O conteudo do presente relatério é de Unica responsabilidade do(s) autor(es).
(The contents of this report are the sole responsibility of the author(s).)

Using an Availability
Service for Transparent

Service Migration
B.Schulze E.R.M.Madeira

Relatério Técnico IC - 97 - 11

Agosto de 1997

Using an Availability Service for Transparent Service
Migration in Mobile Computing

B.Schulzé2 schulze@I[dcc.unicamp.br | vxcern.cern.ch]
E.R.M.Madeiral edmundo@dcc.unicamp.br

1 Institute of Computing - IC / Unicamp 2 Brazilian Center for Physics Research - CBPF / CNPq

PO Box 6176 R.Dr.Xavier Sigaud 150
13083-970 Cidade Universitaria 22290-180 Urca
Campinas, SP - Brazil Rio de Janeiro, RJ - Brazil
fax: (+55)(19)239-7470 fax: (+55)(21)541-2047

Abstract. This paper details an availability service in a service-oriented
platform based on OMG/CORBA, for transparent migrating of services, i.e.,
components or agents. Migration of services is used to move components
executing on a mobile host to another host, in case of shutdown or
disconnection. A mobile host is treated as any other host going down or failing
in an environment where the availability and functionality of the services and
tasks wants to be sustained.Transparent location of a new destination host is
simplified to the search and contracting of available resources from other
hosts.

Keywords. mobility, service-oriented architecture, availability service.

1. Introduction

A mobile host may need to disconnect from the stationary network, for example, because
of changing communication base station, power saving, etc. This is very similar to the
shutdown or failure of a host in an environment where the availability and functionality of
the services want to be sustained. Provided services and active objects executing on the
mobile host have to be migrated to some other host in the environment.

This work proposes the migration of tasks from mobile hosts to any other host in the
environment, whenever a mobile host disconnects. This migration is handled transparently
over a DPE (Distributed Processing Environment) platform [11] with the usage of an
availability service to transparently locate resources on other possible destination hosts.
After location, a selection function is needed to efficiently choose the new destination host
where to send code and status of the related components.

Brief description of the following sections:

Section 2, shortly describes the service-oriented architecture. Section 3, describes a pro-
posedavailability service, while in Section 4 this availability service is used for transpar-
ent mobility, i.e., migration of components from/back_to a mobile host. Section 5,
presents some implementation details and Section 6 briefly remarks some related work.
Section 7 contains concluding remarks.

2. Service Oriented Architecture

The service-oriented architecture is based on distributed active objects using OMG/
CORBA(Common Object Request Broker Architecture) as a broker for object compo-
nents [12] either in a stationary phase or in a mobile phase [1]. The general concept of ser-
vice is associated to active objects or agents as services already available or in the process
of being put available available somewhere.

An application based on this architecture uses, as much as possible, services which are
available while for services not available anywhere it can either: wait, abort or customize
a replacing service. This customization involves mobility of components in order to opti-
mize the performance of the whole execution.

Transparent location of components by an application, in the CORBA model, is
extended to transparency in the mobility of components. Hosts’ resources become a ser-
vice and their availability is published by awmailability service,so that an application
contracts specific resources from a host for a particular component to be downloaded.
Using performance metrics altogether with an availability service and a mobility service
allows also transparent code distribution at application start-up.

application
control
inter-service

communication

€& — — -

service
protocol

service
agency (n)

service L’
agency (1) <

v

‘ L Y ’ P 'cc_)n‘trécting
@A .- protocol

Fig. 1. Service-Oriented Application.

The diagram of Fig. 1 illustrates a service-oriented application and some basic blocks:
- agentsare all kind of services used by an application
...availableservices are offered by an agency;
...non-availableservices are customized by the application at some site and afterwards
treated as an available services;
- agencyis a basic component able to offer services to an application;

« negotiationof services is handled bytiader [9,6];
- traderis yet another service for locating other services in a pool of contracted agencies.

2.1. Services

Computing with services allows a higher level of abstraction in implementing any applica-
tion reducing the development effort to specific objects not available anywhere and to the
interconnection of all the active objects regarding the application. The interconnection of
these objects deals witbontracting locating requestingandreplying
Available services:
Can be co-processors, databases, data crunching, specialized processing, etc.
Non-available services:
Of the same kind as above, but for some reason it is just not available. Non-availability
may come from:

- Service access non-authorized;

« service is not where needed;

« service is temporarily disconnected,;

- service is a too specific computation and has to be customized by the application.

The application has to handle unavailability accordingly and customize a replacing ser-
vice. Service’ customization handles with: code transportation, resource allocation for
execution, naming and registering of the service. After customization, the customized ser-
vice is seen just as any already available service. Any service may use other remote ser-
vices establishing an inter-service communication.

2.2. Service-Oriented Agency

The agency architecture is composed of an object broker and a collection of agent ser-
vices, which may include or not agent mobility servicand amvailability service

An agency with agent mobility and availability services is able to run new services
loaded by the application itself, i.e., the agency is open to new services or agents to be
loaded by an application demanding this kind of service.

Up to here services can be identified in different phases during its life-cycle:
Start-up:
It involves contracting and distribution like considered for any application.
Stationary:
This phase of a service can be temporary or indefinite according to the characteristics of
the service. Making services available for general usage involves management and distri-
bution of these services in order to guarantee availability as much as possible. One can
think of these services as stationary most of the time as long there is no major problem
with the network or host on which these services are running. But thinking of services as
always availablalemands a natural need to make smooth moves in case of some failure in

the environment.

Migration:

It is demanded by the environment or the service itself and in attendance to load-balanc-
ing, inverse caching or redistribution due to some failure.

Migration involves persistence of code and status, i.e., before moving the agent has to
save the variables defining its status and persistently store them. Both, status and code, are
moved as sequences and persistently stored at the receiving site, followed by a removal at
the sending site after a successful completed move. At the very moment when the agent is
instantiated, it reads back its status into the original variables.

In all situations, after the agent’s arrival, it is instantiated bydgieat supportThis is
done in order to recover from the status file the memory on what the agent has to do. If it
has just to do nothing and go idle that is coded in the status.
Removal:
It follows shutdown or migration of a service. In this phase, there is the possibility of
using a migratory agent passed as a token in order to handle any application termination
and proper shutdown. A token agent is composed of code and data.
Mobility:
Mobility service supports the reception of an agent, its persistent storage and the registra-
tion of its interface on the ORB.
Availability Evaluation:
When a new service is going to be setup at some site, there is the need to locate and allo-
cate resources on an agency. In order to identify agencies which are open to new services,
another service is included in the agency itselfaaalability servicewhich informs the
level of availability of the agency.

The availability service evaluates the loading of an agency using the performance met-
rics included in the instrumentation facility [13gsponse timethroughput andutiliza-
tion. Utilization allows different parameters to evaluate loading in terms of: CPU,
memory, disk, networking activity, number of users / processes. These numbers are com-
puted including thepecmarkof the particular host in order to allow a comparative value
to other hosts. The availability level of the agency is published in order that this parameter
can be obtained from a querying to the agency or triader.

One can think of an evaluation process or daemon just being started when there is an
availability request, however, availability has to consider a certain backtracking in time,
reflecting the time the application will execute. Considering this approach, availability
evaluation demands a continuous running daemon on every host which puts its resources
available with a logging of the host loading history.

Trading Service:
In case of querying via a trader [6,9], the query includes a range of availability of a spe-
cific kind of resource. The trader replies returning a list or simply the most available

agency. The selection phase can include a direct interrogation before contracting for the
loading of the new service by the application. An additional step at this point allows fine
tuning, by using a customized agent to evaluate the agency more closely in case of a very
sensible application. This can be added as a trading extended service at the trader side or
at the application level itself.

Unavailable services distribution:

Independently of the kind of implementation repository, the new services are redistributed
according to the application’s demand on load balancing and / or inverse caching. This
means that if distribution is not demanded by the application in the current environment
circumstances, then it runs just locally. Another possibility is that the application has to
wait in the start-up queue for sufficient resources.

Fig. 2 illustrates the multiware platform used in this work.

— End
(Application) (Application) User
] CSCW Support \ Groupware
Multi- = " Group " Transact. " Mngmnt "~ Agent | ODP
media © | Trader | 29 \ Middlewart
Supp. [\SUPP. A Supp. A Support A " A Supp. / Func.
ORB
, Hard &
Operating System Protocols Software

Fig. 2. Multiware Platform.

3. The Availability Service

In a previous [1] work, the concept of an availability service altogether with a code mobil-
ity support is presented in order to transparently move agents or services according to
load-balancing and inverse caching [3] criterias. Refer also to Fig. 2.

As seen above, the mobility of services in DOC (Distributed Object Computing) architec-
tures like CORBA can be handled in a transparent way if the need for mobility is included
in the goal of a specific service or distributed computation. For instance, performance met-
rics like load-balancing and inverse caching [3] may be included in the goal, and to
achieve this metrics an availability service is introduced.

Theavailability servicels important for offering resources to services going to be setup
at some other site or agency. In order to identify an agency open to receive a new service,
the availability serviceinforms the level of availability of each agency. The availability
level of each agency is published so that it can be obtained from a querying to the agency
or via atrader.

Availability should consider a certain backtracking in time, reflecting the time the appli-
cation will execute. This demands a daemon logging the loading history on every host
where resources are put available.

3.1. Availability Offering

An organization of this metrics is proposed into: common basic metrics, application spe-
cific metrics, and specialized metrics.

The availability service offers are organized into basic types and specific types like
management, security, etc..., according to Table.1. Specialized types inherit the basic ones.

Basic offers Specialized offers
Static Dynamic

hosts’ hardware resources resources allocation performance
physical location management
communication hardware security

protocols

network management
MTBF and aging

Table 1. Availability service type offers.

Availability allows different parameters to evaluate, for instance, loading in terms of:
CPU, memory, disk, networking activity, number of users / processes, etc. The final selec-
tion function may either compute these numbers wiphexmarkof the particular host to
take a decision or an implicit computation this numbers can be used. Implicit computation
means an activation function like, where a response to a query may imply in availability.

3.2. Availability Querying

Availability querying via trader [6,9] is used to select a range of availability of a specific
kind of resource. The reply returns a list or simply the most available host. The selection
phase can include a direct interrogation before contracting of the new host. A customized
agent can be used to evaluate a host more closely, as a trading extended service.

Thus, the availability service allows an interface to a trader as well as some specialized
interfaces for decision functions based on thresholds and activation levels, Fig. 4. The
interface to the trader is a general first step in any availability identification where a larger
number of hosts exists. From this interrogation, a list of good candidates is generated, and
even some dynamic parameters can be obtained. A specialized interface is important if the
final selection can take advantage of thresholds and activation functions like performance
evaluation and optimization.

Availability
Service
~
7~
~
~
N TS ‘/ T TTFSFy N\ N\ N\
DIl || Stubs || ORB Skeletons|| BOA
Interface | Xxxxxx
[ORB Core |
Fig. 3. Availability Service on top of CORBA.
Availability
Service \
Availability . o
Service Specialized Interface
- - —— — { for dynamic performanc
evaluation

Fig. 4. Availability Service interfaces.

4. Component migration from a mobile host

A mobile host disconnecting from the static cluster of hosts is quite similar to a host going
unavailable, i.e., either going down, loosing performance or failing. In these situations the
client has to migrate to another available host on the network.

In the situations above, the case of a real failing host is more constraining because of no
pre-announcement and a solution to this situation is explored as a general solution to all of

them.

4.1. Algorithm

The approach is to keep a mirror of the client’s: status, data, implementation repository
and interfaces repository. Since it is an emergency situation of failure there is a two phase
algorithm with an emergency phase and a recovering phase.

Emergency Phase:

1. The failing client issues an instantiation of a replicated client on the last server it has
been in touch.

2. This instantiation can also be issued by this server in case of a long time waiting for a
reply from the client.

3. To certificate this instantiation, the server issues a cancelation request from the client.

4. If a cancelation does not come, the replicated client is instantiated locally at the cur-
rent server.

5. The replicated client immediately starts to attend to any forthcoming request and
enters the recovering phase.

Recovering Phase:

1. this replicated client is responsible for migrating to a new available host;

2. the replicated client starts a search for the best host to stay;

3. the best host to stay is the original mobile host followed by any other well available
one;

4. some available host is selected at random from a list of hosts fitting the constraints of
quality of service;

5. the client is replicated on these selected hosts and

6. the client 1st fetching the next request survives while the others are aborted.

Crash Recover:

1. When the mobile host is not responding for recovery, a new request is issued, followed
by a request for a new replicated copy to be started on another stationary host.

4.2. Host selection procedure

For the host selection, an estimated rangquaflity expected for the whole distributed

execution is needed. This range should allow a more flexible choice in the final selection
of the available host and reduce the chances of min./max oscillations which can appear if
using a maximal availability choice. The use of a range also prunes the selection process.

For the above estimate, an execution complexity is worked out together with the per-
centage of availability of a host and its performance numbers. The performance numbers
have to be in accordance to the usage of the different processors and co-processors.

5. Implementation Details

The current mechanism was tried out on a Orbix CORBA 2 version running under Solaris
5.5.1 on spark5 hosts. Some improvements have still to be done.

5.1. Multiprocessed Services

Some different basic approaches are possible in the configuration of the implementation
repository of the ORBs:

« 1st. One common file can be used for all the ORBs, so that the whole looks like a ser-
vice with a multiprocessed ORB or just as a multiprocessed service.

« 2nd. Separate implementation repositories are used for each ORB so that the whole
looks like a collection of single processed ORBs.

« 3rd. A mixed approach of the two above is possible so that some services look like mul-

tiprocessed services while others only monoprocessed.

A multiprocessed service means that several hosts may attend to the request of a spe-
cific service and the first host sufficiently unloaded will attend to the request allowing an
intrinsic load balance in the execution.

The hosts’ domains may be used as an organization of the hosts into clusters of maxi-
mum number of multiprocessed services.

5.2. Prototype Testing

The evaluation test is based on a cyclic execution of a set of commands involving commu-
nication and processing loading of the hosts. This cyclic test is composed of a general
masterserver and a client, which can be either the primary client or its replica. The pri-
mary client is instantiated always on a pre-determined host, while the replica amakthe

ter server keep moving around for load balancing, always selecting the first prompting
host as the next host to move to.

The test sequence and configuration are represented in the next 2 figures.

Vs L N i~ 3 _———X Execution sequence:
@ 1 \|\ 1>2->3>4->1->
S AN /

~_~ — — —) ~_~ — — —)

Fig. 5. Sequence of instantiation and communication of objects.

host Clock Memory Comparaiive 3xI Specmark® Type

name (MHz) (MBytes) Clock | Mem. normal | w/load

itapoa 2x 60 96 1.7]3.0 3.5|4.8 SPARCstation-20
aracati 110 64 16120 | SPARCstation-5
tambau 110 64 16|20 | SPARCstation-5
pajussara 110 32 16]1.0 4.1 ---- SPARCstation-5
ilhabela 85 32 1.2]1.0 | SPARCstation-5
juquel 70 32 >1.0[1.0< 55]8.7 SPARCstation-5
tutoia 40 32 0.6|1.0 4.7 | ---- AXxil-235

*normalized #

Table 2. Hosts’ parameters.

/

Imp.Rep Imp.Rep

- master
original replica a) 1x6
Imp.Rep Imp.Rep Imp.Rep
original replica master b) 1x3x3

|

Imp.Rep Imp.Rep Imp.Rep I(;rrlip.ilr?;p
original replica master | c) 1x1x2 Fﬁéﬁfg} d) 3x1

Fig. 6. Different hosts allocation: a) 1 per original client and 6 per master and replica; b)
1 per original client, 3 per replica and 3 per master; c) 1 per each one; d) all on a single host.

The execution performance is obtained with respect to a specmark based on the execu-
tion performance of all client/server processes running on the same host. This specmark is

obtained for two different loading conditions, i.e, normal unloaded and explicitly loaded
with a load program.

The load program demands the same resources that the performance program, so that it
is seen as an actual load from the point of view of the performance program. This spec-
mark, in Table 2, is also obtained for the higher and lower end of the host being used, such

that a lower bound and an upper bound is obtained for the execution performance distrib-
uted on several hosts.

Configuration Results (min/cycle) comments
(Fig.6) normal w/load w/load
' half the hosts all the hosts
(@) 1x6 4.1 -5.2* 5.4 10.4 - 11.5 -> *with tambau, one of the 6 host failing
(b)1x3x3 ~b.
(c)1x1x2 ~T7.
(()1Ix1x6 ~5. -> 1 original / 1 replica / 6 masters
(d)3x1 3.6-55 -- 4.8 -8.7 -> fastest and the slowest host empiric
specmark

Table 3. Execution measurement.

This 3x1 specmark is not an actual situation, and in addition to that, it allows faster inter

process communication, since communication does not go across the network. For ether-
net, this difference in transmission speed is about 50% higher for local client/server [1].

The numbers in Table 3 are avarage values computed in different occasion selected at
random. where a minimum and a maximum values are anotated.

These results in Table 3 suggest that there was no significant loss in performance with
the use of migration. Actually, in an environment with many hosts there are always good
chances of unloaded hosts being available and the average performance with migration
should be higher than with stationary services.

For mobile computing, the usage of migration of components applies in a similar way
and the advantage of it is the sustaining execution of tasks and the whole availability of
services in the environment.

6. Related works

Related works are: migration, load-balancing, code/status mobility, distributed object
computing (DOC) platforms.

Migration has already been studied and presented in many documents as well as load-
balancing techniques and its performance evaluation [16,17,3,], while mobility has got
some new order with recent works on agents and multi-agents [1,8,5,4,2,14] in highly
reconfigurable environments as for instance in telecommunications and large scientific
experimental facilities [15].

The usage of DOC platforms [9,10,11,12] opens new perspectives and results for these
techniques specially if applied to the achievement of a higher level of abstraction in pro-
gramming using the paradigm of service-oriented architectures.

7. Conclusion

The present work uses a DPE platform based on CORBA to implement the migration of
components from a mobile host to any other host in the environment and later on it's
migration back to the mobile host, as soon as it is available again. Transparent migration is
possible with the use of an availability service to identify a new destination and a code
mobility support using sequence passing to dispatch the components to the destination
host.

The main contribution is the handling of a mobile host as a usual host going down and
where the functionality of the whole environment is kept by migrating mobile host’s com-
ponents. This migration is done transparently with specific mechanisms added to middle-
ware using CORBA.

Different approaches for an availability service are possible, according to every particu-
lar application, specially if performance is being taken into account. An extension of this
work is the classification of general purpose availability interfaces and methods as well as
specialized ones with particular interest in system management of open distributed pro-
cessing.

For load-balancing, the availability service has to be quick and light processing. For this
reason the tests above where made using some intrinsic evaluation of load, using the time
response of the hosts attending each kind of services.

The results show that a mean execution time can be sustained and with a scale-up in the
number of hosts. A preliminary selection is needed based on a query to the availability
service where a search is made for host available inside a certain range. With this smaller
list it is again possible to use a selection based on the previous approach of intrinsic avail-
ability evaluation.

Acknowledgments:This work is partially funded by: FAPESP, CAPES and CNPq.

References:

1. B.Schulze and E.R.M.Madeir&ontracting and Moving Agents in Distributed Appli-
cations Based on a Service-Oriented Architecgttodbe published on the proceedings
of the 1st Workshop on Mobile Agents - MA97, Berlin, Germany, 7-8 April 97.

2. E. Cardozo, J.S. Sichman and Y. Demazéksing the Active Object Model to Imple-
ment Multi-Agents SystemBroceeding of the 5th IEEE Conference on Tools with
Artificial Intelligence, Boston, USA, pp 70-77, November 93.

3. G.S. GoldszmidtDistributed Management by DelegatioRh.D. Thesis, Graduate
School of Arts and Sciences, Columbia University, US, 96.

4. C.lglesias, J.C.Gonzalez and J.R.Velastlx: A General Purpose Multiagent Archi-
tecture LNAI #1037 Springer-Verlag, pp 251-266, 96.

5. S.Krause and T. MagedanMobile Service Agents enabling “Intelligence on
Demand” in Telecommunication$EEE GLOBECOM’96, London, UK, pp 78-84,
November 96.

6. L.A.P. Lima Jr. and E.R.M. MadeirA Model for a Federative Trade®©pen Distrib-
uted Processing: Experiences with Distributed Environment, pp.173-184, Chap-
man&Hall, 95.

7. W.P.C. Loyolla, E.R.M. Madeira, M.J Mendes, E. Cardozo and M.F. MagaMaeés.
tiwvare Platform: An Open Distributed Environment for Multimedia Cooperative
Applications IEEE COMPSAC’94, Taipei, Taiwan, November, 94.

8. M.J Mendes et alAgents Skills and their roles in mobile computing and personal com-
munications IFIP 14th World Computer Congress, World Conference on Mobile
Communications, Canberra, Australia, September, 96.

9. ODP. Trading Functions ISO/IEC JTC1/SC 21, June, 95, ftp.dstc.edu.au/pub/arch/
RM-ODP.

10.OMG. Common Facilities Architecture, Rev. AOMG Document # 95-1-2, January,
95.

11. OMG. The Common Object Request Broker: Architecture and Specificegn2,0,
July, 95.

12.R.Orfali, Dan Harkey and J.Edwardshe Essential Distributed Objects Survival
Guide John Wiley & Sons, 96.

13.A. Queiroz and E.R.M. Madeirdanagement of CORBA objects monitoring for the
Multiware platform ICODP’97, Toronto, Canada, May97, accepted for publication.

14.S. Russel, P. NorvidArtificial Intelligence, A Modern ApproaglPrentice Hall Series
in Artificial Intelligence, New Jersey, pp 33, USA, 95.

15.DELPHI Trigger GroupArchitecture and performance of the DELPHI trigger system
Nuclear Instruments and Methods in Physics Research A 362, pp 361-385, 95.

16.0. Ciupke, D. A. Kottmann and H-D. Waltédbject Migration in Non-Monolithic
Distributed Applicationsproceedings of the 16th Int. Conf. on Distributed Computing
and Systems, Hong Kong, May 27-30, 96, pg.529-536.

17.W. Golubski, D. Lammers and W-M. Lipp&heoretical and Empirical Results on
Dynamic Load Balancing in an Object-Based Distributed Environymoteedings
of the 16th Int. Conf. on Distributed Computing and Systems, Hong Kong, May 27-
30, 96., pg.537-544.

