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Abstract

The traffic in the future Broadband Integrated Digital Networks will be highly corre-

lated and neglecting its correlations leads to a dramatic underestimation of its perfor-

mance. In order to completly specify a  queueing network framework, we need to define

the stochastic processes resulting from the departure of a queue splitting and merging.

In this paper we introduce a procedure for modeling the output process of a multiplexer

with Markov modulated input and extend this procedure to model ATM multiplexers with

selective discard mechanism. Moreover,we show frameworks for queueing networks

with Markov modulated flows which can be used to estimate end-to-end performance in

ATM networks.
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I) Introduction
Queueing network models are of paramount importance for dimensioning communi-

cation networks [1]-[2]. Depending on the time scale of interest, different queueing net-

work frameworks can be used to analyze multimedia networks. For instance, if one is

interested in evaluating the network at the call level, product form networks can be used

[3]-[4]. However, to analyze traffic control mechanisms at the burst/cell level a detailed

description of the network flows is needed. To completely specify a queueing network

framework we need to define the stochastic process resulting from: i) departures from a

queue (output process), ii) splitting of a process due to routing and iii) merging of pro-

cesses which go to the same queue (joining). The traffic in the future Broadband Inte-

grated Services Digital Network will be highly correlated and neglecting these

correlations leads to a dramatic underestimation of the delay and loss rate. The depar-

ture (output) process of an ATM multiplexer is also correlated [5]-[6] and an accurate rep-

resentation of the output process is the first step towards the definition of queueing

networks for ATM networks. In this paper, we introduce an approximate model for the

output process of an ATM multiplexer and extend our analysis to include selective dis-

card mechanism. Moreover, we describe frameworks for queueing networks with Markov

modulated flows.

Recently, there has been a great deal of interest in using long-range dependent pro-

cesses to model networks traffic. However, the impact of long-range dependent pro-

cesses on network dimensioning is yet to be fully determined. Depending on the

parameters, accurate performance results can sometimes be obtained using short to

medium range processes (such as Markov modulated processes) [7]. Ongoing research

is investigating the limits of applicability of Markov modulated processes approximations

to long range dependent processes (and their queueing behavior) over network dimen-

sioning [8].

We assume that the input traffic to the queueing network is modelled as a Discrete

Time Batch Markovian Arrival Process (D-BMAP) [9]-[11]. An ATM multiplexer is viewed

as a finite buffer queue with FCFS services (D-BMAP/D/1/k). We model the output pro-
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cess of a multiplexer as a two-state Markov Modulated Bernoulli Process (MMBP) [12].

Insofar as the MMBP is a sub-case of the more general D-BMAP, we are able to maintain

an uniform representation of the flows in a queueing network. We also extend this two-

state MMBP model to represent the output process of a queue with prioritized input pro-

cess (D-BMAP[H,L]/D/1/K) [13] and define a framework for queueing networks with priori-

tized flows.

This paper is organized as follow. In section II, we briefly describe previous work.

Section III shows a framework for queueing networks with Markov modulated flows. Sec-

tion IV introduces an approximate model for the output process of a D-BMAP/D/1/K

queue. Section V and VI respectively describe a framework for queueing networks with

prioritized flows and a procedure for the analysis of the output process of a multiplexer

with selective discard mechanism. Section VII presents some network examples and

finally some conclusions are drawn in section VIII.

II) Previous Work
We can roughly categorize the work done so far into two groups. The first group mod-

els the output process of a queue fed by several on/off sources as an on/off process (a

renewal process) and sets its parameters so as to approximate the correlation structure.

Ren et al. [14] defined the on/off process with the on period duration that take into con-

sideration the difference of the unfinished work between the transition on to off and off to

on epochs of the input process. Frost and Wang [15] determined the on/off source

parameters by matching the “age distribution” (duration of on periods) of the on/off

source with the age distribution (duration of busy periods) of the output process. Lau and

Li [16] evaluated by simulation the distortion effect of an individual on/off sources when it

visits a statistical multiplexer. They found out that when the peak rate of an on/off source

is less than five percent of the link capacity the distortion is negligible.

The second group is the work that study the output process of queues with Markov

Modulated input [6], [12], [17]-[18]. Saito [6] studied the output process of the N/G/1

queue and particularly of the MMPP/D/1 queue. By comparing the z-transform curves of
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the covariance of interarrival times for both input and output processes of a queue, Saito

concluded that covariances are likely to be preserved. Takine et al. [17] derived expres-

sions for the kth moment of the interdeparture time and the statistics of busy and idle

periods of a D-BMAP/D/1/K queue. Park et al. [18] proposed a procedure for matching

the output process of a 2-MMBP/Geo/1/K queue with the statistics of a two state Markov

Modulated Bernoulli Process (2-MMBP). Our work [12] differs from Takine et al. [17] in

the sense that they derive expressions for the kth moment of the interdeparture time

while ours gives an approximate representation of the output process. Our approximate

model was derived simultaneously with Park et. al’s work and the results are quite simi-

lar. However, none of this previous work has considered networks with prioritized flows.

III) Queueing Networks with Markov Modulated Flows
We assume that the input traffic of the queueing network is modelled as a Discrete

Time Batch Markovian Arrival Process (D-BMAP). The discrete time assumption derives

from the ATM standard. In a Discrete Time Batch Markovian Arrival Process (D-BMAP)

at each discrete time a batch may arrive. The batch size distribution is a function of an

underlying Markov chain. A D-BMAP is completely specified by the matrices Dn whose

elements (dij)n give the probability of going from state i to state j and having a batch

arrival of size n [9].

In our investigation, we consider open queueing networks. At each node there is a

single server with finite buffer space and constant service time. Service is provided in a

First-Come-First-Served fashion. In order to solve this queueing network with non-

renewal flows, we employ the parametric decomposition approximation which is a gener-

alization of the product form type of solution [19]-[20]. Lau and Li [16] have recently vali-

dated the nodal decomposition (parametric decomposition) for networks with integrated

traffic.

To complete specify a queueing network framework we need to define the stochastic

process resulting from: i) departures of a queue (output process), ii) splitting of a process
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due to routing and iii) merging of processes which go to the same queue (joining). We

define the network flow operators as:

Output process

At each slot, there is at most one departure from the queue, and departure slots are

correlated. In addition to that, the output process of a D-BMAP/D/1/K queue is corre-

lated. Thus, we represent the output process as a Markov Modulated Bernoulli Process.

We develop a procedure for matching the statistics of the output process with the statis-

tics of a two-state MMBP (we focus our attention on a two-state representation due to its

low computational complexity - section IV). Moreover, by modelling the output process

as a MMBP, we are able to represent all the flows in the network as D-BMAP processes.

Joining

The superposition of two D-BMAP processes with m1, m2 states and n1, n2 maximum

batch size is also a D-BMAP with m1 x m2 states and n1 + n2 maximum batch size. The

matrix Dk whose elements (dij)k which give the probability of going from state i to state j

and having a batch arrival of size k are computed as:

where  denotes the Krockener product of matrix A by matrix B.

Splitting

We assume that routing is state independent which means that the probability of a

cell departing from one node and going to another node is fixed. When characterizing the

flow between two nodes, we represent the output process of the first queue as an MMBP

process with parameters (p1, p2, α1, α2); and then we model the flow that goes to the

second queue as an MMBP with parameters (p1x pij, p2 x pij, α1, α2); where:

Dk Dq
1( )

Dk q–
2( )⊗

q 0=

min k n1,( )

∑=

A B⊗
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pn (n=1,2) is the probability of having an arrival in state n

αn is the transition probability in state n

pij is the probability that a cell leaves node i and goes to node j.

Alternate splitting operators can be developed to capture the behavior beyond the

memoryless splitting as described in [21].

IV) An Approximate Model for the Output Process of a

D-BMAP/D/1/K Queue
The output process of a queue with Markov modulated inputs is a correlated single

arrival process. We are able to exactly represent the output process as a Markov Modu-

lated Bernoulli Process if we define the underlying Markov chain state as being the num-

ber of cells in the system plus the state of the input process. For instance, If we have a

gated server (i.e., if a cell finds the server empty at its arrival slot, it can only be transmit-

ted at the next slot) then, the matrices  and  are given by [9]:D'0 D'1

D'0

D0 D1 … Dk 1– Dn
n k=

∞

∑
0 0 … 0 0

… … … … …
0 0 … 0 0

=



88                                                                                                                                                  8

Unfortunately, to represent the output process as an exact MMBP is computationally

unfeasible since the number of states grows as a function of the buffer size and the num-

ber of states of the input process. Thus, we represent the output process with two states

and match the following statistics of the exact process with the statistics of our reduced

model:

i) Mean

ii) Variance

iii) Covariance at lag = 1

iv) Covariance at lag = 2

For a D-BMAP, the mean, the variance and the covariance at lag k can be computed

as:

D'1

0 0 0 … 0 0

D0 D1 D2 … Dk 1– Dn
n k=

∞

∑

0 D0 D1 … Dk 2– Dn
n k 1–=

∞

∑
… … … … … …

0 0 0 … D0 Dn
n 1=

∞

∑

=

λ π kDk
k 1=

∞

∑ 
 
 

e=

var π k
2
Dk

k 1=

∞

∑ 
 
 

e λ2
–=
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where  is the unit column vector and  is the steady state probability of the underlying

Markov chain, i.e;

To validate the matching procedure, we consider two queues in tandem. The input to

the first queue is a two-state D-BMAP as defined in [17]. The input to the second queue

is composed of the output process from the first queue and an interfering process. This

interfering process is introduced in order to avoid the “non-queueing” phenomenon in

tandem queues with constant service time. To assess the accuracy of the matching pro-

cedure, we compare the mean delay and the loss probability at the second queue when

the output process is substituted by a two-state MMBP with the results produced by a

simulation experiment (Figure1). In the simulation experiments, we use the independent

replication method to find a 95% confidence interval. We report the percentage error

defined as (|Xsim - Xmatch| / Xsim) x 100 where Xsim and Xmatch are respectively the

results produced by the simulation experiment and by the matching procedure.

The input to the first queue and the interfering process are two-state D-BMAP with

the same transition probability in each state (α). The batch size is Poisson distributed

with mean  (state 1) and  (state 2) where  is the overall traffic

intensity and c is a parameter. It was demonstrated in [22] that the square coefficient of

variation ( ) and the correlation coefficient of the number of arrivals at lag n ( )

are respectively given by:

cov x1 xk,( ) π nDn
n 1=

∞

∑ 
 
 

D
k 2–

nDn
n 1=

∞

∑ 
 
 

e λ2
–=

e π

πD π= πe 1=

1 c+( ) ρ 1 c–( ) ρ ρ

Cv
2

Cc n( )

Cv
2 ρ 1–

c
2

+=

Cc n( ) c
2ρ

1 c
2ρ+

------------------ 2α 1–( ) n×=
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The data shown is this section corresponds to a server with gated service and

buffer size 100. Time is normalized to one slot which has the same duration of a service

time. In order to validate the accuracy of the computational procedure over a wide range

of delay values, we vary the input parameters in a way such that we obtain the desired

value at the second queue. Table 1 presents some results from our experiment. Overall,

the percentage error of the delay estimation are under 7% [12].

To evaluate the impact of the input process mean arrival rate, variance and correla-

tion, we keep constant two of three input parameters: ρ, α and c, and vary the third one.

The parameters of the interfering process are set in a way to avoid the “non-queueing”

phenomenon in tandem networks with constant service time. Regarding the delay esti-

mation, Figure 2 shows the accuracy of the matching procedure increases as the offered

load increases. We note that a 5% difference when ρ varies from 0.4 to 0.9. When vary-

ing c, we observe that for positively correlated streams, the procedure provides slightly

more precise results for higher values of the coefficient of variance than it does for lower

ones. Differences are under 2%. This trend did not emerge for negatively correlated

streams. When varying α, we also observed that the correlation coefficient does not

affect the accuracy of the procedure besides the impact just mentioned.

Regarding the loss rate estimation, Table 2 shows that the matching procedure is

more precise for the estimation of higher values of the loss rate than it is for lower values.

Differences are under 6% (Figure 3 also illustrates this trend). Figure 4 indicates that the

precision increases with the coefficient of variance. We note that the maximum differ-

ence is under 5%. No significant impact on the accuracy of the procedure was observed

as a function of the correlation coefficient.

For fixed values of the input process parameter we vary the interfering process

parameters (ρ, c, α) and we noticed that the interfering process parameters did not

impact the accuracy of the delay and loss rate estimation. We also investigated the pro-

cedure precision as a function of the buffer size (from 50 to 200). No significant impact

on the accuracy was observed.

More Extensive validation data can be found in [22].
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V) Queueing Networks with Prioritized Markov Modu-

lated Flows
We now extend our queueing network framework in order to model communication

networks with a selective discard mechanism at the cell level [23]-[29]. We consider that

at each node, the buffer space is organized in a complete sharing fashion with push-out.

We define a prioritized Discrete Time Batch Markovian Arrival Process (D-BMAP [H, L])

as a D-BMAP process where the arrivals can be classified as either high or low priority.

In a D-BMAP [H, L] the probability that an arrival (cell) belongs to a certain priority class

(priority probability) is independent of other cells and is a function of the state of the

underlying Markov chain. A D-BMAP [H, L] is completely specified by the matrices Dn and

by the vector  whose ith component gives the probability of a cell being high prior-

ity when the underlying Markov chain is in state i.  gives the uncon-

ditional high priority probability. The ith component of  is 1 - the ith component of

. The prioritized Markov Modulated Bernoulli Process (MMBP[H,L]) is a special

case of the D-BMAP [H, L] in which at every discrete time there is at most one single

arrival.

For the prioritized framework, the elementary network flow operators are defined as:

Output process

In a work-conserving queue, a cell is lost if and only if it finds the buffer full. Conse-

quently, if we disregard the priority classification of the cells, we notice that the statistics

of the output process of a D-BMAP[H,L]/D/1/K queue are the same as the output process

of a D-BMAP/D/1/K queue [13] (with no priority). We, therefore, compute the parameters

for the output process in two steps (Figure 5). In the first step, we model the output pro-

cess as a two state MMBP without taking into account the priority classification (as was

done in section III)). In the second step, we compute the priority probability of a cell

( ).

phigh
phigh phigh π⋅=

plow
phigh

phigh
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Joining

We also take a two step approach when determining the D-BMAP[H,L] (process c)

resulting from the superposition of two D-BMAP[H,L] (process a and b). We first compute

the matrices  and then the aggregate process priority probability, by taking into

consideration not only the priority probability of each aggregating process but also their

probability of arrivals. Thus, the ith component of  is given by:

where:

nc = na + nb

ia and ib are respectively the states of process A and B which correspond to state ic

 is the element in the ic
th row and the jc

th column of

Splitting

The splitting operator is defined in the same way as the non-priority splitting operator.

The priority probability seen by one destination has the same value as the priority proba-

bility before splitting.

Dk
c( )

phigh
c( )

phigh
c( )

ic( ) Ha Hb×
za zb+

na nb+
------------------- dic jc 

 
na nb,

××
na min 0 nc Nb–,( )=

min nc Na,( )

∑
nc 1=

Na Nb+

∑
jc 1=

Mc

∑=

Ha

za

na 
 
 

phigh

za ia( )× plow

na za–
ia( )×

za 0=

na

∑=

Hb

zb

nb 
 
 

phigh

zb ib( )× plow

nb zb–
ib( )×

zb 0=

nb

∑=

plow ia( ) 1 phigh ia( )–=

plow ib( ) 1 phigh ib( )–=

dic jc

c( )
 
 

na nb,
Dna

a( )
Dnb

b( )⊗
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VI)The Output Process of a D-BMAP[H,L]/D/1/K Queue
Having already characterized the aggregate output process, we need to compute the

probability that a cell belongs to a certain priority class. If we had an infinite buffer space

the priority probability would be the same as the input process priority probability. How-

ever, in a finite buffer queue, we need to take into account the loss rate per class due to

buffer overflow. We consider that the output process priority probability is independent of

the state of the underlying Markov chain. Thus, our procedure is [13]:

where Rhigh (Rlow) is the high (low) priority loss rate

 ( ) is the output high (low) priority probability,

 ( ) is the input process high (low) priority probabil-

ity

To compute the loss rates, we use a loss rate conservation law, which allows great

reduction in the complexity of the solution. The conservation law establishes that the

product of the aggregate loss rate times the aggregate arrival rate is equal to summation

of the per class product of the loss rate times the arrival rate, i. e.:

where λ and R are respectively the aggregate arrival rate and aggregate loss rate and λn

and Rn are respectively the class n arrival rate and loss rate.

This loss rate law is a generalization of Clare and Rubin’s loss probability conserva-

tion law for i.i.d. arrivals [29]. Their law establishes that the product of the aggregated

Πhigh

phigh 1 Rhigh–( )×
phigh 1 Rhigh–( )× plow 1 Rlow–( )×+
--------------------------------------------------------------------------------------------------------=

Πlow

plow 1 Rlow–( )×
phigh 1 Rhigh–( )× plow 1 Rlow–( )×+
--------------------------------------------------------------------------------------------------------=

Πhigh Πlow
phigh phigh π⋅= plow plow π⋅=

λR λnRn
n 1=

N

∑=
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loss probability times the aggregate arrival rate equals the per class summation of the

product of the loss probability times the arrival rate. Jeon and Viniotis [30] derived a sim-

ilar law for queues with MMPP arrivals. Jeon and Vinioti‘s law states a relationship

between the arrival rate and the loss rate conditioned on the state of the process at the

beginning of busy periods. Although insightful, Jeon and Viniotis’ law has a limited appli-

cability given that the related measures are not usual descriptors of a system. However,

Clare and Rubin’s law cannot be applied to a queue with non-renewal arrivals. The main

reason for this restriction is that in a non-renewal process we cannot relate time aver-

ages to steady-state statistical averages. In other words, the long term ratio between the

number of losses and the number of cells does not converge to the definition of probabil-

ity. Whenever we apply the concept of probability, we assume that we pick a random cell

form the universe of cells and check if it will be lost or not. In a correlated process (non-

renewal), the loss of a cell depends on the past loss history; it is not a random event.

Actually, when trying to guarantee minimum Quality of Service, we are interested in the

fraction of lost cells (loss rate) and not exactly in the loss of a particular (randomly

selected) cell (loss probability). A proof of our loss rate conservation law can be found in

[22].

To compute the loss rates, using the loss rate conservation law, we first solve the

aggregated system by computing the queue length distribution. We then derive the low

priority loss rate by observing a tagged low priority cell and computing the probability that

it is not dropped (successfully transmitted). The high priority loss rate is computed by

applying the conservation law. The solution of a discrete time queue is a straightforward

generalization of the continuous time case [31].

To evaluate the accuracy of this priority computation procedure we use the same two

node tandem network as in the non-priority case. To avoid any distortion of the percent-

age error, we limit the range of simulation results to those which can be obtained through

Monte Carlo techniques (from 10-7 to 10-1); therefore avoiding the use of rare event sim-

ulation (and consequently introducing another source of approximation).

Tables 3 and 4 show respectively the high and the low priority loss rate for a wide
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range of values. Our procedure is more accurate when it estimates loss rate for the low

priority class than it is for the high priority class. The errors of the low priority loss rate

estimation are similar to the errors of the aggregated loss rate. We also notice that our

procedure is more precise for high values of the loss rate than it is for lower ones. Errors

were below 15% for the high priority class and below 10% for the low priority class.

In order to evaluate the impact of the offered load, its coefficient of variation and its

correlation coefficient on the accuracy of the procedure, we vary respectively ρ, c and α.

Figure 6 and 7 respectively show the high and the low priority loss rate as a function of ρ.

Difference in the accuracy for both high and low priority class are under 5%.

Figure 8 displays the percentage error of the high and the low priority class when we

vary c. We notice that our procedure gives more accurate results for higher values of the

input process coefficient of variation. The impact of the coefficient of variation on the pre-

cision is more pronounced for the high priority class than for the low priority one. For the

high priority class the maximum difference in the percentage error is 3% whereas for the

low priority class the maximum difference is 2%. The accuracy increases significantly as

phigh increases. This increase is more noticeable for the high priority class (under 7%)

than for the low priority one (under 2%). In our validation experiments we also noticed

that the precision of the procedure as a function of the coefficient of variance depends on

the correlation coefficient. For positively correlated streams, we found out that the proce-

dure is approximately 2% more precise than for negatively correlated streams. Regard-

ing the correlation coefficient, the procedure is slightly more accurate for positively

correlated streams than for negatively correlated ones (< 2%) (Figure 9)

To make sure that the interfering process parameters did not impact our results, we

varied the interfering process ρ, c and α. No significant impact on the precision of our

results was found. This remark is also valid for the buffer size from 50 to 200.
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VII) Numerical Examples

In this section, we illustrate how our framework can be used to compute end-to-end

performance in ATM virtual paths. To compute the end-to-end delay in an ATM virtual

path, we make use of the parametric decomposition approximation, i.e., the queues are

analyzed in isolation after their input process are fully characterized. In this approach,

the dependencies among the queues are approximated by the flow parameters. We con-

centrate on ATM networks whose topology can be described as an acyclic directed

graph. Otherwise, if we consider generally connected networks, we would have to define

iterative procedures for determining the input flow of nodes in a cycle. We assume that

there are two distinct sets of nodes: sets E and I. The elements of set E receive only

input (external) traffic to the network (i.e., elements of set E are network’s entry points).

The elements of set I are nodes whose input is composed of the output process of other

nodes and possibly input traffic to the network (i.e. nodes belonging to set I are network

internal nodes which can also receive external traffic). We define Sk as the set of nodes

whose input traffic can be determined only at iteration k of the computational procedure.

In other words, nodes belonging to Sk have at least one input link whose flow parameters

can only be computed at step k-1. We compute the occupancy distribution of all nodes of

Sk at step k, and we denote a link whose traffic parameters have been determined as a

marked link. The computational procedure can be summarized as [32]-[33]:

1 - k = 1 and S1 = E;

2 - While  do:

2.1 - Characterize the input process of every Sk node by performing a joining oper-

ation of all input links to each node. For S1 nodes, the input processes are given by the

input process to the network;

2.2 - Compute the steady state queue length distribution of every Sk node. Com-

pute the mean delay seen by an arriving cell at an Sk node;

2.3 - Characterize the output process of every Sk node by matching the statistics of

the output process with the statistics of a two-state MMBP;

Sk ∅≠
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2.4 - For each node in Sk , characterize the process of every outgoing link by per-

forming a spliting operation output process;

2.5 - Mark all outgoing links of each node in Sk;

2.6 - k = k + 1.

By assuming a feed-forward topology, we guarantee that the computational proce-

dure terminates.

We show two examples of feed-forward topology in Figures 10 and 11 [32]. The loads

at nodes A, B and C are (ρ = 0.75, c = 0.9, α = 0.9), (ρ = 0.5, c = 0.1, α = 0.9) (ρ = 0.75,

c = 0.1, α = 0.9) respectively. Table 3 presents the routing probabilities for the network of

Figure 10. Table 4 and Table 5 respectively display the delay at each node and the end-

to-end delays. For Figure 11 network, the arrival process parameters are (ρ = 0.75, c =

0.9, α = 0.9) for nodes G, H, and J. The routing probabilities are given in Table 6. Table 7

and Table 8 show the delay at each node and the end-to-end delays respectively. We

note that the end-to-end delay error estimation is in the range of the experiments

described in section IV. Thus, the traffic mixing effect did not impact the precision of the

results. To analyze the error trend as a function of the network size, we evaluate tandem

networks with up to 20 nodes and found an error increase of less than 2% [22].

In Figure 12 we show an example of a four node tandem network where we vary

the offered load to the first queue (c = 0.9 and α = 0.9, phigh = 0.8). The interfering pro-

cess parameters are the same for the three other queues (ρ = 0.1, c = 0.5, α = 0.9, phigh

= 0.8). We compute the end-to-end loss rate as 1 - Π (1 - pi) where pi is the loss rate at

queue i. In the top part of Figure 12 we show the end-to-end loss rate computed using

the approximate model and the simulation estimation. The bottom part of the figure

shows the respective percentage error as in the single node case. We note that the pre-

cision increases as the offered load increases.

VIII) Conclusions

The dimensioning of the future ATM network demands appropriate queueing network

models. In this paper, we introduced an approximate model for the output process of an
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ATM multiplexer and extended this model to include selective discard mechanism. More-

over, we defined frameworks for queueing networks with Markov modulated flows. The

approximate models are reasonably accurate. The percentage errors of the delay and

loss rate estimation were under 7% and 10%. For the prioritized case, we found errors

under 10% and 15% for the low and for the high priority class respectively.

This work can be extended in several directions. The investigation of queueing net-

works which take into consideration the representation of individual connections is useful

for the derivation of per connection performances. Variations of the output procedure can

be defined to compare the impact of different buffer organizations on the end-to-end loss

performance.

We are currently investigating queueing networks in which the priority classification of

the cells are correlated. We are also studying techniques for state space reduction for

large scale networks and for modeling correlated splitting.
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Figure 1: Scheme for the validation of the output procedure

Input
(ρ, c, α)

Interfering
(ρ, c, α)

Analytical Simula
± conf
interval

error

(0.8, 0.3, 0.9) (0.1, 0.1, 0.9) 6.11832 5.772 0.02 6.0

(0.8, 0.7, 0.9) (0.1, 0.1, 0.9) 12.3299 11.676 0.07 5.6

(0.9, 0.7, 0.9) (0.05, 0.1, 0.9) 21.787 20.809 0.03 4.7

(0.65, 0.9, 0.9) (0.3, 0.5, 0.9) 30.6381 29.375 0.03 4.3

(0.75, 0.9, 0.7) (0.24, 0.9, 0.9) 44.808 43.251 0.008 3.6

(0.9, 0.3, 0.9) (0.1, 0.1, 0.9) 52.6774 51.044 0.06 3.2

(0.85, 0.9, 0.9) (0.2, 0.5, 0.9) 73.8761 72.004 0.5 2.6

(0.9, 0.9, 0.9) (0.2, 0.1, 0.9) 87.494 85.947 0.11 1.8

(0.9, 0.9, 0.9) (0.3, 0.1, 0.9) 95.7508 94.522 0.18 1.3

Table 1: Delay at the second queue

1 2

output

MMBP

interfering

interfering

D-BMAP
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Figure 2: Delay estimation x ρ for (c = 0.9, α = 0.9) and interfering (ρ= 0.2, c= 0.1, α= 0.9)
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input
(ρ, c)

Analytical simulation
± conf
interval

error

(0.8, 0.9) 1.3962e-1 1.3047e-1 2.35e-3 4.2

(0.75, 0.9) 2.98797e-2 2.8322e-2 6.38e-4 5.5

(0.7, 0.9) 2.5675e-3 2.4245e-3 5.18e-5 5.2

(0.675, 0.9) 6.01925e-4 5.6839e-4 4.93e-6 5.9

(0.65, 0.9) 8.4937e-05 8.0281e-05 1.82e-07 6.8

(0.75, 0.1) 5.2704e-06 4.8397e-06 2.94e-08 8.9

(0.7, 0.47) 3.0113e-08 2.7779-e-07 5.10e-09 9.4

Table 2: Loss rate at the second queue for input α = 0.9 and interfering (ρ = 0.2, c = 0.1,
α = 0.9)
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Figure 3: Loss rate estimation x ρ (c = 0.9, α= 0.9) and interfering (ρ= 0.2, c= 0.1, α= 0.9)
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Figure 4:Loss rate estimation x c (ρ=0.75, α= 0.9) and interfering (ρ= 0.2, c= 0.1, α= 0.9)
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Figure 5: A procedure for modelling the output process of a multiplexer with selective dis-

card mechanism
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Figure 6: High Priority Loss rate estimation x ρ for (c=0.9, α=0.9, phigh=0.8) and interfer-

ing (ρ=0.5, c=0.1, a=0.1, phigh=0.7)
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Figure 7: Low priority loss rate x ρ for (c=0.9, α=0.9, phigh=0.8) and interfering (ρ=0.5,

c=0.1, a=0.1, phigh=0.7)
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Figure 8: Loss rate estimation x c for (ρ= 0.8, α=0.1) and interfering (ρ= 0.5, c =0.1,

α=0.1, phigh=0.7)
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Figure 9: Loss rate estimation x α for (ρ= 0.8, c= 0.1) and interfering (ρ= 0.5, c= 0.1, α=

0.9, phigh = 0.7)
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Figure 10: First feed-forward network

B C D E

A 0.7 0.3

B 0.4 0.6

C 0.6 0.4

Table 3: Routing probabilities for figure 14 network

estimated simulation error

A 11.73 11.01 ± 0.16 6.5

B 69.38 66.65 ± 0.65 4.1

C 26.81 25.49 ± 0.43 5.2

D 22.68 21.42 ± 0.11 5.9

E 25.91 24.56 ± 0.10 5.5

Table 4: Delay per node for figure 14 network

A

B

C

D

E

F
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Figure 11: Second Feed-forward network

estimated simulation error

ABD 103.79 99.08 4.7

ABE 107.08 102.22 4.9

ACD 61.22 57.92 5.7

ACE 64.45 61.06 5.5

Table 5: End-to-end delays for Figure 14 network

L M N P Q

G 0.9 0.1

H 0.1 0.8 0.1

J 0.3 0.7

M 0.5 0.5

Table 6: Routing probabilities Figure 15 network

G

H

J

L

M

N

P

Q
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estimated simulation error

G 11.64 11.04 ± 0.08 5.4

H 11.64 11.00± 0.07 5.8

J 11.64 11.05± 0.06 5.3

L 2.62 2.46± 0.02 6.5

M 12.97 12.34± 0.12 5.1

N 2.52 2.36± 0.01 6.8

P 48.07 46.08± 0.78 4.2

Q 47.89 45.83± 0.61 4.5

Table 7: Delay per node Figure 15 network

estimated simulation error

GLP 62.33 59.57 4.6

GMP 72.68 69.45 4.7

GMQ 72.5 69.21 4.8

HLP 62.33 59.59 4.6

HMP 72.68 69.42 4.7

HMQ 72.5 69.17 4.8

HNQ 62.05 59.44 4.4

JMP 72.68 69.47 4.6

JMQ 72.5 69.22 4.7

JNQ 62.05 59.24 4.7

Table 8: End-to-end delays for Figure 15 network
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Figura 12: Loss rate estimation x r for a tandem network with 4 nodes and with (c= 0.9,

α= 0.9, phigh= 0.8) and interfering (ρ=0.1 , c= 0.5, α= 0.9, phigh=0.8)
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