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Fast interval branch-and-bound methods for unconstrainedglobal optimization with a�ne arithmetic�Luiz Henrique de Figueiredoy Ronald Van Iwaardenz Jorge Stol�xAbstractWe show that faster solutions to unconstrained global optimization problems canbe obtained by combining previous accelerations techniques for interval branch-and-bound methods with a�ne arithmetic, a recent alternative to interval arithmetic thatoften provides tighter estimates. We support this claim by solving a few well-knownproblems.1 IntroductionIn this paper, we consider the box-constrained global minimization problem: given a d-dimensional box 
 (that is, the Cartesian product of d real intervals), and a continuousobjective function f : 
 ! R, �nd its global minimum f� = minf f(x) : x 2 
 g, and theset X� of all global minimizers 
�(f) = fx� 2 
 : f(x�) = f� g. Actually, we will considerthe approximate numerical version of this problem: instead of �nding all minimizers 
�(f),we seek only to identify some subset b
 of 
 that is guaranteed to contain 
�. The goal thenbecomes to make the measure of b
 as small as possible, for a given computation budget.It would seem that �nding a global minimum with a computer is a hopeless task. Indeed,this is probably correct, if we are restricted to computing the values of f at a �nite setof sample points in 
, because f may oscillate arbitrarily between these sample points.Nevertheless, there exist numerical techniques for range analysis [22] that can provide robustestimates for the complete set of values taken by f in a subregion � of 
. Typically, suchmethods compute an interval that is guaranteed to contain f(�) [18, 20, 22]. Such estimatescan be used in branch-and-bound methods to discard large subregions of 
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2 L. H. DE FIGUEIREDO, R. VAN IWAARDEN AND J. STOLFIPrevious global optimization methods based on range analysis use interval arithmetic[10, 23]. In this paper, we show that such methods can be improved by combining previousaccelerations techniques, including Back-Boxing [27], with a recently developed alternativeto interval arithmetic, called a�ne arithmetic [2], which often provides much tighter esti-mates. It has been shown that some methods for numerical problems in computer graphicscan be improved, in terms of both speed and accuracy, by replacing interval arithmeticwith a�ne arithmetic [3, 4]. Here, we continue this research, applying a�ne arithmetic ininterval methods for unconstrained global optimization.In x2, we describe the general branch-and-bound technique, specialized for box-constrainedglobal minimization. In x3, we review some common methods for obtaining robust rangeestimates, and give a short description of a�ne arithmetic. In x4, we describe the Back-Boxing [27] acceleration technique for branch-and-bound algorithms. x5 contains an em-pirical evaluation of Back-Boxing and a�ne arithmetic for solving some standard globaloptimization test problems. Finally, x6 contains our conclusions and directions for futurework.
2 Branch-and-bound methods for unconstrained global opti-mizationBranch-and-bound is a general numerical technique for solving global minimization prob-lems. A branch-and-bound algorithm generally alternates between two main steps: branch-ing, which is a recursive subdivision of the domain 
; and bounding, which is the compu-tation of lower and upper bounds for the global minimum of f in a subregion of 
. Bykeeping track of the current best upper bound for the global minimum of f , one can discardsubregions that cannot contain a global minimizer, i.e., subregions where the lower boundfor f is greater than the current upper bound for the global minimum f�. Subregions thatcannot be discarded in this way are kept in a list L to be further processed. Thus, at anytime, the set b
 = [L is a valid solution to the global minimization problem, such as de�nedin x1. The algorithm stops when the current solution b
 is adequate for the application(based on the sizes of the boxes in L, on the estimated range for f�, or on some othercriterion).This algorithm converges provided that: the function f is continuous; the branchingstep is such that the width of the widest box in L tends to zero; and the range estimatesfor f(�) shrink to a single value as the diameter of � goes to zero.The basic branch-and-bound algorithm, outlined above, admits endless variations, de-pending on how the branching and bounding steps are implemented [11, 14, 15, 24, 25]. Thesimplest branching method is to bisect the current box orthogonally to its widest direction[17]. Alternatively, one can cyclically bisect along one of the coordinate directions at eachstep [20]. We now describe some robust bounding methods.



UNCONSTRAINED GLOBAL OPTIMIZATION WITH AFFINE ARITHMETIC 33 Bounding functionsThe correctness of general branch-and-bound methods requires range estimates that areguaranteed to contain the values of f in a subregion � of 
. On the other hand, the ef-�ciency of such a method depends on the quality of those estimates. One usually tradesquality for speed when computing estimates; however, tight estimates, even if more expen-sive to compute, sometimes provide overall faster algorithms. We show examples of thisphenomenon in x5, when a�ne arithmetic replaces interval arithmetic in branch-and-boundmethods for unconstrained global optimization.There exist special techniques for range analysis of some classes of functions. For Lips-chitz functions f with Lipschitz constant L, a fast estimate for f(�) is given by [f(x0)�� ..f(x0) + �] � f(�); where x0 is an arbitrary point of �, and � = maxf jx� x0j : x 2 � g.For polynomial functions, we can represent f in the Bernstein-B�ezier basis [5] of the samedegree, and then take the interval [a .. b], where a is the minimum value and b is themaximum value of the coe�cients of f in the Bernstein-B�ezier basis.In this section, we describe interval arithmetic, a classical range analysis method of wideapplicability, and some generalizations, including a�ne arithmetic [2].3.1 Interval arithmeticInterval arithmetic (IA) is the natural technique for computing range estimates [18, 20,22]. IA was invented by Moore [18] with the explicit goal of improving the reliability ofnumerical computation. It has since been successfully applied to many numerical problems[20], including global optimization [8, 9, 10, 12, 19, 23, 26].In IA, a real number x is represented by a pair of 
oating-point numbers (a; b), corre-sponding to an interval [a .. b] that is guaranteed to contain x, i.e., such that a � x � b. Inthis way, IA provides not only an estimate for the value of x, but also bounds on how goodthis estimate is. The real power of IA is that we can operate with intervals as if they werenumbers, and obtain robust estimates for the results of numerical computations.Simple formulas are easily derived for performing the primitive arithmetic operationson intervals. Interval extensions for a complicated function can be computed by composingthese primitive formulas in the same way the primitive operations are composed to computethe function itself [18, 20]. In other words, any algorithm for computing a function usingprimitive operations can be readily (and automatically) interpreted as an algorithm forcomputing an interval extension for the same function. (This is specially elegant to imple-ment with programming languages that support operator overloading, such as Ada, C++,Fortran-90, and Pascal-XSC, but can be easily implemented in any programming language,either manually or with the aid of a pre-compiler.) Since it is also relatively easy to pro-vide interval extensions for elementary transcendental functions such as sin, cos, log, andexp, the class of functions for which interval extensions can be easily (and automatically)computed is much larger than the class of rational polynomial functions. These observa-tions are sometimes summarized in the Fundamental Theorem of Interval Arithmetic: Everycomputable function has an interval extension, i.e., for every real function f given by analgorithm, there exists an interval function F such that F (X) � f(X) = f f(x) : x 2 X g,



4 L. H. DE FIGUEIREDO, R. VAN IWAARDEN AND J. STOLFIfor every interval X in the domain of f .A limitation of IA is that its range estimates tend to be much wider than the exactranges, sometimes to the point of uselessness. This over-conservatism is mainly due to theimplicit assumption that operands in primitive operations are mutually independent. Ifthis assumption is false, then not all combinations of values in the operand intervals will beattained, and the result interval computed by IA may be much wider than the exact rangeof the result quantity. For an extreme example, consider the computation y = x�x, wherex has the range [1 .. 5]: the IA rules give [�4 .. +4], whereas the exact range of y is ofcourse [0 .. 0]. This is sometimes called the dependency problem in IA.The over-conservatism of IA is particularly severe in long computation chains, where oneoften observes an \error explosion": as the evaluation advances down the chain, the relativeaccuracy of the computed intervals decreases exponentially, and they soon become too wideto be useful, by many orders of magnitude. Approaches to the dependency problem in IAinclude centered forms [22], Hansen's generalized interval arithmetic [7] (x3.2), and, morerecently, a�ne arithmetic [2] (x3.3).3.2 Generalized interval arithmeticTo address the dependency problem in IA, Hansen [7] developed a new computation model,the generalized interval arithmetic (GIA). In this model, each input variable xi is representedby an interval, as in IA, and each intermediate quantity z computed during the evaluationof f(x1; : : : ; xn) is represented as an a�ne combination of the input variables:~z = z0 + z1x1 + � � �+ znxn;where each coe�cient zi is itself an interval. (Only the coe�cients zi are stored for eachquantity z; the variables xi are implicit.) Thus, GIA represents quantities by �rst-degreepolynomials with interval coe�cients.As in standard IA, for each elementary operation or transcendental function there is acorresponding GIA procedure that operates on these generalized intervals and returns ananalogous representation for the result.The GIA model keeps track of the contributions of each input variable to the �nalresult, and can exploit this information to produce tighter range estimates for the latter.For example, consider the generalized intervals~y = [5 .. 7]x1 + [3 .. 4]x2~z = [4 .. 6]x1 + [4 .. 5]x2;where the variables x1 and x2 have ranges [�10 .. +10]. From this data, we can concludethat y and z are contained in the interval [�110 .. +110]. In the GIA model, the di�erence~w = ~y � ~z evaluates to ~w = [�1 .. +3]x1 + [�2 .. 0]x2:This implies that w is in [�30 .. +30], whereas IA gives [�220 .. +220].



UNCONSTRAINED GLOBAL OPTIMIZATION WITH AFFINE ARITHMETIC 53.3 A�ne arithmeticAnother model that addresses the dependency problem is a�ne arithmetic (AA) [2]. In AA,each quantity x is represented by an a�ne form x̂ = x0+x1"1+x2"2+ � � �+xn"n, where thexi are known real coe�cients (stored as 
oating-point numbers), and the "i are symbolicvariables, called noise symbols, whose values are unknown but assumed to lie in the interval[�1 .. +1]. Thus, AA is super�cially similar to GIA in that both represent quantities by a�rst-degree polynomial on symbolic variables. However, as we shall see below, the numberof terms used in AA grows as the computation proceeds, whereas the number of terms usedin GIA is �xed, being equal to the number of input variables.A�ne forms implicitly represent partial dependencies between operands: when two a�neforms share common noise symbols, the quantities they represent are at least partiallydependent on each other. As in GIA, taking such correlations into account allows AAto provide much tighter range estimates than IA, especially in long computation chains.Another major bene�t, which is related to this one, is that the intrinsic representation erroris quadratic on the size of 
, instead of linear.It is simple to use AA for range analysis: First convert all input intervals to a�ne forms.Then operate on these a�ne forms with AA to compute the desired function. Finally,convert the result back into an interval.Conversions between the IA and AA representations are straightforward. Given aninterval �x = [a .. b] representing some quantity x, an equivalent a�ne form for the samequantity is given by x̂ = x0 + xk"k, where x0 = (b + a)=2 and xk = (b � a)=2. Since inputintervals usually represent independent variables, they are assumed to be unrelated, anda new noise symbol "k must be used for each input interval. Conversely, the value of aquantity represented by an a�ne form x̂ = x0+x1"1+ � � �+xn"n is guaranteed to be in theinterval [x̂] = [x0 � � .. x0 + �]; where � = kx̂k := Pni=1 jxij : Note that [x̂] is the smallestinterval that contains all possible values of x̂, assuming that each "i ranges independentlyover the interval [�1 .. +1].To evaluate a function f in AA, we must replace each primitive operation � that appearsin the expression of f by an equivalent operation �̂ on a�ne forms, as done in IA for intervals.For a�ne operations z = �(x; y), the corresponding a�ne form ẑ can be expressed exactlyas an a�ne combination of the noise symbols occurring in the a�ne forms x̂ and ŷ. Moreprecisely, if x̂ = x0 + x1"1 + � � �+ xn"n, ŷ = y0 + y1"1 + � � �+ yn"n, and � 2 R, then:x̂� ŷ = (x0 � y0) + (x1 � y1)"1 + � � �+ (xn � yn)"n�x̂ = (�x0) + (�x1)"1 + � � �+ (�xn)"nx̂� � = (x0 � �) + x1"1 + � � �+ xn"n:Note that the di�erence x̂� x̂ between an a�ne form and itself is identically zero, a usefulproperty that is not true in IA (or even in GIA). The absence of such trivial cancellationsin IA is one source of error explosion.When the primitive operation � is not a�ne, the value ẑ cannot be expressed exactlyas an a�ne combination of the "i. In that case, we pick good a�ne approximation for �(\good" in the Chebyshev sense of trying to minimize the maximum error), and append an



6 L. H. DE FIGUEIREDO, R. VAN IWAARDEN AND J. STOLFIextra term zk"k to represent the error in this approximation:ẑ = z0 + z1"1 + � � � + zn"n + zk"k:Here, "k is a new noise symbol and zk is an upper bound for the approximation error. Thechoice of the a�ne approximation must take into account the ranges of the operands, asimplied by the a�ne forms x̂, ŷ, and possibly also their correlation. Note that, unlike GIA,the number of terms used in the a�ne forms grows during the evaluation of a formula. (Ifnecessary, excess terms can be combined and replaced by new noise symbols, at the cost ofsome loss of precision.)It is important to note that, for a di�erentiable operation �, the error bound zk of agood Chebyshev approximation depends quadratically on the operand ranges kx̂k and kŷk.Thus, if a function f uses only di�erentiable operations, then the discrepancy between theactual range of f and the range computed by AA will tend to zero, in relative terms, as itsdomain gets narrowed. In contrast, the internal errors of IA (due to undetected correlations)depend linearly on the size of the domain; therefore, the discrepancy will decrease only inabsolute terms.Adequate approximation algorithms have been developed for the basic arithmetic op-erations and transcendental functions [2]. For example, in the multiplication of two a�neforms x̂, ŷ, we can use the approximationz0 = x0y0; zi = x0yi + y0xi; zk = kx̂k kŷk:The error bound kx̂k kŷk is not tight, but is at most twice the actual maximum error. (Toobtain a tighter bound, we should take into account the correlation of x and y implied bytheir a�ne forms, but the gains in precision are hardly worth the cost.)As described in x3.1 for IA, the formulas for evaluating primitive functions in AA canbe automatically combined into formulas for arbitrarily complex functions. This, and theconversion steps, allow AA to transparently replace IA.As a simple example of how AA handles the dependency problem, consider evaluatingz = x(10 � x) with AA, for x in the interval [4 .. 6]:x̂ = 5 + 1"110� x̂ = 5� 1"1ẑ = x̂(10� x̂) = 25 + 0"1 + 1"2[ẑ] = [25 � 1 .. 25 + 1] = [24 .. 26]:Thus, AA computes an estimate that is very close to [24 .. 25], the exact range of z. Onthe other hand, the IA estimate is [16 .. 36]. If the expression x(10 � x) is expanded outto 10x � x2, then the IA estimate becomes signi�cantly worse, [4 .. 44], whereas the AAestimate is actually exact, [24 .. 25].3.4 Hybrid interval-a�ne arithmeticAA's advantage over IA is entirely dependent on its ability to detect and exploit dependen-cies between operands. When such dependencies do not exist, or happen to agree with IA's



UNCONSTRAINED GLOBAL OPTIMIZATION WITH AFFINE ARITHMETIC 7conservative assumptions, the AA estimates may be wider than those of IA | even thoughthe former are more accurate than the latter.The explanation of this paradoxical statement is that IA tries to enclose the graph ofeach elementary operation with an orthogonal box of minimum vertical extent, whereas AAlooks for an oblique box of minimum volume. For example, consider the squaring operationz = x2, for x 2 [1 .. 3]. IA gives the (tight) range [1 .. 9] for z; whereas AA represents xas x̂ = 2 + 1"1, and yields ẑ = 4:5 + 4"1 + 0:5"2, whose range is [0 .. 9]. Note that the IAresult says only that the pair (x; z) lies in a rectangle of area 2 � 8 = 16, whereas the AAresult constrains it to a parallelogram of area 2� 1 = 2.This \undershooting" of AA range estimates unfortunately tends to occur when thefunctions f is dominated by a square-like term that is being evaluated near its minimum| just where we need precise lower bounds.This problem can be solved by combining IA with AA. In this hybrid model, eacheach quantity x is represented by both an a�ne form x̂ and a standard interval [x]. Eachoperation z = �(x; y) is carried out in both computing models. The interval part [z] of theresult is set to the intersection of the ranges computed by IA and AA; and the AA routineuses the intervals [x] and [y] when choosing the Chebyshev approximation for �. Thus, IAand AA interact synergistically at each step: the explicit intervals given by IA lead to betterchoices for the best a�ne approximations and smaller values for the error terms zk; whilethe a�ne forms in AA allow cancellation of correlated errors, and hence lead to narrowerexplicit intervals. In particular, the hybrid AAIA scheme produces non-negative ranges for�(x) = x2, without losing the correlation information provided by AA.3.5 Rounding error controlWhen exact arithmetic is used, IA and AA always compute mathematically valid bounds forthe range of a sequence of operations. These bounds may overestimate the exact range, butthey are always valid. However, IA and AA will be implemented on a digital computer thatuses 
oating-point arithmetic, which is subject to round-o� errors. Nevertheless, IA andAA are able to produce mathematically valid bounds on any computer that provides controlover rounding. Most modern computers provide rounding error control by implementingthe IEEE 
oating-point standard [1].A robust implementation of IA should use directed roundings to compute the result ofeach primitive operation: the lower endpoint of the result interval must be rounded downand the higher endpoint must be rounded up.Rounding error control in AA is not as easy to implement. One way to implementrounding error control for AA is to have a special noise term that handles only the roundingerrors. This term behaves di�erently from the other error terms in that it is always non-negative, is never decremented, and is operated on similarly to the other error terms, butwith absolute values taken everywhere and all subtractions changed to additions. Anotherimplementation of rounding errors in AA can be found in [2].For IA, the amount of additional work required for directed roundings varies, but isat most twice the amount of work required for not using directed roundings. For AA, theamount of work required is more than doubled for several primitive operations. Fortunately,



8 L. H. DE FIGUEIREDO, R. VAN IWAARDEN AND J. STOLFIthis does not tend to a�ect global optimization greatly, except when the stopping toleranceis close to machine accuracy. When this happens, accelerations techniques such as Back-Boxing [27] can be applied to reduce the cost of rounding error control.4 Accelerating interval branch-and-bound methodsLocal search procedures can quickly �nd the local minimum of a function that is locallyconvex. Branch-and-bound algorithms, however, tend to spend a great deal of time tryingto eliminate regions close to these local minima. Therefore, in practice, it is important tocombine pure branch-and-bound methods with additional tests to accelerate convergence.If the objective function f is su�ciently di�erentiable, then a simple way to acceleratebranch-and-bound methods is to use one of the many excellent fast local optimizationmethods [6, 16]. Local optimization can be combined with interval tests for the gradient orHessian: if an interval estimate for the gradient rf over a subregion � does not containzero, then � cannot contain a local minimizer. If an interval estimate for the Hessian showsthat it is positive de�nite over �, then again � cannot contain a local minimizer.Other methods can also be used to discard subregions of 
 [10, 13]. If one obtains aninterval estimate on the gradient rf over a subregion � and �nds that this interval doesnot contain 0, then � cannot contain a local minimizer and can be discarded. Similarly, onecan test for lack of convexity of f or use a combination of �rst and second order informationto eliminate part or all of � [10].4.1 Back-BoxingBack-Boxing [27] is an acceleration technique for branch-and-bound algorithms that com-bines fast local search procedures with result veri�cation techniques to eliminate or reducemuch of the work done when one is close to a local minimum. The goal in Back-Boxingis to identify large regions in the domain 
 where the objective function f is guaranteedto have a single local minimum. Once such regions are known, their local minima can becomputed e�ciently and then tested to see if they are global minima.Back-Boxing works by �rst locating a local minimum x� in a given subregion �. It thenattempts to �nd the largest box B � � such that x� is the unique local minimum of thebox B; the region � n B is then put on the list L for further processing. Techniques forperforming these tasks are described in detail in [27]. Since we now know that the box Bhas a unique minimum, we no longer need to subdivide B in an attempt to �nd a smallerfunction value. We can apply a result veri�cation technique [21] to verify that the uniqueminimum of the box B occurs in a small region B� and discard the remainder of the boxB nB�.As with any branch-and-bound acceleration technique, the use of Back-Boxing does notguarantee speedup of a branch-and-bound algorithm. It does, however, attempt to reducethe amount of work spent searching local as well as global minima early in the progress ofthe algorithm.The results reported in [27] show that, when a high degree of accuracy is required, Back-Boxing is generally faster than normal branch-and-bound on a given set of test problems



UNCONSTRAINED GLOBAL OPTIMIZATION WITH AFFINE ARITHMETIC 9with dimension as high as 32. This was not always the case, but it is hoped that, withimproved techniques to verify that a box has a unique minimum, the percentage of problemsfor which Back-Boxing is faster will be increased and the tolerance at which Back-Boxingis faster will also be increased. As shown in x5, Back-Boxing is generally faster with AA aswell as with IA.5 Numerical resultsIn this section, we compare the performance of IA, AA, and AAIA in solving a numberof well-known global optimization problems with three kinds of interval branch-and-boundmethods: pure methods, accelerated with local searches; with �rst-order accelerations (in-terval gradient test); and with Back-Boxing.The searches were terminated when no boxes larger in diameter than a speci�ed toleranceremained in the main list L. We solved the problems using increasing tolerances (10�3, 10�6and 10�9), to test the e�ect of the tolerance in the performance. In the tables below, wegive the CPU time in seconds necessary to solve each problem using each of the variants,and also the number of boxes remaining in L upon completion. A time of 1 means thatthe program was unable to complete in 15 minutes of CPU time.We also give pictures of the domain decompositions using the gradient test and a tol-erance of 0:0625% of the domain diameter. In these pictures, boxes shown in white havebeen eliminated, and boxes shown in grey remain at termination, and are thus guaranteedto contain all global minimizer for f in 
. Intuitively, a \good" algorithm should generatea picture with few, large white boxes, and few, small grey boxes. This is interpreted as itsability to both quickly discard large subregions of 
 and locate all global minimizers veryprecisely.The tests were run on an otherwise idle 166 MHz Pentium machine running Linux, usingGNU's g++ compiler. The programs and examples are freely available in the Internet athttp://www.cs.hope.edu/~rvaniwaa/Software.html.5.1 BoothThe Booth function is f(x; y) = (x+ 2y � 7)2 + (2x+ y � 5)2:The global minimum of f in the box 
 = [�10 .. +10] � [�10 .. +10] is f� = 0 = f(1; 3).Table 1 shows the statistics for solving this problem with all variants. Figure 1 showsthe domain decompositions for solving this problem with the gradient test and a relativediameter tolerance of 0:0625%.This problem was chosen because it highlights the major weaknesses of AA: as discussedin x3.4, AA can perform poorly on functions that are sums of square or when there are piecesthat have very little interaction or dependency. This poor performance resulted in longertimes for AA and AAIA, but only by a factor of 2{3.



10 L. H. DE FIGUEIREDO, R. VAN IWAARDEN AND J. STOLFI5.2 Exp2The Exp2 function is f(x; y) = exy(4x2 + 2y2 + 4xy + 2y + 1):The global minimum of f in the box 
 = [�10 .. +10]� [�10 .. +10] is f� = 0 = f(0:5;�1).Table 2 shows the statistics for solving this problem with all variants. Figure 2 showsthe domain decompositions for solving this problem with the gradient test and a relativediameter tolerance of 0:0625%.The quadratic part of this function contains dependencies that allow AA to providemuch better estimates. IA provides poor estimates near the global minimum, causing avery large number of boxes in the list for pure branch-and-bound. On the other hand, AAestimates for the exponential part were much worse than the corresponding IA estimates;as consequence, the method could not eliminate many boxes that were distant from theglobal minimum.5.3 Goldstein-PriceThe Goldstein-Price function isf(x; y) = [1 + (x+ y + 1)2(19� 14x+ 3x2 � 14y � 6xy + 3y2)] �[30 + (2x� 3y)2(18 � 32x+ 12x2 + 48y � 36xy + 27y2)]:The global minimum of f in the box 
 = [�2 .. +2] � [�2 .. +2] is f� = 3 = f(0;�1).Table 3 shows the statistics for solving this problem with all variants. Figure 3 showsthe domain decompositions for solving this problem with the gradient test and a relativediameter tolerance of 0:0625%.Goldstein-Price is an easy function for local optimization, but becomes very di�cult fora branch-and-bound IA algorithm: The dependency problem generates an unmanageablelist of boxes in the pure branch-and-bound case, and causes it to partition the region muchmore �nely with both �rst and second order tests than is required for AA or AAIA. SinceAA and AAIA are able to take advantage of correlations, the run times are 5%{10% thatfor IA. IA also results in more than 10 times the number of regions with the �rst order test,and is unable to complete the pure branch-and-bound tests for any of the tested tolerances.We expect that, in practice, objective functions will have many correlations, as in theGoldstein-Price function. The usual test functions in the literature do not have manycorrelations, and seem somewhat arti�cial.5.4 Levy3The Levy3 function isf(x; y) = (cos(2y + 1) + 2 cos(3y + 2) + 3 cos(4y + 3) + 4 cos(5y + 4) + 5 cos(6y + 5)) �(cos(1) + 2 cos(x+ 2) + 3 cos(2x+ 3) + 4 cos(3x+ 4) + 5 cos(4x+ 5)):



UNCONSTRAINED GLOBAL OPTIMIZATION WITH AFFINE ARITHMETIC 11The global minimum of f in the box 
 = [�10 .. +10] � [�10 .. +10] is f� = �176:542,attained at one of the following nine points: (4:97648; 4:85806), (4:97648;�1:42513),(4:97648;�7:70831), (�1:30671; 4:85806), (�1:30671;�1:42513), (�1:30671;�7:70831),(�7:58989; 4:85806), (�7:58989;�1:42513), (�7:58989;�7:70831). Table 4 shows the statis-tics for solving this problem with all variants. Figure 4 shows the domain decompositionsfor solving this problem with the gradient test and a relative diameter tolerance of 0:0625%.Levy3 shows that AA is able to take advantage of relationships between sine and cosinefunctions. Since these functions are just phase shifts of each other, there is a link betweentheir outputs and AA is able to take advantage of that link. For this reason, AA was ableto complete the 10�6 test for pure branch-and-bound, whereas IA failed. All failed the10�9 test, the AA and AAIA variants due to round-o� errors becoming too large. On theother hand, IA was signi�cantly faster for the grad test and Back-Boxing, due to its shorterevaluation time. Also, Back-Boxing provided almost no advantage for these tests becauseBack-Boxing relies on having a \large" region surrounding the global minima that does notcontain any other local minima, and this is not the case with Levy3.5.5 DiscussionSeveral features are present in each of the tables and the graphs. First, since AAIA includesthe best features of AA and IA, we would expect it to eliminate regions most easily. Thisis clear in the pictures: the white boxes are largest for AAIA compared to AA and IA.Second, Back-Boxing results in the smallest number of remaining boxes, indicating itsability to surround the global minimum by a single box rather than spending time withmany boxes about the global minimum. Back-Boxing also resulted in almost constanttimes regardless of tolerance, which duplicates the results found in [27].Third, AA and AAIA are almost always faster than IA for a pure branch and boundmethod. This is because AA is able to take advantage of many of the dependencies in theobjective function.Finally, AA and AAIA almost always resulted in the same number or fewer boxes in the�nal list. This means that the region that has been veri�ed to contain the global minimumis smaller, which gives a better bound on the location of the global minima. Thus, AA andAAIA provide a better solution for the global minimization problem, as de�ned in x1.6 ConclusionInterval branch-and-bound methods are relatively simple to implement, and provide robustand reliable solutions for global optimization problems. Moreover, it is easy to use a�nearithmetic instead of interval arithmetic. Although AA is indeed more accurate than IA,it is more complex to implement and more expensive to run. However, as shown by theexamples in x5, its higher accuracy is worth the extra cost because it translates into moree�cient domain decompositions, even though primitive operations in AA are more expensivethan in IA; as a consequence, the �nal list of boxes is shorter, and sometimes the wholealgorithm runs faster.
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Table 1: Performance statistics for the Booth function.Branch-and-bound Pure with grad test with Back-BoxingTolerance IA? time boxes time boxes time boxesIA 0.07 4 0.07 4 0.00 110�3 AA 0.18 10 0.16 5 0.01 1AAIA 0.12 4 0.11 4 0.02 1IA 0.12 4 0.12 4 0.00 110�6 AA 0.34 10 0.27 5 0.01 1AAIA 0.19 4 0.21 4 0.00 1IA 0.21 4 0.20 4 0.00 110�9 AA 0.52 10 0.43 5 0.00 1AAIA 0.29 4 0.32 4 0.00 1

Figure 1: Domain decompositions for minimizing the Booth function with IA (left), AA(center), and AAIA (right).
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Table 2: Performance statistics for the Exp2 function.Branch-and-bound Pure with grad test with Back-BoxingTolerance IA? time boxes time boxes time boxesIA 496.07 20610 0.29 28 0.30 3010�3 AA 23.50 14 39.34 5 38.69 4AAIA 0.41 14 0.48 5 0.59 5IA 1 36727 0.44 28 0.46 2810�6 AA 23.43 14 39.34 5 38.91 4AAIA 0.69 14 0.75 5 0.83 5IA 1 36635 0.59 32 0.61 2810�9 AA 36.61 4922 40.51 8 39.51 7AAIA 12.25 4157 1.12 8 1.18 7

Figure 2: Domain decompositions for minimizing the Exp2 function with IA (left), AA(center), and AAIA (right).
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Table 3: Performance statistics for the Goldstein-Price function.Branch-and-bound Pure with grad test with Back-BoxingTolerance IA? time boxes time boxes time boxesIA 1 19428 67.44 50 60.56 9610�3 AA 2.61 8 3.77 4 3.57 1AAIA 1.56 8 2.15 4 2.03 1IA 1 19537 63.89 40 65.46 110�6 AA 3.18 8 4.33 4 3.59 1AAIA 2.23 8 2.81 4 2.06 1IA 1 19921 66.16 40 65.53 110�9 AA 10.83 1105 4.90 4 3.59 1AAIA 11.47 1103 3.56 4 2.05 1

Figure 3: Domain decompositions for minimizing the Goldstein-Price function with IA(left), AA (center), and AAIA (right).
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Table 4: Performance statistics for the Levy3 function.Branch-and-bound Pure with grad test with Back-BoxingTolerance IA? time boxes time boxes time boxesIA 40.20 7692 0.58 9 0.85 910�3 AA 10.82 50 8.88 9 9.28 9AAIA 9.91 50 6.73 9 5.62 9IA 1 41496 0.80 9 0.88 910�6 AA 17.76 48 10.96 9 9.27 9AAIA 18.29 48 9.37 9 5.61 9IA 1 42296 1.14 9 0.88 910�9 AA 1 44090 13.47 9 9.32 9AAIA 1 19716 12.92 9 5.66 9

Figure 4: Domain decompositions for minimizing the Exp2 function with IA (left), AA(center), and AAIA (right).
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