O contelido do presente relatério é de (nica responsabilidade do(s) autor(es).
(The contents of this report are the sole responsibility of the author(s).)

A BT-tree Based Approach to Index
Transaction Time

Mario A. Nascimento

Relatério Técnico IC-97-09

Julho de 1997

A BT-tree Based Approach to Index Transaction Time

Mario A. Nascimento™*

Abstract

Transaction time of a record is the time interval when the record is stored in the
database. In this paper we present an approach which provides efficient indexing of
such kind of temporal data. The approach makes use of two standard BT -trees with
trivially modified node split policies — which yield a usage ratio of virtually 100% in each
tree. We compare the proposed approach, which we name Two-Stage, to the Monotonic
Bt-tree (by Elmasri et al). Our simulations show that the Two-Stage approach yields
a structure up to 75% smaller than the Monotonic Bt-tree, and in all but one of the
several investigated scenarios, the Two-Stage approach provided faster (or comparable)
query processing time. Our main contribution, however, lies in the fact that the Two-
Stage Approach does not require novel data structures but well-known Bt-trees. As
such, and unlike all previous techniques for tackling this problem, it can be implemented
using facilitites existing on most commercial DBMSs.

1 Introduction

“Transaction time of a database fact is the time when the fact is current in the database
and may be retrieved” [JT94]. Basically a temporal database that supports transaction
time (so-called transaction time database) is able to keep all past history of the database.
Once a tuple in a relation is updated the newer version replaces the older one, but the
older is only logically deleted instead of physically deleted. In fact, in transaction time
databases “... errors can sometimes be overridden (if they are in the current state), but
they cannot be forgotten ...” [SA86]. We denote the transaction time of a data record
R¥, by TF = [T%,TF]. Usually the transaction-start-time (7%) is set to the time when the
transaction that wrote the data committed and the transaction-end-time (7%) is left open.
An open transaction-end-time is usually denoted by setting TF = NOW (where the symbol
NOW stands for the current instant in time. For a thorough discussion on the semantics
of this value refer to [CT94]). When such data is to be updated, i.e., a version thereof is
to be created, its transaction-end-time is set to the time point immediately before that of
the transaction-start-time of the new version of the data. The new transaction-end-time is
left open, and so on and so forth. Naturally, it is possible to “close” some data without

*Invited lecturer at the Institute of Computing, State University of Campinas (UNICAMP), and re-
searcher at the Brazilian Agency for Agricultural Research (EMBRAPA). Permanent Address: CNPTIA —
EMBRAPA, PO Box 6041, 13083-970 Campinas SP, Brazil. E-mail: mario@cnptia.embrapa.br. This re-
search was developed as part of GEOTEC’s effort, a PROTEM-CC project sponsored by the Brazilian
National Council of Research (CNPq) Process 480007/97-7.

2 M.A. Nascimento

inserting a new version of it, that is, only (logically) delete it without versioning it. Such
type of temporal data is common in many application domains.

Temporal databases in general (refer to [T193] for a good collection of papers) require
the indexing of temporal data, besides the usual indexing of non-temporal data, for efficient
query processing. Although more than 1,000 papers have been published in the area of
temporal databases [K1i93, McK86, (5895, S0091, TK96], relatively few have addressed the
issue of indexing temporal data (refer to [ST94] for a survey). In this paper we address
the problem of indexing transaction time. In what follows we briefly review the related
approaches most mentioned in the literature.

The Time-Split B-tree [1.S93] is unique in the sense that is the only data structure which
indexes temporal and non-temporal data under a single framework. Recently, some work
was done towards its parallelization [MKW96]. The Snapshot Index [TK95] may be optimal
if a dynamic hashing function is used instead of a BT-tree for handling updates. It uses an
interesting strategy to keep track of closed time intervals. The Append-Only Tree [GS93]
uses a framework which is similar to the BT-tree, however, it indexes only the transaction-
start-timeon the leaf node level. The transaction-end-time is kept inside additional buckets
under the leaf nodes. This requires accessing beyond the leaf nodes level and affects the
index update procedures. The Monotonic Bt -tree [EJK92] keeps track of both transaction-
start and end time explicity in the tree, which is much like a BT-tree. For all indexed points
between the transaction-start and end time of records, pointers to those are maintained in
an incremental manner (we review the Monotonic B*-tree in more details in the Appendix).
Unfortunately, keeping such pointers incrementally may still result in a large structure. In
addition, the leaf nodes of the indexing tree are different from standard B¥-tree leaf nodes

All those access structure have their merits, but all lack one quite desirable property,
which is feasibility. They all require deep modifications to existing DBMSs. In other words
none of them can be used in conjunction with existing DBMSs. We, on the other hand, aim
primarily at providing an index structure which can be used on top of facilities available
in existing DBMSs. We do so by re-using the BT-tree structure (refer to [EN94, Chapter
5] for an introduction) in an approach we name Two-Stage (2S for short). It is important
to notice that, by re-using well-known BT-trees, we also inherit all previous research on it
regarding issues such as concurrency control and recoverability [JS93]. Note much has been
done regarding those issue in most of the above mentioned access structures.

Given that we use BT trees and the monotonicity of time will allow us to explore the
“append-only” nature of the indices we may derive the performance bounds for 25 as shown
in Table 1 (the bounds for the other approaches were obtained from [ST94]). We also denote
N as the number of updates performed, B the disk block size and A the answer size. D is
proportional to the square of the largest indexed lifespan in the worst case and a constant
in the expected case (see Section 2.2). A time slice query is assumed for computing the
bounds for query processing time. We also assume the indices to be primary indices, in
the sense that “the index controls the physical placement of data ... primary indices need
not be on primary keys of relations” [ST94]. We discuss the bounds obtained for the 2S
approach in more detail later in the paper.

Note that 25’s size is, like most other structures listed, linear on the number of updates,
which is a desirable feature. Even though, it is not optimal, 25’s update time is good and it

A Bt-tree Based Approach to Index Transaction Time 3

Table 1: Comparing 2S to other transaction time oriented indices.

‘ Structure ‘ Storage ‘ Update Time ‘ Query Time ‘
| Two-Stage (25) | O(N/B) | O(logg N) | O(logg N +(A+ D)/B) |
AP-tree [GS93] O(N/B) O(N/B) O(N/B)
MBT Index [EJK92] O(N?/B) O(N/B) O(logg N + A/B)
Snapshot Index [TK95] | O(N/B) O(1) O(logg N + A/B)
TSBT [LS93] O(N/B) O(logg N) O(logg N + A)

is achieved using a well known data structure (the B*-tree) for which quite a lot of research
has been devoted. Regarding query processing time, 25 depends on a variable no other
structure does, namely the length of the largest indexed lifespan. We discuss this issue later
in the paper. Nonetheless, if D is small and constant (in fact, we will show this assumption
can be valid most of the time), 25’s query processing time is nearly optimal. Indeed, our
performance analysis will show that 2S’s performance is better (or close) to the MBT’s,
hence supporting our claim.

Valid time, is the time when a fact was true in the modeled reality [JT94]. In several
domains however, we can model valid time as transaction time. For instance, in an envi-
ronment where satellite imagery or sample data is automatically collected at possibly, but
not necessarily, regular time intervals could be interpreted as transaction time oriented.
Many other papers have dealt with the indexing of “pure” valid time, however, due to the
restricted space and our focus on transaction time we do not cover such topic.

The rest of the paper is organized as follows. Section 2 presents the main contribution
of the paper, the 25 indexing strategy for transaction time data. We then show that
using a standard BT-tree, with trivially modified node split policies, we may ensure a node
utilization ratio close to 100%. Comments on how to actually achieve this in an existing
DBMS (ORACLE’s in particular) are also drawn. In Section 3 we compare the performance
of the proposed approach against that of the Monotonic BT-tree, which despite its high
storage requirement can be quite efficient in terms of query processing. It is interesting
to note that, to our knowledge, no actual performance comparison has been made among
the access structures mentioned above (not even when they were first proposed). The only
comparison has been made in [ST94] and it was based on complexity analysis (e.g., Table 1)
rather than actual implementations. In Section 4 we indicate how 25 can make use of optical
disks in a rather simple manner. However, we do not focus on such an issue. Conclusions
and directions for further research are offered in Section 5.

2 The Two-Stage Approach

Our approach has two stages, both functioning possibly concurrently. The idea is to be
able to handle both open-ended and closed ranges. In what follows, we describe such stages
briefly.

4 M.A. Nascimento

Stage S1 Stage S2
Ranges with open
end (Te=UC) T Ranges being closed T2
(indexing Ts) (indexing F(Ts,Te))
’ pointers to data records pointers to data records ‘
Data Records (pinned)

Figure 1: Hlustration of the two stages on which we base our approach.

S1: In stage one all ranges which are open-ended (i.e., VR* | TF¥ = NOW) are indexed by
its transaction-start-time (7F) under a BT-tree, denoted by T1;

S2: In this stage all ranges that have been closed, suffer a simple transformation and are
indexed under a second Bt-tree, denoted by T2.

Let us now briefly explain the rationale behind each stage. Initially, i.e., until the first
transaction time range is closed, S2 does not function. S1 is responsible for managing,
through T1, all incoming transaction-start-times. When one or more records are closed!,
those are deleted from T1 and moved over to T2. Before they are inserted into T2 though,
these (closed) ranges go through a mapping function F'(7s,7,) which maps a range into a
point. This mapping is such that it will maintain the incoming points ordered primarily
by their original transaction-end-time and secondarily by their transaction-start-time. This
will guarantee that any other range which is closed and input into T2 later on will not
precede, with respect to this mapping value, any other range already input into T2. Thus,
if the underlying Bt-tree uses a node split policy that instead of splitting nodes by “half”
simply overflows to a newly created node, we may achieve a usage ratio close to 100%. The
overall idea is illustrated on Figure 1. We detail how Stages S1 and S2 operate in the next
Section.

2.1 Stage S1

Stage S1 is responsible for maintaining all those ranges which are still open. As such,
it functions since the first update occurs, and needs to index only the transaction-start-
time of the records. Recall that all open-ended ranges have all the same transaction-end-
time, namely 7. = NOW . A simple BT-tree suffices to handle the ranges in S1. The
data type being indexed reveals an interesting property: the transaction-start-time grows
monotonically. With this in mind we modify a little bit the standard BT-tree node split
policy in order to achieve a much better space usage. We explain this modification next.
Assume a standard BT-trees of order n, i.e., a node holds n pointers and n — 1 indexed
data items. Once a value is to be inserted into a full node, a new node is created and the
set of indexed values of the full node plus the new value is divided evenly among those two

!Note that all such records will have the same transaction-end-time but not necessarily the same
transaction-start-time.

A Bt-tree Based Approach to Index Transaction Time 5

nodes. Figure 2(b) illustrates this procedure using the leaf node shown in Figure 2(a). Such
splits may “propagate upwards” causing similar node splits in internal nodes of the tree.
Such policy yield, in average, a 69% node utilization ratio [Yao78], i.e., almost a third of
the slots in each node is not used.

parent node

e L2 [[s [[e [[w[[w[[z]]

pointersto data
(a) Leaf node just before the insertion of value 25

parent node parent nod

ey 2 [[s [Te [T [[T [[wl[=[[=[] [T T
Vo R

pointers to data

(b) The new leaf nodes after insertion of 25, using the standard node split policy
parent node parent nod

oy 2 [[s [Te [Two s [Ta =[] [T [T [T [T
Voo |

pointers to data
(c) The new leaf nodes after insertion of 25, using the lazy node split policy

Figure 2: Hlustrating the standard and lazy node split policy.

As noted above, the transaction-start-time, which is the data value being indexed, grows
monotonically, i.e., any new data item being indexed is always greater than all other ones
already indexed. Using the standard node split policy is a bad idea in such a case. Once
a node is split it will never receive any value again, because all new incoming values are
certainly greater the the last value indexed, which is, by construction, always the rightmost
one on the rightmost leaf node. For instance, the left node in Figure 2(b) (and all others
to its left) will remain nearly half empty. Therefore using the standard split node policy
will yield an asymptotic node utilization of 50% when indexing monotonically growing data
values. Note that such behavior also happens in the internal nodes, and therefore the ratio
of 50% is valid to all nodes in general, internal and leaves.

To address this severe shortcoming we propose a modified node split policy, which we
call “lazy”. In the lazy node split policy, the full node, which is receiving the incoming
value, remains full and a new node is created to host the incoming value. This leads to a
much better node utilization. In fact, all nodes but the rightmost are full, which yields an
asymptotic node utilization of 100%. Expanding this argument to the case of when internal
nodes are split, we reach similar conclusion, i.e., in all levels of the tree all but the rightmost
node will be close to 100% full. Note that even though update time remains logarithmic, as
in the standard BT-tree, it is nevertheless much simpler, as nodes do not split but rather
overflow.

We must make clear though that we do not claim such lazy policy to be novel. In
fact, it has been also proposed for the Monotonic BT-tree [EJK92]. On the other hand,

6 M.A. Nascimento

it is noteworthy pointing out that this strategy need not be actually implemented from
scratch. For instance, ORACLE’s DBMS [Ora92] does provide a directive PCTFREE to
be used (optionally) when a CREATE INDEX command is issued. In fact, “PCTFREE is the
percentage of usage to leave free for updates and insertions withing each of the index’s
data block”?. Thus, if we assume an index is created for T1 on the transaction-start-time
using the option PCTFREE O then we may indeed assume the lazy split policy explained
above is actually being realized. Therefore the modified node split policy discussed above is
feasible to achieve. Furthermore, the very nature of transaction-start-time (i.e., increasing
monotonically) does facilitate maintaining the aimed high fill factor in T1.

Let us now discuss how deletions are processed in T1. Unlike insertion, deletion of
indexed values can occur in any order. Once all data items indexed under a given value
t are closed such value must be deleted from T1. This may yield some “holes” in tree
nodes (internal and leaves). For simplicity we assume a lazy deletion policy as well (also
called “free-at-empty” in [JS93]). In the lazy deletion policy nodes are not merged with
others to maintain a minimum load, but have their values deleted until they are empty.
When this happens the given (empty) node is simply deleted. This possibly violates the
original minimum load requirement of the B-tree, but it has been shown [JS93] that such
lazy deletion policy simplifies very much the deletion policy without sacrificing significantly
search performance and space utilization.

Another possibility is that T1 may be periodically “compacted”. Such compaction is
not complicated to implement but implies significant overhead, as access to the tree is quite
affected by the compacting process. Although choosing the best possibility is object of
further research, we assume the lazy deletion policy is the one adopted.

Note that the lazy node split policy does not imply any change in the BT-tree searching
strategy, which remains logarithmic on the the number of indexed points. It is easy to see
that the BT-tree in question also remains efficient regarding space usage, which is linear on
the number of ranges (V). Finally note that, overall, T1 is simpler to implement than a
standard BT-tree (should one decide to implement one from scratch).

Data Set at time 3

ID | Ts | Te
Al | 0 | NOW T1
Bl1| 2 | NOW
Cl| 0 | NOW
or| s |vow o2 [Ts [N
El1 | 2 | NOW
‘ Al‘ Cl‘ Bl‘ El‘ Fl‘ Dl‘
F1 | 2 | NOW

Figure 3: T1 indexing the initial data set.

For the sake of illustration, consider the data set shown in Figure 3, where Xi is the i-th
version of surrogate X. Up to time 3, only new and still open-ended versions were input,
and thus T1 is like the one shown. The details of leaf nodes boundaries and internal nodes

2Quoted from ORACLE’s SQL*Plus: Release 3.2.2.0.0 on-line help.

A Bt-tree Based Approach to Index Transaction Time 7

are omitted for simplicity.

Searching T1 is straightforward. We assume that NOW is greater than any other cur-
rently indexed time point. As such, to find all open-ended ranges that intersect with a given
query range @) = [Qs,().], one needs to search from the initial indexed value (possibly 0)
until ¢)., as obviously any range starting after (). cannot intersect with ¢} and all open-
ended ranges starting before (). do intersect with) as it is assumed that all open-ended
ranges are valid until NOW which is farthest in the future than any @)..

Summarizing, we can achieve, as far as T1 is concerned, the performance bounds in
Table 1. Namely: T1’s size is linear on the number of updates (transaction-start-times). It
has logarithmic update time (at most the rightmost branch of the tree is updated) and has
a very good query processing time, basically acessing only leaf nodes (disk blocks) relevant
to the queries.

2.2 Stage S2

This is probably the main stage, as it will maintain all closed versions within T2, and must
provide an efficient way to process queries which involve those.

First let us discuss how S2 works. Suppose that at a given time ¢, some number of
versions are closed. S2 then receives from S1 a set of ranges which also posseses an interesting
property: all the incoming ranges have the same transaction-end-time, and such transaction-
end-time is greater than all other transaction-end-times already indexed under T2, and is
smaller than all other transaction-end-times that will possibly be input in the future. Thus,
in a sense, T2 holds several groups of ranges (grouped by transaction-end-time) and we
must use this to our advantage. If we are able to maintain a relative order among those
groups, then we can guarantee that the index, will grow only to the right, in an “append
only” manner. This is important as we can make better use of space. We discuss this
shortly.

The chief question we need to answer is how to index the closed ranges, in order to keep
the grouping mentioned above. Unlike in S1, we now have two values (75 and T¢) for each
record. We propose to do this using an approach similar to the one used in [ND97] to index
valid time, which is to use a function which maps ranges to points. The function originally
used in that paper preserved the original lexicographical order of the ranges, i.e., the ranges
were ordered by transaction-start-time and secondarily by transaction-end-time. We modify
the mapping function such that the ranges are primarily ordered by transaction-end-time
and secondarily by transaction-start-time. Recall that each of the groups mentioned above,
have the same transaction-end-time. Thus, such order reflects the desired grouping on the
leaf nodes of the indexing tree. Formally, we define the mapping function in question as
follows:

Definition 1 ¢(T%) = ¢(TF,TF) = TF10° + TF

where a is the maximum number of digits needed to represent any time value.

Any transaction time range T% = [T*, T¥] can thus be indexed using the value provided
by ¢(T*) — which is a point instead of a range — into T2. Obtaining the original range from
(T*) is clearly straigthforward.

8 M.A. Nascimento

We need now to discuss how insertions and the searching are processed. Note however,
that due to the very nature of transaction time databases, data is not ever deleted, thus
deletions never occur in T2.

When a closed range is inserted into T2 (which is a B*-tree) it must be first mapped into
a point via the function ¢(.) above. We could use a standard BT-tree insertion procedure,
but given the order imposed by the mapping above we can achieve a much better space
utilization by using the very same approach one used for T1, provide we can do some
pre-processing in main memory. At any given point in time there may be a number of
open-ended ranges being closed with the same transaction-end-time but not necessarily
same transaction-start-time. Let us assume this number to be not very large, i.e., we
assume it is much smaller than the total number of indexed closed ranges. If we sort those
ranges based on their transaction-start-times, then we can input them, in the sorted order,
into T2 using the very same approach we described for T1. The assumption of having a
not very large number of ranges being closed at a given time allows us to assume that the
pre-processing of the ranges (i.e., the sorting) can be done in main memory. Note that
should such assumption be not feasible then a small number of I/Os may suffice to perform
such sorting using secondary storage. At any rate we believe that such number of 1/0s is
bound to be much smaller than the total number of leaves, hence we consider update time

to be O(logg N) instead of O(N/B).

Again, this strategy can be actually realized as explained in Section 2.1, by simply
setting the PCTFREE O option when a CREATE INDEX command is issued (assuming ORACLE
[Ora92] to be the underlying DBMS, of course).

Notice that we need not be concerned about deletion of data in T2. By the very
definition of temporal databases, particularly transaction time databases, data is not ever
deleted. Deleting a tuple means actually closing its transaction time range, thus functioning
as a logical deletion rather than a physical deletion.

For a better idea of how both T1 and T2 cooperate in order to index both open-ended
and closed ranges consider again the data set shown in Figure 3. Suppose that at time 5
new versions of B1, C1 and F1 are input, which implies that B1, C1 and F1 are not valid
any longer and therefore must be closed. The new version, respectively B2, C2 and F2, are
input into T1. The transaction time ranges for Bl and C1 now become TP' = [2,4] and
TEY = TFY = [0,4]. Figure 4 shows the resulting trees, again internal nodes and details of
the leaf nodes are omitted for simplicity.

We now discuss how T2 is searched. Only the new ordering among the ranges, implicitly
given by the relative positions of the indexed points, is not enough to provide an efficient
search. Consider the query range @ = [@s,Qc]. Any range with a transaction-end-time
greater than) could intersect with @), depending obviously on its transaction-start-time.
However as the index is primarily ordered by the ranges’ transaction-end-time (the groups
we mentioned earlier) we would need to search all the groups with transaction-end-time
greater than or equal to ()5 and retrieve the respective transaction-start-time and only then
decide whether a range belongs or not to the query answer. This is obviously inneficient as
in the worst case could cause the read of all the leaf nodes ! Let us assume though that we
know an upper bound for the length of the indexed ranges, and let us call it A, that is:

A Bt-tree Based Approach to Index Transaction Time 9

Data Set at time 6

ID |Ts | Te
Al| O | NOW 1 T

cL|o| 4

N S TR ER AN [0 [[402 [[=02 |
Fl| 2|5

D1 | 3 | NOW

B2 | 5 | NOW

C2 | 5 | NOW

F2 | 6 | NOW

a1 c1] 1] E1] 1| D1 B2] 2| P2
LA

Figure 4: T1 and T2 indexing the data set at time 6 (o = 2).

Definition 2 Given a set of ranges V¥ A = max, {TF — T*}.

Now, in order to process the intersection query we need only to search through the
transaction-start-times from the groups of transaction-end-times beginning at ¢, Qs+ 1, ...
until . + A. This is so because any range ending before () cannot intersect with @),
nor can any range ending after). + A, as this would contradict our assumption about A.
That is, the range farther in the past that can intersect with @ is [Qs; — A, @] and the one
farther in the future is [@., Q. + A]. Therefore mapping those ranges, it implies that we
must search the leaves in T2 from value ¢([Qs — A, Qs]) up to value ¢([Q., Q. + A]).

.
H
G
E_
5
c
B
A
Tttt =
o 1 2 3 .. time

(a) asample of indexed ranges

v v N
l2oflso]]e[f=[e[]ss]|[e[f=[n[]n]]. [}
v v v]] v]]

A B C D F G H |
(b) the leaf nodes indexing the rangesin (a), a=1
Figure 5: Searching T2.

Let us illustrate the rationale above through an example. Consider the ranges in Fig-
ure 5(a), where they are (for illustration purposes) already sorted primarily by transaction-
end-time and secondarily by transaction-start-time. Figure 5(b) shows the leaf nodes of T2
(a BT-tree with n = 4) indexing those ranges — note the full node utilization yielded by the
lazy-propagated split node policy. Let the query range be @ = [1,2]. If we cannot make use

10 M.A. Nascimento

of A one must search through all the index. However, if we know that in this case we have
A = 3, it is obvious that no range ending before Q5 = 1 or after ¢J. = 5 will intersect @).
Thus it suffices to search from the indexed point 0 (mapped range [0,0]) until the indexed
point 52 (mapped range [2, 5]). In Figure 5(c) that would retrieve items A, B, C and D,
which do have transaction time ranges that intersect with [1, 2].

Notice that we might read indexed points which correspond to ranges that will not
belong to the query’s answer. For example, if the A value associated to the ranges in
Figure 5(a) were 4 instead of 3, we would have to search from the indexed point 0 (mapped
range [0,0]) until the indexed point 62 (mapped range [2, 6]). This would make us read
the indexing point 53 (mapped range [3, 5]) which does not belong to the answer (i.e., it
obviously does not intersect with [1, 2]). In what follows we present upper bounds (worst
and expected cases) for the number of such “false-hits”.

The range [@s — A, Q] is the only range starting at @ investigate and it does intersect
with @ = [Qs, Q] so that implies no false-hits. In the linear scan of the leaves however, we
may have indeed some false-hits. Any point T in time may possibly be the starting point of
A + 1 ranges, namely: [T, 7], [T, T+ 1], [T, T+ 2], ..., [T,T + A]. The next indexed point
after [Qs — A, Q] is (if existing) [Qs — A+ 1,Qs — A 4 1]. Of all those ranges starting at
s — A+ 1 only those ending at ¢Js and ¢Js+ 1 do intersect with (), which means that A —1
ranges do not and are thus false-hits. Similarly, the ranges starting at 05 — A 4+ 2 imply
A — 2 false-hits, those starting at (), — A 4+ 3 imply A — 3 false-hits, and so on and so forth
until the one starting at @, (and others that will follow it in the linear scan) which will
imply no false-hits. Therefore the number of false-hits is given by: (A—1)+(A—-2)+...24+1
which sums up to A(A—1)/2. Hence, in the worst case the number of false-hits is bounded
by O(A?).

Fortunately, the expected case is much better. Suppose we have N indexed ranges and
the length of the modeled time window is T),,,. Then, in the average, we have N/T,, .
ranges starting at any point in time instead of A. For many (if not most) applications and
specially those with a fine transaction time granularity, we expect N/T,,. < 1, whereas
on the other hand it would be to reasonable to expect A > 1. Hence, if we assume
Tz > N in the long term, then the number of false-hits can be upper bounded by a
constant, O((N/T4z)?*), which is unarguably much better.

The A value of the indexed ranges can be easily maintained in some sort of dictionary
by the DBMS. For example, every time a range is closed, its length is checked against
the current A which is then updated if needed. Furthermore, recall that transaction time
databases do not allow correction nor deletion of data. Hence, A is dynamic and always
correct. If we further assume that the value of A is relatively not very large, using the
information about A will insure efficient query processing.

There is the problem that a single range with a large A may render the searching
process longer than it actually need be. Similarly to the approach adopted in [ND97], we
could make use of several trees, each indexing disjoint subsets of all ranges within specific
range lengths. Such trees could be searched (and updated) in parallel improving overall
performance considerably. We do not treat such case here, but we are certain that it can
be dealt with, and this is subject of further research. For now, we assume that there is no
range with a highly skewed length.

A Bt-tree Based Approach to Index Transaction Time 11

Summarizing, T2 uses clearly linear space. Under the assumption that the sorting (by
transaction-start-time) of the ranges being migrated from T1 into T2 can be done in main
memory (or using at most a constant number of I/0s) the T2’s update time is O(logg V).
Finally, the time to process a query in T2 is O(logg N 4+ (A + D)/B), where D is upper
bounded by O(1) in the expected case or by O(A?) in the worst case.

At least two other mapping-based approaches have been proposed to allow using stan-
dard BT-trees to index ranges, namely DOT [FR91] and the BT-tree-based Time Polygon
Index [G196] (which we refer to as B-TP, for short). DOT has been originally designed
to cope with spatial data, and as such does not seem well equiped to handle the case of
open-ended ranges. Also it aims at preserving the distance among the indexed itens, not the
ordering. In order to take advantage of transaction time characteristics though we believe
the ordering is a much attractive feature to be preserved. The B-TP’s major drawback is
that “... different indexes (constructed using different ordering relations) may be used to
support the various types of queries” [G196]. That is, for some queries a particular map-
ping is appropriate, but it may not be for others. This does not mean an adequate mapping
cannot be always found, but it does mean that one may need to maintain (concurrently)
several indices, each representing a different mapping, which may not be very desirable.
Furthermore, “... not all temporal queries may be mapped to a simple range query, it may
be necessary for the spatial search to be decomposed into a number of interval queries”
[GT96]. In addition it was originally designed to index valid time, not transaction time,
thus it does not explore the features of the latter. Nonetheless we believe that the B-TP
could be specialized to accomplish that, and this should be object of future research.

3 Performance Analysis

In this section we investigate the performance of the proposed 2S approach. We compare its
storage requirements and query processing time, with respect to intersection type of queries,
to the Monotonic Bt-tree (MBT). We chose the MBT because, despite its inefficient use of
storage it is indeed quite efficient for query processing (refer to Table 1), and yet it is quite
simple to simulate. We assume the reader is familiar with the MBT, nonetheless, for the
sake of completeness, we present a brief review of the MBT in the Appendix.

For simplicity, we will use the number of disk blocks used at leaf node level (the leaves
themselves and the incremental buckets in MBT’s case) and the number of disk blocks
read during query processing as the indicators for the structures’ size and query processing
time. We believe this is reasonable for two reasons: first because the trees, by construction,
should be very wide and not too deep, therefore the number of internal nodes should be
much smaller than the number of leaves; secondly, the tree traversals are done in logarithmic
time, whereas the leaves are traversed linearly. We use the notation (and default values)
in Table 2. We have used 8 and for 4 bytes for the sizes of a pointer to a record (or set
thereof) and the size of the data type representing a time value. It is important to recall
that the size (in bytes) of the data type indexed under T2 is twice as big as those under T1
and the MBT (due to the mapping used). This was taken into account when we performed
the simulation that follows.

12 M.A. Nascimento

Table 2: Parameters used in the performance analysis.

Notation | Used for | Values (default in bold)

B Size of the disk block (in bytes) | 1,024; 2,048; 4,096 and 8,192

N Number of records indexed 5,000; 10,000; 50,000 and 100,000
L, Average length ranges 250, 500; 1,000 and 2,500

1oz Time value of NOW 5,000; 10,000; 20,000 and 50,000
P, Ratio open-ended/closed ranges | 0%, 25%, 50% and 75%

L, Average length of a query range | 250, 500; 1,000 and 2,500

We investigate how the sizes of the structures behave as a function of five variables: B,
N, L., T and P,. We have used the values shown in Table 2. We vary the parameters
one at a time, while keeping the others fixed at default values. All values for the generated
ranges and queries used a uniform distribution.

Our ultimate goal in this section is to help the user to be able to identify different
scenarios and in which ones each structure is the “best” choice.

3.1 Space Requirements

To investigate the sizes of the indexing structures, as discussed earlier we compute only the
number of leaf nodes disregarding the internal nodes. In the case of the MBT we must also
compute the number of disk blocks used for the incremental buckets as it is a integral part
of the overall structure. It is obvious that varying L, does not affect the index sizes and
therefore we disregard this parameter in the simulations presented in this section. Let us
now discuss the results depicted in Figure 6.

Varying N — Figure 6(a) shows that MBT’s size grows a bit faster with N than 2S’s.
Unlike in the 25 approach the MBT may replicate pointers to tuples. In fact, a pointer to a
tuple will appear in as many SCs as it spans over and thus each additional record will cause
at least two (one in some SP bucket and another in a SM bucket), but most likely several
pointers to be added to the underlying MBT. In 2S every additional record will contribute
with a single entry being added (if needed) under T1 or T2. The MBT was, in average
106% bigger than the 2S.

Varying L, — While A is an important factor for 2s’s query performance one can see
from Figure 6(b) that this is not the case in terms of storage. However, the MBT grows
a little faster as a greater lifespan (i.e., A) yields more replication in the SC buckets. The
MBT used in average 113% more storage space than 2S.

Varying T, — The MBT is affected by the length of the total time frame being modelled,
while 25 is totally insensitive to it (see Figure 6(c)). This can be explained as follows. We
are generating a fixed number of pairs (7s,7.), in fact, N pairs. The shorter the range

Number of Disk Blocks Used

Number of Disk Blocks Used

A Bt-tree Based Approach to Index Transaction Time 13

300 T T T T T T T T //,* 200 T T T T
250 b 2-Stage - § 180 -
MBT -+)
~ o T i
000 | | i 60F
o 140 | 2-Stage —— 1
150 g MBT
&) 120 .
o]
00 g 100 | 1
// Q
S0 ¢ E 0l D —
Z
O 1 1 1 1 1 1 1 1 60 1 1 1 1
10 20 30 40 50 60 70 80 90 100 500 1000 1500 2000 2500
Number of Records Indexed (x 1000) Maximum Lifespan (Transaction Time) Length
(a) Varying N. (b) Varying A.
240 T T T T T T T T 180 T T T T T T T
220 +] 3 160 | e 1
200 r | % 140 |
o | S 10f 2-Stage - -
160 -+~ .
i & 100
140 2-Stage —<— 1 a
120 1 MBT - g 80
100 4 '8 60
80 & - 3 40
60 1 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 0O 10 20 30 40 50 60 70
Length of the Modeled Time Window (x 1000) Ratio Open/Closed Ranges
(c) Varying Ty a0- (d) Varying P,.
2500 T T T T T T
> 2000 | 2-Stage <
2 MBT
8
o 1500 .
g
2 1000 .
o A
3 .
= 500
>
Z

2 3 4 5 6 7 8
Disk block size (x Kbytes)

(e) Varying B.

Figure 6: Index sizes.

14 M.A. Nascimento

[0, NOW], the less distinct time values can be generated, and thus less leaf nodes are
needed. However, as we enlarge [0, NOW] more distinct time values can exist and thus
there is demand for more leaf nodes. The more leaf nodes we have the more likely it is that
pointers to the data records will be replicated in their respective SCs. On the contrary, 25
does not depend on T,,,, at all. This is a quite important feature of 25, as in a temporal
database time, and thus the range [0, NOW], is always growing. The MBT required from
100% up to nearly 200% more space than the 2S.

Varying P, — By inspecting Figure 6(d) we can see that with the increase of P,, both
structures decreases in size, with 25 decreasing faster. This is simple to explain. The larger
the P,, the larger T1 and the smaller T2 (recall we are keeping the total number of records
constant). The data type under T1 is smaller than the one under T2, thus the gain in
storage. As for the the MBT, increasing P, forces the generation of more ranges towards
the “right end” of the time line (i.e., closest to NOW), this ultimately leads to less distinct
time values being generated (i.e., many transaction-start-time and transaction-end-time
will coincide) and thus less space being occupied. However, the MBT’s size decrease much
slower, again due to the SC buckets. In fact, with P, set to zero the MBT is about 90%
larger whereas when P, is set to 75% it is about 400% larger than the 2S.

Varying B — It is natural to observe that, given a fixed number of indexing values, the
smaller the leaf nodes, the more nodes are need to store such values. This is reflected in
Figure 6(e). However, recall that in the MBT each leaf node maintains an SC bucket. It
then follows then that the smaller the leaves, the more SC buckets will exist and the higher
the degree of replication on MBT. Thus, enlarging the nodes, benefits MBT much more
than 2S. Nonetheless 2S is still the smaller structure in all cases investigated. The MBT
was up to 249% larger than the MBT. We should point out that the reason we chose the
default value of B equal to 8 Kbytes was exactly to try to diminish the effect of the SC
buckets and therefore favor the MBT.

3.2 Query Processing Time

We assume that query processing time is basically driven by the number of I/Os performed,
as performing one I/0 is several orders of magnitude slower than executing a CPU instruc-
tion. We do not compute the number of I/Os due to the actual retrieval of the data records,
but only the I/Os needed to obtain the pointers which are used to retrieve them.

We vary the same parameters used in the previous section with the addition of L,. Unlike
before, it is expected that query processing time depends on the length of the queried range.
We analyze the results obtained, shown in Figure 7, next.

Varying N — Figure 7(c) shows us that both structure are equally affected by the in-
crease in V. 25 was sligthly faster than the MBT with the advantage remaining constant
throughout our experiments. MBT’s size grow much faster with this variable (see Fig-
ure 6(a)) because all buckets’s size increase proportionally. When we investigate query
processing time we just take into account a much smaller range of the whole index which

Number of Disk Blocks Accessed Number of Disk Blocks Accessed

Number of Disk Blocks Accessed

A Bt-tree Based Approach to Index Transaction Time

25 T T T T T T T T T 7

20 | 2Stage <+ .

15

10

O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Number of Records Indexed (x 1000)

(a) Varying N.
25 [T T T T T T T T

20

2-Stage ——
MBT -+

15

10

O 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
Lenght of Modeled Time Window (x 1000)

(¢) Varying Thaz-

120 : T T T T T T

100 2Stage -— -
MBT

80

60

40

20

O 1 1 1 1 1 1
1 2 3 4 5 6 7 8
Disk block query (x Kbytes)

(e) Varying B.

Number of Disk Blocks Accessed Number of Disk Blocks Accessed

Number of Disk Blocks Accessed

15

24 T T T T

22 2-Stage —— b
20 7 .
18 .
16 I
14 | omeeemeeeees T -
12} .
10 | -
8 - -

6 1 1 1 1
500 1000 1500 2000 2500
Maximum Lifespan (Transaction Time) Length

(b) Varying A.

16 I : : T T T T
14 _\\ “““\\“# iiiiiiiiiiiii . |
12+
10 _
8 | 2-Stage —— |
MBT -+
| i
) | I I |) 1 1
0O 10 20 30 40 50 60 70
Ratio Open/Closed Ranges
(d) Varying P,.
26 | I . T |
N
MBT -+ |

22 t T

8 - 1 1 1 1

500 1000 1500 2000 2500
Maximum Query Length

(f) Varying L,.

Figure 7: Query Processing Times (average number of 1/0s).

16 M.A. Nascimento

does not grow as fast. On the other hand 25’s performance degenerates close to linearly
with the increase in its size.

Varying A — Figure 7(b) shows the biggest shortcoming of 2S. As the largest indexed
lifespan gets larger, the query processing time gets proportionaly slower. This happens
because under 2S the search has to scan the index for ranges starting as far as A time
points before the actual query start time until the query end time, whereas the MBT
must scan only from the query start time until the query end time. As we keep all other
parameters fixed, the MBT shows that it is not much insensitive to the A factor, unlike
2S. In our experiments 2S ranged from being more than 100% faster to being 43% slower
in the case A was up to half as big as T},4:. Even though we do believe that a temporal
database is of more value when managing highly dynamic data, and therefore relatively
short lifespans (when 2S is actually faster then the MBT), it is important to reveal that a
large A may hurt 25’s performance considerably.

Varying 1),,, — For this case in particular (see Figure 7(c)) both access structure deliv-
ered virtually the same performance. Which is important given that in a temporal database
Taz is ever increasing. Even though one may think that MBT’s processing time should
degenerate as its size, that is not the case. Incresing 7}, do increase the number of indexed
points but as N and L, are maintained fixed, each incremental bucket actually becomes
smaller and thus the increase in performance.

Varying P, — When no open-ended ranges exist all of 25’s effort is spent on T2, which
indexes a larger data type and is subject to the A constraint. As more open-ended ranges
are considered, more of 25’s effort is devoted to T1 which is smaller and, in a sense, faster to
process. Figure 7(d) shows that 25 may be a little as 6% slower when no open-ended ranges
are considered and as much as 140% faster when the majority of ranges are open-ended.

Varying B — Figure 7(e) reveals an fairly natural result. Both 25 and MBT gain by
using larger disk blocks. MBT may yield query processing time up to 28% is small blocks
are used — this is a direct consequence of its much larger size (see Figure 6(e)).

Varying L, — LEven though both structures must perform a larger index scan as the
query length gets larger, Figure 7(f) shows that the MBT suffers more. For the 2S a larger
scan implies in proportionally more leaves being read. For the MBT however, not only
more leaves are read but also the incremental buckets associated to them, hence the faster
degeneration in MBT’s performance. The MBT was sligthly faster for small queries and
about 40% slower for the larger ones.

3.3 Remarks

We conclude this section by noting that if one considers a “default” scenario, i.e., where
all investigated parameters have the default values we defined in Table 2 we would have

A Bt-tree Based Approach to Index Transaction Time 17

the 2S approach consuming 112% less space and requiring 16% less I/Os to process queries.
Even though one may argue that time is more costly than space, it should not be ignored
that temporal databases grow indefinitely, and as such it is important to keep the indices
size under control. In addition, one may note that except for the case where the A is large
2S delivered a performance, at least comparable to the MBT’s. Nevertheless, for several
scenarios 2S is bound to provide faster query processing time than the MBT.

One must not forget that 25, unlike all other approaches originally proposed to index
transaction time, can be easily implemented using facilities available in most (if not all)
commercial DBMSs. These facts, allied to the fact that 25 is very compact, lead us to
believe 25 to be a promising approach.

4 Using Tertiary Storage

In this section we indicate how 25 can easily make use of tertiary storage. This was also a
concern with respect to the MBT [EJK92]. In particular we consider media of the WORM
type, (e.g., optical disks). Use of cheaper, albeit slower, media storage may needed for
temporal databases, which, by their very nature do not allow deletion of data, and thus
may become very large quite fast. In an environment where updates happen very often that
may be even a bigger problem. In what follows we describe how 2S, particularly T2, can
make use of tertiary storage. T1 suffers deletions, i.e., open-ended ranges are eventually
closed, hence it cannot take much advantage of tertiary storage.

Figure 8: Illustration of the migration procedure.

Initially 2S functions using only magnetic disk as described earlier. Once a leaf node (in
T2) becomes full we can migrate it to tertiary storage as we can be sure that no indexed
value smaller than those in that leave can be input into that tree. One potential problem
would be that each leaf points to it rigth neighbor and as such it could have to wait until
this neighbor migrates as well. However this would create a “domino effect” that would
end up preventing the migration of leaves. We resolve this by pre-assigning the location
of the next leave to be migrated on the optical disk (denoted by the dashed “disk block”
in the Figure 8). This will allow the migration of a leave as soon as it becomes full. Also
given that the tree nodes have constant size this is actually simple to achieve. For internal
nodes we need to make sure that it is not only full but also that all the nodes it points to

18 M.A. Nascimento

have also been migrated. Otherwise we could not update the corresponding pointers in the
internal node. Finally, a linear scan on the leaf nodes can be jeopardized as beginning from
the leftmost node all others but the rightmost can be reached. Therefore once a linear scan
reaches what seems to be the last leaf node, it must search the actual last leaf, which still
resides in magnetic disk. For that we must keep the minimal overhead of one extra pointer
(represented in the Figure by the dashed arrow pointing upwards).

For an illustrative example consider Figure 8 where the lighter (darker) rectangles rep-
resent disks blocks which are resident in the magnetic (optical) disk. In the leftmost tree
the leaves which are full have already been migrated to the optical disk, their parent node
however cannot be as the rightmost leave still resides in magnetic disk and eventually its
address will change (when it is migrated) and its parent must change its pointer address
accordingly. After some time, we may have the situation depicted in the rightmost tree.
Note that the internal node which points only to migrated leaves has been also migrated.

Even though we have not performed any simulations using tertiary storage, we would
expect to have all curves in Figure 7 shifted up. Tertiary storage is slower and most of the
query processing time is spent on scanning the leaves which reside mostly on the slower
media.

5 Conclusions

This paper presented 2S, an approach based on two BT-trees which can be used to index
transaction time ranges. We have shown that we may achieve virtually 100% node utiliza-
tion without much difficulties. One of 25’s great appeals is that it is straightforward to
implement, unlike all other existing proposals to tackle the same problem. We have also
shown that 25 can cope with tertiary storage, e.g., optical disks, rather easily.

When comparing 25 against the Monotonic B¥-tree (MBT) we have reached two main
conclusions: (1) 2S always yields an structure smaller than the MBT, regardless of the
underlying scenario; and (2) 2S is particularly sensitive to large lifespans, otherwise it
provides good query processing time, that is, at least comparable to MBT’s. One should
take into account the fact that the MBT is regarded as fairly efficient for processing queries
(which is its trade-off to the use of a large storage).

As mentioned in Section 2 we believe that 25’s inneficiency when processing data sets
with large lifepans (i.e., large A) can be overcome by using multiple (possible parallel) trees.
This is object of future research.

Acknowledgements

The author thanks valuable feedback received from Christian S. Jensen and Michael H.
Bohlen while visiting Aalborg University. The author also wishes to acknowledge Margaret
H. Dunham for earlier discussions on the subject.

A Bt-tree Based Approach to Index Transaction Time 19

References

[CT94]

[EJK92]

[EN94]

[EWK93]

[FRO1]

[G+96]

[GS93]

[1+94]

[7593]

[K1i93]

[LS93]

[McKS86]

[MKW96]

J. Clifford et al. On the semantics of “NOW?” in temporal databases. Technical
Report R-94-2047, Dept. of Mathematics and Computer Science, Aalborg Uni-
versity, November 1994. (to appear in ACM Transactions on Database Systems).

R. Elmasri, M. Jaseemuddin, and V. Kouramajian. Partitioning of Time Index
for optical disks. In Proceedings of the S8th Intl. Conf. on Data Fngineering, pages
574-583, Phoenix, A7, 1992.

R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings, Redwood City, CA, 2nd edition, 1994.

R. Elmasri, G.T.J. Wuu, and V. Kouramajian. The Time Index and the Mono-
tonic BT-tree. In [TT93], chapter 18. 1993.

C. Faloutsos and Y. Rong. DOT: A spatial access method using fractals. In
Proceedings of the Tth Intl. Conf. on Data Fngineering, pages 152-159, Kobe,
Japan, April 1991.

C.H. Goh et al. Indexing temporal data using existing BT-trees. Data and
Knowledged Fngineering, 18:147-165, 1996.

H. Gunadhi and A. Segev. Ifficient indexing methods for temporal relations.
IFEE Transactions on Knowledge and Data Fngineering, 5(3):496-509, June
1993.

C.5. Jensen et al. A consensus glossary of temporal database concepts. ACM

SIGMOD Record, 23(1):52-64, Jan 1994.

T. Jonhson and D. Shasha. The performance of current data structure algo-
rithms. ACM Transactions on Database Systems, 18(1):51-101, March 1993.

N. Kline. An update of the temporal database bibliography. ACM SIGMOD
Record, 22(4):66-80, December 1993.

D. Lomet and B. Salzberg. Transaction time databases. In [TT93], chapter 16,
pages 388-417. 1993.

E. McKenzie. Bibliography: Temporal databases. ACM SIGMOD Record,
15(4):40-52, December 1986.

P. Muth, A. Kraiss, and G. Weikum. LoT: Dynamic declustering of TSB-tree
nodes for parallel access to temporal data. In Proceedings of the 5th International
Conference on Extending Database Technology, pages 553-572, Avignon, France,
March 1996. (Published as LNCS Vol. 1057).

20 M.A. Nascimento

[ND97] M.A. Nascimento and M. H. Dunham. Indexing valid time databases via B*-
trees — the MAP21 approach. Technical Report CSE-97-08, School of Engineering
and Applied Sciences, Southern Methodist University, 1997. Available at URL
http://www.cnptia.embrapa.br/~mario/Papers/tr-97-cse-08.ps.

[Ora92] Oracle. SQL*Plus User’s Guide and Reference, Vol. 3.2. Oracle Corp., 1992.

[(5895] G. OZsoyoglu and R.T. Snodgrass. Temporal and real-time databases: A survey.
IFEE Transactions on Knowledge and Data Engineering, 7(4):513-532, August
1995.

[SA86] R. T. Snodgrass and I. Ahn. Temporal databases. IEFE Computer, 19(9):35-42,
September 1986.

[So091] M.D. Soo. Bibliography on temporal databases. ACM SIGMOD Record,
20(1):14-23, March 1991.

[ST94] B. Salzberg and V.J. Tsotras. A comparison of access methods for time evolving
data. Technical Report NU-CCS-94-21, College of Computer Science, Northeast-
ern University, 1994. (To appear in ACM Computing Surveys).

[TT93] A. Tansel et al., editors. Temporal Databases: Theory, Design and Implementa-
tion. Benjamin/Cummings, Redwood City, CA, 1993.

[TK95] V.J. Tsotras and N. Kangelaris. The snapshot index, an I/O optimal access
method for timeslice queries. Information Systems, 3(20):237-260, 1995.

[TK96] V.J. Tsotras and A. Kumar. Temporal database bibliography update. ACM
SIGMOD Record, 25(1):41-51, March 1996.

[Yao78] A. Yao. 2-3 trees. Acta Informatica, 2(9):159-170, 1978.

A Appendix — Review of the Monotonic B*-tree (MBT)

The MBT [EJKO92] is a specialization of the Time Index [EWK93] for the case where the
valid time grows monotonically, i.e., it has the same behavior as of transaction time, in
the sense that no retroactive nor predictive updates are supported. We therefore consider
it to index transaction time ranges. Similarly to our approach it aims to use a BT-tree
as its framework, although, unlike our approach, the structure of the leaf nodes are quite
modified. It also achieves close to 100% node utilization.

The internal nodes of the MBT are like those of a BT-tree. The leaf nodes however are
rather different. The MBT (as the Time Index) makes use of incremental buckets, SP, SM
and SC. Associated to every indexed point there is a SP and a SM bucket. A SP bucket
contains pointers to all the records (or their “ids”) that were inserted at that point in time.
Similary SM holds pointers to those there were (logically) deleted. Every leaf node has an
SC bucket that contains the records the were valid in the last indexing point of the previous
leaf. Figure 9 shows the MBT indexing a data set adapted from [EWK93].

A Bt-tree Based Approach to Index Transaction Time 21

MBT
loJ2:]4)]6[8: [10: [now) |
E1l| A | o] 3 P [T -
- N !
e2l B | 4! now | [E11E2LE3L | - | il [E12,E42 ||
E21l B | 0| 5 | B4l P :E !
| [rorTTrrrrTrrn S \
ezl ¢ | ol 7 ‘ E2LE3L[Co _|Est
[El2[P E32,E42 | |
E2 A | 8 9 | EILE4L | 3 EL2 \
E4l| C | 2| 3 | gy \
N Pointers to data records)
E42| A 8/now -~ ——>—>—>—— - - - - - - - - - = - - -

Figure 9: An example Monotonic B¥-tree.

The major drawback of the MBT, is that the longer the lifespan of a record, i.e., the
longer it is recorded in the database, the larger the number of indexing points it will span
over. Although the insertion and deletion of such records will appear in only one SP and
SM it is replicated through as many SCs as many leaf nodes it spans over. The smaller the
node size, the larger the number of leaves and thus of SCs and thus the worse this problem
becomes.

Using the MBT to process queries is rather simple. For instance, to find all ranges that
intersect a query range @ = [@s, Q¢], one needs to calculate all records which are “alive” at
()s and add all records found in all sets SP in the leaf entries between [Q;, Q.]. The set of
records alive at (), is computed by using the SC of the leaf containing Js and subtracting
all those records in the SMs between the leading entry of this leaf and).

For the the simulations in this paper we have assumed that every leaf node has associated
to it (and physically near, as illustrated in Figure 9) at least one disk block with the
incremental buckets. The other option, clustering all such buckets in a single continuous
set of blocks could imply in less (but not likely much less) storage but would make query
processing time worst as for every leaf node traversed the associated buck would imply in
the retrieval of (non-clustered) blocks, thus making it not as efficient as the option we chose.

96-01

96Abs

96-02

96-03

96-04

96-05

96-06

96-07

96-08

96-09

96-10

96-11

96-12

96-13

96-14

96-15

Relatérios Técnicos — 1996

Construgao de Interfaces Homem-Computador: Uma Proposta Revisada
de Disciplina de Graduacgao, Fdbio Nogueira Lucena and Hans K.E. Liesenberg

DCC-IMECC-UNICAMP Technical Reports 1992-1996 Abstracts, C. L.
Lucchesi and P. J. de Rezende and J.Stolfi

Automatic visualization of two-dimensional cellular complexes, Rober Mar-
cone Rosi and Jorge Stolfi

Cartas Nauticas Eletronicas: Operacgoes e Estruturas de Dados, Cleomar M.
Marques de Oliveira e Neucimar J. Leite

On the edge-colouring of split graphs, Celina M. H. de Figueiredo, Jodo Mei-
danis and Célia Picinin de Mello

Estudo Comparativo de Métodos para Avaliacao de Interfaces Homem-
Computador, Sulvio Chan e Heloisa Vieira da Rocha

User Interface Issues in Geographic Information Systems, Juliano Lopes de
Oliveira and Claudia Bauzer Medeiros

Conjunto fonte maximo em grafos de comparabilidade, Marcos Fernando An-
drielli e Célia Picinin de Mello

96-08 The Effectiveness of Multi-Level Policing Mechanisms in ATM Traffic
Control, J.A. Silvester, N. L. S. Fonseca, GG. S. Mayor e S. P. 5. Sobral

Sequential and Parallel Experimental Results with Bipartite Matching Al-
gorithms, Jodo Carlos Setubal

96-10 A CPU for Educational Applications Designed with VHDL and
FPGA, Nelson V. Augusto, Mario L. Cértes and Paulo C. Centoducatte

Network Design for the Provision of Distributed Home Theatre Services,
Nelson L. S. Fonseca, Cristiane M. R. Franco, Frank Schaffa

Modelling the Output Process of an ATM Multiplexer with Correlated
Priorities, Nelson L. S. Fonseca e John A. silvester

Algoritmos de afinamento tridimensional: exemplos de técnicas de
otimizacgao, F. N. Bezerra and N. J. Leite

Ensino de Estruturas de Dados e seus Algoritmos através de Imple-
mentagdo com Animacgoes, Pedro J. de Rezende e Islene C. Garcia

Sinergia em Desenho de Grafos Usando Springs e Pequenas Heuristicas,
H. A. D. do Nascimento, C. F. X. de Mendon¢a N., P. S. de Souza

22

96-16

96-17

96-18

96-19

96-20

A Temporal Extension to the Parsimonious Covering Theory, Jacques
Wainer and Alexandre de Melo Rezende

Workcase-centric workflow model, Jacques Wainer and Paulo Barthelmess

Integrating heuristics and spatial databases: a case study, Cid Carvalho de
Souza, Claudia Bauzer Medeiros, Ricardo S. Pereira

Uma Abordagem de Programacao Inteira para o Problema da Triangulagao
de Custo Minimo, A. P. Nunes e C. C. de Souza

Contracting and Moving Agents in Distributed Applications Based on a
Service-Oriented Architecture, B.Schulze and F.R.M.Madeira

23

97-01

97-02

97-03

97-04

97-05

97-06

97-07

97-08

Relatérios Técnicos — 1997

Um Ambiente Distribuido de Visualizagdo com Suporte para Geometria
Projetiva Orientada, Pedro J. de Rezende e César N. Gon

Approximate Models for the Output Process of an ATM Multiplexer with
Markov Modulated Input, Nelson L. S. Fonseca and John A. Silvester

Controle de Concorréncia no Cm, Célio Norbiato Targa, Mauro da Silva Oliveira
Filho, Celso Gongalves Jr, Rogério Drummond

Compilacdo Condicional em Cwm, Sheila P. Maceira, Alexandre Prado Teles,
Rogério Drummond

Linear: Linearizador de Estruturas Complexas, Rogério Drummond, Carlos
Hoyos

LegoShell: Linguagem Visual de Programacao Distribuida, Rogério Drum-
mond, Celso Gongalves Jr.

Desenvolvendo Aplicagoes Distribuidas em Cm, Celso Gongalves Jr., Alexan-
dre Prado Teles, Rogério Drummond

Fast interval branch-and-bound methods for unconstrained global opti-
mization, Luiz Henrique de Figueiredo, Ronald Van Iwaarden, Jorge Stolfi

Instituto de Computacio
Universidade Fstadual de Campinas
13083-970 — Campinas — SP
BRASIL

reltec@dcc.unicamp.br

24

