, with|S| =s> 1 and|T| =t > 2, two disjoint
subsets of nodes in K,. If b > 3 the (s,t)-cut inequality defines a facet of Pc(b).

Proof: Since we have already proved the validity of the inequality, we can concentrate on
proving that it is facet defining. For this, consider the face F defined by inequality (4) in
Pc(b). Assume that there exists a valid inequality 7z + Sy < ag for Po(b) which defines
the face I 5y = {(z,y) € Pc(b) : 7z + By = ap}. Moreover, assume that 7 C F(, ). Since
F # 0, if we show that 72 + Sy < ap is a positive scalar multiple of the (s,t)-cut inequality,
the proof will be completed.

To establish the relations between the coefficients in 7, 3 and 7wy we have to find incidence
vectors that lie on the face F (and conseqiiently in j:(r,ﬁ))- The incidence vectors given here
can be easily checked to satisfy this condition by noting that they are in the form described
in Lemma 3.1. We assume that these vectors represent a feasible clique C' = (U, F) such
that S = SUU and T=TUU.

Claim 1. f(a,b)= —a and f(a,c)=aforall a,be SeceT.
Proof. Consider T C T, such that |T| = t—s. Letae S, be S—{a}andce T T

be three nodes arbitrarily chosen. Since A7 ¢ F, XTol} ¢ F and ATUE) ¢ F we obtain
that:

=)

)
)
)

Thus, we have that 7, + ﬁ(a,f) =0 and 7, + ﬁ(b,f) =0.
Now, since XYTU{a}U{ct ¢ F we conclude that 7. —I—ﬁ(c,f) + f(a,c) = 0. Moreover, since

yTutadu(phuie} ¢ F, we obtain 7, + 1+ 7. + B(a, T)+ B(b,T) + (e, T) + B(a, b) + B(a, ¢) +
B(b,c) = 0. By combining the previous results we get 5(a,b) = —3(b, c).

(7T7

T,

(7T7

T = Oy
T + T, + ﬁ(a,f) = ag
T 4+ m+080,T)=a

=)

=)



Consider now a new set 7' C T, with |T| =t—s—1. Let a,b and d be any nodes chosen
such that a € §, ¢ € T —T and d € T — (T U{c}). The following incidence vectors are in F:
X7, xTulel and X794, Thus, we can deduce that 7. + (e, T) = 0 and 74 + 5(d,T) = 0.

Noting that X7 e F, yTuialuiel ¢ Fand yTHHD ¢ F it follows that 7w, +3(a, T)+
Bla,c) =0 and 7, + ﬁ(a,f) + B(a,d) = 0, respectively.

Therefore, from the previous results we conclude that f(a,c) = f(a,d) = a,. If we
take b in S — {a}, in an analogous way we have that 8(b,c¢) = 8(b,d) = ap. Thus, since
B(a,b) = —fp(b,c) we conclude that f(a,b) = —f(a,c) = —3(b,c) = —a, = —ay, that is ,
f(a,b) = —a. Since the nodes were chosen arbitrarily, the result is proved.

From now on, assume that 7 C 7' is a subset of nodes satisfying |T| =1-s.

Claim 2. f(z,w)=0forall z,w e V- (SUT).

Proof. Let z,w be two arbitrary nodes in V — (S UT). Since X7 ¢ F, X7V ¢ Foand
XTHwl ¢ F.we can conclude that 7, + ﬁ(z,f) =0 and 7w, + ﬁ(w,T) = 0. But since
AT € Fand X741 ¢ Fowe have that §(z, w) = 0.

Claim 3. [(u,z) = 0 and f(v,z) = 0 for all w € 5, for all v € T — T and for all
zeV —(SUT).

Proof. Take any three nodes u,v and z such that u € §,v e T —T and z € V — (SuT).
The following incidence vectors are in F: X7, yTWlu} yTulz} and y7{wl=l ¢ 7. This
implies that 3(u,z) = 0.

By considering the incidence vectors in F given by X7, yTuiz} yTulvioiut ypg yToiv}

W{ululz) | and using the fact that G(u, z) = 0, we obtain that 3(v, z) = 0.
Claim 4. 7, =0forall ze V - (SUT).
Proof. Let z be an arbitrary node in V — (S UT). By noting that the incidence vectors xT
and XYTY} are in F, and using that ﬁ(z,f) = 0, we show that =, = 0.
Claim 5. §(b,d) = —a forall b,d € T.
Proof. Let a,b, c and d be any nodes in 5, S —{a}, T—Tand T— (Tu{b}), respectively. We
have that: A7, yT0{act yTuledt yTufbet yTuibdt gnd yTUebedt gre in F. Therefore,
since f(a,d) = 8(b,c) = a and fB(a,c) = B(b,d) = —a, it follows that 3(b,d) = —a.
Claim 6. 7, = a(s—t) forall a € 5.
Proof. Let a be an arbitrary node in §. The vectors X7 and XT%{%} are in F and since
Bla,u) = —a,Yu € T, we obtain that m, + ﬁ(a,f) =0, that is, 7, = a(t — s).
Claim 7. r. = a(t—s—1) forall ce T.
Proof. Let a and ¢ be arbitrary nodes in 5 and T — T, respectively. From the incidence
vectors X7, xTU{e} and xT{a}9{e} that are in F, we obtain that 7.+ (e, T) + 8(a, c) = 0.
Since 3(¢,T) = —a(t — s) and B(a,¢) = a, we conclude that 7. = a(t — s — 1). This
completes the proof.

O

Below we give the main results of this section which prove that the (s,?)-cut inequalities
belong to a larger class of valid and facet defining inequalities of Pc(b). The next theorem
introduces this class of inequalities, which we call the (a, #)-inequalities.



Theorem 3.1 Let S CV and T CV — 5§ be two disjoint subsets of nodes in K,, with
|S|=s>1el|l|=t>2 Forb>1and a—f =1, where a and § € Z, the (o, 3)-
inequality given by

S ou- Y w X w oY wt 5w < sod (5)

e€E(S:T) e€E(T) e€E(S) €S €T

is valid Pc(b).

Proof: Simply replace ¢t — s by a in the proof of Lemma 3.1
O

The roots of the inequality (5) are defined exactly as in Lemma 3.1 by replacing ¢ — s
by a. This shows that the (s,?)-cut inequalities are special cases of (a, #)-inequalities when
a = t — s. Moreover, the clique and cut inequalities form particular subclasses of the
(a, #)-inequalities for when |S| = 0 and = 0, respectively.

Finally, the theorem below provide some necessary conditions under which inequality

(5) defines facet of Pe(b).

Theorem 3.2 Let S CV and T CV — 5§ be two disjoint subsets of nodes in K,, with
|S| = s and |T| = t. For positive integers o and (3 satisfying o — 3 =1, and t > a + 1, the
(a, B)-inequality given by (5) defines a facet of Pc(b) when a < b — 4.

Proof: The proof is analogous to that of Proposition 3.2. It suffices to replace t — s by «

and use the same incidence vectors.
Od

Note that, Lemma 3.1 also holds for the incidence vectors of feasible solutions of the
Boolean Quadric Problem. Thus, the (a, /)-inequality is valid for Pg. Moreover, since
Pc(b) C Pp and P (b) is full dimension, the same set of affinely independent points used
to prove that (5) defines a facet of Pc(b) can be used to prove that this inequality also
defines facet for Pg. The theorem below formalizes this result.

Theorem 3.3 Let S CV and T CV — 5 be two disjoint subsets of nodes in K,, with
|S| = s e |T| =t > 2. For positive integers a and [ satisfying o — 3 =1, and t > a + 1,
the (o, B)-inequality given by (5) defines a facet of the Boolean Quadric Polytope Pg.

4 Generalization of Tree Inequalities

In this section we generalize the tree inequalities given in Proposition 2.6. This generaliza-
tion goes in two different ways. In the first generalization we obtain new valid inequalities
for Pc(b) by decreasing the size of the tree. To avoid infeasibility, the support of the inequa-
lity is enlarged via a lifting operation (cf, [9]). The support graph we obtain is disconnected
and, to the best of our knowledge, these are the first inequalities for P (b) with this feature.



We note that a very similar result is presented in [3] for the equicut problem. In the latter
problem, cycles seem to play a role which is very similar to that of trees in the MEWCP.
By exploring this idea we have been able to derive a second generalization for the tree
inequalities which can be viewed as special combinations of originally nonvalid inequalities
for Po(b).

These two generalizations are discussed in the following subsections. The main result
of this section is that both generalizations lead to valid inequalities for P () and, for some
special cases, they can be shown to be facet defining for Pc(b).

4.1 Small Tree Inequalities

Given a tree ' = (W, H ) in K,, consider the value of wr(z,y) given by wr(z,y) = Y ey Ye —
>iew(di — 1)z;. The inequalitity in Proposition 2.6 can be rewritten as

wr(z,y) =Y ye— » (di—1)z; <1 (6)

ecH €W

for |W| = b+ 1. The validity of this inequality is based on the following lemma taken from

[2].

Lemma 4.1 Let C = (U, F) and T = (W, H) be a clique and a tree of K,,, respectively.
Define (z%,y%) to be the incidence vector of C and assume that A = UNW. If c(A) is the
number of connected components induced by A inT and é17(A) is the cutset of A inT', then

wr(z®,y") = e(A) = [or(A)].

Proof: We compute:

WT($O7 yC) ZBEH Ye + ZueW(l - du)xu
ZBEE(A) Ye + ZuEA(l - du)

= Yeerm) Ye t 1Al = Xuea du

The first summation corresponds to the number of edges in the forest induced by A in T,
therefore: 37 c 4 ye = |A| — ¢(A). In the second summation each edge joining two nodes i
and j in A is counted twice (in d; and d;) and the edges going from A to W \ A (those in
67(A)) appear only once. This yields: 3", c4 du = 2(|A| — ¢(A)) + [67(A)].

Therefore:

| Al = e(A) = 2|A] + 2¢(A) — |é7(A)]
= o(A) = lor(A)|

wT(acC, yC)
O

From the lemma above, we have that wr(z,y) is never greater than one, except when
A =W (Ais the set of all nodes in the tree), in which case we have ¢(A) = 1 and |67(A)| = 0,
implying that wr(z,y) = 1. A root of wyr(a,y) is obtained when ¢(A) = |67(A)|, meaning
that each of the subtrees in the forest induced by A in T can be disconnected from the

10



remaining nodes of 7' by removing a single edge (that is, the nodes in W\ A are all contained
in a single subtree of T').

Clearly, this lemma proves the validity of the tree inequalities whenever we can ensure
that not all nodes of the tree belong simultaneously to a feasible clique. This is the case
when |W| > b+ 1. But, what if |[W| < b ? Below we focus on the case when |W| = b.

From Lemma 4.1, the only incidence vector of a feasible clique that violates the corres-
ponding tree inequality is the one associated to the clique C' = (W, E(W)), that is, the clique
is composed by the nodes of the tree 7" = (W, H). Thus, the tree inequality wr(z,y) < 0 is
not valid for Po(b) when |W| = b.

To recover the validity of the inequality we make a lifting. For this consider the (a, §)-
inequalities for @« = 8 4+ 1 = 2 which is given by:

Wiz, )= D Ye— D Ye— D Ye—2> wmit Y ai <1 (7)

e€F(S:5") e€E(S") e€E(S) €S €S’

where S CV —Wand ' CV — (WUS).

Note that if 2; = 0 for all nodes in S U S’ then wy(z,y) = 0 and wy(z,y) can take the
value one if the feasible clique has all its nodes in W. On the other hand, if z; = 1 for some
iin SUS" wi(z,y) can be one but, in this case, wr(z,y) < 0. These arguments prove the
validity of the inequality given in the next theorem.

Theorem 4.1 Let T = (W, H) be a tree in I, = (V,E) such that |W| =0, S CV - W
and ' CV — (WUS). Forb>2,|5| and |5 > 1, the tree4+(2,1) inequality

WT(wvy)—l'wl(xvy) <1 (8)
where wr(z,y) and wy(z,y) are defined as in (6) and (7), respectively, is valid for Pc(b)

Though validity can be easily proved for the inequalities presented in the Theorem 4.1,
we have not been able to establish necessary and sufficient conditions to ensure the facetness
property. However, the next theorem presents a case in which these inequalities define facets

of Po(b).

Theorem 4.2 [fT = (W, H) is a path then the inequality in Theorem 4.1 defines a facet
for Pc(b).

Proof: Let F be the face defined in Po(b) by wr(z,y) + wi(z,y) < 1. Moreover, assume
that 72 + yy < mo is a valid inequality for Po(b) such that 7 C F, .y = {(z,y) € Po(b) :
Tx +yy = mo}. Since F # (@, if we prove that 7o + vy < 7 is a scalar multiple of
wr(z,y)+wi(x,y) <1 we are done.

Again we assume that X'C is the incidence vector of a feasible clique C'. If Z is a set
of nodes in V and H a set of edges in [/, we use the notation 7(Z) and v(H) to denote
respectively Y ;e m and 3 cpyve. We abuse notation and denote by y(Z) the value of
> (ij)sijez Vij- Finally, we denote by Z|Z' the set of edges in the cutset 6(Z, Z').

Claim 1. For all w € ', ¥1*} € F. Thus, 7, = 7.
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Claim 2. For all u,v € §/, X1} ¢ F. Thus, 7, 4+ 7 + Yuw = To, and then 3, , = —mg.
Claim 3. For all u,v,z € § and w € §, X{wvsw} and y{wvw}l are in F. Therefore,
Tw + 7 (w, {u, v, 2}) = 7y + y(w, {u,v}) = m79. We conclude that v,, , = 79 and 7, = —2mg.
Claim 4. For all wy,ws € S and u, v, 21, 29 € 5, the vector X1wvz1.2w1w2} s in F. From
the previous results we get that v, w, = —7o.

Claim 5. Forall z € V\ (W USUS’) and u,v € 5, the vectors X{®*2} and A{w=} are in
F. Therefore, 7., = 0 and, consequently, 7, = 0.

Claim 6. Let u,z,v and w be any four distinct nodes such that v € S and z,v € 5’
and w € V\ (WUSUS'). The incidence vectors X1} and x{%v=t are in F. Thus,
Tw + Yu,w + Yow + V2,0 = 0 and, we conclude that v, ,, = 0.

Up to now we have proved that all coefficients of 7 and 7 related to nodes and edges
not involving nodes of the path 7' (nodes in W) satisfy the desired conditions. In the next
steps we deal with the remaining coeflicients.

Initially, let W = {uy,...,up} and F' = {(ug,uz),...,(up—1,up)} be the nodes and edges
of path 7' respectively. Note that symmetry implies that proofs involving nodes (uq, ..., u,),
for p < b—1, also hold for nodes (up—py1, ..., usp).

Claim 7. Since XU} and ylozuiuet for all j € 5/, 2 € V\ (W U S U S’) and
p < b—2, we have that y(z[{us,...,u,}) = 0. Now, varying p from 1 to (b — 2) and using
the symmetry of the path, we conclude that 7., =0foralli=1,...,0.

Claim 8. Since X1iutmup} and ylikuu} for all 5k € §" and p < b — 2, we have that
Y(k[{w,...,up}) = 0. Now, varying p from 1 to (b — 2) and using the symmetry of the
path, we conclude that y;,, = 0forall e =1,...,0.

Claim 9. Let 4,7,k be any arbitrary (distinct) nodes such that ¢ € S and j,k € S’. For
p < b — 3, the following incidence vectors are in F: Alutsupd - plidhunup}t - From
the previous results we can conclude the following. The first incidence vector implies that:
(U1, ..oy tp)+7y(ur,...,u,) = 0. The second incidence vector and the latter equation imply
that y(é[{uy,...,up}) = 0. Thus, for p=1,...,p =3, 754, = 0 and, by symmetry, we can
extend this result so that it holds for all p € {1,...,b}.

Besides the coeflicients of nodes and edges that are internal to the path, it remains to
prove that the coefficients for all chords in the path are null. This is done in the next step.
Claim 10. Let p < b—3,b > r > p+ 2 and 2 be an arbitrary node in S’. The fol-
lowing cliques are feasible and their incidence vectors can be easily verified to be in F:
{z,u1, oy, Uy oo up {2 0, o U, Uy U {2 U, U fand {2, up, L up )
This implies that:

(U, ey ty) + Ty ooy up) Y (Ur, o tp) + 7 (U, ooy uwp)  F
Fy(wr, o Uty uy) = 0
T(Uy oo Uppr) + Ty ooy up) + Y (Ury ooy Uppr) + Y (Upy ooy up)  +
Fy(wr, .o Upgr|ty, .o up) = 0
T(Uy ooy Upyr) + (g, Upyr) =0
(s ttpy) + Y(Upy ooy up) =0
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The last three equations imply that (w1, ..., upp1|ty, ..., up) = 0. Starting with p =0
and » = b and alternately incrementing p and decrementing r by one unit, we can prove
that Yusu; = 0, forall 1 <i< j—1and j<b.

Now comparing the first two equations and using the last result for the coefficients of
chords, we get that Yupprup T Tupyy = 0 forall2<p<b—-2and 7, =0.

Using the symmetry of the path we can also conclude that 7y, u, + T, = 0 for all
2<p<b-2and m,, =0. This implies that, for a constant A, y. = —7, = A for all edges
e of the path and all nodes v which are not endnodes of the path.

Finally, the incidence vector of the (feasible) clique formed by the nodes of the path lies
on F. Therefore, A(b— 1) — A(b— 2) = 7y, and we must have A = 7y which completes the
proof.

O

4.2  Block-Tree Inequalities

Consider the tree inequality and the result given in Lemma 4.1. Clearly, ¢(A4) is always
less than or equal to |67(A)| except if A = V(T') in which case ¢(A4) =1 and |67(A)| = 0.
Therefore, the tree inequality is valid for Pc(b) if and only if |W| > b. We now show that
when suitable conditions are satisfied, the sum of nonvalid tree inequalities also gives rise
to strong valid inequalities for Pc(b). This idea was first investigated in [2], [3], and is also
described in [4] in the context of the equicut polytope. Due to the notation used in these
previous works and the analogy between the roles played by cycles in cut problems and those
played by trees in clustering problems, we call these inequalities block-tree inequalities.

Let T be a collection of trees ((V(T4),11),...,(V(T}),1}) of a graph G satisfying the
following property: if w € V(1;) N V(T}) for some 7, j € {1,...,t}, then v € V(T}) N V(1))
for all &, € {1,...,t}.

For each tree T; of T, we can define the tree inequality as before, i.e., w(7;)(z,y)< 0.
The tree combination inequality for T is given by the sum of these inequalities, that is:

w(T)(z,y)= D w(Ti)(z,y) <0 (9)
T;€T
Consider the subgraph of G formed by the edges and nodes in T. Let N be defined as
the set of nodes that are common to all trees in T. If the nodes in N are removed from this
subgraph, what remains is a forest of subtrees. Let (51, 53,...) be the ordered set of these
subtrees where ¢; > ¢2 > ... and ¢; = |5;]. We define Q= Zf;} ¢;. In Figure 2 it is shown
the support of a tree combination inequality for which ¢ = 3 and @ = 6.

Theorem 4.3 Let T be a tree combination in G = (V, E) such that V(T) = U, V(T;).
Suppose that |V (Y)| = b+ W, where W > 0. Then, the block-tree inequality (9) is valid
Jor Po(b) if and only if @ < W.

Proof:
Necessity: Suppose that ) > W. This implies that there exists a set A of A < ¢t — 1
subtrees such that the number of nodes in all subtrees in A is greater than or equal to W.
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Figure 2: Support graph of the tree combination inequality for ¢t = 3.

Define S to be the set of all nodes of V(T) that are not in V(A) (= { nodes of subtrees
in A } ). The incidence Vector (2%,9%) of § can be easily checked to be in Px(b).

From Lemma 4.1, w(T;)(2°, y )— c(SNV(T))—67(SNV(T7))]. However, |67(SNV(T3))]
can be computed as ¢(SNV(T;))+¢(V(T;)\ ) — 1 which yields w(T;)(27, S) =1—¢(V(T3)\
S). Thus,

w(T)(2%,y%) = iz w(T)(2%y%)
il - C(V(Tz) \5))
=Yzt c(V(T)\ §)
t—A
t—(t-1)>1

(VAN

The left-hand side of inequality (9) is positive for this feasible solution and therefore the
inequality is not valid. Necessity is proved.

Sufficiency: We assume that (9) is not valid and we end up with the conclusion that @
must be greater than or equal to W. For this, let 5 be a subset of V' such that (ws,ys)

violates (9), that is:
t

AT, y%) == Y V(T \ §)> 1

which implies that:
i

S e(V(T)\ S)<t—1
1=1
Now, since (27,y”) violates (9), there exists at least one tree in Y, say 7}, such that
w(T])( 5. y%) = 1. This implies that all nodes in V(7};) and, consequently, all nodes in N
arein 5. Thus from the last expression above, we can conclude that there are at most ¢t — 1
subtrees in T (obtained by removing the nodes in N ) that do not contain nodes in 5.
If Q < W, the previous observation implies that |S| > b and, therefore, S cannot be a

feasible clique. We conclude that, if (9) is not valid, then @ > W and this completes the
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proof.
O

Again, it is hard to find necessary and sufficient conditions for inequality (9) to be facet
defining for Po(b). Nevertheless, we have found one case for which facet defining inequalities
can be obtained by combining nonvalid tree inequalities. This case is described below.

Suppose that T is a collection of two trees T} and T3 that have one node v. in common
(N = {v.}) and the degree of any node 7 in trees Ty and T3 is not greater than 2. In this
case, each of the trees of the combination reduces to a path and the support graph of the
tree combination inequality looks like a cross centered at node v, (see Figure 3).

©)

g =4

P

q4:3O

Figure 3: Support graph of the tree combination inequality with cross centered at node v,.

Removing node v, from the support graph, what remains is a forest composed of 4
paths. Let (V(P1), P1),....(V(Ps), Py) be those paths, ¢1 > g2 > ¢3 > q4 (¢; = |V (P)])
and v}, .. .,véi denote the nodes of V(F;). Moreover, define p; to be the minimum of ¢; + ¢
for k and ¢ in {1,2,3,4}\ {j}. The tree combination inequality corresponds to:

4 gq;—1
> Y — 22, — D Y @, <0 (10)
c€PLUP,UP,UP, i=1 =1 '

The following result can be proved.

Theorem 4.4 Let T be cross centered at a node v. and spanning the graph G = (V, F).
Suppose that ¢z + q3 + g4 > b and |V(Y)| = b+ W. Then, for b > W > 3, the following
holds:

(1) Inequality (10) is valid for Pc(b).
(71) Inequality (10) is facet defining for Pc(b) if and only if ¢;+p; = b forall j =1,2,3,4.
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5 Computational Results

We now describe the computational experiments that we have carried out. Qur primary goal
is to confirm that the inequalities that we have introduced here provide a better description
of the polytope Pc(b). A second goal is to compare different cutting plane strategies. A
large variety of facet defining inequalities for Pc(b) are found in the literature and all these
inequalities can be considered in designing a branch-and-cut algorithm for MEWCP. In the
literature, for the extended formulation, only one strategy have been tested in [11].

To achieve our goals, we have implemented a branch-and-cut algorithm whose main fea-
tures are: (i) use of primal heuristic to provide a priori lower bounds; (ii) exact separation
routines for the inequalities used in tightening the formulation, excepting tree inequalities;
(iii) branching on the most fractional variable if no violated inequality is found or tailling-
off has been detected (objective function change less than 0.0001 after 30 LPs) ; (iv) the
strategy for node selection in the branch-and-bound tree is Best Bound; (v) the LP solver
is CPLEX 3.0 (see [1]) and all tests have been done in a Sun SPARC 1000 machine.

We now describe in more details some of the features listed above.

Primal Heuristics

To derive an initial lower bounds, we use an algorithm which fits in the framework of
Greedy Randomized Adaptative Local Search Procedures, GRASP for short. The main
ideas of GRASP are discussed in [7].

Essentially, our heurisitic starts by building a feasible solution which is then given as an
input for the local search heuristic Greedy All described in [13]. The initial solution is built
as follows. First we pick one node of the graph and add it to the clique. At each iteration, a
list of £ nodes providing the largest augmentations in the objective function is constructed.
Then, a randomly chosen node of the list is added to the current clique and the procedure
keeps repeating these steps until b nodes have been added to the clique or no more nodes
are to be examined.

For all test instances this easy-to-implement heuristic reaches the optimal solution.
Thus, if good upper bounds come up from the formulations the branch-and-bound pro-
cess presumably will stop soon.

Separation Routines

We have conducted several computational experiments comparing both CPU times and
upper bounds obtained by cutting-planes (without entering the branching phase) for exact
and heuristic separation routines for various classes of inequalities.

We have not been able to design good heuristics for separation. The best performances of
the code for all inequalities were always achieved when exact separation was used. However,
many of these separation algorithms have complexity of ©(n*) or even ©(n®), which is too
much time consuming. Our conclusion is that this is certainly a topic that deserves more
attention: one should look for a better compromise in which fast heuristics are designed so
as to provide a considerable amount of violated inequalities when they exist.
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The only inequality that we have not separate exactly are the ones having trees as part
of their support graphs. For the tree inequality (3), Park et al [11] present a theorem which
states that the most violated tree inequality can be found in polynomial time if its node
set is fixed in advance otherwise, the problem is NP-hard. They also have developed an
heuristic separation for these inequalities which initially chooses the nodes in the tree, that
is, the set W. The procedure starts by finding the set W corresponding to all nodes in
V' whose variables are not null. If |W| is less than b 4 1 the procedure fails. Otherwise,
suppose that W = {u1,...,u,} such that z,;, < 2y, forallie {1,...,p} where p> b+ 1.
Then an optimal tree is built for all sets W = ({uq,u2,...,upt1} U {u;}) \ {w;}, where
ie{l,...,b+1}and j € {b+2,...,p}. All violated inequalities found are add to the
current formulation ([12]).

We also have implemented our own heuristic which builds the tree in a greedy fashion
starting once with each edge of the graph. A few more inequalities could be separated
with this heuristic. But in general, the results we have obtained for both heuristics were
discouraging as we will show later. Tipically, the number of violated inequalities found is
extremely low. We have not been able to understand precisely the causes of this behavior.
It may be the case that the heuristics perform badly or, on the other hand, that incidence
vectors satisfying the original formulation often satisfy the tree inequalities. Despite of this
fact, to test the cutting strategy proposed in [11], we have separated tree inequalities. For
the results reported later, we have used our own separation heuristic for trees.

Test Instances

Like in [5] and in [11], the instances are partitioned into two sets. In the first one, all edge
weights are positive, while in the second one, positive and negative edge weights are allowed.
The weights were randomly generated according to the scheme described in [13], that is:

o 1<¢; < | 10¥*17% | for positive weights, and
o —|10¥Hrk| < ¢ < [10¥H1rF] for posite and negative weights.

where k£ € {1,...,5}, w > 0 and r € (0,1]. We have generated instances for n €
{30,40,42,44, 45,46,48} and for five possible values of k, w = 2 and b = |%]. This
choice of b was motivated from our preliminary tests which indicated that, for fixed n and
edge weights, these are usually the most difficult instances. This is in accordance with the

computational experiments reported in the literature ([11]).

Cutting Strategies

Since there are many different families of facet defining inequalities that are known for
Pc(b), several alternative cutting strategies can be applied in a branch-and-cut algorithm
for the Maximum Edge-Weighted Clique Problem.

The strategies we have tested in our computational experiments involve the inequalities
listed below. The notation in parenthesis is used in the sequel to denote the corresponding
inequalities.
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o cut triangle (N);

e cut for |S| = 1 and |T| = 3 (Cy 3);
e cut for |§| = 2 and |T| = 3 (Ca3);
o tree (TRE);

o clique triangle (CN);

(s,t)-cut for |S| =1 and |T'| = 3 (stC 3);

(s,t)-cut for |S| =s=1and |T| =t =4 (stCy 4);

(a,p)fora=p+1=2,|5=1and |T| =4 ( (a,B)1,4)-

In our experiments four different strategies are compared. The choice for these state-
gies was based on preliminary tests we have done on small instances. Using the notation
introduced above, the four strategies can be summarized as follows:

o Strategy 1: A, (13 and Cy 35
e Strategy 2: A, U/ and TRE,
o Strategy 3: A, st('y 3 and st( 4

e Strategy 4: A and (a, )1 4.

)

It is worth mentioning that Strategy 2 corresponds to the one used in [11].

We have noticed that the performance of the code is extremely sensitive to the para-
meters of the branch-and-cut algorithm. In particular, the number of cuts added at each
iteration (after each LP) seem to influence a lot the behavior of the algorithm.

We have fixed the maximum number of cuts generated at each iteration to maxcut
= [£32] for each class of inequalities. The separation routines are called in the same order
they appear in the description of the strategy. The separation of a new family of inequalities
is only executed if the number of violated inequalities found for the previous family is less
than maxcut/2. It is worth noting that in [11] there is also an analogous parameter for

maxcut but no reference for the value used in the computations is given.

Comparison between Cutting Strategies

The first test we have done concerns the pure branch-and-bound code using CPLEX 3.0 with
default parameters. The larger instances of MEWCP used in computational experiments
reported in the literature refer to graphs with up to 30 nodes ([5], [11]). Using branch-and-
bound we have been able to solve most of the 30 node graphs in about one hour of CPU.
The real challenge seem to solve problems for graphs with more than 40 nodes.

In Tables 1-4 below, we show the results obtained with Strategies 1-4 respectively for
ten instances from our sample. In each of these tables we have the columns: n: the number
of nodes in the graph; b: the maximum cardinality of a feasible clique; k: the parameter
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used to generate the edge weights; # Nodes: the number of nodes in the enumeration tree;
# LP: the number of LPs solved; # Cuts: number of cuts generated for each family of
valid inequalities in the corresponding strategy:; First Node; the value of the lower bound
after the last LP solved in the first node of the enumeration tree and Time: the CPU time
(in seconds) needed to solve the instance.

Initially, for comparison purposes, we have restricted ourselves to the ten instances in
Tables 1-4 for which n lies is in the range {40,...,45}.

We analyze the quality of the cuts used in each strategy by looking at the number of
nodes opened in the enumeration tree. According to that, the first and the last strategies
outperform the two other strategies since the instances have been solved without branching.
The number of LPs in the last strategy (except for the first instance) is always smaller
when compared to the first strategy, while the total number of cuts added to the original
formulation remains almost the same.

This indicates that the new inequalities introduced here, namely (a,f) inequalities,
are more effective than the (' 3 and ('3 3 inequalities in describing the optimal solution.
However, Strategy 1 runs faster than Strategy 4.

Concerning the CPU time, Strategy 2 seem to be the best one, though Strategy 3 have
been faster on a few instances. In Strategy 2, the tree inequalities do not seem to help in
solving the problem. This is also the case in the computational results reported in [11].
The number of nodes in the enumeration tree is much larger for this strategy contrarily to
the CPU times. From this observation one can raise the following question that appears in
many branch-and-cut applications: how long should one proceed in a cutting-plane phase
before branching?

The cuts of Strategy 2 are not as good as those in Strategies 1 and 4 to describe the
optimal solution but this disadvantage is overcame by the fact that branching allows us to
obtain the optimal solution quicker.

Tables 5 and 6 summarize the results we have obtained by applying Strategy 1 for the 60
instances we have generated for n > 40. Strategy 1 was chosen since it gives the best trade-
off between the strenght of the cuts and CPU time. We have tried to solve this problems with
standard branch-and-bound procedure limiting the number of nodes in the enumeration tree
to 20000 and CPU time to one hour. The only instances solved were for the pairs (n,k) €
{(40,5)} given by for positive edge weights and (n, k) € {(40,4),(40,5),(42,4),(42,5)} for
mixed edge weights.

It is interesting to note that only four instances could not be solved by pure cutting
planes. They are given by the pairs (n,k) = {(40,4), (44,4),(42,4),(48,5)} with positve
and negative weigths (see Table 6). We have tried to solve these instances using Strategy 4
and it turns out that they are solved without any branching which reinforces the conclusion
that the (o, 5)-inequalities are strong. The optimal values for these four instances are 27758,
32601, 32968 and 31351 respectively.
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Positive weights

# Cuts
n b k|#Nodes #LP #A #Ci3 # Cys 1st. node Optimal Time (sec.)
40 20 1 0 17 5289 3000 0 1099346 109346 3719.52
40 20 3 0 18 5075 2407 300 68759 68759 4063.29
40 20 4 0 27 5053 2523 1200 60782 60782 5419.51
4 22 1 0 15 6399 1650 0 136525 136525 3734.54
45 22 5 0 23 8090 3628 226 69563 69563 7873.28
Positive and negative weights
# Cuts
n b k| #Nodes #LP #A #Ci3 # Cys 1st. node Optimal Time (sec.)
40 20 1 0 55 4044 4197 3800 70348 70348 23805.20
40 20 5 0 10 1596 2127 0 27967 27967 522.46
42 21 5 0 8 2738 678 105 35460 35460 295.94
4 22 1 0 63 5604 6471 4510 90620 90620 47799.73
45 22 1 0 29 5987 6351 791 102295 102295 23572.92
Table 1: Computational results for instances using Strategy 1.
Positive weights
# Cuts

n b k| #Nodes #LP #A #CA # TRE 1st. node Time (sec.)

40 20 1 6 20 5216 802 0 110437.83 2851.44

40 20 3 8 27 4862 293 1 69901.67 2929.24

40 20 4 12 40 5033 360 3 61867.32 3917.87

4 22 1 0 14 6328 634 1 136525 2439.72

45 22 5 6 28 8047 356 0 70166.45 6702.60

Positive and negative weights
# Cuts

n b k| #Nodes #LP #A #CA # TRE 1st. node Time (sec.)

40 20 1 64 107 4082 1407 74 76625.67 22335.44

40 20 5 0 7 1458 524 90 27967 162.77

42 21 5 0 8 2729 534 0 35460 285.00

44 22 1 78 122 5644 1554 74 97368.92 37371.73

45 22 1 10 30 5974 1254 44 105735.75 8717.98

Table 2: Computational results for instances using Strategy 2.
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Positive weights

# Cuts
n b k| #Nodes #LP #A $#stCi3 F# stCy4 1st. node Time(sec.)
40 20 1 0 17 5267 3000 0 109346 3777.23
40 20 3 0 16 4922 2451 0 68759 2881.20
40 20 4 2 22 5060 2597 155 60786.21 3154.60
4 22 1 0 15 6360 1650 0 136525 3942.37
45 22 5 2 27 8141 3687 164 69578.13 10775.66
Positive and negative weights
# Cuts
n b k| #Nodes #LP #A $#stCi3 F# stCy4 1st. node Time(sec.)
40 20 1 8 40 4046 4639 433 73004.21 12832.67
40 20 5 0 10 1588 2127 200 27967 489.44
42 21 5 0 8 2739 678 105 35460 287.34
4 22 1 8 44 5543 5763 497 93037.97 35065.61
45 22 1 2 25 5948 4590 83 102994.05 12784.62
Table 3: Computational results for instances using Strategy 3.
Positive weights
# Cuts
n b k| #Nodes #LP #A # (a,0)14 1st. node Time (sec.)
40 20 1 0 19 5251 4000 109346 5616.77
40 20 3 0 18 4849 3500 68759 3336.02
40 20 4 0 20 5027 4500 60782 6483.45
44 22 1 0 14 6313 1100 136525 3826.79
45 22 5 0 22 8051 3941 69563 9276.42
Positive and negative weights
# Cuts
n b k| #Nodes #LP #A # (a,0)14 Ist. node Time (sec.)
40 20 1 0 32 4034 11500 70348 23827.81
40 20 5 0 7 1546 1500 27967 214.15
42 21 5 0 8 2726 1050 35460 614.59
4 22 1 0 36 5537 13750 90620 37290.87
45 22 1 0 27 5962 9008 102295 23465.26

Table 4: Computational results for instances using Strategy 4.
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6 Conclusions

In this paper we have introduced some new classes of valid and facet defining inequalities for
Pc(b), the polytope corresponding to the convex hull of integer solutions for MEWCP. The
(a, §)-inequalities were shown to be computationally efective. Moreover we also have been
able to show that they generalize previously known classes of facet defining inequalities not
only for Pc(b) but also for the Boolean Quadric Polytope Pg.

The tree inequalities studied in [8] and [11] have also been generalized to include the
case where the nodes in the tree do not form a cover for the feasible cliques. A second
generalization for the tree inequalities is proposed in which a linear combination of nonvalid
tree inequalities gives rise to a valid inequality for Pc(b) which, for special cases, has
been proved to define a facet of this polytope. Computational use of both these generalized
inequalities has still to be investigated. But it seems reasonable that one should first address
the question of whether or not the tree inequalities are computationally useful.

We also have done several computational experiments both to confirm the strength of the
(a, f)-inequalities and to compare different cutting strategies to be used in a cutting-plane
framework. The results have confirmed that a quite small subclass of the («, 3)-inequalities
are already very good in describing the part of Pc(b) on which lies the optimal solution.

Comparison between different cutting strategies has indicated that if more branching is
allowed then some gain can be obtained in reducing the CPU time. If stronger cuts, like the
(a, f)-inequalities, are to be used then efficient heuristics should be design since the exact
separation routines spend a considerable amount of time.
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# Cuts
n | k| #Nodes #LP #A #Ci3 # Cys 1st. node Time (sec.)
1 0 17 5289 3000 0 109346 3719.52
2 0 9 4000 0 0 82451 821.52
40 | 3 0 18 5075 2407 300 68759 4063.29
4 0 27 5053 2523 1200 60782 5419.51
) 0 8 3500 0 0 60513 817.41
1 0 32 6149 4484 1260 120299 13679.36
2 0 37 5419 4971 1785 87810 15919.71
42 | 3 0 31 5470 2903 1575 76554 11298.25
4 0 11 5021 0 0 69482 1666.13
) 0 9 4200 0 0 76383 823.63
1 0 15 6399 1650 0 136525 3734.54
2 0 31 6346 4628 1210 98186 15532.74
44 1 3 0 14 6814 550 0 84675 2839.20
4 0 16 6591 1650 0 75274 3584.06
) 0 12 5703 550 0 69540 2389.17
1 0 60 7597 6065 4068 138694 39889.15
2 0 42 7543 6086 2034 98321 30618.41
451 3 0 43 6814 4103 2712 82743 25514.10
4 0 20 7367 3191 0 77500 6401.01
) 0 23 8090 3628 226 69563 7873.28
1 0 57 8645 7324 3450 142985 41205.22
2 0 37 8712 5169 1495 108243 20712.69
46 | 3 0 16 7575 1150 0 94859 2773.16
4 0 26 8750 3890 345 78747 13901.90
) 0 29 8581 3708 805 72431 14504.89
1 0 30 9665 7529 0 163397 25364.59
2 0 105 9169 8783 9000 115471 103345.14
48 | 3 0 64 8606 6435 4680 96666 51771.51
4 0 17 8492 1200 0 88728 3920.53
) 0 16 9000 0 0 82117 3487.15

Table 5: Computational results for instances with positive weights using branch-and-cut
algorithm and Strategy 1.
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# Cuts
n | k| #Nodes #LP #A #Ci3 # Cys 1st. node Time (sec.)
1 0 55 4044 4197 3800 70348 23805.20
2 0 13 2233 4000 0 45404 2316.46
40 | 3 0 11 2280 3000 0 34091 922.72
4 2 34 2345 5212 1281 27772.52 4767.64
) 0 10 1596 2127 0 27967 522.46
1 0 61 4799 5054 4410 81633 38285.58
2 0 28 3540 4683 1260 46828 5873.03
421 3 0 11 2664 2625 0 36689 1067.87
4 0 ) 1586 525 0 35987 54.99
) 0 8 2739 678 105 35460 295.94
1 0 63 5604 6471 4510 90620 47799.73
2 0 13 3439 3300 0 56960 4360.94
44 1 3 0 12 3250 2750 0 40967 1255.87
4 2 44 2415 5893 2698 32711.25 13740.63
) 0 13 2507 4400 0 29407 1228.17
1 0 29 5987 6351 791 102295 23572.92
2 0 30 4014 4805 1582 55103 9190.72
45 | 3 0 8 2937 1100 0 43914 582.80
4 0 27 2727 6374 1243 33990 6089.39
) 0 32 3364 6564 1695 30974 10820.77
1 0 40 6093 7801 1840 99550 36453.30
2 0 21 3873 4683 575 58361 6003.70
46 | 3 0 27 3303 6588 1265 43915 9112.73
4 2 52 3433 6851 3438 33054.06 28122.14
) 0 13 3413 3450 0 31000 1400.60
1 0 99 7527 9368 8520 113478 124615.38
2 0 62 5170 6197 5280 61768 45361.93
48 | 3 0 17 4107 6000 0 45941 5214.58
4 0 11 3160 2444 120 36903 1454.62
) 2 33 3665 8387 1440 31404.64 11199.91

Table 6: Computational results for instances with positive and negative weights
branch-and-cut algorithm and Strategy 1.
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