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A Tabu Search Approach for Scheduling Problem UnderLabour ConstraintsCristina C�elia Barros Cavalcante� Cid Carvalho de SouzayInstituto de Computa�c~aoUniversidade Estadual de Campinas | UNICAMPCaixa Postal 6176 { CEP: 13081-970 { Campinas, SP { Brasile-mail: fcris,cidg@dcc.unicamp.brSeptember 1997AbstractThe Resource Constrained Project Scheduling Problem (RCPS) is a well known dif-�cult combinatorial optimization problem. Many exact and heuristic approaches forthis problem have been reported in the literature. Tabu search is a meta-heuristic de-signed to guide local search methods to escape the trap of local optimality. It has beenlagerly used for solving combinatorial problems. In this report we propose a tabu searchapproach for Scheduling Problem under Labour Constraints (SPLC). Di�erent neigh-bourhood strategies are discussed and then implemented. Computational experimentson a 25-instance SPLC data set are reported. The results obtained for benchmarkinstances are compared with those produced by a Constraint Logic Programming algo-rithm and show that our approach is at least as good as the best heuristics reported inthe literature.Keywords: Scheduling Problem under Labour Constraints, Tabu Search, Combinato-rial Optimization1 IntroductionCombinatorial optimization can be de�ned [NW88] as the area that deals with problems ofmaximizing or minimizing a function of many variables subject to (i) inequality and equalityconstraints and (ii) integrality restrictions on some or all of the variables.There are a lot of applications of combinatorial optimization, and one of the mostcommon in industrial environment is related to the management and e�cient use of scarceresources to increase productivity [BESW93]. The production scheduling problems arise inthis context. The Scheduling Problem under Labour Constraints (SPLC) is concerned with�Research partially suported by CNPq Grant 139077/96-0 and FAPESP Grant 96/10270-8.yResearch partially suported by CNPq Grant 300883/94-3.1



the scheduling of a collection of precedence related activities subject to constraints on theavailable number of workers necessary to execute each of the activities.SPLC is a typical example of the Resource Constrained Project Scheduling Problem(RCPSP). RCPSP is known to be intractable [BLR83]. Exact and heuristic procedureshave been reported in the literature for many di�erent variants of RCPSP [DH92, NWS95,SW93, ZP96]. A constraint programming approach for the special case of SPLC, which isof interest in our work, is presented in [Hei95] and [HC97].SPLC, as posed here, models a practical problem and, to our knowledge, it was �rst stu-died in the PAMIPS Project [PAM]. In this project, the problem was originally formulatedas a mixed-integer programming problem.In this technical report we address the design, implementation and testing of a tabusearch procedure for the SPLC. Tabu search is a meta-heuristic for solving optimizationproblems, designed to guide local search methods to escape the trap of local optimality[Glo90]. The method makes use of a exible adaptive memory structure and of tabu res-trictions in order to drive and constrain the solution search process. Tabu search has beenlargely used for solving di�cult combinatorial problems [Aie96, PR95]. Application of thismethod for solving RCPSP can be found in [ZP96].This text is organized in the following way: the next section formalizes the SPLCde�nition and presents an example that will be used to illustrate our tabu search approach.Section 3 describes briey the main general aspects of tabu search. Section 4 details theelements of the tabu search for SPLC. Section 5 presents the experimental data and tests,followed by a discussion of the computational results. Finally, Section 6 summarizes theconclusions and discuss some directions for future works.2 Scheduling Problem under Labour Constraints { SPLCIn this section we formalize the de�nition of the scheduling problem we want to solve.The Sheduling Problem under Labour Constraints can be de�ned as follows:Let I be a set of orders (jI j = m), where each order is preassigned to a machine andconsists of ni identical jobs. Each job is composed by a set of pj tasks of duration 1. Allthe tasks of a speci�c job must be executed one immediately after the other. Each job hasa demand for labour speci�ed by the labour pro�le array Lj =< `j1; `j2; :::; `jpj >, where`js is the labour requirement of the sth task of job j. Workers are necessary to keep thejobs running and there is a limit Rt on the labour capacity available at each period t ofthe planning horizon. All the jobs of one order must be executed in the same machine (theone to which the order was assigned), and orders cannot be preempted (one order cannothave interrupted its execution to start the execution of another order in the same machine).The precedence constraints between jobs are represented on an acyclic digraph G = (V;E)in which the nodes are jobs and the arcs represent precedence relationships among jobs.Note that, by de�nition, the subgraph induced in G by the jobs of one speci�c order is anoriented simple path.A schedule S for one instance of the SPLC is described by the starting times of all itsjobs. S is said to be feasible if it satis�es the following restrictions:2



i jF jL pj ni1 1 3 3 32 4 6 4 33 7 8 4 24 9 12 2 4Table 1: Job-order relation in a (4 order,12 jobs) instance. jF and jL are, respectively, thelabels of the �rst and the last job in order i.i/t 1 2 3 41 6 3 122 18 6 12 33 2 2 2 64 2 2Table 2: Labour requirement for each processing time of a job of an order i.(i) 8 (i; j) 2 E, job j cannot start before job i has �nished;(ii) the total number of workers required in t cannot exceed the maximal available Rt,for all period t in the planning horizon.The goal is to �nd a feasible schedule of minimum makespan, i.e., a feasible schedulethat minimizes the completion times of all jobs.An example of a SPLC instance is depicted in Tables 1,2 and in Figure 2.SPLC is NP-hard [Hei95]. However, as reported in [LW], there are two cases in whichit may be relatively tractable based on the observation that the length of the critical pathin G is a trivial lower bound on the minimum makespan. When G is dense, enumerativetype procedures become e�ective because of the relatively small search space and possiblee�ectiveness of the lower bound. Another case in which this lower bound may be tight iswhen the resource requirement is not too restrictive. Obviously, the problem reduces to acritical path problem if no resource restriction is imposed.In our study, we focus on instances of SPLC that are not in any of the above cases, i.e.,the total labour available in each period is very scarce and the precedence relation digraphis sparse.3 Tabu SearchThis section summarizes the main ingredients of TS which will be adapted later to theSPLC problem.Tabu search is a meta-heuristic used for guiding local search methods and prevent themfrom becoming trapped at locally optimal solutions [Glo90]. In this way, TS makes use ofmechanisms that continuously allow the exploration of the solution search space, even when3
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............................................................................ ......................................1 2 354 810 11 1279 6Order 1:Order 2:Order 3:Order 4: Figure 1: Job precedence relations.no move is available to improve the current solution. By escaping from local optima, TSeventualy reaches a global optimum solution.TS can be described as follows: it starts with an initial solution and then at eachiteration one move is applied to the current solution, leading to one (desirably the best) ofits neighbour solutions. By contrast with the tradicional hill-descending methods, whichonly accept moves that result in solutions of better (smaller) cost, TS also allows moves tosolutions of worse (higher) cost. In this case, tabu restrictions are imposed to the movesthat resulted in a deteriorated solution and it is possible to distinguish between admissibleand tabu moves. The most common tabu moves are those that attempt to reverse or repeatprevious moves. By restricting these moves for a certain number of iterations, called tabutenure, the search process can be driven out from local optimal vales. A tabu restrictioncan be overrided whenever the corresponding tabu move leads to a better solution. Thisis called aspiration criterion. Finally, the tabu search makes use in the process of threeadaptive exible memory structures:� Short term memory, that keeps track of recently examined solutions, is intended toavoid cycling and interplays between conditions that constrain and free the searchprocess (tabu restrictions and aspiration criterion).� Intermediate memory, that is responsible for intensi�cation strategies to reinforcemove combinations and solutions features historically found good.� Long term memory, that drives the search into regions not yet visited, providing adiversi�cation phase in the process.Tabu search has been largely applied to solve di�cult combinatorial optimization pro-blems [Aie96, PR95]. A tabu search approach for Scheduling Resource Constrained Project4



with Cash Flows has been recently proposed in [ZP96] and the results con�rm the potentialof this method in �nding good solutions for RCPS problems. All of these have encouragedthe design of TS for the SPLC. The details of the algorithm we have proposed are describedin the next section.4 The algorithm TSSPLC - Tabu Search for the SchedulingProblem under Labour ConstraintsInitially, let us give a general overview on the TS algorithm that we propose for solvingSPLC, denoted by TSSPLC.In the TSSPLC algorithm, one solution for an instance of the SPLC is representedby a job sequence vector S. Let n be the number of jobs to schedule and STS[k] be thestarting time of job S[k] in the solution represented by S. Then, in this representation,STS[i] � STS[j], 8 i < j, i; j = 1; :::; n.The framework we adopted for TSSPLC was the same proposed in [ZP96] and its generalstructure can be visualized in Figure 2.The algorithm starts with an initial schedule which is built using one of the heuristicsdescribed in Section 4.1. Then it proceeds iteratively, choosing, at each iteration, one (thebest) admissible move from the move candidate list. The moves in the candidate list arerepresented by two operations on jobs (Section 4.2), chosen in a way to lead the currentsolution to one of its precedence feasible neighbourhood solutions . Tabu restrictions can beoverrided everytime the aspiration criterion (Section 4.6) is achieved, leading to a solutionwith a better makespan. The new schedule obtained at the end of each iteration is thenreturned to the working memory. The search stops when one of the termination conditionsis achieved (Section 4.7). The best solution obtained over all the iterations is returned atthe end of the process. Intensi�cation and diversi�cation strategies are not explored in ourimplementation of TSSPLC.In the next sections we discuss in detail the main elements of the TSSPLC.4.1 Initial SolutionThree greedy heuristics were implemented and tested for choosing an initial solution forthe algorithm TSSPLC. Basically they work as follows: the schedule is constructed itera-tively: at each period, there is a set of jobs available to be scheduled - those jobs whosepredecessors have �nished. Considering the labour constraints, some of these jobs can bescheduled immediately and others have to wait until there is enough workers available totheir execution. The following greedy criteria, that di�erentiate the three heuristics, wereused to choose the next schedulable job to be started:� Total Order Duration (TOD): Jobs are chosen in descending order of the total durationof the order they belong to.� Remaining Order Duration (ROD): Jobs are chosen in descending order of the remai-ning processing time of the order they belong to.5
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� Critical Path (CP): Jobs are chosen in descending order of the length, taken in termsof processing time, of the critical path from them in the precedence relation digraph.At this point, it is necessary to introduce the concept of inverse instance. The instanceshave, as part of the data describing them, a precedence relation digraph G. In addition, foreach job j, there is its corresponding labour pro�le array Lj =< `1; `2; :::; `pj >, where pjis the job duration. Given any instance I , its inverse image I 0 is such that all the data areequal to the data of the original (direct) instance, except that:� If G and G0 are the precedence digraphs of I and I 0, respectively, then G0 is thetranspose graph of G.� The labour pro�le array of each job in I 0 is the inverse of the correspondending labourpro�le array in I . So, if in the direct instance I the labour pro�le array of a job jis given by Lj =< `1; `2; :::; `pj >, in the inverse instance I 0, this labour pro�le isL0j =< `pj ; :::; `2; `1 >.The rationale behind the use of the inverse instance I 0 comes from the fact that anysolution for I 0 when read from right to left is a solution for I .The three greedy heuristics were tested for both direct and inverse instances. Thus, thealgorithm TSSPLC can start with a solution built by one of the three heuristics (TOD,ROD or CP) applied to the direct or the inverse instance. A comparison of the initialsolutions found by these greedy heuristics is presented in Section 5.2.4.2 Neighbourhood StrategyThe neighbourhood de�nition is one of the critical aspects of tabu search. Previous studiesshow that the choice of a neighbourhood has a signi�cant impact on the solution quality[Glo90, Lag95]. The di�culty lies on determining a simple strategy of move generation thatgives the search process the chance to visit new and high quality solutions. By simplicity,it means that the moves must be easy to determine. Remember that, at each iterationof tabu search, a list of candidate moves is constructed. If the move generation requiresa huge computational e�ort, the process becomes slow. Thus the goal is to determine aneighbourhood structure that is simple and that contains good solutions.In our implementation, we have chosen to use the most common types of moves reportedin the scheduling literature [ZP96]. Both of them use the sequence representation of thesolution:� Insert(i; j): Inserts job j immediately in front of job i in the sequence (Figure 3).� Swap(i; j): Interchanges the positions of jobs i and j (Figure 3).So, given a solution s, a neighbour solution of s is obtained through the application ofa move, Insert or Swap, to a pair of jobs i; j of s. The set of all neighbour solutions of sde�nes the neighbourhood of s, N(s). 7
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Insert(E,I) Swap(E,I)Figure 3: Example of Insert and Swap.Note that the size of N(S), like de�ned above, is O(n2), where n is the total number ofjobs in one instance of SPLC. To decrease the number of neighbours to be tested for moving,only moves that results in precedence feasible schedules will be considered as candidatemoves. For this reason, in every sequence representing a solution of an instance of SPLC,one job is in the right of all its predecessors.Yet trying to decrease the size of N(S), the following reduced neighbourhoods werede�ned:� RN1(s): Subset of N(s) composed by k solutions each obtained from s through theapplication of an Insert move to a pair of jobs (i; j) randomly chosen.� RN2(s): Same as RN1(s) except that the move applied to s is Swap.� RN3(s): Subset of N(s) composed by the solutions obtained from s through theapplication of an Insert move to all pairs of jobs (i; j), for one speci�c j, randomlychosen, and for i = 1; :::; n, i 6= j.� RN4(s): Subset of N(s) composed by the solutions obtained from s through theapplication of an Insert move to all pairs of jobs (i; j), for one speci�c i, randomlychosen, and for j = 1; :::; n, j 6= i.The algorithm TSSPLC was tested with each one of the four reduced neighbouroodde�ned above. Given the list of the alternative solutions delimited by the neigbourhoodstructure, the new solution chosen is the one with best cost and free of tabu restrictions.4.3 Cost FunctionThe goal in SPLC is to �nd a minimum makespan solution. In this way, the cost functionto be minimized used in the TSSPLC is given by:c(s) = makespanwhere the makespan value of a solution s is calculated as follows:� Let S be the representative sequence of solution s. Initially, the schedule is empty.8



� For i = 1 to n, schedule job S[i] in the earliest position that it can be started consi-dering the precedence relations and the labour availability.� Return the makespan of the schedule obtained.4.4 Tabu RestrictionsOne of the major features of the tabu search procedure is the possibility of forbidden someof the candidate moves for a certain number of iterations. This has two objectives: �rst,to prevent cycling, which happens when the search process visits always the same subset ofsolutions; and second, to allow an e�ective exploration of the solutions space.The most common tabu restrictions are those recency based [Lag95]. According to thisstrategy, are labeled tabu-active the attributes of moves that were recently executed andthat resulted in solutions that deteriorated the cost function. Moves that contain tabu-active attributes are those that become tabu. A tabu move cannot be executed unless anaspiration criterion (Section 4.6) is achieved.The following move attributes were de�ned for the two types of moves, Insert and Swap,adopted in the TSSPLC algorithm:� A1: Job j was moved.� A2: Job j was inserted immediately in front of job i in the sequence.� A3: Jobs i; j were exchanged.Associated with each one of the above move attributes, three types of tabu restrictionswere de�ned:� TR1: Job j cannot be moved for a certain number of iterations.� TR2: Job j cannot be inserted immediately in front of job i in the sequence for acertain number of iterations.� TR3: Jobs i; j cannot be exchanged for a certain number of iterations.Note that the tabu restriction TR1 is stronger than the other two. This is because TR1forbidds all moves of a job j in the sequence. On the other hand, TR2 and TR3, onlyrestrict those moves that involve, simultaneously, jobs i and j.4.5 Tabu TenureThe tabu tenure speci�es the number of iterations for which a particular move is prohibited.In the TSSPLC three tabu tenures were de�ned, one for each type of tabu restriction:� TT1: 5� TT2: 10 9



� TT3: 7TT1 is smaller than TT2 and TT3 according to the fact that TR1 is more restrictivethan TR2 and TR3. Stronger tabu restrictions should be mantained active for smallerperiods of time [Glo89].4.6 Aspiration CriterionTabu restrictions have the purpose of preventing cycling and of making e�ective the searchprocess. In some situations, however, a temporarilly tabu move can lead to a better solutionthan the best one currently available. The aspiration criterion appears to solve this problem:it allows to override a tabu restriction whenever the correponding tabu move leads to asolution better than the best known solution at the moment.In the TSSPLC algorithm, the aspiration criterion is activated everytime a tabu moveleads to a solution of smaller makespan than the best makespan current available. In thiscase, the corresponding tabu restriction is deactivated and the move is executed.4.7 Termination ConditionTwo possible stopping conditions were tested in the TSSPLC algorithm: limit on the ma-ximum number of iterations of the search process and limit on the maximum number ofiterations where there is no improvement in the cost of the best known solution.4.8 An ExampleIn this section we give an example of the application of the TSSPLC algorithm to the SPLCinstance de�ned in Tables 1,2 and in Figure 2 . Each solution is associated to a sequencevector as de�ned in Section 4.Let s be the current schedule at each iteration and let s0 be a neighbour schedule of sobtained through the application of an Insert move to a pair of jobs (i; j) of s. For eachiteration, the Figures 4,5,6,7,8 show:� The sequence associated with the current schedule s.� A table representing the list of candidate moves (only Insert moves that leads toprecedence feasible schedules s0 are considered) and the makespan (given by the costfunction) of the corresponding schedules s0.� A table T representing the tabu status of the Insert moves. T [i][j] is the number ofthe iteration from which the move Insert(i; j) is allowed (no number means T [i][j] = 0.If the iteration number is smaller then T [i][j], Insert(i; j) is tabu-active.The move in the candidate list that is not tabu and that leads to the schedule s0 withsmallest makespan is chosen to be applied to the current solution.The initial schedule has makespan 23. Initially, no move is tabu. So, the moves incandidate list are evaluated solely based on the makespan of the correponding schedules s0.10
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Figure 4: TSSPLC Example - Iteration 0.The move that leads to a s0 with smallest makespan, Insert(4,1), is selected to be applied.Note that this move is chosen even though it produces a worse schedule s0 (with a greatermakespan of 24). The advantages of this move will be clear in the next iteration when s0will be re-evaluated.At iteration 1, the schedule obtained by inserting job 1 in front of job 4 becomes thecurrent solution. Since this move resulted in a deteriorated solution, its repetition is pre-vented for a certain number of iterations (3 in this example) by updating the tabu tenure inthe tabu structure table. In this iteration the move chosen to be applied is Insert(3,6). Theresulting schedule s0 has makespan 21 and is delivered to the next iteration as the currentsolution. Note that since the new schedule has a better makespan, the repetion of the moveInsert(3,6) in the next iterations still allowed.At iteration 2, the move chosen is Insert(9,1) which leads to an improved schedule ofmakespan 20.At iteration 3, a better schedule can be obtained by applying Insert(2,5) to the currentsolution. Note that although Insert(4,1) is an admissible move in the candidate list, thismove is tabu-active in this iteration (and until iteration 4 since T [4][1] = 4).The iterations continue in a similar manner as described above until one terminationcondition is satisifed. The schedule of smallest makespan found in the whole process isreturned at the end. 11
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5 Data, Experiments and ResultsThis section describes the instances generated to test the TSSPLC algorithm, the compu-tational experiments carried out and the results obtained.5.1 Data SampleFrom the Project PAMIPS [PAM], two practical instances of SPLC were available. Inorder to have a larger sample to test TSSPLC, a random generator of SPLC instances wasimplemented with the following charactheristics:� INPUT{ m: total number of orders in the instance;{ mj: minimum number of jobs in one order of the instance;{ Mj: maximum number of jobs in one order of the instance;{ md: minimum duration of a job in one order of the instance;{ Md: maximum duration of a job in one order of the instance;{ p: probability of jobs from di�erent orders been related.� OUTPUT{ Instance with m orders, where each order has between mj andMj identical jobs.The jobs in a given order have the same duration, randomly chosen between mdand Md. The labour requirement of each task of a job is chosen from the setf2; 3; (4); 6; (12); (18)g, where numbers in brackets are less frequent. The prece-dence graph describing the relations between jobs is built in such a way that jobsfrom di�erent orders are related with probability p if they belong to consecutiveorders. Jobs from nonconsecutive orders cannot be related. Precedence relationsbetween jobs in the same order are implicit.The data set generated contains 23 small, medium and large size instances of SPLC andcan be obtained in [Cav97]. The instances Ins 4o 24j A and Ins 10o 88j A were obtainedfrom Project PAMIPS [PAM].5.2 Computational Experiments and ResultsThe code was written using the C++ language and compiled with the gnu g++ compiler.The tests were done in a SUN SPARCstation 1000.Three greedy heuristics (Section 4.1) were tested for obtaining an initial solution for theTSSPLC algorithm. The results obtained by each of them when applied to the data set aresummarized in Table 3. For each instance, the solutions are displayed in the form (s; s0)where s and s0 are the solutions obtained with the direct and inverse instances, respectively.As can be seen, none of the heuristics dominates the other two and frequently a bettersolution is found when the inverse instance is considered.14



TOD ROD CPIns 4o 21j A (102,87) (87,89) (92,86)Ins 4o 23j A (76,58) (76,58) (67,58)Ins 4o 24j A (84,76) (82,75) (75,74)Ins 4o 24j B (78,89) (77,85) (73,89)Ins 4o 27j A (71,85) (71,79) (69,79)Ins 6o 41j A (167,154) (165,152) (169,155)Ins 6o 41j B (137,120) (141,122) (137,114)Ins 6o 41j C (161,158) (168,149) (171,140)Ins 6o 44j A (137,127) (135,138) (135,128)Ins 6o 44j B (160,180) (156,177) (155,172)Ins 8o 63j A (307,352) (293,344) (284,348)Ins 8o 63j B (371,414) (359,384) (357,398)Ins 8o 63j C (392,384) (367,386) (346,371)Ins 8o 65j A (479,433) (442,449) (445,451)Ins 8o 65j B (466,468) (433,482) (419,487)Ins 10o 84j A (874,885) (751,798) (735,794)Ins 10o 84j B (749,646) (684,605) (692,631)Ins 10o 85j A (919,978) (910,1045) (912,1054)Ins 10o 87j A (656,636) (650,611) (640,615)Ins 10o 88j A (563,538) (567,516) (574,490)Ins 10o 100j A (1618,1715) (1610,1696) (1595,1729)Ins 10o 102j A (1449,1323) (1516,1337) (1450,1239)Ins 10o 106j A (1248,1230) (1213,1183) (1223,1146)Ins 12o 108j A (1492,1534) (1505,1386) (1483,1415)Ins 12o 109j A (1741,1570) (1582,1500) (1651,1476)Table 3: Results obtained by the greedy heuristics.
15



Neighbourhood Strategy Tabu Restriction Tabu TenureTSSPLC1 RN1 TR1 TT1TSSPLC2 RN1 TR2 TT2TSSPLC3 RN2 TR1 applied to jobs i and j TT1TSSPLC4 RN2 TR3 TT3TSSPLC5 RN3 TR1 TT1TSSPLC6 RN3 TR2 TT2TSSPLC7 RN4 TR1 TT1TSSPLC8 RN4 TR2 TT2Table 4: TSSPLC con�gurations.Given the general features of TSSPLC described in section 4, eight types of tabu searchwere de�ned by the combination of the di�erent neighbourhood strategies, tabu restrictionsand tabu tenure. The resume of the processes con�guration can be seen in Table 4. Thecommon aspects in all of the types of TSSPLC are:� Initial Solution: the best obtained by the greedy heuristics.� Cost function: as de�ned in Section 4.3.� Aspiration Criterion: as de�ned in Section 4.6.� Termination Condition: a limit of 500 on the total number of iterations was used.The makespan of the solutions obtained with the application of all the con�gurationsof TSSPLC in Table 4 to the data set are summarized in Table 5. All the solutions wereobtained for a scenario with Rt = 18 available workers.It can be veri�ed from Table 5 that in 23 of the 25 instances used in the tests, theTSSPLC algorithm �nished with a solution better than the initial one. It can also be notedthat the con�guration TSSPLC2 is the one with best results: it reaches the best solutionsin 15 instances, and even when another con�guration of TSSPLC generates a solution ofbetter makespan, the solution returned by TSSPLC2 is at most 1% worse. Surprisingly,naive greedy heuristics have been able to produce schedules with makespan only a fewlonger than those produced by TS routines.Figures 9 and 10 show the trace of TSSPLC2 in a medium and large size instance,respectively. These �gures seem to indicate that the best solutions were found only at the�nal iterations.Figure 11 illustrates the trace of TSSPLC2 in the same instance used in Figure 9.The di�erence here is the use of another termination condition: 500 iterations withoutimprovement in the best known solution. Note that in Figure 11 only after 1250 iterationsis that the algorithm reached a solution 2% better (Makespan=304) then the best found inthe 500 iterations of Figure 9 (Makespan=310). We think that the additional computational16



Initial Sol TSSPLC1 TSSPLC2 TSSPLC3 TSSPLC4 TSSPLC5 TSSPLC6 TSSPLC7 TSSPLC8Ins 4o 21j A 86 82 82 82 82 82 82 82 82Ins 4o 23j A 58 58 58 58 58 58 58 58 58Ins 4o 24j A 74 69 68 70 69 70 69 69 69Ins 4o 24j B 73 72 72 72 72 73 73 73 72Ins 4o 27j A 69 68 67 67 67 68 69 67 68Ins 6o 41j A 152 149 147 146 147 147 145 146 149Ins 6o 41j B 114 114 114 114 114 114 114 114 114Ins 6o 41j C 140 129 130 130 129 131 133 131 131Ins 6o 44j A 127 117 118 119 119 120 127 119 120Ins 6o 44j B 155 141 140 148 146 149 155 142 140Ins 8o 63j A 284 263 262 265 268 271 284 261 266Ins 8o 63j B 357 322 320 319 322 328 357 320 325Ins 8o 63j C 346 315 310 314 316 315 346 316 313Ins 8o 65j A 433 414 405 407 410 413 433 428 429Ins 8o 65j B 419 393 392 403 395 405 419 392 393Ins 10o 84j A 735 655 657 685 668 688 689 677 664Ins 10o 84j B 605 583 581 592 590 582 585 589 579Ins 10o 85j A 910 848 843 896 892 896 909 858 862Ins 10o 87j A 611 601 597 596 607 599 605 601 606Ins 10o 88j A 490 479 467 490 490 490 490 478 482Ins 10o 100j A 1595 1541 1537 1543 1558 1565 1576 1553 1576Ins 10o 102j A 1239 1210 1212 1205 1202 1219 1232 1204 1213Ins 10o 106j A 1146 1142 1133 1146 1146 1146 1146 1140 1144Ins 12o 108j A 1386 1348 1349 1341 1339 1345 1356 1360 1335Ins 12o 109j A 1476 1458 1397 1427 1412 1433 1423 1428 1382

Table5:Resultsobtainedbyallcon�gurationsofTSSPLC.
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Figure 9: Trace of TSSPLC on Ins 8o 63j C.
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Figure 10: Trace of TSSPLC on Ins 10o 84j A.18



e�ort is not worthwhile. For this reason, we addopted as termination condition in all theexperiments a limit of 500 in the total number of iterations.
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Figure 11: E�ect of Di�erent Termination Condition: 500 iterations without improvementin the best known solution.
300

320

340

360

380

400

0 50 100 150 200 250 300 350 400 450 500

M
ak

es
pa

n

Number of IterationsFigure 12: E�ect of Di�erent Initial Solutions.Figure 12 illustrates the behaviour of TSSPLC2 with two di�erent starting solutions.19



The dark and dashed lines represent, respectively, the trace of the algorithm when itstarts with the best and worst solution found by the greedy heuristics in Table 3 for theIns 8o 63j C instance. In the �rst case, the best solution (Makespan=310) was found initeration 440. In the second case, the best solution (Makespan=311) was found in iteration492. This con�rms the observation that the initial solution quality has an impact on theperformance of tabu search.The Table 6 presents the comparison of the results obtained in our implementation ofTSSPLC with the best ones generated by a Constraint Logic Programming approach toSPLC [HC97].It can be veri�ed that for all instances the makespan obtained by TSSPLC is less thanor equals to the makespan generated with the Constraint Logic Programming algorithmdescribed in [HC97]. However, it is important to note that while CLP best solutions werefound in few seconds, TSSPLC sometimes took more than one hour to �nd its best solutions[Cav97]. Another advantage of CLP is that, at least for small instances, it can proveoptimality. In general, unless the makespan is equal to the length of the critical path,TSSPLC cannot prove optimality of a solution. It is worth to note that in 13 of the 25instances tested, the best solution obtained by the greedy heuristics (Table 3) is better thanthe corresponding CLP solution. In the remaining 12 instances, the greedy solutions are nomore than 5% worse than the CLP solution.6 Conclusions and ExtensionsWe presented a tabu search approach for the Scheduling Problem under Labour Constraints(SPLC). The algorithm was tested in a set of 25 small, medium and large size instances ofSPLC. The results obtained in the computational experiments show that our tabu searchheuristic is comparable with, if not better than, other heuristics reported in the literature.Moreover, it is a simple strategy to implement and, therefore, we can conclude that it is agood alternative to be used when one is seeking for good solutions of SPLC instances.The TSSPLC algorithm can be further improved by incorporating intermediate andlong term memory structure. A dynamic tabu tenure can also be included. The study ofdi�erent neighbourhood strategies and cost functions is certainly one of the main aspectsto be explored in future works.7 AcknowledgmentsWe are very grateful to Susanne Heipcke who kindly have tested her own CLP code for thedata set used in the computational experiments.References[Aie96] R. M. Aiex, Estrat�egias Paralelas Ass��ncronas de Busca Tabu Aplicadas ao Problema de Par-ticionamento de Circuitos, Msc Dissertation (in portuguese), Dep. de Inform�atica, PUC-RJ,Rio de Janeiro, Brazil, Aug/1996. 20



Rt 18Ins 4o 21j A (82, 82)Ins 4o 23j A (58, 58)Ins 4o 24j A (68,68)Ins 4o 24j B (72,72)Ins 4o 27j A (67,67)Ins 6o 41j A (147,156)Ins 6o 41j B (114,125)Ins 6o 41j C (129,153)Ins 6o 44j A (117,127)Ins 6o 44j B (140,149)Ins 8o 63j A (261,281)Ins 8o 63j B (319,344)Ins 8o 63j C (310,344)Ins 8o 65j A (412,445)Ins 8o 65j B (392,411)Ins 10o 84j A (654,730)Ins 10o 84j B (571,678)Ins 10o 85j A (830,912)Ins 10o 87j A (597,638)Ins 10o 88j A (467,489)Ins 10o 100j A (1494,1587)Ins 10o 102j A (1221,1450)Ins 10o 106j A (1133,1243)Ins 12o 108j A (1297,1483)Ins 12o 109j A (1415,1647)Table 6: Comparison of best results obtained with TSSPLC and Constraint Logic Program-ming approaches. The results are in the form (TSSPLC solution, CLP solution).
21
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