
O conte�udo do presente relat�orio �e de �unica responsabilidade do(s) autor(es).(The contents of this report are the sole responsibility of the author(s).)
A B+-tree Based Approach to IndexTransaction TimeMario A. NascimentoRelat�orio T�ecnico IC{97-09Julho de 1997

A B+-tree Based Approach to Index Transaction TimeMario A. Nascimento�AbstractTransaction time of a record is the time interval when the record is stored in thedatabase. In this paper we present an approach which provides e�cient indexing ofsuch kind of temporal data. The approach makes use of two standard B+-trees withtrivially modi�ed node split policies { which yield a usage ratio of virtually 100% in eachtree. We compare the proposed approach, which we name Two-Stage, to the MonotonicB+-tree (by Elmasri et al). Our simulations show that the Two-Stage approach yieldsa structure up to 75% smaller than the Monotonic B+-tree, and in all but one of theseveral investigated scenarios, the Two-Stage approach provided faster (or comparable)query processing time. Our main contribution, however, lies in the fact that the Two-Stage Approach does not require novel data structures but well-known B+-trees. Assuch, and unlike all previous techniques for tackling this problem, it can be implementedusing facilitites existing on most commercial DBMSs.1 Introduction\Transaction time of a database fact is the time when the fact is current in the databaseand may be retrieved" [J+94]. Basically a temporal database that supports transactiontime (so-called transaction time database) is able to keep all past history of the database.Once a tuple in a relation is updated the newer version replaces the older one, but theolder is only logically deleted instead of physically deleted. In fact, in transaction timedatabases \... errors can sometimes be overridden (if they are in the current state), butthey cannot be forgotten ..." [SA86]. We denote the transaction time of a data recordRk, by T kt = [T ks ; T ke]. Usually the transaction-start-time (T ks) is set to the time when thetransaction that wrote the data committed and the transaction-end-time (T ke) is left open.An open transaction-end-time is usually denoted by setting T ke = NOW (where the symbolNOW stands for the current instant in time. For a thorough discussion on the semanticsof this value refer to [C+94]). When such data is to be updated, i.e., a version thereof isto be created, its transaction-end-time is set to the time point immediately before that ofthe transaction-start-time of the new version of the data. The new transaction-end-time isleft open, and so on and so forth. Naturally, it is possible to \close" some data without�Invited lecturer at the Institute of Computing, State University of Campinas (UNICAMP), and re-searcher at the Brazilian Agency for Agricultural Research (EMBRAPA). Permanent Address: CNPTIA {EMBRAPA, PO Box 6041, 13083-970 Campinas SP, Brazil. E-mail: mario@cnptia.embrapa.br. This re-search was developed as part of GEOTEC's e�ort, a PROTEM-CC project sponsored by the BrazilianNational Council of Research (CNPq) Process 480007/97-7.1

2 M.A. Nascimentoinserting a new version of it, that is, only (logically) delete it without versioning it. Suchtype of temporal data is common in many application domains.Temporal databases in general (refer to [T+93] for a good collection of papers) requirethe indexing of temporal data, besides the usual indexing of non-temporal data, for e�cientquery processing. Although more than 1,000 papers have been published in the area oftemporal databases [Kli93, McK86, �OS95, Soo91, TK96], relatively few have addressed theissue of indexing temporal data (refer to [ST94] for a survey). In this paper we addressthe problem of indexing transaction time. In what follows we briey review the relatedapproaches most mentioned in the literature.The Time-Split B-tree [LS93] is unique in the sense that is the only data structure whichindexes temporal and non-temporal data under a single framework. Recently, some workwas done towards its parallelization [MKW96]. The Snapshot Index [TK95] may be optimalif a dynamic hashing function is used instead of a B+-tree for handling updates. It uses aninteresting strategy to keep track of closed time intervals. The Append-Only Tree [GS93]uses a framework which is similar to the B+-tree, however, it indexes only the transaction-start-timeon the leaf node level. The transaction-end-time is kept inside additional bucketsunder the leaf nodes. This requires accessing beyond the leaf nodes level and a�ects theindex update procedures. The Monotonic B+-tree [EJK92] keeps track of both transaction-start and end time explicity in the tree, which is much like a B+-tree. For all indexed pointsbetween the transaction-start and end time of records, pointers to those are maintained inan incremental manner (we review the Monotonic B+-tree in more details in the Appendix).Unfortunately, keeping such pointers incrementally may still result in a large structure. Inaddition, the leaf nodes of the indexing tree are di�erent from standard B+-tree leaf nodesAll those access structure have their merits, but all lack one quite desirable property,which is feasibility. They all require deep modi�cations to existing DBMSs. In other wordsnone of them can be used in conjunction with existing DBMSs. We, on the other hand, aimprimarily at providing an index structure which can be used on top of facilities availablein existing DBMSs. We do so by re-using the B+-tree structure (refer to [EN94, Chapter5] for an introduction) in an approach we name Two-Stage (2S for short). It is importantto notice that, by re-using well-known B+-trees, we also inherit all previous research on itregarding issues such as concurrency control and recoverability [JS93]. Note much has beendone regarding those issue in most of the above mentioned access structures.Given that we use B+ trees and the monotonicity of time will allow us to explore the\append-only" nature of the indices we may derive the performance bounds for 2S as shownin Table 1 (the bounds for the other approaches were obtained from [ST94]). We also denoteN as the number of updates performed, B the disk block size and A the answer size. D isproportional to the square of the largest indexed lifespan in the worst case and a constantin the expected case (see Section 2.2). A time slice query is assumed for computing thebounds for query processing time. We also assume the indices to be primary indices, inthe sense that \the index controls the physical placement of data ... primary indices neednot be on primary keys of relations" [ST94]. We discuss the bounds obtained for the 2Sapproach in more detail later in the paper.Note that 2S's size is, like most other structures listed, linear on the number of updates,which is a desirable feature. Even though, it is not optimal, 2S's update time is good and it

A B+-tree Based Approach to Index Transaction Time 3Table 1: Comparing 2S to other transaction time oriented indices.Structure Storage Update Time Query TimeTwo-Stage (2S) O(N=B) O(logBN) O(logBN + (A+D)=B)AP-tree [GS93] O(N=B) O(N=B) O(N=B)MBT Index [EJK92] O(N2=B) O(N=B) O(logBN +A=B)Snapshot Index [TK95] O(N=B) O(1) O(logBN +A=B)TSBT [LS93] O(N=B) O(logBN) O(logBN +A)is achieved using a well known data structure (the B+-tree) for which quite a lot of researchhas been devoted. Regarding query processing time, 2S depends on a variable no otherstructure does, namely the length of the largest indexed lifespan. We discuss this issue laterin the paper. Nonetheless, if D is small and constant (in fact, we will show this assumptioncan be valid most of the time), 2S's query processing time is nearly optimal. Indeed, ourperformance analysis will show that 2S's performance is better (or close) to the MBT's,hence supporting our claim.Valid time, is the time when a fact was true in the modeled reality [J+94]. In severaldomains however, we can model valid time as transaction time. For instance, in an envi-ronment where satellite imagery or sample data is automatically collected at possibly, butnot necessarily, regular time intervals could be interpreted as transaction time oriented.Many other papers have dealt with the indexing of \pure" valid time, however, due to therestricted space and our focus on transaction time we do not cover such topic.The rest of the paper is organized as follows. Section 2 presents the main contributionof the paper, the 2S indexing strategy for transaction time data. We then show thatusing a standard B+-tree, with trivially modi�ed node split policies, we may ensure a nodeutilization ratio close to 100%. Comments on how to actually achieve this in an existingDBMS (ORACLE's in particular) are also drawn. In Section 3 we compare the performanceof the proposed approach against that of the Monotonic B+-tree, which despite its highstorage requirement can be quite e�cient in terms of query processing. It is interestingto note that, to our knowledge, no actual performance comparison has been made amongthe access structures mentioned above (not even when they were �rst proposed). The onlycomparison has been made in [ST94] and it was based on complexity analysis (e.g., Table 1)rather than actual implementations. In Section 4 we indicate how 2S can make use of opticaldisks in a rather simple manner. However, we do not focus on such an issue. Conclusionsand directions for further research are o�ered in Section 5.2 The Two-Stage ApproachOur approach has two stages, both functioning possibly concurrently. The idea is to beable to handle both open-ended and closed ranges. In what follows, we describe such stagesbriey.

4 M.A. Nascimento
pointers to data recordspointers to data records

Data Records (pinned)

Ranges with open
end (Te = UC) T1

(indexing F(Ts,Te))

Stage S1

Ranges being closed

Stage S2

T2

(indexing Ts)Figure 1: Illustration of the two stages on which we base our approach.S1: In stage one all ranges which are open-ended (i.e., 8Rk j T ke = NOW) are indexed byits transaction-start-time (T ks) under a B+-tree, denoted by T1;S2: In this stage all ranges that have been closed, su�er a simple transformation and areindexed under a second B+-tree, denoted by T2.Let us now briey explain the rationale behind each stage. Initially, i.e., until the �rsttransaction time range is closed, S2 does not function. S1 is responsible for managing,through T1, all incoming transaction-start-times. When one or more records are closed1,those are deleted from T1 and moved over to T2. Before they are inserted into T2 though,these (closed) ranges go through a mapping function F (Ts; Te) which maps a range into apoint. This mapping is such that it will maintain the incoming points ordered primarilyby their original transaction-end-time and secondarily by their transaction-start-time. Thiswill guarantee that any other range which is closed and input into T2 later on will notprecede, with respect to this mapping value, any other range already input into T2. Thus,if the underlying B+-tree uses a node split policy that instead of splitting nodes by \half"simply overows to a newly created node, we may achieve a usage ratio close to 100%. Theoverall idea is illustrated on Figure 1. We detail how Stages S1 and S2 operate in the nextSection.2.1 Stage S1Stage S1 is responsible for maintaining all those ranges which are still open. As such,it functions since the �rst update occurs, and needs to index only the transaction-start-time of the records. Recall that all open-ended ranges have all the same transaction-end-time, namely Te = NOW . A simple B+-tree su�ces to handle the ranges in S1. Thedata type being indexed reveals an interesting property: the transaction-start-time growsmonotonically. With this in mind we modify a little bit the standard B+-tree node splitpolicy in order to achieve a much better space usage. We explain this modi�cation next.Assume a standard B+-trees of order n, i.e., a node holds n pointers and n� 1 indexeddata items. Once a value is to be inserted into a full node, a new node is created and theset of indexed values of the full node plus the new value is divided evenly among those two1Note that all such records will have the same transaction-end-time but not necessarily the sametransaction-start-time.

A B+-tree Based Approach to Index Transaction Time 5nodes. Figure 2(b) illustrates this procedure using the leaf node shown in Figure 2(a). Suchsplits may \propagate upwards" causing similar node splits in internal nodes of the tree.Such policy yield, in average, a 69% node utilization ratio [Yao78], i.e., almost a third ofthe slots in each node is not used.
3 5 8 10 13

previous
leaf

pointers to data

23 25

(b) The new leaf nodes after insertion of 25, using the standard node split policy

parent node parent node

3 5 8 10
previous
leaf 13 23 25

pointers to data
(c) The new leaf nodes after insertion of 25, using the lazy node split policy

parent node parent node

3 5 8 10 13 23
previous
leaf

pointers to data

(a) Leaf node just before the insertion of value 25

parent node

Figure 2: Illustrating the standard and lazy node split policy.As noted above, the transaction-start-time, which is the data value being indexed, growsmonotonically, i.e., any new data item being indexed is always greater than all other onesalready indexed. Using the standard node split policy is a bad idea in such a case. Oncea node is split it will never receive any value again, because all new incoming values arecertainly greater the the last value indexed, which is, by construction, always the rightmostone on the rightmost leaf node. For instance, the left node in Figure 2(b) (and all othersto its left) will remain nearly half empty. Therefore using the standard split node policywill yield an asymptotic node utilization of 50% when indexing monotonically growing datavalues. Note that such behavior also happens in the internal nodes, and therefore the ratioof 50% is valid to all nodes in general, internal and leaves.To address this severe shortcoming we propose a modi�ed node split policy, which wecall \lazy". In the lazy node split policy, the full node, which is receiving the incomingvalue, remains full and a new node is created to host the incoming value. This leads to amuch better node utilization. In fact, all nodes but the rightmost are full, which yields anasymptotic node utilization of 100%. Expanding this argument to the case of when internalnodes are split, we reach similar conclusion, i.e., in all levels of the tree all but the rightmostnode will be close to 100% full. Note that even though update time remains logarithmic, asin the standard B+-tree, it is nevertheless much simpler, as nodes do not split but ratheroverow.We must make clear though that we do not claim such lazy policy to be novel. Infact, it has been also proposed for the Monotonic B+-tree [EJK92]. On the other hand,

6 M.A. Nascimentoit is noteworthy pointing out that this strategy need not be actually implemented fromscratch. For instance, ORACLE's DBMS [Ora92] does provide a directive PCTFREE tobe used (optionally) when a CREATE INDEX command is issued. In fact, \PCTFREE is thepercentage of usage to leave free for updates and insertions withing each of the index'sdata block"2. Thus, if we assume an index is created for T1 on the transaction-start-timeusing the option PCTFREE 0 then we may indeed assume the lazy split policy explainedabove is actually being realized. Therefore the modi�ed node split policy discussed above isfeasible to achieve. Furthermore, the very nature of transaction-start-time (i.e., increasingmonotonically) does facilitate maintaining the aimed high �ll factor in T1.Let us now discuss how deletions are processed in T1. Unlike insertion, deletion ofindexed values can occur in any order. Once all data items indexed under a given valuet are closed such value must be deleted from T1. This may yield some \holes" in treenodes (internal and leaves). For simplicity we assume a lazy deletion policy as well (alsocalled \free-at-empty" in [JS93]). In the lazy deletion policy nodes are not merged withothers to maintain a minimum load, but have their values deleted until they are empty.When this happens the given (empty) node is simply deleted. This possibly violates theoriginal minimum load requirement of the B+-tree, but it has been shown [JS93] that suchlazy deletion policy simpli�es very much the deletion policy without sacri�cing signi�cantlysearch performance and space utilization.Another possibility is that T1 may be periodically \compacted". Such compaction isnot complicated to implement but implies signi�cant overhead, as access to the tree is quitea�ected by the compacting process. Although choosing the best possibility is object offurther research, we assume the lazy deletion policy is the one adopted.Note that the lazy node split policy does not imply any change in the B+-tree searchingstrategy, which remains logarithmic on the the number of indexed points. It is easy to seethat the B+-tree in question also remains e�cient regarding space usage, which is linear onthe number of ranges (N). Finally note that, overall, T1 is simpler to implement than astandard B+-tree (should one decide to implement one from scratch).
A1 B1C1 E1 F1 D1

T1

0 2 3

B1

A1

D1

E1

F1

C1

ID Ts Te

NOW

NOW

NOW

NOW

NOW

0

2

0

2

2

3

Data Set at time 3

NOWFigure 3: T1 indexing the initial data set.For the sake of illustration, consider the data set shown in Figure 3, where Xi is the i-thversion of surrogate X. Up to time 3, only new and still open-ended versions were input,and thus T1 is like the one shown. The details of leaf nodes boundaries and internal nodes2Quoted from ORACLE's SQL*Plus: Release 3.2.2.0.0 on-line help.

A B+-tree Based Approach to Index Transaction Time 7are omitted for simplicity.Searching T1 is straightforward. We assume that NOW is greater than any other cur-rently indexed time point. As such, to �nd all open-ended ranges that intersect with a givenquery range Q = [Qs; Qe], one needs to search from the initial indexed value (possibly 0)until Qe, as obviously any range starting after Qe cannot intersect with Q and all open-ended ranges starting before Qe do intersect with Q as it is assumed that all open-endedranges are valid until NOW which is farthest in the future than any Qe.Summarizing, we can achieve, as far as T1 is concerned, the performance bounds inTable 1. Namely: T1's size is linear on the number of updates (transaction-start-times). Ithas logarithmic update time (at most the rightmost branch of the tree is updated) and hasa very good query processing time, basically acessing only leaf nodes (disk blocks) relevantto the queries.2.2 Stage S2This is probably the main stage, as it will maintain all closed versions within T2, and mustprovide an e�cient way to process queries which involve those.First let us discuss how S2 works. Suppose that at a given time t, some number ofversions are closed. S2 then receives from S1 a set of ranges which also posseses an interestingproperty: all the incoming ranges have the same transaction-end-time, and such transaction-end-time is greater than all other transaction-end-times already indexed under T2, and issmaller than all other transaction-end-times that will possibly be input in the future. Thus,in a sense, T2 holds several groups of ranges (grouped by transaction-end-time) and wemust use this to our advantage. If we are able to maintain a relative order among thosegroups, then we can guarantee that the index, will grow only to the right, in an \appendonly" manner. This is important as we can make better use of space. We discuss thisshortly.The chief question we need to answer is how to index the closed ranges, in order to keepthe grouping mentioned above. Unlike in S1, we now have two values (Ts and Te) for eachrecord. We propose to do this using an approach similar to the one used in [ND97] to indexvalid time, which is to use a function which maps ranges to points. The function originallyused in that paper preserved the original lexicographical order of the ranges, i.e., the rangeswere ordered by transaction-start-time and secondarily by transaction-end-time. We modifythe mapping function such that the ranges are primarily ordered by transaction-end-timeand secondarily by transaction-start-time. Recall that each of the groups mentioned above,have the same transaction-end-time. Thus, such order reects the desired grouping on theleaf nodes of the indexing tree. Formally, we de�ne the mapping function in question asfollows:De�nition 1 �(T k) = �(T ks ; T ke) = T ke 10� + T kswhere � is the maximum number of digits needed to represent any time value.Any transaction time range T k = [T ks ; T ke] can thus be indexed using the value providedby �(T k) { which is a point instead of a range { into T2. Obtaining the original range from�(T k) is clearly straigthforward.

8 M.A. NascimentoWe need now to discuss how insertions and the searching are processed. Note however,that due to the very nature of transaction time databases, data is not ever deleted, thusdeletions never occur in T2.When a closed range is inserted into T2 (which is a B+-tree) it must be �rst mapped intoa point via the function �(:) above. We could use a standard B+-tree insertion procedure,but given the order imposed by the mapping above we can achieve a much better spaceutilization by using the very same approach one used for T1, provide we can do somepre-processing in main memory. At any given point in time there may be a number ofopen-ended ranges being closed with the same transaction-end-time but not necessarilysame transaction-start-time. Let us assume this number to be not very large, i.e., weassume it is much smaller than the total number of indexed closed ranges. If we sort thoseranges based on their transaction-start-times, then we can input them, in the sorted order,into T2 using the very same approach we described for T1. The assumption of having anot very large number of ranges being closed at a given time allows us to assume that thepre-processing of the ranges (i.e., the sorting) can be done in main memory. Note thatshould such assumption be not feasible then a small number of I/Os may su�ce to performsuch sorting using secondary storage. At any rate we believe that such number of I/Os isbound to be much smaller than the total number of leaves, hence we consider update timeto be O(logBN) instead of O(N=B).Again, this strategy can be actually realized as explained in Section 2.1, by simplysetting the PCTFREE 0 option when a CREATE INDEX command is issued (assuming ORACLE[Ora92] to be the underlying DBMS, of course).Notice that we need not be concerned about deletion of data in T2. By the veryde�nition of temporal databases, particularly transaction time databases, data is not everdeleted. Deleting a tuple means actually closing its transaction time range, thus functioningas a logical deletion rather than a physical deletion.For a better idea of how both T1 and T2 cooperate in order to index both open-endedand closed ranges consider again the data set shown in Figure 3. Suppose that at time 5new versions of B1, C1 and F1 are input, which implies that B1, C1 and F1 are not validany longer and therefore must be closed. The new version, respectively B2, C2 and F2, areinput into T1. The transaction time ranges for B1 and C1 now become TB1t = [2; 4] andTC1t = TF1t = [0; 4]. Figure 4 shows the resulting trees, again internal nodes and details ofthe leaf nodes are omitted for simplicity.We now discuss how T2 is searched. Only the new ordering among the ranges, implicitlygiven by the relative positions of the indexed points, is not enough to provide an e�cientsearch. Consider the query range Q = [Qs; Qe]. Any range with a transaction-end-timegreater than Qs could intersect with Q, depending obviously on its transaction-start-time.However as the index is primarily ordered by the ranges' transaction-end-time (the groupswe mentioned earlier) we would need to search all the groups with transaction-end-timegreater than or equal to Qs and retrieve the respective transaction-start-time and only thendecide whether a range belongs or not to the query answer. This is obviously inne�cient asin the worst case could cause the read of all the leaf nodes ! Let us assume though that weknow an upper bound for the length of the indexed ranges, and let us call it �, that is:

A B+-tree Based Approach to Index Transaction Time 9
400 402 502

A1 B1C1 E1 F1 D1 B2 C2 F2

0 2 3 5 6

ID Ts Te

A1 NOW0

C1 0

B1 2

E1 NOW2

F1 2

D1 NOW3

NOW

NOW

NOWB2 5

4

5C2

6F2

4

5

Data Set at time 6

T1 T2

Figure 4: T1 and T2 indexing the data set at time 6 (� = 2).De�nition 2 Given a set of ranges V k � = maxkfT ke � T ks g.Now, in order to process the intersection query we need only to search through thetransaction-start-times from the groups of transaction-end-times beginning at Qs; Qs+1; :::until Qe + �. This is so because any range ending before Qs cannot intersect with Q,nor can any range ending after Qe +�, as this would contradict our assumption about �.That is, the range farther in the past that can intersect with Q is [Qs��; Qs] and the onefarther in the future is [Qe; Qe + �]. Therefore mapping those ranges, it implies that wemust search the leaves in T2 from value �([Qs ��; Qs]) up to value �([Qe; Qe +�]).
A C D F G H IB

20 30 32 52 53 65 74 75 ...

I

B
A

D
F

C

G
H

0 1 2 ...3 time
(a) a sample of indexed ranges

(b) the leaf nodes indexing the ranges in (a), α = 1Figure 5: Searching T2.Let us illustrate the rationale above through an example. Consider the ranges in Fig-ure 5(a), where they are (for illustration purposes) already sorted primarily by transaction-end-time and secondarily by transaction-start-time. Figure 5(b) shows the leaf nodes of T2(a B+-tree with n = 4) indexing those ranges { note the full node utilization yielded by thelazy-propagated split node policy. Let the query range be Q = [1; 2]. If we cannot make use

10 M.A. Nascimentoof � one must search through all the index. However, if we know that in this case we have� = 3, it is obvious that no range ending before Qs = 1 or after Qe = 5 will intersect Q.Thus it su�ces to search from the indexed point 0 (mapped range [0,0]) until the indexedpoint 52 (mapped range [2, 5]). In Figure 5(c) that would retrieve items A, B, C and D,which do have transaction time ranges that intersect with [1, 2].Notice that we might read indexed points which correspond to ranges that will notbelong to the query's answer. For example, if the � value associated to the ranges inFigure 5(a) were 4 instead of 3, we would have to search from the indexed point 0 (mappedrange [0,0]) until the indexed point 62 (mapped range [2, 6]). This would make us readthe indexing point 53 (mapped range [3, 5]) which does not belong to the answer (i.e., itobviously does not intersect with [1, 2]). In what follows we present upper bounds (worstand expected cases) for the number of such \false-hits".The range [Qs��; Qs] is the only range starting at Qs investigate and it does intersectwith Q = [Qs; Qe] so that implies no false-hits. In the linear scan of the leaves however, wemay have indeed some false-hits. Any point T in time may possibly be the starting point of� + 1 ranges, namely: [T; T], [T; T + 1], [T; T + 2], ..., [T; T + �]. The next indexed pointafter [Qs ��; Qs] is (if existing) [Qs ��+ 1; Qs ��+ 1]. Of all those ranges starting atQs��+1 only those ending at Qs and Qs+1 do intersect with Q, which means that ��1ranges do not and are thus false-hits. Similarly, the ranges starting at Qs � � + 2 imply�� 2 false-hits, those starting at Qs��+3 imply �� 3 false-hits, and so on and so forthuntil the one starting at Qs (and others that will follow it in the linear scan) which willimply no false-hits. Therefore the number of false-hits is given by: (��1)+(��2)+ :::2+1which sums up to �(��1)=2. Hence, in the worst case the number of false-hits is boundedby O(�2).Fortunately, the expected case is much better. Suppose we have N indexed ranges andthe length of the modeled time window is Tmax. Then, in the average, we have N=Tmaxranges starting at any point in time instead of �. For many (if not most) applications andspecially those with a �ne transaction time granularity, we expect N=Tmax < 1, whereason the other hand it would be to reasonable to expect � > 1. Hence, if we assumeTmax > N in the long term, then the number of false-hits can be upper bounded by aconstant, O((N=Tmax)2), which is unarguably much better.The � value of the indexed ranges can be easily maintained in some sort of dictionaryby the DBMS. For example, every time a range is closed, its length is checked againstthe current � which is then updated if needed. Furthermore, recall that transaction timedatabases do not allow correction nor deletion of data. Hence, � is dynamic and alwayscorrect. If we further assume that the value of � is relatively not very large, using theinformation about � will insure e�cient query processing.There is the problem that a single range with a large � may render the searchingprocess longer than it actually need be. Similarly to the approach adopted in [ND97], wecould make use of several trees, each indexing disjoint subsets of all ranges within speci�crange lengths. Such trees could be searched (and updated) in parallel improving overallperformance considerably. We do not treat such case here, but we are certain that it canbe dealt with, and this is subject of further research. For now, we assume that there is norange with a highly skewed length.

A B+-tree Based Approach to Index Transaction Time 11Summarizing, T2 uses clearly linear space. Under the assumption that the sorting (bytransaction-start-time) of the ranges being migrated from T1 into T2 can be done in mainmemory (or using at most a constant number of I/Os) the T2's update time is O(logBN).Finally, the time to process a query in T2 is O(logBN + (A + D)=B), where D is upperbounded by O(1) in the expected case or by O(�2) in the worst case.At least two other mapping-based approaches have been proposed to allow using stan-dard B+-trees to index ranges, namely DOT [FR91] and the B+-tree-based Time PolygonIndex [G+96] (which we refer to as B-TP, for short). DOT has been originally designedto cope with spatial data, and as such does not seem well equiped to handle the case ofopen-ended ranges. Also it aims at preserving the distance among the indexed itens, not theordering. In order to take advantage of transaction time characteristics though we believethe ordering is a much attractive feature to be preserved. The B-TP's major drawback isthat \... di�erent indexes (constructed using di�erent ordering relations) may be used tosupport the various types of queries" [G+96]. That is, for some queries a particular map-ping is appropriate, but it may not be for others. This does not mean an adequate mappingcannot be always found, but it does mean that one may need to maintain (concurrently)several indices, each representing a di�erent mapping, which may not be very desirable.Furthermore, \... not all temporal queries may be mapped to a simple range query, it maybe necessary for the spatial search to be decomposed into a number of interval queries"[G+96]. In addition it was originally designed to index valid time, not transaction time,thus it does not explore the features of the latter. Nonetheless we believe that the B-TPcould be specialized to accomplish that, and this should be object of future research.3 Performance AnalysisIn this section we investigate the performance of the proposed 2S approach. We compare itsstorage requirements and query processing time, with respect to intersection type of queries,to the Monotonic B+-tree (MBT). We chose the MBT because, despite its ine�cient use ofstorage it is indeed quite e�cient for query processing (refer to Table 1), and yet it is quitesimple to simulate. We assume the reader is familiar with the MBT, nonetheless, for thesake of completeness, we present a brief review of the MBT in the Appendix.For simplicity, we will use the number of disk blocks used at leaf node level (the leavesthemselves and the incremental buckets in MBT's case) and the number of disk blocksread during query processing as the indicators for the structures' size and query processingtime. We believe this is reasonable for two reasons: �rst because the trees, by construction,should be very wide and not too deep, therefore the number of internal nodes should bemuch smaller than the number of leaves; secondly, the tree traversals are done in logarithmictime, whereas the leaves are traversed linearly. We use the notation (and default values)in Table 2. We have used 8 and for 4 bytes for the sizes of a pointer to a record (or setthereof) and the size of the data type representing a time value. It is important to recallthat the size (in bytes) of the data type indexed under T2 is twice as big as those under T1and the MBT (due to the mapping used). This was taken into account when we performedthe simulation that follows.

12 M.A. NascimentoTable 2: Parameters used in the performance analysis.Notation Used for Values (default in bold)B Size of the disk block (in bytes) 1,024; 2,048; 4,096 and 8,192N Number of records indexed 5,000; 10,000; 50,000 and 100,000Lr Average length ranges 250, 500; 1,000 and 2,500Tmax Time value of NOW 5,000; 10,000; 20,000 and 50,000Po Ratio open-ended/closed ranges 0%, 25%, 50% and 75%Lq Average length of a query range 250, 500; 1,000 and 2,500We investigate how the sizes of the structures behave as a function of �ve variables: B,N , Lr, Tmax and Po. We have used the values shown in Table 2. We vary the parametersone at a time, while keeping the others �xed at default values. All values for the generatedranges and queries used a uniform distribution.Our ultimate goal in this section is to help the user to be able to identify di�erentscenarios and in which ones each structure is the \best" choice.3.1 Space RequirementsTo investigate the sizes of the indexing structures, as discussed earlier we compute only thenumber of leaf nodes disregarding the internal nodes. In the case of the MBT we must alsocompute the number of disk blocks used for the incremental buckets as it is a integral partof the overall structure. It is obvious that varying Lq does not a�ect the index sizes andtherefore we disregard this parameter in the simulations presented in this section. Let usnow discuss the results depicted in Figure 6.Varying N { Figure 6(a) shows that MBT's size grows a bit faster with N than 2S's.Unlike in the 2S approach the MBT may replicate pointers to tuples. In fact, a pointer to atuple will appear in as many SCs as it spans over and thus each additional record will causeat least two (one in some SP bucket and another in a SM bucket), but most likely severalpointers to be added to the underlying MBT. In 2S every additional record will contributewith a single entry being added (if needed) under T1 or T2. The MBT was, in average106% bigger than the 2S.Varying Lr { While � is an important factor for 2s's query performance one can seefrom Figure 6(b) that this is not the case in terms of storage. However, the MBT growsa little faster as a greater lifespan (i.e., �) yields more replication in the SC buckets. TheMBT used in average 113% more storage space than 2S.Varying Tmax { The MBT is a�ected by the length of the total time frame being modelled,while 2S is totally insensitive to it (see Figure 6(c)). This can be explained as follows. Weare generating a �xed number of pairs (Ts; Te), in fact, N pairs. The shorter the range

A B+-tree Based Approach to Index Transaction Time 13
0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 D

is
k

B
lo

ck
s

U
se

d

Number of Records Indexed (x 1000)

2-Stage
MBT

60

80

100

120

140

160

180

200

500 1000 1500 2000 2500

N
um

be
r

of
 D

is
k

B
lo

ck
s

U
se

d

Maximum Lifespan (Transaction Time) Length

2-Stage
MBT(a) Varying N . (b) Varying �.

60

80

100

120

140

160

180

200

220

240

5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 D

is
k

B
lo

ck
s

U
se

d

Length of the Modeled Time Window (x 1000)

2-Stage
MBT

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

N
um

be
r

of
 D

is
k

B
lo

ck
s

U
se

d

Ratio Open/Closed Ranges

2-Stage
MBT(c) Varying Tmax. (d) Varying Po.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

N
um

be
r

of
 D

is
k

B
lo

ck
s

U
se

d

Disk block size (x Kbytes)

2-Stage
MBT

(e) Varying B.Figure 6: Index sizes.

14 M.A. Nascimento[0; NOW], the less distinct time values can be generated, and thus less leaf nodes areneeded. However, as we enlarge [0; NOW] more distinct time values can exist and thusthere is demand for more leaf nodes. The more leaf nodes we have the more likely it is thatpointers to the data records will be replicated in their respective SCs. On the contrary, 2Sdoes not depend on Tmax at all. This is a quite important feature of 2S, as in a temporaldatabase time, and thus the range [0; NOW], is always growing. The MBT required from100% up to nearly 200% more space than the 2S.Varying Po { By inspecting Figure 6(d) we can see that with the increase of Po, bothstructures decreases in size, with 2S decreasing faster. This is simple to explain. The largerthe Po, the larger T1 and the smaller T2 (recall we are keeping the total number of recordsconstant). The data type under T1 is smaller than the one under T2, thus the gain instorage. As for the the MBT, increasing Po forces the generation of more ranges towardsthe \right end" of the time line (i.e., closest to NOW), this ultimately leads to less distincttime values being generated (i.e., many transaction-start-time and transaction-end-timewill coincide) and thus less space being occupied. However, the MBT's size decrease muchslower, again due to the SC buckets. In fact, with Po set to zero the MBT is about 90%larger whereas when Po is set to 75% it is about 400% larger than the 2S.Varying B { It is natural to observe that, given a �xed number of indexing values, thesmaller the leaf nodes, the more nodes are need to store such values. This is reected inFigure 6(e). However, recall that in the MBT each leaf node maintains an SC bucket. Itthen follows then that the smaller the leaves, the more SC buckets will exist and the higherthe degree of replication on MBT. Thus, enlarging the nodes, bene�ts MBT much morethan 2S. Nonetheless 2S is still the smaller structure in all cases investigated. The MBTwas up to 249% larger than the MBT. We should point out that the reason we chose thedefault value of B equal to 8 Kbytes was exactly to try to diminish the e�ect of the SCbuckets and therefore favor the MBT.3.2 Query Processing TimeWe assume that query processing time is basically driven by the number of I/Os performed,as performing one I/O is several orders of magnitude slower than executing a CPU instruc-tion. We do not compute the number of I/Os due to the actual retrieval of the data records,but only the I/Os needed to obtain the pointers which are used to retrieve them.We vary the same parameters used in the previous section with the addition of Lq. Unlikebefore, it is expected that query processing time depends on the length of the queried range.We analyze the results obtained, shown in Figure 7, next.Varying N { Figure 7(c) shows us that both structure are equally a�ected by the in-crease in N . 2S was sligthly faster than the MBT with the advantage remaining constantthroughout our experiments. MBT's size grow much faster with this variable (see Fig-ure 6(a)) because all buckets's size increase proportionally. When we investigate queryprocessing time we just take into account a much smaller range of the whole index which

A B+-tree Based Approach to Index Transaction Time 15
0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Number of Records Indexed (x 1000)

2-Stage
MBT

6

8

10

12

14

16

18

20

22

24

500 1000 1500 2000 2500

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Maximum Lifespan (Transaction Time) Length

2-Stage
MBT

(a) Varying N . (b) Varying �.
0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Lenght of Modeled Time Window (x 1000)

2-Stage
MBT

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Ratio Open/Closed Ranges

2-Stage
MBT(c) Varying Tmax. (d) Varying Po.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Disk block query (x Kbytes)

2-Stage
MBT

8

10

12

14

16

18

20

22

24

26

500 1000 1500 2000 2500

N
um

be
r

of
 D

is
k

B
lo

ck
s

A
cc

es
se

d

Maximum Query Length

2-Stage
MBT

(e) Varying B. (f) Varying Lq.Figure 7: Query Processing Times (average number of I/Os).

16 M.A. Nascimentodoes not grow as fast. On the other hand 2S's performance degenerates close to linearlywith the increase in its size.Varying � { Figure 7(b) shows the biggest shortcoming of 2S. As the largest indexedlifespan gets larger, the query processing time gets proportionaly slower. This happensbecause under 2S the search has to scan the index for ranges starting as far as � timepoints before the actual query start time until the query end time, whereas the MBTmust scan only from the query start time until the query end time. As we keep all otherparameters �xed, the MBT shows that it is not much insensitive to the � factor, unlike2S. In our experiments 2S ranged from being more than 100% faster to being 43% slowerin the case � was up to half as big as Tmax. Even though we do believe that a temporaldatabase is of more value when managing highly dynamic data, and therefore relativelyshort lifespans (when 2S is actually faster then the MBT), it is important to reveal that alarge � may hurt 2S's performance considerably.Varying Tmax { For this case in particular (see Figure 7(c)) both access structure deliv-ered virtually the same performance. Which is important given that in a temporal databaseTmax is ever increasing. Even though one may think that MBT's processing time shoulddegenerate as its size, that is not the case. Incresing Tmax do increase the number of indexedpoints but as N and Lr are maintained �xed, each incremental bucket actually becomessmaller and thus the increase in performance.Varying Po { When no open-ended ranges exist all of 2S's e�ort is spent on T2, whichindexes a larger data type and is subject to the � constraint. As more open-ended rangesare considered, more of 2S's e�ort is devoted to T1 which is smaller and, in a sense, faster toprocess. Figure 7(d) shows that 2S may be a little as 6% slower when no open-ended rangesare considered and as much as 140% faster when the majority of ranges are open-ended.Varying B { Figure 7(e) reveals an fairly natural result. Both 2S and MBT gain byusing larger disk blocks. MBT may yield query processing time up to 28% is small blocksare used { this is a direct consequence of its much larger size (see Figure 6(e)).Varying Lq { Even though both structures must perform a larger index scan as thequery length gets larger, Figure 7(f) shows that the MBT su�ers more. For the 2S a largerscan implies in proportionally more leaves being read. For the MBT however, not onlymore leaves are read but also the incremental buckets associated to them, hence the fasterdegeneration in MBT's performance. The MBT was sligthly faster for small queries andabout 40% slower for the larger ones.3.3 RemarksWe conclude this section by noting that if one considers a \default" scenario, i.e., whereall investigated parameters have the default values we de�ned in Table 2 we would have

A B+-tree Based Approach to Index Transaction Time 17the 2S approach consuming 112% less space and requiring 16% less I/Os to process queries.Even though one may argue that time is more costly than space, it should not be ignoredthat temporal databases grow inde�nitely, and as such it is important to keep the indicessize under control. In addition, one may note that except for the case where the � is large2S delivered a performance, at least comparable to the MBT's. Nevertheless, for severalscenarios 2S is bound to provide faster query processing time than the MBT.One must not forget that 2S, unlike all other approaches originally proposed to indextransaction time, can be easily implemented using facilities available in most (if not all)commercial DBMSs. These facts, allied to the fact that 2S is very compact, lead us tobelieve 2S to be a promising approach.4 Using Tertiary StorageIn this section we indicate how 2S can easily make use of tertiary storage. This was also aconcern with respect to the MBT [EJK92]. In particular we consider media of the WORMtype, (e.g., optical disks). Use of cheaper, albeit slower, media storage may needed fortemporal databases, which, by their very nature do not allow deletion of data, and thusmay become very large quite fast. In an environment where updates happen very often thatmay be even a bigger problem. In what follows we describe how 2S, particularly T2, canmake use of tertiary storage. T1 su�ers deletions, i.e., open-ended ranges are eventuallyclosed, hence it cannot take much advantage of tertiary storage.
Figure 8: Illustration of the migration procedure.Initially 2S functions using only magnetic disk as described earlier. Once a leaf node (inT2) becomes full we can migrate it to tertiary storage as we can be sure that no indexedvalue smaller than those in that leave can be input into that tree. One potential problemwould be that each leaf points to it rigth neighbor and as such it could have to wait untilthis neighbor migrates as well. However this would create a \domino e�ect" that wouldend up preventing the migration of leaves. We resolve this by pre-assigning the locationof the next leave to be migrated on the optical disk (denoted by the dashed \disk block"in the Figure 8). This will allow the migration of a leave as soon as it becomes full. Alsogiven that the tree nodes have constant size this is actually simple to achieve. For internalnodes we need to make sure that it is not only full but also that all the nodes it points to

18 M.A. Nascimentohave also been migrated. Otherwise we could not update the corresponding pointers in theinternal node. Finally, a linear scan on the leaf nodes can be jeopardized as beginning fromthe leftmost node all others but the rightmost can be reached. Therefore once a linear scanreaches what seems to be the last leaf node, it must search the actual last leaf, which stillresides in magnetic disk. For that we must keep the minimal overhead of one extra pointer(represented in the Figure by the dashed arrow pointing upwards).For an illustrative example consider Figure 8 where the lighter (darker) rectangles rep-resent disks blocks which are resident in the magnetic (optical) disk. In the leftmost treethe leaves which are full have already been migrated to the optical disk, their parent nodehowever cannot be as the rightmost leave still resides in magnetic disk and eventually itsaddress will change (when it is migrated) and its parent must change its pointer addressaccordingly. After some time, we may have the situation depicted in the rightmost tree.Note that the internal node which points only to migrated leaves has been also migrated.Even though we have not performed any simulations using tertiary storage, we wouldexpect to have all curves in Figure 7 shifted up. Tertiary storage is slower and most of thequery processing time is spent on scanning the leaves which reside mostly on the slowermedia.5 ConclusionsThis paper presented 2S, an approach based on two B+-trees which can be used to indextransaction time ranges. We have shown that we may achieve virtually 100% node utiliza-tion without much di�culties. One of 2S's great appeals is that it is straightforward toimplement, unlike all other existing proposals to tackle the same problem. We have alsoshown that 2S can cope with tertiary storage, e.g., optical disks, rather easily.When comparing 2S against the Monotonic B+-tree (MBT) we have reached two mainconclusions: (1) 2S always yields an structure smaller than the MBT, regardless of theunderlying scenario; and (2) 2S is particularly sensitive to large lifespans, otherwise itprovides good query processing time, that is, at least comparable to MBT's. One shouldtake into account the fact that the MBT is regarded as fairly e�cient for processing queries(which is its trade-o� to the use of a large storage).As mentioned in Section 2 we believe that 2S's inne�ciency when processing data setswith large lifepans (i.e., large �) can be overcome by using multiple (possible parallel) trees.This is object of future research.AcknowledgementsThe author thanks valuable feedback received from Christian S. Jensen and Michael H.B�ohlen while visiting Aalborg University. The author also wishes to acknowledge MargaretH. Dunham for earlier discussions on the subject.

A B+-tree Based Approach to Index Transaction Time 19References[C+94] J. Cli�ord et al. On the semantics of \NOW" in temporal databases. TechnicalReport R-94-2047, Dept. of Mathematics and Computer Science, Aalborg Uni-versity, November 1994. (to appear in ACM Transactions on Database Systems).[EJK92] R. Elmasri, M. Jaseemuddin, and V. Kouramajian. Partitioning of Time Indexfor optical disks. In Proceedings of the 8th Intl. Conf. on Data Engineering, pages574{583, Phoenix, AZ, 1992.[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Ben-jamin/Cummings, Redwood City, CA, 2nd edition, 1994.[EWK93] R. Elmasri, G.T.J. Wuu, and V. Kouramajian. The Time Index and the Mono-tonic B+-tree. In [T+93], chapter 18. 1993.[FR91] C. Faloutsos and Y. Rong. DOT: A spatial access method using fractals. InProceedings of the 7th Intl. Conf. on Data Engineering, pages 152{159, Kobe,Japan, April 1991.[G+96] C.H. Goh et al. Indexing temporal data using existing B+-trees. Data andKnowledged Engineering, 18:147{165, 1996.[GS93] H. Gunadhi and A. Segev. E�cient indexing methods for temporal relations.IEEE Transactions on Knowledge and Data Engineering, 5(3):496{509, June1993.[J+94] C.S. Jensen et al. A consensus glossary of temporal database concepts. ACMSIGMOD Record, 23(1):52{64, Jan 1994.[JS93] T. Jonhson and D. Shasha. The performance of current data structure algo-rithms. ACM Transactions on Database Systems, 18(1):51{101, March 1993.[Kli93] N. Kline. An update of the temporal database bibliography. ACM SIGMODRecord, 22(4):66{80, December 1993.[LS93] D. Lomet and B. Salzberg. Transaction time databases. In [T+93], chapter 16,pages 388{417. 1993.[McK86] E. McKenzie. Bibliography: Temporal databases. ACM SIGMOD Record,15(4):40{52, December 1986.[MKW96] P. Muth, A. Kraiss, and G. Weikum. LoT: Dynamic declustering of TSB-treenodes for parallel access to temporal data. In Proceedings of the 5th InternationalConference on Extending Database Technology, pages 553{572, Avignon, France,March 1996. (Published as LNCS Vol. 1057).

20 M.A. Nascimento[ND97] M.A. Nascimento and M. H. Dunham. Indexing valid time databases via B+-trees { the MAP21 approach. Technical Report CSE-97-08, School of Engineeringand Applied Sciences, Southern Methodist University, 1997. Available at URLhttp://www.cnptia.embrapa.br/�mario/Papers/tr-97-cse-08.ps.[Ora92] Oracle. SQL*Plus User's Guide and Reference, Vol. 3.2. Oracle Corp., 1992.[�OS95] G. �Ozsoyo�glu and R.T. Snodgrass. Temporal and real-time databases: A survey.IEEE Transactions on Knowledge and Data Engineering, 7(4):513{532, August1995.[SA86] R. T. Snodgrass and I. Ahn. Temporal databases. IEEE Computer, 19(9):35{42,September 1986.[Soo91] M.D. Soo. Bibliography on temporal databases. ACM SIGMOD Record,20(1):14{23, March 1991.[ST94] B. Salzberg and V.J. Tsotras. A comparison of access methods for time evolvingdata. Technical Report NU-CCS-94-21, College of Computer Science, Northeast-ern University, 1994. (To appear in ACM Computing Surveys).[T+93] A. Tansel et al., editors. Temporal Databases: Theory, Design and Implementa-tion. Benjamin/Cummings, Redwood City, CA, 1993.[TK95] V.J. Tsotras and N. Kangelaris. The snapshot index, an I/O optimal accessmethod for timeslice queries. Information Systems, 3(20):237{260, 1995.[TK96] V.J. Tsotras and A. Kumar. Temporal database bibliography update. ACMSIGMOD Record, 25(1):41{51, March 1996.[Yao78] A. Yao. 2-3 trees. Acta Informatica, 2(9):159{170, 1978.A Appendix { Review of the Monotonic B+-tree (MBT)The MBT [EJK92] is a specialization of the Time Index [EWK93] for the case where thevalid time grows monotonically, i.e., it has the same behavior as of transaction time, inthe sense that no retroactive nor predictive updates are supported. We therefore considerit to index transaction time ranges. Similarly to our approach it aims to use a B+-treeas its framework, although, unlike our approach, the structure of the leaf nodes are quitemodi�ed. It also achieves close to 100% node utilization.The internal nodes of the MBT are like those of a B+-tree. The leaf nodes however arerather di�erent. The MBT (as the Time Index) makes use of incremental buckets, SP, SMand SC. Associated to every indexed point there is a SP and a SM bucket. A SP bucketcontains pointers to all the records (or their \ids") that were inserted at that point in time.Similary SM holds pointers to those there were (logically) deleted. Every leaf node has anSC bucket that contains the records the were valid in the last indexing point of the previousleaf. Figure 9 shows the MBT indexing a data set adapted from [EWK93].

A B+-tree Based Approach to Index Transaction Time 21
E11

ID

E12

E21

E31

E32

E41

E42

Data Set

0

0

3

Vs Ve

4

5

70

8 9

2 3

now

8 now

A

A

B

B

C

C

A

Dept

Pointer to SC
Pointer to SP
Pointer to SM

20

Pointers to data records

E12, E42

E12

E32

E32,E42
E31

E41

E11,E21,E31

E12

E21

E21, E31

E11,E41

MBT

4 6 8 now10

Figure 9: An example Monotonic B+-tree.The major drawback of the MBT, is that the longer the lifespan of a record, i.e., thelonger it is recorded in the database, the larger the number of indexing points it will spanover. Although the insertion and deletion of such records will appear in only one SP andSM it is replicated through as many SCs as many leaf nodes it spans over. The smaller thenode size, the larger the number of leaves and thus of SCs and thus the worse this problembecomes.Using the MBT to process queries is rather simple. For instance, to �nd all ranges thatintersect a query range Q = [Qs; Qe], one needs to calculate all records which are \alive" atQs and add all records found in all sets SP in the leaf entries between [Qs; Qe]. The set ofrecords alive at Qs is computed by using the SC of the leaf containing Qs and subtractingall those records in the SMs between the leading entry of this leaf and Qs.For the the simulations in this paper we have assumed that every leaf node has associatedto it (and physically near, as illustrated in Figure 9) at least one disk block with theincremental buckets. The other option, clustering all such buckets in a single continuousset of blocks could imply in less (but not likely much less) storage but would make queryprocessing time worst as for every leaf node traversed the associated buck would imply inthe retrieval of (non-clustered) blocks, thus making it not as e�cient as the option we chose.

Relat�orios T�ecnicos { 199696-01 Constru�c~ao de Interfaces Homem-Computador: Uma Proposta Revisadade Disciplina de Gradua�c~ao, F�abio Nogueira Lucena and Hans K.E. Liesenberg96Abs DCC-IMECC-UNICAMP Technical Reports 1992{1996 Abstracts, C. L.Lucchesi and P. J. de Rezende and J.Stol�96-02 Automatic visualization of two-dimensional cellular complexes, Rober Mar-cone Rosi and Jorge Stol�96-03 Cartas N�auticas Eletrônicas: Opera�c~oes e Estruturas de Dados, Cleomar M.Marques de Oliveira e Neucimar J. Leite96-04 On the edge-colouring of split graphs, Celina M. H. de Figueiredo, Jo~ao Mei-danis and C�elia Picinin de Mello96-05 Estudo Comparativo de M�etodos para Avalia�c~ao de Interfaces Homem-Computador, S'�lvio Chan e Heloisa Vieira da Rocha96-06 User Interface Issues in Geographic Information Systems, Juliano Lopes deOliveira and Claudia Bauzer Medeiros96-07 Conjunto fonte m�aximo em grafos de comparabilidade, Marcos Fernando An-drielli e C�elia Picinin de Mello96-08 96-08 The E�ectiveness of Multi-Level Policing Mechanisms in ATMTra�cControl, J.A. Silvester, N. L. S. Fonseca, G. S. Mayor e S. P. S. Sobral96-09 Sequential and Parallel Experimental Results with Bipartite Matching Al-gorithms, Jo~ao Carlos Setubal96-10 96-10 A CPU for Educational Applications Designed with VHDL andFPGA, Nelson V. Augusto, Mario L. Côrtes and Paulo C. Centoducatte96-11 Network Design for the Provision of Distributed Home Theatre Services,Nelson L. S. Fonseca, Cristiane M. R. Franco, Frank Scha�a96-12 Modelling the Output Process of an ATM Multiplexer with CorrelatedPriorities, Nelson L. S. Fonseca e John A. silvester96-13 Algoritmos de a�namento tridimensional: exemplos de t�ecnicas deotimiza�c~ao, F. N. Bezerra and N. J. Leite96-14 Ensino de Estruturas de Dados e seus Algoritmos atrav�es de Imple-menta�c~ao com Anima�c~oes, Pedro J. de Rezende e Islene C. Garcia96-15 Sinergia em Desenho de Grafos Usando Springs e Pequenas Heur��sticas,H. A. D. do Nascimento, C. F. X. de Mendon�ca N., P. S. de Souza22

96-16 A Temporal Extension to the Parsimonious Covering Theory, JacquesWainer and Alexandre de Melo Rezende96-17 Workcase-centric workow model, Jacques Wainer and Paulo Barthelmess96-18 Integrating heuristics and spatial databases: a case study, Cid Carvalho deSouza, Claudia Bauzer Medeiros, Ricardo S. Pereira96-19 Uma Abordagem de Programa�c~ao Inteira para o Problema da Triangula�c~aode Custo M��nimo, A. P. Nunes e C. C. de Souza96-20 Contracting and Moving Agents in Distributed Applications Based on aService-Oriented Architecture, B.Schulze and E.R.M.Madeira

23

Relat�orios T�ecnicos { 199797-01 Um Ambiente Distribu��do de Visualiza�c~ao com Suporte para GeometriaProjetiva Orientada, Pedro J. de Rezende e C�esar N. Gon97-02 Approximate Models for the Output Process of an ATM Multiplexer withMarkov Modulated Input, Nelson L. S. Fonseca and John A. Silvester97-03 Controle de Concorrência no Cm, C�elio Norbiato Targa, Mauro da Silva OliveiraFilho, Celso Gon�calves Jr, Rog�erio Drummond97-04 Compila�c~ao Condicional em Cm, Sheila P. Maceira, Alexandre Prado Teles,Rog�erio Drummond97-05 Linear: Linearizador de Estruturas Complexas, Rog�erio Drummond, CarlosHoyos97-06 LegoShell: Linguagem Visual de Programa�c~ao Distribu��da, Rog�erio Drum-mond, Celso Gon�calves Jr.97-07 Desenvolvendo Aplica�c~oes Distribu��das em Cm, Celso Gon�calves Jr., Alexan-dre Prado Teles, Rog�erio Drummond97-08 Fast interval branch-and-bound methods for unconstrained global opti-mization, Luiz Henrique de Figueiredo, Ronald Van Iwaarden, Jorge Stol�
Instituto de Computa�c~aoUniversidade Estadual de Campinas13083-970 { Campinas { SPBRASILreltec@dcc.unicamp.br 24

