O conteudo do presente relatorio € de Unica responsabilidade do(s) autor(es).
(The contents of this report are the sole responsibility of the author(s).)

Contracting and Moving Agents
in Distributed Applications
Based on a Service-Oriented

Architecture

B.Schulze E.R.M.Madeira

Relatoério Técnico IC - 96 - 20

Dezembro de 1996

Contents

=

Introduction

Insights from Al and OO

Distributed Problem Solving and Multi-Agent Systems
Agent Classification

Problem Solving Architecture

NNDNPEF

A Service-Oriented Architecture
Services

Service-Oriented Agency
Life-Cycle and Persistence
Mobility Service

Availability Service

Trading Service

g~ pbhoww

Some Implementation Details

Orbix

Passing code messages

Application start-up

Implementation Repository

Unavailable services distribution

Results on application distribution
Updating and Debugging of an Application
Management Aspects

OO0 ~N~NOO O

(o]

Conclusion

References 10

Contracting and Moving Agents in
Distributed Applications Based on a
Service-Oriented Architecture

B.Schulzé" 2 E.R.M.Madeira®
{schulze | edmundo}@dcc.unicamp.br

1. Institute of Computing / Unicamp PO Box 6176 13083-970 Campinas, SP - Brazil.
2. Brazilian Center for Physics Research / CNPq, 22290-180, Rio de Janeiro, RJ - Brazil.

Abstract Finally the application has to be considered being
_ _ , shutdown at some point. The application considered
This paper presents a service-oriented platform fofg oriented to Distributed System Management in sci-
development and execution of distributedgnific environment and is organized in services
applications based on contracting stationary andg|ated to the managed environments. Specific ser-
migrating services. Services are seen as acliVgices to support the proposed architecture are redis-
objects build on top of a middleware using CORBAyjpyted during runtime, regarding load-balancing
and added features. Customized services add to tlgﬁ,]d inverse-caching [Goldszmidt96], i.e., code is
middleware the ability to handle transparently 1,qved close to data.
application start-up and distribution according to

load-balancing and inverse caching applicationgection 2 presents some insights from Al and OO

demand. Services can be considered of any king,qggesting simplifications to distributed program-
ranging from scientific specialized processing to datq,ning_ Section 3 contains a description of the pro-

archiving juke-boxes. An application on systeMyoseq architecture based on services as active
management in scientific experimental environmen{piacts. Section 4 describes implementation details
s driving the work on some aspects of they the service-based architecture while Section 5
architecture and the management. contains concluding remarks and acknowledgments.

keywords: load-balancing, agents distribution, ORB, 2 ' |nsights from Al and OO

distributed processing, service-oriented architecture.
P 9 An interesting notion is the one afomponents

[Orfali96] as stand-alone objects that can plug-and-

1. Introduction N
_) o lay across networks, applications, languages, tools
A service-oriented application should make use Ognd operating systems. Distributed objects are, by

available services as much as possible and start N&¥finition, components because of the way they are
services when they are not available. Just like in aNYackaged.

other environments one can make use of services

from the shelf and self customize what is not availp, analogy [Russel95] regarding knowledge engi-
able. neering and programming gives an interesting insight

_ to the paradigm of programming at a higher level of
Some of the aspects regarding the development ap@siraction. Table.1 is a reproduction presenting four
execution of such a service-oriented application,;gic steps:

include: initial contracting of services, distribution
and start-up of additional services needed by the

application but not encountered anywhere inside thgnowledge Engineering Programming

group of contracted servers. At runtime the applica&hoosing a logic Choosing a language

. | handle: auervina and replvina of th Building a knowledge base Writing a program _
tion 'mUSt also handle: query g_) plying - ePmplementlng the proof theory Choosing or writing a compiler
services, and eventually substituting some failingnferring new facts Running a program |
service. TABLE 1. Four steps in programming [Russel95].

1of11

The approach is that it requires less work deciding.2.Agent Classification

only what objects and relations are worth representThe notion of an agent is meant to be a tool for ana-
ing and which relations hold among which objectsjyzing systems, not an absolute characterization that
There is no need to compute de relations betwegfjjides the world into agents and non-agents.”

objects. [Russel95].

There is the need only to specify what is true while\y agent need not to be a program at all
an inference procedure figures out turning facts into @ranklin96], but software agents are, by definition,

context a fact is true regardless of what task is tryingn agent, presented in table.2:

to be solved, then knowledge bases can be reused for
a variety of different tasks without modification.

Property Other Names Meaning

The debugging task is expected to be easier beca(/§8°!"e (sensing andresponds in a timely fashion to

. . . . acting) changes in the environment
any given sentence is true or false by itself, while thggisnomous exercises control over its own

correctness of a program statement depends strongly actions
on its context. goal-oriented pro-active does not simply act in response to
purposeful the environment
t mporally is a continuously running process

The notions above introduce the field of agent-based . is
software programming [Genesereth94], as an attempémmunica- socially able communicates with other agens,

to make all sorts of systems and resources interopefie perhaps including people

ble by providing a declarative interface based offaming adapiive rcerzl?ggsese)'(tset;g;i‘g‘” based on its

first-order IOgIC' mobile F?:1ble o trangport itself from one
machine to another

2.1.Distributed Problem Solving and Multi-Agent (flexible actions are not scripted

Systems character believable “personality” and emo-
tional state.

The DPS approach uses distributed computing envi=
ronment to solve problems which are naturally dis-

tributed while complex. Agents are pre-programmeg 3 problem Solving Architecture
for cooperation with methods to guaranty this under . .
n ideal architecture would be able to solve any

coherence, robustness and efficiency. The quality of L blem by knowing evervihing and being able to
DPS system is the measurement of the system glo Ateract wit¥1. an othgr S st)ém Igowever to%e racti-
performance in solving the specific problem. y y ' P

cal an architecture has to come to a good solution to a
a,%oblem of a particular environment and be able to
I;}ommunicate accordingly in order to sense and react.

TABLE 2. Agent classification [Franklin96].

Since experiences in Social Sciences demonstr
that it is not simple to establish this new properties i
llection of individuals, MAS studies th i :
:sgarr?ctignsoab oSt adlejzﬁttss,’ whicﬁ Ssh%?ﬂ%s u:r a?:f[ls fceommunlcatlon is an important example of the range
possibirl)ity of a coope?ative action in socie?y y tt1hat exists between extremes that an architecture has
' to fit in. If one considers security, there should exist a

. secure encryption while considering interoperability
In a Multi-Agent System [MAGMA95], agents range ghere should exist a general de-encryption. In fact the

from simple automata to knowledge-based systemrﬁoderator between this extremestiive i.e., the

while interactions between agents go from IDhySiCS_ime to come to a solution which is still useful in
based models to Speech Acts. Agents organizatioﬁs

: . . time.
are incorporated into complex systems and envwoﬁ-

ments are guided by the type of application. An interesting approach [Fischer95] is the under-

standing and building of interactive knowledge

2o0f11

media or collaborative problem solving environ-3.1.Services

ments rather then the traditional goal of understancbomputing with services is a higher level of abstrac-
ing and building autonomous, intelligent thinking tion in implementing any application reducing the
machines. development effort to the specific objects not avail-

able anywhere and to the interconnection of all the
In collaborative problem solving systems, users angctive objects regarding the application. The inter-
the system share the problem solving and decisiogpnnection of these objects will deal withantract-
making and different role distributions may be cho1ng, locating requesting and replying The term
sen depending on the user’s goal, the user’s knowjctive objectdSichman95s, Orfali96] is also equiva-
edge and the task domain. lent to agents in a multi-agent environment.

A collaborative system should address the point ofajlable services: can be of any kind, like remote:

What part Of the reSponSibi”ty haS to be exerCised bMo_processorS, databaseS, data Crunching’ archiving,
human beings, and how to organize things for agic.

effective human communication with the computa-

tional system. Non-available services: needed by an application
. a partial understanding and knowledge of com¢can be of any kind, like the above, but for some rea-
plex task domains is acceptable; sons it is just not available in the context. Non avail-

: . f;lbility can have different meanings like:
« two agents can achieve more than one, especially

by exploiting the asymmetry between agents; + the application has non authorized access to a ser-
- breakdown are not as detrimental, especially if the V'¢®;
system provides resources for dealing with unexs a specific service is not available where needed,;

pected; - aservice is temporarily disconnected;
- semi-formal system architectures are appropriate, the service is a too specific computation of the
and application and has to be customized.
« humans enjoy “doing” and “deciding” by being
involved in the process. The application has to handle this unavailability
accordingly and customize the missing service. The
3. A Service-Oriented Architecture customization of a service will handle with: code

The notion of agents presented up to here is assodfansportation, resource allocation for execution,
ated to a notion of services and the building of sef?@ming and registering of the service. After customi-
vice-oriented applications: zation the application can deal with the customized

service just as it deals with any other already avail-

- agentsare all kind of services used by an applicazple service. Any service can make use of other

tion; remote services and for that there is an inter-service
--> availableservices are offered by an agency; communication.

--> non availableservices are customized by the
application at some site and after that han
dled as an available services;

» agencyis a basic component able to offer service
to an application;

seryice
protocol

inter-service

\

communication -
i
+ negotiationof services are handled bytader <7 -
[Trader95]; _ . - contfacting

protocol

- trader is another service that is able to locatg
other services in a pool of contracted agencies.

FIGURE 1. Service-Oriented Application.

30f11

3.2.Service-Oriented Agency 3.3.Life-Cycle and Persistence

The agency architecture is composed of an objetip to here services can be identified in different
broker and a collection of agent services, which maghases during its life-cycle:
include or not as services agent mobility service

o . start-up - stationary - migration - removal.
and aravailability service P y 9

_____ o _ Start-up: involves contracting and distribution like it
3 App“cat'on Agems-' 3 E rCOmmO” Faciliies) is considered for any application.

I
ORBA|| I _ .
_, Services., 7 S Stationary: phase of a service can be temporary or
indefinite according to the characteristics of the ser-

ORB vice. Making services available for general usage
— : 2— et e e | A -| involves management and distribution of this ser-
VeBily |, Aaladi | vices in order to guaranty availability as much as pos-

Servic ervice . . " -)
| ~ | sible. One can think of this services as stationary
gent Services . . .
L - - —_ - __=—___— 4 most of the time as long there is no major problem
FIGURE 2. A CORBA based agency model. with the network or host on which this services are

running. But thinking of services asways available
An agency with agent mobility and availability ser-demands a natural need to make smooth moves in
vices is able to run new services loaded by the appitase of some failure in the environment.
cation itself, i.e., the agency is open to new services
or agents to be loaded by an application demandingigration: of a service is demanded by the environ-
this kind of service. ment or the service itself and usually in attendance to
load balancing, inverse caching needs, or redistribu-
In straight relation to the CORBA model and itstion due to some failure in the environment.
object services, a service offered by an agency can be
called agent and the collection of services calletMigration involves persistence of code and status,
agent services, as sketched in Figure 2. i.e., before moving the agent has to save the variables
that define its status and persistently store them.
Middleware: The Multiware platform [Loyolla94] Both, status and code, are moved as sequences and
sketched in Figure 3 is the platform on top of whictboth are persistently stored at the receiving site, fol-
this work is being done. CORBA allows for a goodiowed by a removal at the sending site after the move
degree of flexibility in the implementation of the corehas been successfully completed. At the very
ORB. It can be implemented as a set of runtimenoment when the agent is instantiated it reads back
libraries, a set of daemon processes, a servigs status into the original variables.
machine, or part of an operating system [Orbix96]

In all situations after arrival the agent is instantiated

— End by the agent support in order to recover from the sta-
Application Application User L. . . .
tus file its memory on what it has to do. If it has just
[CSCW Support | Group- to do nothing and go idle that is coded in the status.
ware
Multi- [“~raime Trancant . Mnmmnt < o A A i i
ey \Sﬁp} ;La;psaav\!:gm EGSEy Micdle- Removal: follows shutdown or migration of a ser-
. vice. In this phase there is the possibility of using a
g) .
Operating System Protocols Hard & migratory agent passgd as a token in order to handle
ware any application termination and proper shutdown.
FIGURE 3. Multiware Platform. Again, this token agent is composed of code and data.

4 of 11

3.4.Mobility Service users / processes. This numbers are computed includ-

Mobility service supports the reception of an agenting the specmarkof the particular host in order to
its persistent storage and the registration of its inte@llow a comparative value to other hosts.

face on the ORB. Basic setup and execution steps are
as follows: The availability level of the agency is published in
_ . order that this parameter can be obtained from a que-
- at the sending / receiving end: rying to the agency or viateader.
--> ORB running;
--> registering the mobility service: Availability Evaluation: O_ne can think of an evalua-
tion process or daemon just being started when there
is an availability request, however, availability has to
--> marshalling / un-marshalling & sending / consider a certain backtracking in time, reflecting the
receiving of agent; time the application will execute. Considering this
--> remove/store agent from persistent storage. approach availability evaluation demands a continu-
ous running daemon on every host which puts its

There are some additional steps for moving an agerf€sources available. There is also an associated peri-
odic logging of the host loading history.

--> calling the mobility service;

« at the sender

--> disable any new request by removing theContinuous running process doing logging are not
interface registration; always welcome because they demand CPU time and
> put the agent on a dispatch queue; storagg resources. However one can think of a dedi-
:cated firmware based co-processor(s) on general pur-
-> the service (agent) CO’?“”“eS running ur_itil Itpose hosts doing this kind of task while logging can
concludes the execution of any PreVIOUSya constrained to a maximum number of history sam-
request already attended; ples, by removing intermediate samples from the his-
--> is killed when it goes idle. tory archive as time passes bhy.

 atthe receiver , , .
Cheap dedicated firmware co-processors which can

> publication of agent interface; be remotely programmed, like Sun’s Java chips
--> instantiation when receiving a request. [Javachip96], can help a lot in distributed monitoring
tasks and management applications.
The persistence service is needed for code and status

storage of moving agents. 3.6.Trading Service
o _ In case of querying via a trader [Trader95, Lima95],
3.5.Availability Service the query includes a range of availability of a specific

When a new service is going to be setup at some sitkind of resource. The trader replies returning a list or
there is the need to locate and allocate resources stmply the most available agency. The selection
an agency. In order to identify these agencies open fthase can include a direct interrogation before con-
new services, another service is included in th&acting for the loading of the new service by the
agency itself: aravailability servicewhich informs application.
the level of availability of the agency.

An additional step at this point allows fine tuning, by
The availability service evaluates the loading of arusing a customized agent to evaluate the agency
agency using the performance metrics included in themore closely in case of a very sensible application.
instrumentation facility [Queiroz96}esponse time This can be added as a trading extended service at the
throughput andutilization. Utilization allows differ- trader side or at the application level itself.
ent paramenters to evaluate loading in terms of:
CPU, memory, disk, networking activity, number of

50f11

4. Some Implementation Details application developer can work completely indepen-
dent of the client developer.

4.1.0rbix
The ORB consists of library functions linked with ORB Core
clients and servers together with the runtime system. Stub LP%%EE‘LJ [Skeletonk |BOA
This approach sho_uld prowde_ improved throughpyt anodver agehey - (BeBSSRGh)
and better application distribution. | S~ A\ ——
eryice O
1.Client contacts daemon, Quelaoency ﬁn emenPAﬁ
r explicitly defined or
| identified via Locator or 'E eeton BOA
Name Server. [""" ©ORBCore] BCore
| 2.Daemon opens .
| connection to server. FIGURE 5. CORBA Server / Server communication.
| 8Ir|glr:t 3.Connection to server
passed to client. The Dynamic Invocation: A dynamic method invocation
Lo daemon has no further role X X A R i
to play. by a client establishes communication between client
Daemon waits new request. and server transparently initiated by the daemon. If
FIGURE 4. Client/Server connection w/orbix daemon. the host supports the particular server, the daemon

_ _ ~will establish a connection with the server, pass it
The server library can both issue and receivepack to the host and drop out.

remote object operation requests, while ttent

library can only initiate such requestsdaemonis |n all cases the client / server interoperability is estab-
responsible for launching server processes dynamished while location and nature of the server host is
cally as required, in accordance with the various aCtkept completely transparent. The daemon is only
vation policies described in the CORBA concerned with the appropriate servers to be running

Specification. Non-distributed client / server applicaand client / server connections, it is not an ORB
tions in the same address space, can be built usifgelf.

the server library alone. Figure 4 shows how Orbix

handles client / server connections. BOA (Basic Object Adaptor): On Orbix, BOA func-
tions are: publishing the interface of an object in the

API: An important step in generating a distributedmplementation repository (putit), remove it (rmit),

application is the definition of the interfaces byjist all registered interfaces (Isit), detailed listing of

which clients and servers will communicate. IDLan interface (catit), show an active object status
interfaces are formal standardized interfaces definingsit), kill an active object (killit).

the provided services and how clients shall invoke

them. Figure 5 shows interfaces on the ORB in interfhe |ocator service is used for transparent inter-
service communication. agency service location. On Orbix it is possible to

_ _ _include a set of interfaces in a group and also create a
IDL: compiler uses the IDL file to generate the cliengroup of hosts.

stubs and the server skeletons. If client and server are
going to be on different platforms then the same IDl4 2 passing code messages
will be compiled for both platforms with appropriate

. There is currently an OMG's request for proposal on
client and server code. y q prop

passing object by valueThe subject of passing

) - .___0objects [Lange95] is handled here on a Orbix plat-
Stub & Skeleton: Stubs can be used within the Cl'entform passing code as a message in sequence type

application as local object method invocations, Wh'legarameter format.The following results are still based

on the Server side these methods, i.e., skeletons m ﬁtOrbix 13

be implemented to produce the desired result. Server

6 of 11

The object to be sent is read from the persisterdllocation and because client and server processes
implementation repository at the sending site as eun on the same machine reaching higher rates then
binary sequence into an IDL sequence type param@ Figure 7 where client and server run on different
ter. The sequence is sent as a normal parameter to thachines.

receiving site and persistently stored in its locaj
implementation repository.

The implementation repaository is based on a file sys-
tem, and this imposes that every agent has to be on a
separate file, specially if this agent is going to b
moved somewhere. A better approach would be the
usage of an object-oriented database where stafus
and code could be persistently stored specially when

the number of agents starts to increase a lot. Thisl|is
directly related withpersistence servicéqut is not
the subject of this work.

transfer rate (100KBytes/s)
O P N W h U O N © © K

0

1L 1L 1L
50 100 200 400" 800 1M 2M 4M

4y
17

8M

0

50

100 200 400800 1M 2M 4M" 8M 10M

\ 10M
sequence size (MBytes)

FIGURE 7. Same conditions as before but with client/

14 server on different hosts.
13
1 sparc 2 Actually the memory allocated to pass the sequence
1l SO e Tl harm max. imposes a practical limit to message size, but a com-
10 promise can be obtained by spliting the full message
@9 _ into packets reflecting a predefined buffer size. There
i;s N is a reference [Schmidt95] where image files for mul-
g7 ShMByios mem max. timedia applications up to 64 MBytes are passed in
106MBytes virtual N i it
26 2 diferdnt eput | mem loaging packets of 124 KBytes using an additional external
[\ high speed channel.
c AN
g3 AN 4.3.Application start-up
2 < . o
L 3 The steps regarding start-up of an application under
0 the described environment is resolved by the same

mechanism described for the contracting of available

services and the loading of new services, i.e., exist-

ing services are contracted and unavailable services

are distributed to selected agencies departing from an

Messages of ascii type and binary type up to the sizgplementation repository site.

of 1MByte are considered for most applications and

being passed without major problem. This has nothing to do with OMG’s Object Start-up
Service [OSS95] which deals with the start-up of the

In order to estimate an upper bound on the messa§¥RBs.

size and a lower bound on the transfer rate, the per-

formance was measured on the less performing.4.Implementation Repository

machines in the considered network. The plots prefhere are different possibilities for the distribution of

sented in Figure 6 and 7 are based on sparc 1+ apflavailable services regarding their location at start-
sparc 2 machines non-dedicated to this purpose ovgp.

ethernet running and sequence sizes from 10KB to

10MB. In Figure 6 the transfer rate drops quickly asn a simple case, the implementation repository of
the message size goes above 2 MB due to memofife application is hold locally at the user’s machine

sequence size (MBytes)

FIGURE 6. IDL-sequence passing over ethernet in a non
dedicated environment with client/server running locally.

7of11

and the new services are redistributed according tooad-balancing: conditions are similar to the previ-
the application’s demand. ous ones with additional considerations:

an appropriate agency has to be contracted under

At the other extreme, a more sensible application the availability service query criteria;

where more reliability is needed a implementation
repository server can be added to the context in order availability services are identified in a unique way
to hold a copy of all services that are to be distributed BY concatenation with the host name and invoca-
in this context. With such a server, start-up can tion using multicast;
always start redistribution from this repository. the selected availability service name is passed to
server. The same server is in the last position of the local agent support which locates the specific
every list of possible implementation repositories service and sends the agent whose migration was
used by any application in this context. This server requested.
guaranties that an implementation repository copy
always exists, even in case of failing hosts. Evaluation: of the an application was made were a
stationary client shares the execution of the problem
The possibility of failure of this main repository with a moving server. The client searches for enough
server exists and it can be treated using the sam&emory and cpu for the moving server to execute.
approach, i.e., adding another server to increas®r that the client contacts every host in the allowed
redundancy and so on up to level of acceptable cosgfoup, including itself, for availability. The status of

reliability ratio. the execution is kept by the client while the server
when restarted on another host is always in its initial
4.5.Unavailable services distribution state.

Independent of the kind of implementation reposi-

tory, the new services are redistributed according tth order to decouple the test from the previous test of
the application’s demand on load balancing and / ¢iode passing performance in section 4.2, the actual
inverse caching. This means that if distribution is not¢ode of the server is made available on every host so
demanded by the application in the current envirorthat only the execution is passed to the server on the
ment circumstances, then it runs just locally. Anothefiext selected host. The transparent distribution of the

possibility is that the application has to wait in theapplication allows exactly the same application to be
start-up queue for sufficient resources. started several times running concurrently with every

other new one started.

4.6.Results on application distribution ' _ o
An application start-up result is presented next‘,”'Updatlng and Debugging of an Application

where the two already mentioned situations demané?nce a application system is released and running, it
ing migration of objects are considered, i.e., load baFan be very cumbersome to bring it down for an

ancing and inverse caching. update and subsequent start-up and associated debug-
ging.

Inverse caching: conditions are considered as fol-

lows: In an application build with agents each agent can be

) e shutdown and restarted separately without a shut-
* an object needs to move to a Specific site in ordef,, / start-up of the whole application. The updat-
to run attached to a contracted service; ing and debugging of a full application can be
« the moving object has to contract the local agerdimplified to the updating of an agent.
support and demand migration to where the spe-
cific service is; Some additional considerations can be done about

. the agent support locates the specific service atPdating when resulting in replication, spliting or

as a inherited class / method. demand the update of the interface of some agent or

8of 11

group of agents. In case of merging, the resultingome fixed services for management were imple-
agent may inherit all the interfaces of the group ofnented [Queiroz96] and next services will regard the
merging agents. advantages introduced by mobility

4.8.Management Aspects 5. Conclusion

Agents. to be moved have to regard interoperability.The proposed architecture introducesaaailability
In this paper some testing of performance is done inserviceas a way to combine the use of fixed services
homogeneous environment and migrating agentand moving services in a environment where avail-
could be implemented in a common C++. An impor-able services are contracted and unavailable services
tant ability is to be able to upgrade platforms andire customized and then contracted. This is clearly
software over the life-cycle of a process in a mordlustrated by an application start-up where transpar-
flexible manner, replacing components over time andnt code distribution and later redistribution due to a
/ or a complete software update. The similaritiespecific demand is possible. Every machine open for
between Java and C++ makes it atractive for thieew applications in a certain context has to have the
work with Java introducing some interesting featuresvailability service built as a fixed service. The usage
[OSF96]. The performance issue of running inter-of the trader and the mobility service are associated
preted as opposed to compiled code is not necessardnd particularly important in heterogeneous environ-
a major constraint while the basic requirement is thahents.
any new remote component must be able to have a
Java runtime like. Distributed Client / Server paradigm can be extended
with the usage of code migration. Migration or
Problem solving strategies: can be more then one mobility makes it possible to reduce network traffic,
and so different strategies could be allowed in differto optimize load balancing, and to provide better
ent agents, with the most effective giving the earliestesponse time to the user. Mobility can be considered
response. as an essential component of future open systems
improving software distribution at large, specially if
Management: can regard the application or the agenthe technology runs across multiple platforms. Addi-
cies. Management of applications stands for taskonal requirements are introduced, particularly on
management but the management of the agenciessecurity and interoperability that make it hard to run
outside the focus of the application which may notvith the same performance of native code. But, after
have authority for that. For the application, if a serall, native code is not mobile.
vice is not available it should get another one from a
trading service and / or decide how to proceed. MarSome scientific applications in large experimental
agement of agencies consists of managing a colleareas need to run continuously during long periods
tion of agencies seen from the service provider sidbut also stand dynamic reconfigurations due to con-
and stands to distributed system management. Anyinuous upgrading of the experimental hardware/soft-
how services which interact with other remote serware and also due to the search for special events.
vices is an application itself using task managementFor management of applications with the characteris-
tics above it is quite important to have the ability to
Levels. are proposed for a step wise allowance ofipgrade platforms and software over the life-cycle of
sensing and reacting, with the history of the systera process in a more flexible manner, replacing com-
being used for every new hint issued. According tgonents over time and / or a complete software
section 2.3 a learning phase about the environment igodate.
needed followed by an execution phase and a succes-
sive repetition of both will allow the system to be Acknowledgments: The present work has support
kept up-to-date. from: FAPESP, CAPES and CNPq.

9o0f11

6. References Processing: Experiences with Distributed Environ-

[Cardozo93] .Cardozo, E., Sichman, J. S.Ment pp.173-184, Chapman&Hall, 95.

Demazeau, Y.Using the Active Object Model to [Loyolla94]. Loyolla, W.P.C., Madeira, E.R.M.
Implement Multi-Agents SystemBroc.of the 5th Mendes, M.J; Cardozo,E., Magalhaes,M Rulti-
IEEE Conf.on Tools with Artificial Intelligence, Bos- ware Platform: An Open Distributed Environment for
ton, USA, 93. Multimedia Cooperative ApplicationdEEE Com-

[CFA95]. OMG, Common Facilities Architecture, PUter Software & Applications Conference, COMP-
Revision 4.0 OMG Document # 95-1-2, 3 January>AC 94, Taipei, Taiwan, November 1994.
95. [MAGMA95]. MAGMA:http://cosmos.imag.fr/

[CORBA9X]. OMG, The Common Object I?equestMAGMA/magma_research.html ,1st Feb., 95.

Broker: Architecture and Specification, rev 2.0, jU'Y[QueironG]. Queiroz,A., Madeira,E., Manage-
1995. ment of CORBA objects monitoring for the Multiware

[Fischer95]. Fischer, G.Rethinking and Reinvent- platform, private communications.
ing Artificial Intelligence from the Perspective Of[ObjIntl]. Schmidt,D.C., Vinoski,S.Object Inter-
Human-Centered Computational Artifactsecture connections: Introduction to Distributed Object

Notes in Artificial Intelligence, #991 Springer, Octo-Computing (Column])C++ Report Magazine, Janu-
ber, 95, pp 1-11. ary 95.

[Franklin96]. Franklin,S., Graesser,A.slit an [ObjInt2]. Schmidt,D.C., Vinoski,S.Object Inter-
Agent, or just a Program?: A Taxonomy for Autonoconnections: Modeling Distributed Object Applica-
mous AgentsProc.of the 3rd International Workshoptions (Column2) SIGS C++ Report Magazine,
on Agent Theories, Architectures, and Languagesebruary 95.

Springer, 96, http://www.msci.memphis.edu/~frank-__ .)))
lin/AgentProg.html. [ObjInt3]. Schmidt,D.C., Vinoski,S., Object Inter-

connectionsComparing Alternative Client-side Dis-

[Goldszmidt96]. Goldszmidt, G. S.,Distributed tributed Programming Techniques (ColumnS)GS
Management by Delegatio®®hD Thesis, Graduate C++ Report Magazine, May 95.

School of Arts and Sciences, Columbia University
96.

[Java96]. OSF, Java Mobile Code Papgdanuary
15, 96. http://www.gr.osf.org/projects/web/java/
whit_pap.htm.

http://siesta.cs.wustl.edu/~schmidt/publications.html.

[ObjInt4]. Schmidt,D.C., Vinoski,S., Object Inter-
connections: Comparing Alternative Server Pro-
gramming Techniques (ColumngIGS C++ Report
Magazine, October 95.

[Javachip96]. Sun Microsystems Inc., SunnyVale, http://siesta.cs.wustl.edu/~schmidt/publications.html.

CA, USA February 2, 96, http://www.sun.com/sparc/. _, . . i . .
y P P [ObjInt5]. Schmidt,D.C., Vinoski,S., Object Inter-

newsreleases/nr95-042.html. . : .)

connections:Comparing Alternative Programming
[lglesias95].C.Iglesias, J.C.Gonzalez, J.R.VelascoTechniques for Multi-threaded Servers (Column5-6-
MIX: A General Purpose Multiagent Architecture 7), SIGS C++ Report Magazine, February-April-
Lecture Notes in Artificial Intelligence, #1037 July/August 96. http://siesta.cs.wustl.edu/~schmidt/
Springer 96, pp 251-266. publications.html.

[Lange95].Lange,D.B., Chang,D.TAglets Work- [ObjInt8]. Schmidt,D.C., Vinoski,S., Object Inter-
bench IBM Corporation, August, 96, http:// connections:Distributed Callbacks and Decoupled
www.ibm.co.jp/trl/aglets. Communication in CORBA (Column83IGS C++

[Lima95]. Lima Jr, LAP., Madeira, ER.M.A R€pot Magazine, October ~ 96, http://
Model for a Federative TradeOpen Distributed siesta.cs.wustl.edu/~schmidt/publications.html.

10 of 11

[Orbix96]. IONA Technologies, Ltd.,OrbixTalk:
Management Overview April 96, http://
www.iona.com/Orbix/Talk/MO/Corbalntro.html.

[OSS95].0MG, Object Startup ServicdBM sub-
mission, OMG TC Document 95.10.7.

[Russel95].Russel, S., Norvig, PArtificial Intelli-
gence, A Modern ApproaclPrentice Hall Series in
Artificial Intelligence, New Jersey, USA, 1995, page
33.

[Sichman95].Sichman, J. S., Demazeau, Y.,
Exploiting Social Reasoning to Enhance Adaptation
in Open Multi-Agent Systemisecture Notes in Arti-
ficial Intelligence, #991 Springer, October, 95, pp
253-263.

[Schmidt95]. Schmidt,D.C., Harrison,T., Al-
Shaer,E.,Object Oriented Components for High-
speed Network Programmingroc.of the USENIX
Conf. on Object-Oriented Technologies, Monterey,
CA, June 95, http://siesta.cs.wustl.edu/~schmidt/
publications.html.

[Trader95]. ODP, Trading Functions ISO/IEC
JTC1/SC 21, 20 June, 95, ftp://ftp.dstc.edu.au/pub/
arch/RM-ODP.

[Vinoski93]. Vinoski, S.,Distributed Object Com-
puting With CORBAC++ Report Magazine, july/
august 93.

11 of 11

