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The Edge-Weighted Clique Problem: valid inequalities, facetsand polyhedral computations yElder Magalh~aes Macambiraz Cid Carvalho de SouzaxAbstract. Let Kn = (V;E) be the complete undirected graph with weights ce associated to theedges in E. We consider the problem of �nding the subclique C = (U;F ) of Kn such that the sumof the weights of the edges in F is maximized and jU j � b, for some b 2 [1; : : : ; n]. This problemis called the Maximum Edge-Weighted Clique Problem (MEWCP) and is NP-hard. In this paperwe investigate the facial structure of the polytope associated to the MEWCP and introduce newclasses of facets for this polytope. Computational experiments with a branch-and-cut algorithmare reported con�rming the strength of these inequalities. All instances with up to 48 nodes couldbe solved without entering into the branching phase. Moreover, we show that some of these newinequalities also de�ne facets of the Boolean Quadric Polytope and generalize previously knowninequalities for this polytope.KeyWords: Edge-Weighted Cliques, Polyhedral Combinatorics, Branch-and-Cut, Boolean QuadricPolytope1 IntroductionLet Kn = (V;E) be the complete undirected graph with weights ce associated to the edgesin E. We consider the problem of �nding the subclique C = (U; F ) of Kn such that the sumof the weights of the edges in F is maximized and jU j � b, for some integer b 2 [1; : : : ; n].This problem is called the Maximum Edge-Weighted Clique Problem (MEWCP).The MWECP can be easily seen to be NP-hard, since the usual MAX-CLIQUE problemreduces polynomially to it. Heuristic algorithms based on local search have been proposedin [13] to �nd good suboptimal solutions for this problem.Exact algorithms based on Integer Programming formulations have been proposed in[5], [6] and [11]. The natural formulation presented in [5] uses only binary variables cor-responding to the edges of Kn. The authors investigate the problem from a polyhedralpoint of view. Several facet de�ning inequalities are introduced and computational resultsobtained by a cutting-plane algorithm using these inequalities are reported. From theircomputational experiments, the authors conclude that the cutting-plane approach was notsuitable to solve the MEWCP even for moderate sized instances. The largest instance theyyThis research was supported by FAPESP (grant number 96/0884-9) and by CNPq (grant number300883/94-3)zUniversidade Estadual do Cear�a, Depto. de Ciência da Computa�c~ao, Fortaleza/CE, Brazil (e-mail:elder@uece.br)xcorresponding author: Universidade Estadual de Campinas, Instituto de Computa�c~ao, C.P. 6176, 13083-970, Campinas/SP,Brazil (e-mail: cid@dcc.unicamp.br)1



solve refers to a graph on 25 nodes but extremely poor performances are reported for quitesmaller instances.In [6], an extended formulation is proposed that includes binary variables not only forthe edges but also for the nodes in Kn. In this paper, no polyhedral investigation on thisnew model has been conducted. A polyhedral investigation of the extended formulation isdone in [11] where several classes of facet de�ning inequalities for the associated polytopeare presented. The authors also proved that the lower bounds provided by the extendedformulation are better than those coming from the natural formulation on the edge variables.The computational results reported by the authors are much more encouraging than thosereported in [5]. The instances tested include graphs with up to 30 nodes and most of themhave been solved to optimality by pure cutting-planes (no branching was necessary).Many facet de�ning inequalities introduced in [11] are based upon facet de�ning inequa-lities for the Boolean Quadric Polytope (BQP) investigated in [10]. In fact, the polytopeassociated to the extended formulation of MEWCP is contained in the BQP and, therefore,any inequality valid for the BQP is also valid for the polytope associated to MEWCP.In this paper we go further in investigating the facial structure of the polytope associatedto the extended formulation of the MEWCP in order to have a better understanding of it.For this, we introduce new classes of valid and facet de�ning inequalities for this polytope.In the �rst class of valid inequalities proposed here, we start by an inequality de�ning facetfor the BQP. We generalize this inequality and we prove that it belongs to a more generalclass of inequalities de�ning facets for the MEWCP polytope. Moreover, we show that theinequalities in this new class are also valid for the BQP and generalize previously knownclasses of facets of the latter polytope.A second class of inequalities generalize the tree inequalities originally introduced in [8]and further studied in [11]. The generalization goes in two di�erent directions. In bothof them we have been able to proof that some special cases correspond to facet de�ninginequalities for the MEWCP.Besides the search for new classes of facet de�ning inequalities, we also have carried outcomputational experiments with a branch-and-cut algorithm that we have implemented.The main goals with these experiments were to evaluate the strength of the new inequalitiesintroduced here and to compare di�erent cutting-plane strategies based on the inequalitiesfound in the literature. Instances with up to 48 nodes were tested and the results con�rmthat at least one class of inequalities we introduce is computationally useful. If the algorithmis restricted to use cutting-planes (without branching) the strategy using this new class ofinequalities was the only one able to solve all the instances in the sample.The paper is organized as follows. In the next section we give the extended IntegerProgramming formulation for the MEWCP and summarize the main polyhedral resultsfrom the literature which are important for our work. Section 3 describes the �rst classof inequalities we propose, namely, the (�; �)-inequalities. Section 4 discusses two possiblegeneralizations of the tree inequalities leading to two distinct classes of valid inequalities forthe MEWCP. In Section 5 we describe a branch-and-cut algorithm that uses some of theinequalities introduced in the previous section and report our computational results.2



2 An Extended Integer Programming Formulation for MEWCPIn this section we describe the Integer Programming formulation for MEWCP. Given thecomplete undirected graph Kn = (V;E), the variables in the formulation are divided intotwo sets: the edge variables, denoted by yij for each (i; j) 2 E, and the node variables,denoted by xi for each i 2 V . More formally, if C = (U; F ) is a clique in Kn, we have that:xi = ( 1; if node i 2 U;0; otherwise:yij = ( 1; if edge (i; j) 2 F;0; otherwise:(IP) max Xi;j;i<j cijyijSubject to: yij � xi 8 (i; j) 2 E i < j (I)yij � xj 8 (i; j) 2 E i < j (II)xi + xj � yij � 1 8 (i; j) 2 E i < j (III)Xe2�(i) ye � (b� 1)xi � 0 8 i 2 V (IV)yij 2 f0; 1gm; where m =  n2 !xi 2 f0; 1gnInequalities (I) and (II) ensure that an edge is not in the clique if one of its endnodes isnot in the clique. Inequality (III) says that the edge is in the clique if both its endnodes arein the clique and, �nally, inequality (IV) limits the number of edges incident to each node ito either 0 or (b� 1) depending if node i is in the clique or is not in the clique, respectively.Note that by dropping the constraints in (IV), we obtain the linearization for formulatingthe Boolean Quadric Problem [10].Let us denote by PC(b) the convex hull of all incidence vectors of cliques in Kn with atmost b nodes and by PB the convex hull of 0-1 vectors satisfying constraints (I), (II) and(III). Therefore, PB is the Boolean Quadric Polytope and we have that PC(b) � PB. Fromthis observation, it turns out that any valid inequality for PB is also valid for PC(b) but,clearly, the facetness property may be lost.Below we summarize some results that are known for PC(b) which we will use later.Proofs of these results can be found in [11].The convention adopted to represent the support graphs of the inequalities given in thistext is the following: (i) dashed circles indicate nodes with negative coe�cients, (ii) circles3



�lled in grey indicate nodes with null coe�cient, (iii) full-line circles indicate nodes withpositive coe�cients, (iv) dash lines indicate edges with negative coe�cients and (v) fulllines indicate edges with positive coe�cients. For sake of brevity, we shall use simply theterm support to refer to the support graph of an inequality.Proposition 2.1 Given the complete undirected graph Kn = (V;E) with jV j = n andjEj = m =  n2 !, the dimension of PC(b) is given by:dim(PC(b)) = ( n if b = 1;n+m if 2 � b � n:Thus, for nontrivial instances of the problem, the polytope is full-dimensional. It followsthat, if we want to prove that the face F de�ned by a valid inequality �(x; y) � �0 for PC(b)is a facet, we only have to show that any other inequality de�ning a face that contains Fis a (positive) scalar multiple of �(x; y) � �0 (cf,[9]). The proofs in this text are based onthis technique.The next two propositions establish the conditions under which the inequalities in theoriginal formulation are facet de�ning for PC(b).Proposition 2.2 Let n � 3. For every two distinct nodes i; j 2 V , the inequalities yij�xi �0 and xi + xj � yij � 1 de�ne facets of PC(b) if and only if b � 3.Proposition 2.3 For every node i 2 V , the star inequality,Xj2V�fig yij � (b� 1)xi � 0de�nes a facet of PC(b) if and only if b � n � 1.The above inequality is called a star inequality since its support graph is a tree with asingle node of degree higher than one (which by de�nition is a star graph).Proposition 2.4 Let T � V be a subset of nodes in Kn. If jT j � 3 and 1 � � � jT j � 2,the clique inequality �Xi2T xi � Xe2E(T )ye � �(� + 1)=2 (1)de�nes a facet of PC(b) if and only T = V or � � b� 2.A special case of the clique inequalities is given when jT j = 3 and � = 1 which are calledthe clique triangle inequalities. The support graph of such an inequality is given in Figure1(a). 4
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Figure 1: (a) Support graph of clique triangle inequality with T = fi; j; kg e � = 1. Theclique triangle inequality corresponding is xi + xj + xk � yij � yik � yjk � 1. (b) Supportgraph of cut triangle inequality with S = fig e T = fj; kg. The cut triangle inequalitycorresponding is yij + yik � yjk � xi � 0.Proposition 2.5 Let S � V and T � V � S be two disjoint subset of nodes in Kn. ForjSj = s � 1 and jT j = t � 2, the cut inequalityXe2E(S:T )ye � Xe2E(S) ye � Xe2E(T ) ye �Xi2S xi � 0 (2)de�nes a facet of PC(b) if and only jSj = 1 and b � 3 or jSj � 2 and b � 4.When s = 1 and t = 2, we have the cut triangle inequalities whose support is shownin Figure 1(b). Like the clique inequalities, the cut inequalities were introduced for theBoolean Quadric Polytope in [10].In the next section we generalize the cut inequalities and obtain a large class of facetde�ning inequalities for PC(b). Moreover all the inequalities in this new class are shown tobe valid for PB and include both the clique and the cut inequalities.We close this section by presenting the tree inequalities. They have been �rst introducedin [8] and further studied in [11]. The proposition below appears in the latter paper.Proposition 2.6 Let T = (W;H) be a tree in Kn = (V;E) such that, jW j = b+1. If b � 3then the tree inequality Xe2H ye � Xi2W(di � 1)xi � 0 (3)where di is the degree of node i in T , de�nes a facet of PC(b) if and only if b = n� 1 or Tis not a star.Note that, among the inequalities presented here, tree and star inequalities are the onlyones who deal with the cardinality b of the largest feasible clique.In Section 4 we generalize the tree inequalities in two di�erent ways and obtain largeclasses of valid inequalities of PC(b) which are also related to b, the maximum cardinality ofa feasible clique. We show that, at least for some special cases, the generalized inequalitiesde�ne facets of PC(b). 5



3 Generalization of the Cut InequalitiesIn this section we present a new class of facet de�ning inequalities for PC(b) which canbe viewed as a generalization of the cut inequalities given in Proposition 2.5. We start byintroducing the (s; t)-cut inequalities which were originally proposed in [10] for the polytopePB. The proposition below gives necessary conditions under which these inequalities arevalid for PC(b).Proposition 3.1 Let S � V and T � V � S be two disjoint subset of nodes in Kn, wherejSj = s and jT j = t. The (s; t)-cut inequalityXe2E(S:T )ye� Xe2E(T )ye� Xe2E(S) ye+ (s� t)Xi2S xi+ (t�s�1)Xi2T xi � 12(t�s)(t�s�1) (4)is valid for PC(b).Proof: Let C = (U; F ) be any feasible clique in Kn (i.e., jU j � b). Suppose that jU\Sj = ~sand jU \ T j = ~t. Thus, for the incidence vector of C inequality (4) gives:~t~s � ~t(~t� 1)=2� ~s(~s� 1)=2 + (s� t)~s+ (t � s � 1)~t � (t � s)(t� s� 1)=2:~t~s� ~t(~t� 1)=2� ~s(~s� 1)=2 + (s� t)~s+ (t� s � 1)~t � (t� s)(t� s� 1)=2�12[~t2 � 2~t~s� ~t� 2(t� s � 1)~t+ ~s2 � ~s� 2(s� t)~s + (t� s)(t� s � 1)] � 0�12[~t2 � 2~t~s� ~t� 2(t� s� 1)~t+ ~s2 + ~s(�2(s� t) � 1) + (t� s)(t� s � 1)] � 0After factorizing the second order polynomium in ~s and the terms in ~t, we get:�12[~t2 � ~t(2~s+ 2t � 2s� 1) + (~s+ t � s)(~s+ t� s� 1)) � 0By factorizing the second order polynomium in ~t we obtain:�12[(~t� (~s+ t � s))(~t� (~s + t � s� 1))] � 0�12(~t � ~s� t+ s)(~t� ~s � t + s + 1) � 0Since ~t � ~s � t + s and ~t� ~s� t+ s+ 1 are consecutive integers, the inequality must hold.2Before proving that the (s; t)-cut inequalities de�ne facets of PC(b), we give the lemmabelow characterizing the vectors which are roots of such inequalities (i.e, the vectors liyingon the face de�ned by this inequality in PC(b)). This will be useful in proving the facetnessproperty. 6



Lemma 3.1 Let C = (U; F ) be a clique of Kn = (V;E) with jU j � b. Moreover, let S � Vand T � V �S be two disjoint subsets of nodes de�ning an (s; t)-cut inequality where jSj = sand jT j = t. Assume that ~s = jU \ Sj and ~t = jU \ T j. Then,(i) If t � s, the roots of (4) are incidence vectors of cliques C such that ~t = (t � s) + ~s or~t = (t� s) + ~s� 1.(ii) If s > t, the roots of (4) are incidence vectors of cliques C such that ~s = (s� t+ 1) + ~tor ~s = (s� t+ 1) + ~t� 1.Proof: Immediate from the previous proof. 2The next proposition states that the (s; t)-cut inequalities introduced earlier are facetde�ning for PC(b).Proposition 3.2 Let S � V and T � V �S, with jSj = s � 1 and jT j = t � 2, two disjointsubsets of nodes in Kn. If b � 3 the (s; t)-cut inequality de�nes a facet of PC(b).Proof: Since we have already proved the validity of the inequality, we can concentrate onproving that it is facet de�ning. For this, consider the face F de�ned by inequality (4) inPC(b). Assume that there exists a valid inequality �x + �y � �0 for PC(b) which de�nesthe face F(�;�) = f(x; y) 2 PC(b) : �x+�y = �0g. Moreover, assume that F � F(�;�). SinceF 6= ;, if we show that �x+�y � �0 is a positive scalar multiple of the (s; t)-cut inequality,the proof will be completed.To establish the relations between the coe�cients in �; � and �0 we have to �nd incidencevectors that lie on the face F (and conseq�uently in F(�;�)). The incidence vectors given herecan be easily checked to satisfy this condition by noting that they are in the form describedin Lemma 3.1. We assume that these vectors represent a feasible clique C = (U; F ) suchthat eS = S [ U and eT = T [ U .Claim 1. �(a; b) = �� and �(a; c) = � for all a; b 2 S e c 2 T .Proof. Consider eT � T , such that j eT j = t � s. Let a 2 S, b 2 S � fag and c 2 T � eTbe three nodes arbitrarily chosen. Since X eT 2 F , X eT[fag 2 F and X eT[fbg 2 F we obtainthat: (�; �) eT = �0(�; �) eT + �a + �(a; eT ) = �0(�; �) eT + �b + �(b; eT ) = �0Thus, we have that �a + �(a; eT ) = 0 and �b + �(b; eT ) = 0.Now, since X eT[fag[fcg 2 F , we conclude that �c+�(c; eT )+�(a; c) = 0. Moreover, sinceX eT[fag[fbg[fcg 2 F , we obtain �a+�b+�c+�(a; eT )+�(b; eT )+�(c; eT )+�(a; b)+�(a; c)+�(b; c) = 0. By combining the previous results we get �(a; b) = ��(b; c).7



Consider now a new set eT � T , with j eT j = t� s� 1. Let a; b and d be any nodes chosensuch that a 2 S, c 2 T � eT and d 2 T � ( eT [fcg). The following incidence vectors are in F :X eT , X eT[fcg and X eT[fdg. Thus, we can deduce that �c + �(c; eT ) = 0 and �d + �(d; eT ) = 0.Noting that X eT 2 F , X eT[fag[fcg 2 F and X eT[fag[fdg 2 F , it follows that �a+�(a; eT)+�(a; c) = 0 and �a + �(a; eT ) + �(a; d) = 0, respectively.Therefore, from the previous results we conclude that �(a; c) = �(a; d) = �a. If wetake b in S � fag, in an analogous way we have that �(b; c) = �(b; d) = �b. Thus, since�(a; b) = ��(b; c) we conclude that �(a; b) = ��(a; c) = ��(b; c) = ��a = ��b, that is ,�(a; b) = ��. Since the nodes were chosen arbitrarily, the result is proved.From now on, assume that eT � T is a subset of nodes satisfying j eT j = t� s.Claim 2. �(z; w) = 0 for all z; w 2 V � (S [ T ).Proof. Let z; w be two arbitrary nodes in V � (S [ T ). Since X eT 2 F , X eT[fzg 2 F andX eT[fwg 2 F , we can conclude that �z + �(z; eT ) = 0 and �w + �(w; ~T) = 0. But sinceX eT 2 F and X eT[fzg[fwg 2 F , we have that �(z; w) = 0.Claim 3. �(u; z) = 0 and �(v; z) = 0 for all u 2 S, for all v 2 T � eT and for allz 2 V � (S [ T ).Proof. Take any three nodes u; v and z such that u 2 S, v 2 T � eT and z 2 V � (S [ T ).The following incidence vectors are in F : X eT , X eT[fug, X eT[fzg and X eT[fug[fzg 2 F . Thisimplies that �(u; z) = 0.By considering the incidence vectors in F given by X eT , X eT[fzg, X eT[fvg[fug and X eT[fvg[fug[fzg, and using the fact that �(u; z) = 0, we obtain that �(v; z) = 0.Claim 4. �z = 0 for all z 2 V � (S [ T ).Proof. Let z be an arbitrary node in V � (S [T ). By noting that the incidence vectors X eTand X eT[fzg are in F , and using that �(z; eT ) = 0, we show that �z = 0.Claim 5. �(b; d) = �� for all b; d 2 T .Proof. Let a; b; c and d be any nodes in S, S�fag, T� eT and T�( eT [fbg), respectively. Wehave that: X eT , X eT[fa;cg X eT[fa;dg, X eT[fb;cg, X eT[fb;dg and X eT[fa;b;c;dg are in F . Therefore,since �(a; d) = �(b; c) = � and �(a; c) = �(b; d) = ��, it follows that �(b; d) = ��.Claim 6. �a = �(s� t) for all a 2 S.Proof. Let a be an arbitrary node in S. The vectors X eT and X eT[fag are in F and since�(a; u) = ��; 8u 2 T , we obtain that �a + �(a; eT ) = 0, that is, �a = �(t� s).Claim 7. �c = �(t � s � 1) for all c 2 T .Proof. Let a and c be arbitrary nodes in S and T � eT , respectively. From the incidencevectors X eT , X eT[fag and X eT[fag[fcg that are in F , we obtain that �c+�(c; eT )+�(a; c) = 0.Since �(c; eT ) = ��(t � s) and �(a; c) = �, we conclude that �c = �(t � s � 1). Thiscompletes the proof. 2Below we give the main results of this section which prove that the (s; t)-cut inequalitiesbelong to a larger class of valid and facet de�ning inequalities of PC(b). The next theoremintroduces this class of inequalities, which we call the (�; �)-inequalities.8



Theorem 3.1 Let S � V and T � V � S be two disjoint subsets of nodes in Kn, withjSj = s � 1 e jT j = t � 2. For b � 1 and � � � = 1, where � and � 2 ZZ, the (�; �)-inequality given byXe2E(S:T )ye � Xe2E(T )ye � Xe2E(S) ye � �Xi2S xi + �Xi2T xi � 12�� (5)is valid PC(b).Proof: Simply replace t � s by � in the proof of Lemma 3.1 2The roots of the inequality (5) are de�ned exactly as in Lemma 3.1 by replacing t � sby �. This shows that the (s; t)-cut inequalities are special cases of (�; �)-inequalities when� = t � s. Moreover, the clique and cut inequalities form particular subclasses of the(�; �)-inequalities for when jSj = 0 and � = 0, respectively.Finally, the theorem below provide some necessary conditions under which inequality(5) de�nes facet of PC(b).Theorem 3.2 Let S � V and T � V � S be two disjoint subsets of nodes in Kn, withjSj = s and jT j = t. For positive integers � and � satisfying � � � = 1, and t � � + 1, the(�; �)-inequality given by (5) de�nes a facet of PC(b) when � � b� 4.Proof: The proof is analogous to that of Proposition 3.2. It su�ces to replace t� s by �and use the same incidence vectors. 2Note that, Lemma 3.1 also holds for the incidence vectors of feasible solutions of theBoolean Quadric Problem. Thus, the (�; �)-inequality is valid for PB. Moreover, sincePC(b) � PB and PC(b) is full dimension, the same set of a�nely independent points usedto prove that (5) de�nes a facet of PC(b) can be used to prove that this inequality alsode�nes facet for PB. The theorem below formalizes this result.Theorem 3.3 Let S � V and T � V � S be two disjoint subsets of nodes in Kn, withjSj = s e jT j = t � 2. For positive integers � and � satisfying � � � = 1, and t � � + 1,the (�; �)-inequality given by (5) de�nes a facet of the Boolean Quadric Polytope PB.4 Generalization of Tree InequalitiesIn this section we generalize the tree inequalities given in Proposition 2.6. This generaliza-tion goes in two di�erent ways. In the �rst generalization we obtain new valid inequalitiesfor PC(b) by decreasing the size of the tree. To avoid infeasibility, the support of the inequa-lity is enlarged via a lifting operation (cf, [9]). The support graph we obtain is disconnectedand, to the best of our knowledge, these are the �rst inequalities for PC(b) with this feature.9



We note that a very similar result is presented in [3] for the equicut problem. In the latterproblem, cycles seem to play a role which is very similar to that of trees in the MEWCP.By exploring this idea we have been able to derive a second generalization for the treeinequalities which can be viewed as special combinations of originally nonvalid inequalitiesfor PC(b).These two generalizations are discussed in the following subsections. The main resultof this section is that both generalizations lead to valid inequalities for PC(b) and, for somespecial cases, they can be shown to be facet de�ning for PC(b).4.1 Small Tree InequalitiesGiven a tree T = (W;H) in Kn consider the value of !T (x; y) given by !T (x; y) =Pe2H ye�Pi2W (di � 1)xi. The inequalitity in Proposition 2.6 can be rewritten as!T (x; y) = Xe2H ye � Xi2W(di � 1)xi � 1 (6)for jW j = b+ 1. The validity of this inequality is based on the following lemma taken from[2].Lemma 4.1 Let C = (U; F ) and T = (W;H) be a clique and a tree of Kn, respectively.De�ne (xC ; yC) to be the incidence vector of C and assume that A = U \W . If c(A) is thenumber of connected components induced by A in T and �T (A) is the cutset of A in T , then!T (xC ; yC) = c(A)� j�T (A)j.Proof: We compute: !T (xC ; yC) = Pe2H ye +Pu2W (1� du)xu= Pe2E(A) ye +Pu2A(1� du)= Pe2E(A) ye + jAj �Pu2A duThe �rst summation corresponds to the number of edges in the forest induced by A in T ,therefore: Pe2A ye = jAj � c(A). In the second summation each edge joining two nodes iand j in A is counted twice (in di and dj) and the edges going from A to W nA (those in�T (A)) appear only once. This yields: Pu2A du = 2(jAj � c(A)) + j�T (A)j.Therefore: !T (xC ; yC) = jAj � c(A)� 2jAj+ 2c(A)� j�T (A)j= c(A)� j�T (A)j 2From the lemma above, we have that !T (x; y) is never greater than one, except whenA = W (A is the set of all nodes in the tree), in which case we have c(A) = 1 and j�T (A)j = 0,implying that !T (x; y) = 1. A root of !T (x; y) is obtained when c(A) = j�T (A)j, meaningthat each of the subtrees in the forest induced by A in T can be disconnected from the10



remaining nodes of T by removing a single edge (that is, the nodes in W nA are all containedin a single subtree of T ).Clearly, this lemma proves the validity of the tree inequalities whenever we can ensurethat not all nodes of the tree belong simultaneously to a feasible clique. This is the casewhen jW j > b+ 1. But, what if jW j � b ? Below we focus on the case when jW j = b.From Lemma 4.1, the only incidence vector of a feasible clique that violates the corres-ponding tree inequality is the one associated to the clique C = (W;E(W )), that is, the cliqueis composed by the nodes of the tree T = (W;H). Thus, the tree inequality !T (x; y) � 0 isnot valid for PC(b) when jW j = b.To recover the validity of the inequality we make a lifting. For this consider the (�; �)-inequalities for � = � + 1 = 2 which is given by:!1(x; y) = Xe2E(S:S0) ye � Xe2E(S0) ye � Xe2E(S) ye � 2Xi2S xi + Xi2S0 xi � 1 (7)where S � V �W and S 0 � V � (W [ S).Note that if xi = 0 for all nodes in S [ S0 then !1(x; y) = 0 and !T (x; y) can take thevalue one if the feasible clique has all its nodes in W . On the other hand, if xi = 1 for somei in S [ S 0, !1(x; y) can be one but, in this case, !T (x; y) � 0. These arguments prove thevalidity of the inequality given in the next theorem.Theorem 4.1 Let T = (W;H) be a tree in Kn = (V;E) such that jW j = b, S � V �Wand S 0 � V � (W [ S). For b � 2, jSj and jS 0j � 1, the tree+(2,1) inequality!T (x; y) + !1(x; y) � 1 (8)where !T (x; y) and !1(x; y) are de�ned as in (6) and (7), respectively, is valid for PC(b)Though validity can be easily proved for the inequalities presented in the Theorem 4.1,we have not been able to establish necessary and su�cient conditions to ensure the facetnessproperty. However, the next theorem presents a case in which these inequalities de�ne facetsof PC(b).Theorem 4.2 If T = (W;H) is a path then the inequality in Theorem 4.1 de�nes a facetfor PC(b).Proof: Let F be the face de�ned in PC(b) by !T (x; y) + !1(x; y) � 1. Moreover, assumethat �x+ 
y � �0 is a valid inequality for PC(b) such that F � F(�;
) = f(x; y) 2 PC(b) :�x + 
y = �0g. Since F 6= ;, if we prove that �x + 
y � �0 is a scalar multiple of!T (x; y) + !1(x; y) � 1 we are done.Again we assume that XC is the incidence vector of a feasible clique C. If Z is a setof nodes in V and H a set of edges in E, we use the notation �(Z) and 
(H) to denoterespectively Pi2Z �i and Pe2H 
e. We abuse notation and denote by 
(Z) the value ofP(i;j):i;j2Z 
i;j . Finally, we denote by ZjZ0 the set of edges in the cutset �(Z; Z 0).Claim 1. For all u 2 S 0, X fug 2 F . Thus, �u = �0.11



Claim 2. For all u; v 2 S 0, X fu;vg 2 F . Thus, �u + �v + 
u;v = �0, and then �u;v = ��0.Claim 3. For all u; v; z 2 S 0 and w 2 S, X fu;v;z;wg and X fu;v;wg are in F . Therefore,�w + 
(w; fu; v; zg) = �w + 
(w; fu; vg) = �0. We conclude that 
w;z = �0 and �w = �2�0.Claim 4. For all w1; w2 2 S and u; v; z1; z2 2 S 0, the vector X fu;v;z1 ;z2;w1;w2g is in F . Fromthe previous results we get that 
w1 ;w2 = ��0.Claim 5. For all z 2 V n (W [ S [ S 0) and u; v 2 S0, the vectors X fu;v;zg and X fu;zg are inF . Therefore, 
z;u = 0 and, consequently, �z = 0.Claim 6. Let u; z; v and w be any four distinct nodes such that u 2 S and z; v 2 S0and w 2 V n (W [ S [ S 0). The incidence vectors X fu;v;z;wg and X fu;v;zg are in F . Thus,�w + 
u;w + 
v;w + 
z;w = 0 and, we conclude that 
u;w = 0.Up to now we have proved that all coe�cients of � and 
 related to nodes and edgesnot involving nodes of the path T (nodes in W ) satisfy the desired conditions. In the nextsteps we deal with the remaining coe�cients.Initially, let W = fu1; : : : ; ubg and F = f(u1; u2); : : : ; (ub�1; ub)g be the nodes and edgesof path T respectively. Note that symmetry implies that proofs involving nodes (u1; : : : ; up),for p � b� 1, also hold for nodes (ub�p+1; : : : ; ub).Claim 7. Since X fj;u1;:::;upg and X fj;z;u1;:::;upg for all j 2 S0, z 2 V n (W [ S [ S0) andp < b� 2, we have that 
(zjfu1; : : : ; upg) = 0. Now, varying p from 1 to (b� 2) and usingthe symmetry of the path, we conclude that 
z;ui = 0 for all i = 1; : : : ; b.Claim 8. Since X fj;u1;:::;upg and X fj;k;u1 ;:::;upg for all j; k 2 S0 and p < b� 2, we have that
(kjfu1; : : : ; upg) = 0. Now, varying p from 1 to (b � 2) and using the symmetry of thepath, we conclude that 
k;ui = 0 for all i = 1; : : : ; b.Claim 9. Let i; j; k be any arbitrary (distinct) nodes such that i 2 S and j; k 2 S0. Forp < b � 3, the following incidence vectors are in F : X fj;u1;:::;upg, X fi;j;k;u1;:::;upg. Fromthe previous results we can conclude the following. The �rst incidence vector implies that:�(u1; : : : ; up)+
(u1; : : : ; up) = 0. The second incidence vector and the latter equation implythat 
(ijfu1; : : : ; upg) = 0. Thus, for p = 1; : : : ; p� 3, 
i;up = 0 and, by symmetry, we canextend this result so that it holds for all p 2 f1; : : : ; bg.Besides the coe�cients of nodes and edges that are internal to the path, it remains toprove that the coe�cients for all chords in the path are null. This is done in the next step.Claim 10. Let p < b � 3, b � r > p + 2 and z be an arbitrary node in S 0. The fol-lowing cliques are feasible and their incidence vectors can be easily veri�ed to be in F :fz; u1; : : : ; up; ur; : : : ; ubg, fz; u1; : : : ; up+1; ur; : : : ; ubg, fz; u1; : : : ; up+1g and fz; ur; : : : ; ubg.This implies that:�(u1; : : : ; up) + �(ur; : : : ; ub) + 
(u1; : : : ; up) + 
(ur; : : : ; ub) ++
(u1; : : : ; upjur; : : : ; ub) = 0�(u1; : : : ; up+1) + �(ur; : : : ; ub) + 
(u1; : : : ; up+1) + 
(ur; : : : ; ub) ++
(u1; : : : ; up+1jur; : : : ; ub) = 0�(u1; : : : ; up+1) + 
(u1; : : : ; up+1) = 0�(ur; : : : ; ub) + 
(ur; : : : ; ub) = 012



The last three equations imply that 
(u1; : : : ; up+1jur; : : : ; ub) = 0. Starting with p = 0and r = b and alternately incrementing p and decrementing r by one unit, we can provethat 
ui;uj = 0, for all 1 � i < j � 1 and j � b.Now comparing the �rst two equations and using the last result for the coe�cients ofchords, we get that 
up+1 ;up + �up+1 = 0 for all 2 � p � b� 2 and �u1 = 0.Using the symmetry of the path we can also conclude that 
up+1 ;up + �up = 0 for all2 � p � b� 2 and �ub = 0. This implies that, for a constant �, 
e = ��u = � for all edgese of the path and all nodes u which are not endnodes of the path.Finally, the incidence vector of the (feasible) clique formed by the nodes of the path lieson F . Therefore, �(b� 1)� �(b� 2) = �0, and we must have � = �0 which completes theproof. 24.2 Block-Tree InequalitiesConsider the tree inequality and the result given in Lemma 4.1. Clearly, c(A) is alwaysless than or equal to j�T (A)j except if A = V (T ) in which case c(A) = 1 and j�T (A)j = 0.Therefore, the tree inequality is valid for PC(b) if and only if jW j > b. We now show thatwhen suitable conditions are satis�ed, the sum of nonvalid tree inequalities also gives riseto strong valid inequalities for PC(b). This idea was �rst investigated in [2], [3], and is alsodescribed in [4] in the context of the equicut polytope. Due to the notation used in theseprevious works and the analogy between the roles played by cycles in cut problems and thoseplayed by trees in clustering problems, we call these inequalities block-tree inequalities.Let � be a collection of trees ((V (T1); T1); : : : ; (V (Tt); Tt) of a graph G satisfying thefollowing property: if u 2 V (Ti) \ V (Tj) for some i; j 2 f1; : : : ; tg, then u 2 V (Tk) \ V (T`)for all k; ` 2 f1; : : : ; tg.For each tree Ti of �, we can de�ne the tree inequality as before, i.e., !(Ti)(x; y)� 0.The tree combination inequality for � is given by the sum of these inequalities, that is:!(�)(z; y) = XTi2�!(Ti)(x; y) � 0 (9)Consider the subgraph of G formed by the edges and nodes in �. Let N be de�ned asthe set of nodes that are common to all trees in �. If the nodes in N are removed from thissubgraph, what remains is a forest of subtrees. Let (S1; S2; : : :) be the ordered set of thesesubtrees where q1 � q2 � : : : and qi = jSij. We de�ne Q = Pt�1i=1 qi. In Figure 2 it is shownthe support of a tree combination inequality for which t = 3 and Q = 6.Theorem 4.3 Let � be a tree combination in G = (V;E) such that V (�) = [ti=1V (Ti).Suppose that jV (�)j = b+W , where W � 0. Then, the block-tree inequality (9) is validfor PC(b) if and only if Q < W .Proof:Necessity: Suppose that Q � W . This implies that there exists a set � of � � t � 1subtrees such that the number of nodes in all subtrees in � is greater than or equal to W .13
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1Figure 2: Support graph of the tree combination inequality for t = 3.De�ne S to be the set of all nodes of V (�) that are not in V (�) (= f nodes of subtreesin � g ). The incidence vector (xS ; yS) of S can be easily checked to be in PC(b).From Lemma 4.1, !(Ti)(xS ; yS) = c(S\V (Ti))�j�T (S\V (Ti))j. However, j�T (S\V (Ti))jcan be computed as c(S\V (Ti))+c(V (Ti)nS)�1 which yields !(Ti)(xS; yS) = 1�c(V (Ti)nS). Thus, !(�)(xS ; yS) = Pti=1 !(Ti)(xS ; yS)= Pti=1(1� c(V (Ti) n S))= t �Pti=1 c(V (Ti) n S)= t � �� t � (t� 1) � 1The left-hand side of inequality (9) is positive for this feasible solution and therefore theinequality is not valid. Necessity is proved.Su�ciency: We assume that (9) is not valid and we end up with the conclusion that Qmust be greater than or equal to W . For this, let S be a subset of V such that (xS ; yS)violates (9), that is: !(�)(xS; yS) = t � tXi=1 c(V (Ti) n S) � 1which implies that: tXi=1 c(V (Ti) n S) � t� 1Now, since (xS ; yS) violates (9), there exists at least one tree in �, say Tj , such that!(Tj)(xS ; yS) = 1. This implies that all nodes in V (Tj) and, consequently, all nodes in Nare in S. Thus, from the last expression above, we can conclude that there are at most t�1subtrees in � (obtained by removing the nodes in N) that do not contain nodes in S.If Q < W , the previous observation implies that jSj > b and, therefore, S cannot be afeasible clique. We conclude that, if (9) is not valid, then Q � W and this completes the14



proof. 2Again, it is hard to �nd necessary and su�cient conditions for inequality (9) to be facetde�ning for PC(b). Nevertheless, we have found one case for which facet de�ning inequalitiescan be obtained by combining nonvalid tree inequalities. This case is described below.Suppose that � is a collection of two trees T1 and T2 that have one node vc in common(N = fvcg) and the degree of any node i in trees T1 and T2 is not greater than 2. In thiscase, each of the trees of the combination reduces to a path and the support graph of thetree combination inequality looks like a cross centered at node vc (see Figure 3).
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cFigure 3: Support graph of the tree combination inequality with cross centered at node vc.Removing node vc from the support graph, what remains is a forest composed of 4paths. Let (V (P1); P1); : : : ; (V (P4); P4) be those paths, q1 � q2 � q3 � q4 (qi = jV (Pi)j)and vi1; : : : ; viqi denote the nodes of V (Pi). Moreover, de�ne pj to be the minimum of qk+q`for k and ` in f1; 2; 3; 4g n fjg. The tree combination inequality corresponds to:Xe2P1[P2[P3[P4 ye � 2xvc � 4Xi=1 qj�1Xj=1 xvij � 0 (10)The following result can be proved.Theorem 4.4 Let � be cross centered at a node vc and spanning the graph G = (V;E).Suppose that q2 + q3 + q4 � b and jV (�)j = b +W . Then, for b > W � 3, the followingholds:(i) Inequality (10) is valid for PC(b).(ii) Inequality (10) is facet de�ning for PC(b) if and only if qj+pj = b for all j = 1; 2; 3; 4.15



5 Computational ResultsWe now describe the computational experiments that we have carried out. Our primary goalis to con�rm that the inequalities that we have introduced here provide a better descriptionof the polytope PC(b). A second goal is to compare di�erent cutting plane strategies. Alarge variety of facet de�ning inequalities for PC(b) are found in the literature and all theseinequalities can be considered in designing a branch-and-cut algorithm for MEWCP. In theliterature, for the extended formulation, only one strategy have been tested in [11].To achieve our goals, we have implemented a branch-and-cut algorithm whose main fea-tures are: (i) use of primal heuristic to provide a priori lower bounds; (ii) exact separationroutines for the inequalities used in tightening the formulation, excepting tree inequalities;(iii) branching on the most fractional variable if no violated inequality is found or tailling-o� has been detected (objective function change less than 0.0001 after 30 LPs) ; (iv) thestrategy for node selection in the branch-and-bound tree is Best Bound; (v) the LP solveris CPLEX 3.0 (see [1]) and all tests have been done in a Sun SPARC 1000 machine.We now describe in more details some of the features listed above.Primal HeuristicsTo derive an initial lower bounds, we use an algorithm which �ts in the framework ofGreedy Randomized Adaptative Local Search Procedures, GRASP for short. The mainideas of GRASP are discussed in [7].Essentially, our heurisitic starts by building a feasible solution which is then given as aninput for the local search heuristic Greedy All described in [13]. The initial solution is builtas follows. First we pick one node of the graph and add it to the clique. At each iteration, alist of k nodes providing the largest augmentations in the objective function is constructed.Then, a randomly chosen node of the list is added to the current clique and the procedurekeeps repeating these steps until b nodes have been added to the clique or no more nodesare to be examined.For all test instances this easy-to-implement heuristic reaches the optimal solution.Thus, if good upper bounds come up from the formulations the branch-and-bound pro-cess presumably will stop soon.Separation RoutinesWe have conducted several computational experiments comparing both CPU times andupper bounds obtained by cutting-planes (without entering the branching phase) for exactand heuristic separation routines for various classes of inequalities.We have not been able to design good heuristics for separation. The best performances ofthe code for all inequalities were always achieved when exact separation was used. However,many of these separation algorithms have complexity of �(n4) or even �(n5), which is toomuch time consuming. Our conclusion is that this is certainly a topic that deserves moreattention: one should look for a better compromise in which fast heuristics are designed soas to provide a considerable amount of violated inequalities when they exist.16



The only inequality that we have not separate exactly are the ones having trees as partof their support graphs. For the tree inequality (3), Park et al [11] present a theorem whichstates that the most violated tree inequality can be found in polynomial time if its nodeset is �xed in advance otherwise, the problem is NP-hard. They also have developed anheuristic separation for these inequalities which initially chooses the nodes in the tree, thatis, the set W . The procedure starts by �nding the set fW corresponding to all nodes inV whose variables are not null. If jfW j is less than b + 1 the procedure fails. Otherwise,suppose that fW = fu1; : : : ; upg such that xui � xui+1 for all i 2 f1; : : : ; pg where p � b+ 1.Then an optimal tree is built for all sets W = (fu1; u2; : : : ; ub+1g [ fujg) n fuig, wherei 2 f1; : : : ; b + 1g and j 2 fb + 2; : : : ; pg. All violated inequalities found are add to thecurrent formulation ([12]).We also have implemented our own heuristic which builds the tree in a greedy fashionstarting once with each edge of the graph. A few more inequalities could be separatedwith this heuristic. But in general, the results we have obtained for both heuristics werediscouraging as we will show later. Tipically, the number of violated inequalities found isextremely low. We have not been able to understand precisely the causes of this behavior.It may be the case that the heuristics perform badly or, on the other hand, that incidencevectors satisfying the original formulation often satisfy the tree inequalities. Despite of thisfact, to test the cutting strategy proposed in [11], we have separated tree inequalities. Forthe results reported later, we have used our own separation heuristic for trees.Test InstancesLike in [5] and in [11], the instances are partitioned into two sets. In the �rst one, all edgeweights are positive, while in the second one, positive and negative edge weights are allowed.The weights were randomly generated according to the scheme described in [13], that is:� 1 � cij � b10w+1rkc for positive weights, and� �b10w+1rkc � cij � b10w+1rkc for posite and negative weights.where k 2 f1; : : : ; 5g, w > 0 and r 2 (0; 1]. We have generated instances for n 2f30; 40; 42; 44; 45; 46; 48g and for �ve possible values of k, w = 2 and b = bn2 c. Thischoice of b was motivated from our preliminary tests which indicated that, for �xed n andedge weights, these are usually the most di�cult instances. This is in accordance with thecomputational experiments reported in the literature ([11]).Cutting StrategiesSince there are many di�erent families of facet de�ning inequalities that are known forPC(b), several alternative cutting strategies can be applied in a branch-and-cut algorithmfor the Maximum Edge-Weighted Clique Problem.The strategies we have tested in our computational experiments involve the inequalitieslisted below. The notation in parenthesis is used in the sequel to denote the correspondinginequalities. 17



� cut triangle (4);� cut for jSj = 1 and jT j = 3 (C1;3);� cut for jSj = 2 and jT j = 3 (C2;3);� tree (TRE);� clique triangle (C4);� (s,t)-cut for jSj = 1 and jT j = 3 (stC1;3);� (s,t)-cut for jSj = s = 1 and jT j = t = 4 (stC1;4);� (�; �) for � = � + 1 = 2, jSj = 1 and jT j = 4 ( (�; �)1;4).In our experiments four di�erent strategies are compared. The choice for these state-gies was based on preliminary tests we have done on small instances. Using the notationintroduced above, the four strategies can be summarized as follows:� Strategy 1: 4, C1;3 and C2;3;� Strategy 2: 4, C4 and TRE,� Strategy 3: 4, stC1;3 and stC1;4;� Strategy 4: 4 and (�; �)1;4.It is worth mentioning that Strategy 2 corresponds to the one used in [11].We have noticed that the performance of the code is extremely sensitive to the para-meters of the branch-and-cut algorithm. In particular, the number of cuts added at eachiteration (after each LP) seem to in
uence a lot the behavior of the algorithm.We have �xed the maximum number of cuts generated at each iteration to maxcut= d25n2 e for each class of inequalities. The separation routines are called in the same orderthey appear in the description of the strategy. The separation of a new family of inequalitiesis only executed if the number of violated inequalities found for the previous family is lessthan maxcut/2. It is worth noting that in [11] there is also an analogous parameter formaxcut but no reference for the value used in the computations is given.Comparison between Cutting StrategiesThe �rst test we have done concerns the pure branch-and-bound code using CPLEX 3.0 withdefault parameters. The larger instances of MEWCP used in computational experimentsreported in the literature refer to graphs with up to 30 nodes ([5], [11]). Using branch-and-bound we have been able to solve most of the 30 node graphs in about one hour of CPU.The real challenge seem to solve problems for graphs with more than 40 nodes.In Tables 1{4 below, we show the results obtained with Strategies 1{4 respectively forten instances from our sample. In each of these tables we have the columns: n: the numberof nodes in the graph; b: the maximum cardinality of a feasible clique; k: the parameter18



used to generate the edge weights;# Nodes: the number of nodes in the enumeration tree;# LP: the number of LPs solved; # Cuts: number of cuts generated for each family ofvalid inequalities in the corresponding strategy; First Node; the value of the lower boundafter the last LP solved in the �rst node of the enumeration tree and Time: the CPU time(in seconds) needed to solve the instance.Initially, for comparison purposes, we have restricted ourselves to the ten instances inTables 1{4 for which n lies is in the range f40; : : : ; 45g.We analyze the quality of the cuts used in each strategy by looking at the number ofnodes opened in the enumeration tree. According to that, the �rst and the last strategiesoutperform the two other strategies since the instances have been solved without branching.The number of LPs in the last strategy (except for the �rst instance) is always smallerwhen compared to the �rst strategy, while the total number of cuts added to the originalformulation remains almost the same.This indicates that the new inequalities introduced here, namely (�; �) inequalities,are more e�ective than the C1;3 and C2;3 inequalities in describing the optimal solution.However, Strategy 1 runs faster than Strategy 4.Concerning the CPU time, Strategy 2 seem to be the best one, though Strategy 3 havebeen faster on a few instances. In Strategy 2, the tree inequalities do not seem to help insolving the problem. This is also the case in the computational results reported in [11].The number of nodes in the enumeration tree is much larger for this strategy contrarily tothe CPU times. From this observation one can raise the following question that appears inmany branch-and-cut applications: how long should one proceed in a cutting-plane phasebefore branching?The cuts of Strategy 2 are not as good as those in Strategies 1 and 4 to describe theoptimal solution but this disadvantage is overcame by the fact that branching allows us toobtain the optimal solution quicker.Tables 5 and 6 summarize the results we have obtained by applying Strategy 1 for the 60instances we have generated for n � 40. Strategy 1 was chosen since it gives the best trade-o� between the strenght of the cuts and CPU time. We have tried to solve this problems withstandard branch-and-bound procedure limiting the number of nodes in the enumeration treeto 20000 and CPU time to one hour. The only instances solved were for the pairs (n; k) 2f(40; 5)g given by for positive edge weights and (n; k) 2 f(40; 4); (40; 5); (42; 4); (42; 5)g formixed edge weights.It is interesting to note that only four instances could not be solved by pure cuttingplanes. They are given by the pairs (n; k) = f(40; 4); (44; 4); (42; 4); (48; 5)g with positveand negative weigths (see Table 6). We have tried to solve these instances using Strategy 4and it turns out that they are solved without any branching which reinforces the conclusionthat the (�; �)-inequalities are strong. The optimal values for these four instances are 27758,32601, 32968 and 31351 respectively. 19



Positive weights# Cutsn b k # Nodes # LP # 4 # C1;3 # C2;3 1st. node Optimal Time (sec.)40 20 1 0 17 5289 3000 0 1099346 109346 3719.5240 20 3 0 18 5075 2407 300 68759 68759 4063.2940 20 4 0 27 5053 2523 1200 60782 60782 5419.5144 22 1 0 15 6399 1650 0 136525 136525 3734.5445 22 5 0 23 8090 3628 226 69563 69563 7873.28Positive and negative weights# Cutsn b k # Nodes # LP # 4 # C1;3 # C2;3 1st. node Optimal Time (sec.)40 20 1 0 55 4044 4197 3800 70348 70348 23805.2040 20 5 0 10 1596 2127 0 27967 27967 522.4642 21 5 0 8 2738 678 105 35460 35460 295.9444 22 1 0 63 5604 6471 4510 90620 90620 47799.7345 22 1 0 29 5987 6351 791 102295 102295 23572.92Table 1: Computational results for instances using Strategy 1.Positive weights# Cutsn b k # Nodes # LP # 4 # C4 # TRE 1st. node Time (sec.)40 20 1 6 20 5216 802 0 110437.83 2851.4440 20 3 8 27 4862 293 1 69901.67 2929.2440 20 4 12 40 5033 360 3 61867.32 3917.8744 22 1 0 14 6328 634 1 136525 2439.7245 22 5 6 28 8047 356 0 70166.45 6702.60Positive and negative weights# Cutsn b k # Nodes # LP # 4 # C4 # TRE 1st. node Time (sec.)40 20 1 64 107 4082 1407 74 76625.67 22335.4440 20 5 0 7 1458 524 90 27967 162.7742 21 5 0 8 2729 534 0 35460 285.0044 22 1 78 122 5644 1554 74 97368.92 37371.7345 22 1 10 30 5974 1254 44 105735.75 8717.98Table 2: Computational results for instances using Strategy 2.20



Positive weights# Cutsn b k # Nodes # LP # 4 # stC1;3 # stC1;4 1st. node Time(sec.)40 20 1 0 17 5267 3000 0 109346 3777.2340 20 3 0 16 4922 2451 0 68759 2881.2040 20 4 2 22 5060 2597 155 60786.21 3154.6044 22 1 0 15 6360 1650 0 136525 3942.3745 22 5 2 27 8141 3687 164 69578.13 10775.66Positive and negative weights# Cutsn b k # Nodes # LP # 4 # stC1;3 # stC1;4 1st. node Time(sec.)40 20 1 8 40 4046 4639 433 73004.21 12832.6740 20 5 0 10 1588 2127 200 27967 489.4442 21 5 0 8 2739 678 105 35460 287.3444 22 1 8 44 5543 5763 497 93037.97 35065.6145 22 1 2 25 5948 4590 83 102994.05 12784.62Table 3: Computational results for instances using Strategy 3.Positive weights# Cutsn b k # Nodes # LP # 4 # (�; �)1;4 1st. node Time (sec.)40 20 1 0 19 5251 4000 109346 5616.7740 20 3 0 18 4849 3500 68759 3336.0240 20 4 0 20 5027 4500 60782 6483.4544 22 1 0 14 6313 1100 136525 3826.7945 22 5 0 22 8051 3941 69563 9276.42Positive and negative weights# Cutsn b k # Nodes # LP # 4 # (�; �)1;4 1st. node Time (sec.)40 20 1 0 32 4034 11500 70348 23827.8140 20 5 0 7 1546 1500 27967 214.1542 21 5 0 8 2726 1050 35460 614.5944 22 1 0 36 5537 13750 90620 37290.8745 22 1 0 27 5962 9008 102295 23465.26Table 4: Computational results for instances using Strategy 4.21
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# Cutsn k # Nodes # LP # 4 # C1;3 # C2;3 1st. node Time (sec.)1 0 17 5289 3000 0 109346 3719.522 0 9 4000 0 0 82451 821.5240 3 0 18 5075 2407 300 68759 4063.294 0 27 5053 2523 1200 60782 5419.515 0 8 3500 0 0 60513 817.411 0 32 6149 4484 1260 120299 13679.362 0 37 5419 4971 1785 87810 15919.7142 3 0 31 5470 2903 1575 76554 11298.254 0 11 5021 0 0 69482 1666.135 0 9 4200 0 0 76383 823.631 0 15 6399 1650 0 136525 3734.542 0 31 6346 4628 1210 98186 15532.7444 3 0 14 6814 550 0 84675 2839.204 0 16 6591 1650 0 75274 3584.065 0 12 5703 550 0 69540 2389.171 0 60 7597 6065 4068 138694 39889.152 0 42 7543 6086 2034 98321 30618.4145 3 0 43 6814 4103 2712 82743 25514.104 0 20 7367 3191 0 77500 6401.015 0 23 8090 3628 226 69563 7873.281 0 57 8645 7324 3450 142985 41205.222 0 37 8712 5169 1495 108243 20712.6946 3 0 16 7575 1150 0 94859 2773.164 0 26 8750 3890 345 78747 13901.905 0 29 8581 3708 805 72431 14504.891 0 30 9665 7529 0 163397 25364.592 0 105 9169 8783 9000 115471 103345.1448 3 0 64 8606 6435 4680 96666 51771.514 0 17 8492 1200 0 88728 3920.535 0 16 9000 0 0 82117 3487.15Table 5: Computational results for instances with positive weights using branch-and-cutalgorithm and Strategy 1. 24



# Cutsn k # Nodes # LP # 4 # C1;3 # C2;3 1st. node Time (sec.)1 0 55 4044 4197 3800 70348 23805.202 0 13 2233 4000 0 45404 2316.4640 3 0 11 2280 3000 0 34091 922.724 2 34 2345 5212 1281 27772.52 4767.645 0 10 1596 2127 0 27967 522.461 0 61 4799 5054 4410 81633 38285.582 0 28 3540 4683 1260 46828 5873.0342 3 0 11 2664 2625 0 36689 1067.874 0 5 1586 525 0 35987 54.995 0 8 2739 678 105 35460 295.941 0 63 5604 6471 4510 90620 47799.732 0 13 3439 3300 0 56960 4360.9444 3 0 12 3250 2750 0 40967 1255.874 2 44 2415 5893 2698 32711.25 13740.635 0 13 2507 4400 0 29407 1228.171 0 29 5987 6351 791 102295 23572.922 0 30 4014 4805 1582 55103 9190.7245 3 0 8 2937 1100 0 43914 582.804 0 27 2727 6374 1243 33990 6089.395 0 32 3364 6564 1695 30974 10820.771 0 40 6093 7801 1840 99550 36453.302 0 21 3873 4683 575 58361 6003.7046 3 0 27 3303 6588 1265 43915 9112.734 2 52 3433 6851 3438 33054.06 28122.145 0 13 3413 3450 0 31000 1400.601 0 99 7527 9368 8520 113478 124615.382 0 62 5170 6197 5280 61768 45361.9348 3 0 17 4107 6000 0 45941 5214.584 0 11 3160 2444 120 36903 1454.625 2 33 3665 8387 1440 31404.64 11199.91Table 6: Computational results for instances with positive and negative weights usingbranch-and-cut algorithm and Strategy 1. 25


