
C o n t r a c t i n g a n d M o v i n g A g e n t s
i n D i s t r i b u t e d A p p l i c a t i o n s
B a s e d o n a S e r v i c e - O r i e n t e d

A r c h i t e c t u r e

B.Schulze E.R.M.Madeira

Relatório Técnico IC - 96 - 20

O conteúdo do presente relatório é de única responsabilidade do(s) autor(es).
(The contents of this report are the sole responsibility of the author(s).)

Dezembro de 1996

C o n t e n t s

Introduction 1

Insights from AI and OO 1
Distributed Problem Solving and Multi-Agent Systems 2
Agent Classification 2
Problem Solving Architecture 2

A Service-Oriented Architecture 3
Services 3
Service-Oriented Agency 4
Life-Cycle and Persistence 4
Mobility Service 5
Availability Service 5
Trading Service 5

Some Implementation Details 6
Orbix 6
Passing code messages 6
Application start-up 7
Implementation Repository 7
Unavailable services distribution 8
Results on application distribution 8
Updating and Debugging of an Application 8
Management Aspects 9

Conclusion 9

References 10

1 of 111 of 11

Abstract

This paper presents a service-oriented platform for
development and execution of distributed
applications based on contracting stationary and
migrating services. Services are seen as active
objects build on top of a middleware using CORBA
and added features. Customized services add to the
middleware the ability to handle transparently
application start-up and distribution according to
load-balancing and inverse caching application
demand. Services can be considered of any kind
ranging from scientific specialized processing to data
archiving juke-boxes. An application on system
management in scientific experimental environment
is driving the work on some aspects of the
architecture and the management.

keywords: load-balancing, agents distribution, ORB,
distributed processing, service-oriented architecture.

1. Introduction
A service-oriented application should make use of
available services as much as possible and start new
services when they are not available. Just like in any
other environments one can make use of services
from the shelf and self customize what is not avail-
able.

Some of the aspects regarding the development and
execution of such a service-oriented application
include: initial contracting of services, distribution
and start-up of additional services needed by the
application but not encountered anywhere inside the
group of contracted servers. At runtime the applica-
tion must also handle: querying and replying of the
services, and eventually substituting some failing
service.

Finally the application has to be considered being
shutdown at some point. The application considered
is oriented to Distributed System Management in sci-
entific environment and is organized in services
related to the managed environments. Specific ser-
vices to support the proposed architecture are redis-
tributed during runtime, regarding load-balancing
and inverse-caching [Goldszmidt96], i.e., code is
moved close to data.

Section 2 presents some insights from AI and OO
suggesting simplifications to distributed program-
ming. Section 3 contains a description of the pro-
posed architecture based on services as active
objects. Section 4 describes implementation details
of the service-based architecture while Section 5
contains concluding remarks and acknowledgments.

2. Insights from AI and OO
An interesting notion is the one ofcomponents
[Orfali96] as stand-alone objects that can plug-and-
play across networks, applications, languages, tools
and operating systems. Distributed objects are, by
definition, components because of the way they are
packaged.

An analogy [Russel95] regarding knowledge engi-
neering and programming gives an interesting insight
to the paradigm of programming at a higher level of
abstraction. Table.1 is a reproduction presenting four
basic steps:

Knowledge Engineering Programming
Choosing a logic Choosing a language
Building a knowledge base Writing a program
Implementing the proof theory Choosing or writing a compiler
Inferring new facts Running a program

TABLE 1. Four steps in programming [Russel95].

C o n t r a c t i n g a n d M o v i n g A g e n t s i n
D i s t r i b u t e d A p p l i c a t i o n s B a s e d o n a

S e r v i c e - O r i e n t e d A r c h i t e c t u r e
B.Schulze1, 2, E.R.M.Madeira1

{schulze | edmundo}@dcc.unicamp.br
1. Institute of Computing / Unicamp PO Box 6176 13083-970 Campinas, SP - Brazil.

2. Brazilian Center for Physics Research / CNPq, 22290-180, Rio de Janeiro, RJ - Brazil.

2 of 112 of 11

The approach is that it requires less work deciding
only what objects and relations are worth represent-
ing and which relations hold among which objects.
There is no need to compute de relations between
objects.

There is the need only to specify what is true while
an inference procedure figures out turning facts into a
solution of the problem. If we consider that in a same
context a fact is true regardless of what task is trying
to be solved, then knowledge bases can be reused for
a variety of different tasks without modification.

The debugging task is expected to be easier because
any given sentence is true or false by itself, while the
correctness of a program statement depends strongly
on its context.

The notions above introduce the field of agent-based
software programming [Genesereth94], as an attempt
to make all sorts of systems and resources interopera-
ble by providing a declarative interface based on
first-order logic.

2.1.Distributed Problem Solving and Multi-Agent
Systems

The DPS approach uses distributed computing envi-
ronment to solve problems which are naturally dis-
tributed while complex. Agents are pre-programmed
for cooperation with methods to guaranty this under
coherence, robustness and efficiency. The quality of a
DPS system is the measurement of the system global
performance in solving the specific problem.

Since experiences in Social Sciences demonstrate
that it is not simple to establish this new properties in
a collection of individuals, MAS studies the basic
assumptions about agents which should guaranty the
possibility of a cooperative action in society.

In a Multi-Agent System [MAGMA95], agents range
from simple automata to knowledge-based systems,
while interactions between agents go from physics-
based models to Speech Acts. Agents organizations
are incorporated into complex systems and environ-
ments are guided by the type of application.

2.2.Agent Classification

“The notion of an agent is meant to be a tool for ana-
lyzing systems, not an absolute characterization that
divides the world into agents and non-agents.”
[Russel95].

An agent need not to be a program at all
[Franklin96], but software agents are, by definition,
programs that must measure up to several marks to be
an agent, presented in table.2:

2.3.Problem Solving Architecture

An ideal architecture would be able to solve any
problem by: knowing everything and being able to
interact with any other system. However to be practi-
cal an architecture has to come to a good solution to a
problem of a particular environment and be able to
communicate accordingly in order to sense and react.

Communication is an important example of the range
that exists between extremes that an architecture has
to fit in. If one considers security, there should exist a
secure encryption while considering interoperability
there should exist a general de-encryption. In fact the
moderator between this extremes istime, i.e., the
time to come to a solution which is still useful in
time.

An interesting approach [Fischer95] is the under-
standing and building of interactive knowledge

Property Other Names Meaning
reactive (sensing and

acting)
responds in a timely fashion to
changes in the environment

autonomous exercises control over its own
actions

goal-oriented pro-active
purposeful

does not simply act in response to
the environment

temporally
continuous

is a continuously running process

communica-
tive

socially able communicates with other agents,
perhaps including people

learning adaptive changes its behavior based on its
previous experience

mobile able to transport itself from one
machine to another

flexible actions are not scripted
character believable “personality” and emo-

tional state.

TABLE 2. Agent classification [Franklin96].

3 of 113 of 11

media or collaborative problem solving environ-
ments rather then the traditional goal of understand-
ing and building autonomous, intelligent thinking
machines.

In collaborative problem solving systems, users and
the system share the problem solving and decision
making and different role distributions may be cho-
sen depending on the user’s goal, the user’s knowl-
edge and the task domain.

A collaborative system should address the point of
what part of the responsibility has to be exercised by
human beings, and how to organize things for an
effective human communication with the computa-
tional system.

• a partial understanding and knowledge of com-
plex task domains is acceptable;

• two agents can achieve more than one, especially
by exploiting the asymmetry between agents;

• breakdown are not as detrimental, especially if the
system provides resources for dealing with unex-
pected;

• semi-formal system architectures are appropriate,
and

• humans enjoy “doing” and “deciding” by being
involved in the process.

3. A Service-Oriented Architecture
The notion of agents presented up to here is associ-
ated to a notion of services and the building of ser-
vice-oriented applications:

• agents are all kind of services used by an applica-
tion;

--> available services are offered by an agency;

--> non availableservices are customized by the
application at some site and after that han-
dled as an available services;

• agency is a basic component able to offer services
to an application;

• negotiation of services are handled by atrader
[Trader95];

• trader is another service that is able to locate
other services in a pool of contracted agencies.

3.1.Services

Computing with services is a higher level of abstrac-
tion in implementing any application reducing the
development effort to the specific objects not avail-
able anywhere and to the interconnection of all the
active objects regarding the application. The inter-
connection of these objects will deal with:contract-
ing, locating, requesting and replying. The term
active objects [Sichman95, Orfali96] is also equiva-
lent to agents in a multi-agent environment.

Available services: can be of any kind, like remote:
co-processors, databases, data crunching, archiving,
etc.

Non-available services: needed by an application
can be of any kind, like the above, but for some rea-
sons it is just not available in the context. Non avail-
ability can have different meanings like:

• the application has non authorized access to a ser-
vice;

• a specific service is not available where needed;

• a service is temporarily disconnected;

• the service is a too specific computation of the
application and has to be customized.

The application has to handle this unavailability
accordingly and customize the missing service. The
customization of a service will handle with: code
transportation, resource allocation for execution,
naming and registering of the service. After customi-
zation the application can deal with the customized
service just as it deals with any other already avail-
able service. Any service can make use of other
remote services and for that there is an inter-service
communication.

FIGURE 1. Service-Oriented Application.

service
agency
 (1)

service
agency
 (2)

service
agency
 (n)

application
control

service

inter-service

protocol

trader
contracting
protocol

communication

4 of 114 of 11

3.2.Service-Oriented Agency

The agency architecture is composed of an object
broker and a collection of agent services, which may
include or not as services anagent mobility service
and anavailability service.

An agency with agent mobility and availability ser-
vices is able to run new services loaded by the appli-
cation itself, i.e., the agency is open to new services
or agents to be loaded by an application demanding
this kind of service.

In straight relation to the CORBA model and its
object services, a service offered by an agency can be
called agent and the collection of services called
agent services, as sketched in Figure 2.

Middleware: The Multiware platform [Loyolla94]
sketched in Figure 3 is the platform on top of which
this work is being done. CORBA allows for a good
degree of flexibility in the implementation of the core
ORB. It can be implemented as a set of runtime
libraries, a set of daemon processes, a server
machine, or part of an operating system [Orbix96].

FIGURE 2. A CORBA based agency model.

FIGURE 3. Multiware Platform.

Application Agents

Agent Services

ORB

Agent
Mobility

Common Facilities

Service

Agency
Availability
Service

CORBA
Services.

Group
Supp.

Mngmnt
Support

Transact.
Supp.

Trader ODP
Func.

ORB

Multi-

Supp.
media

Operating System Protocols

CSCW Support

Application
End

Group-

Application

Middle-

Hard &
Soft-

ware

ware

ware

User

Agent
Supp.

3.3.Life-Cycle and Persistence

Up to here services can be identified in different
phases during its life-cycle:

• start-up - stationary - migration - removal.

Start-up: involves contracting and distribution like it
is considered for any application.

Stationary: phase of a service can be temporary or
indefinite according to the characteristics of the ser-
vice. Making services available for general usage
involves management and distribution of this ser-
vices in order to guaranty availability as much as pos-
sible. One can think of this services as stationary
most of the time as long there is no major problem
with the network or host on which this services are
running. But thinking of services asalways available
demands a natural need to make smooth moves in
case of some failure in the environment.

Migration: of a service is demanded by the environ-
ment or the service itself and usually in attendance to
load balancing, inverse caching needs, or redistribu-
tion due to some failure in the environment.

Migration involves persistence of code and status,
i.e., before moving the agent has to save the variables
that define its status and persistently store them.
Both, status and code, are moved as sequences and
both are persistently stored at the receiving site, fol-
lowed by a removal at the sending site after the move
has been successfully completed. At the very
moment when the agent is instantiated it reads back
its status into the original variables.

In all situations after arrival the agent is instantiated
by the agent support in order to recover from the sta-
tus file its memory on what it has to do. If it has just
to do nothing and go idle that is coded in the status.

Removal: follows shutdown or migration of a ser-
vice. In this phase there is the possibility of using a
migratory agent passed as a token in order to handle
any application termination and proper shutdown.
Again, this token agent is composed of code and data.

5 of 115 of 11

3.4.Mobility Service

Mobility service supports the reception of an agent,
its persistent storage and the registration of its inter-
face on the ORB. Basic setup and execution steps are
as follows:

• at the sending / receiving end:

--> ORB running;

--> registering the mobility service;

--> calling the mobility service;

--> marshalling / un-marshalling & sending /
receiving of agent;

--> remove/store agent from persistent storage.

There are some additional steps for moving an agent:

• at the sender

--> disable any new request by removing the
interface registration;

--> put the agent on a dispatch queue;

--> the service (agent) continues running until it
concludes the execution of any previous
request already attended;

--> is killed when it goes idle.
• at the receiver

--> publication of agent interface;

--> instantiation when receiving a request.

The persistence service is needed for code and status
storage of moving agents.

3.5.Availability Service

When a new service is going to be setup at some site,
there is the need to locate and allocate resources on
an agency. In order to identify these agencies open to
new services, another service is included in the
agency itself: anavailability service which informs
the level of availability of the agency.

The availability service evaluates the loading of an
agency using the performance metrics included in the
instrumentation facility [Queiroz96]:response time,
throughput, andutilization. Utilization allows differ-
ent paramenters to evaluate loading in terms of:
CPU, memory, disk, networking activity, number of

users / processes. This numbers are computed includ-
ing the specmark of the particular host in order to
allow a comparative value to other hosts.

The availability level of the agency is published in
order that this parameter can be obtained from a que-
rying to the agency or via atrader.

Availability Evaluation: One can think of an evalua-
tion process or daemon just being started when there
is an availability request, however, availability has to
consider a certain backtracking in time, reflecting the
time the application will execute. Considering this
approach availability evaluation demands a continu-
ous running daemon on every host which puts its
resources available. There is also an associated peri-
odic logging of the host loading history.

Continuous running process doing logging are not
always welcome because they demand CPU time and
storage resources. However one can think of a dedi-
cated firmware based co-processor(s) on general pur-
pose hosts doing this kind of task while logging can
be constrained to a maximum number of history sam-
ples, by removing intermediate samples from the his-
tory archive as time passes by.

Cheap dedicated firmware co-processors which can
be remotely programmed, like Sun´s Java chips
[Javachip96], can help a lot in distributed monitoring
tasks and management applications.

3.6.Trading Service

In case of querying via a trader [Trader95, Lima95],
the query includes a range of availability of a specific
kind of resource. The trader replies returning a list or
simply the most available agency. The selection
phase can include a direct interrogation before con-
tracting for the loading of the new service by the
application.

An additional step at this point allows fine tuning, by
using a customized agent to evaluate the agency
more closely in case of a very sensible application.
This can be added as a trading extended service at the
trader side or at the application level itself.

6 of 116 of 11

4. Some Implementation Details

4.1.Orbix

The ORB consists of library functions linked with
clients and servers together with the runtime system.
This approach should provide improved throughput
and better application distribution.

The server library can both issue and receive
remote object operation requests, while theclient
library can only initiate such requests. Adaemon is
responsible for launching server processes dynami-
cally as required, in accordance with the various acti-
vation policies described in the CORBA
Specification. Non-distributed client / server applica-
tions in the same address space, can be built using
the server library alone. Figure 4 shows how Orbix
handles client / server connections.

API: An important step in generating a distributed
application is the definition of the interfaces by
which clients and servers will communicate. IDL
interfaces are formal standardized interfaces defining
the provided services and how clients shall invoke
them. Figure 5 shows interfaces on the ORB in inter-
service communication.

IDL: compiler uses the IDL file to generate the client
stubs and the server skeletons. If client and server are
going to be on different platforms then the same IDL
will be compiled for both platforms with appropriate
client and server code.

Stub & Skeleton: Stubs can be used within the client
application as local object method invocations, while
on the Server side these methods, i.e., skeletons must
be implemented to produce the desired result. Server

1.Client contacts daemon,
explicitly defined or
identified via Locator or
Name Server.

2.Daemon opens
connection to server.

3.Connection to server
passed to client. The
daemon has no further role
to play.

Daemon waits new request.

FIGURE 4. Client/Server connection w/orbix daemon.

Server 1

Server 2
Orbix
Client

Orbix
Daemon

1.
2.

3.

Client Host

application developer can work completely indepen-
dent of the client developer.

Dynamic Invocation: A dynamic method invocation
by a client establishes communication between client
and server transparently initiated by the daemon. If
the host supports the particular server, the daemon
will establish a connection with the server, pass it
back to the host and drop out.

In all cases the client / server interoperability is estab-
lished while location and nature of the server host is
kept completely transparent. The daemon is only
concerned with the appropriate servers to be running
and client / server connections, it is not an ORB
itself.

BOA (Basic Object Adaptor): On Orbix, BOA func-
tions are: publishing the interface of an object in the
implementation repository (putit), remove it (rmit),
list all registered interfaces (lsit), detailed listing of
an interface (catit), show an active object status
(psit), kill an active object (killit).

The locator service is used for transparent inter-
agency service location. On Orbix it is possible to
include a set of interfaces in a group and also create a
group of hosts.

4.2.Passing code messages

There is currently an OMG’s request for proposal on
passing object by value.The subject of passing
objects [Lange95] is handled here on a Orbix plat-
form passing code as a message in sequence type
parameter format.The following results are still based
on Orbix 1.3.

FIGURE 5. CORBA Server / Server communication.

Service Object
Implementation

BOASkeletonsStub ORB
InterfDII

ORB Core

ORB Core
DII Stub BOAORB

Interf
Skeletons

Service Object
ImplementationOne agency

Another agency

7 of 117 of 11

The object to be sent is read from the persistent
implementation repository at the sending site as a
binary sequence into an IDL sequence type parame-
ter. The sequence is sent as a normal parameter to the
receiving site and persistently stored in its local
implementation repository.

The implementation repository is based on a file sys-
tem, and this imposes that every agent has to be on a
separate file, specially if this agent is going to be
moved somewhere. A better approach would be the
usage of an object-oriented database where status
and code could be persistently stored specially when
the number of agents starts to increase a lot. This is
directly related withpersistence service,but is not
the subject of this work.

Messages of ascii type and binary type up to the size
of 1MByte are considered for most applications and
being passed without major problem.

In order to estimate an upper bound on the message
size and a lower bound on the transfer rate, the per-
formance was measured on the less performing
machines in the considered network. The plots pre-
sented in Figure 6 and 7 are based on sparc 1+ and
sparc 2 machines non-dedicated to this purpose over
ethernet running and sequence sizes from 10KB to
10MB. In Figure 6 the transfer rate drops quickly as
the message size goes above 2 MB due to memory

FIGURE 6. IDL-sequence passing over ethernet in a non
dedicated environment with client/server running locally.

1

2

3

4

5

6

7

8

9

10

0
0 50 100 200 400 800 1M 2M 4M 8M 10M

// // // //

sequence size (MBytes)

tr
an

sf
er

 r
at

e
(1

00
K

B
yt

es
/s

)

11

12

14

13

sparc 2
48MBytes mem max.
262MBytes virtual mem max.

sparc 1+
28MBytes mem max.
106MBytes virtual mem max.
2 different cpu / mem loading

allocation and because client and server processes
run on the same machine reaching higher rates then
in Figure 7 where client and server run on different
machines.

Actually the memory allocated to pass the sequence
imposes a practical limit to message size, but a com-
promise can be obtained by spliting the full message
into packets reflecting a predefined buffer size. There
is a reference [Schmidt95] where image files for mul-
timedia applications up to 64 MBytes are passed in
packets of 124 KBytes using an additional external
high speed channel.

4.3.Application start-up

The steps regarding start-up of an application under
the described environment is resolved by the same
mechanism described for the contracting of available
services and the loading of new services, i.e., exist-
ing services are contracted and unavailable services
are distributed to selected agencies departing from an
implementation repository site.

This has nothing to do with OMG’s Object Start-up
Service [OSS95] which deals with the start-up of the
ORBs.

4.4.Implementation Repository

There are different possibilities for the distribution of
unavailable services regarding their location at start-
up.

In a simple case, the implementation repository of
the application is hold locally at the user’s machine

FIGURE 7. Same conditions as before but with client/
server on different hosts.

1

2

3

4

5

6

7

8

9

10

0
0 50 100 200 400 800 1M 2M 4M 8M 10M

// // // //

tr
an

sf
er

 r
at

e
(1

00
K

B
yt

es
/s

)

sequence size (MBytes)

8 of 118 of 11

and the new services are redistributed according to
the application’s demand.

At the other extreme, a more sensible application
where more reliability is needed a implementation
repository server can be added to the context in order
to hold a copy of all services that are to be distributed
in this context. With such a server, start-up can
always start redistribution from this repository
server. The same server is in the last position of
every list of possible implementation repositories
used by any application in this context. This server
guaranties that an implementation repository copy
always exists, even in case of failing hosts.

The possibility of failure of this main repository
server exists and it can be treated using the same
approach, i.e., adding another server to increase
redundancy and so on up to level of acceptable cost /
reliability ratio.

4.5.Unavailable services distribution

Independent of the kind of implementation reposi-
tory, the new services are redistributed according to
the application’s demand on load balancing and / or
inverse caching. This means that if distribution is not
demanded by the application in the current environ-
ment circumstances, then it runs just locally. Another
possibility is that the application has to wait in the
start-up queue for sufficient resources.

4.6.Results on application distribution

An application start-up result is presented next,
where the two already mentioned situations demand-
ing migration of objects are considered, i.e., load bal-
ancing and inverse caching.

Inverse caching: conditions are considered as fol-
lows:

• an object needs to move to a specific site in order
to run attached to a contracted service;

• the moving object has to contract the local agent
support and demand migration to where the spe-
cific service is;

• the agent support locates the specific service and
sends the agent calling the remote agent support
as a inherited class / method.

Load-balancing: conditions are similar to the previ-
ous ones with additional considerations:

• an appropriate agency has to be contracted under
the availability service query criteria;

• availability services are identified in a unique way
by concatenation with the host name and invoca-
tion using multicast;

• the selected availability service name is passed to
the local agent support which locates the specific
service and sends the agent whose migration was
requested.

Evaluation: of the an application was made were a
stationary client shares the execution of the problem
with a moving server. The client searches for enough
memory and cpu for the moving server to execute.
For that the client contacts every host in the allowed
group, including itself, for availability. The status of
the execution is kept by the client while the server
when restarted on another host is always in its initial
state.

In order to decouple the test from the previous test of
code passing performance in section 4.2, the actual
code of the server is made available on every host so
that only the execution is passed to the server on the
next selected host. The transparent distribution of the
application allows exactly the same application to be
started several times running concurrently with every
other new one started.

4.7.Updating and Debugging of an Application

Once a application system is released and running, it
can be very cumbersome to bring it down for an
update and subsequent start-up and associated debug-
ging.

In an application build with agents each agent can be
shutdown and restarted separately without a shut-
down / start-up of the whole application. The updat-
ing and debugging of a full application can be
simplified to the updating of an agent.

Some additional considerations can be done about
updating when resulting in replication, spliting or
inclusion of a new agent into the context. This may
demand the update of the interface of some agent or

9 of 119 of 11

group of agents. In case of merging, the resulting
agent may inherit all the interfaces of the group of
merging agents.

4.8.Management Aspects

Agents: to be moved have to regard interoperability.
In this paper some testing of performance is done in a
homogeneous environment and migrating agents
could be implemented in a common C++. An impor-
tant ability is to be able to upgrade platforms and
software over the life-cycle of a process in a more
flexible manner, replacing components over time and
/ or a complete software update. The similarities
between Java and C++ makes it atractive for thie
work with Java introducing some interesting features
[OSF96]. The performance issue of running inter-
preted as opposed to compiled code is not necessarily
a major constraint while the basic requirement is that
any new remote component must be able to have a
Java runtime like.

Problem solving strategies: can be more then one
and so different strategies could be allowed in differ-
ent agents, with the most effective giving the earliest
response.

Management: can regard the application or the agen-
cies. Management of applications stands for task
management but the management of the agencies is
outside the focus of the application which may not
have authority for that. For the application, if a ser-
vice is not available it should get another one from a
trading service and / or decide how to proceed. Man-
agement of agencies consists of managing a collec-
tion of agencies seen from the service provider side
and stands to distributed system management. Any-
how services which interact with other remote ser-
vices is an application itself using task management.

Levels: are proposed for a step wise allowance of
sensing and reacting, with the history of the system
being used for every new hint issued. According to
section 2.3 a learning phase about the environment is
needed followed by an execution phase and a succes-
sive repetition of both will allow the system to be
kept up-to-date.

Some fixed services for management were imple-
mented [Queiroz96] and next services will regard the
advantages introduced by mobility

5. Conclusion
The proposed architecture introduces anavailability
serviceas a way to combine the use of fixed services
and moving services in a environment where avail-
able services are contracted and unavailable services
are customized and then contracted. This is clearly
illustrated by an application start-up where transpar-
ent code distribution and later redistribution due to a
specific demand is possible. Every machine open for
new applications in a certain context has to have the
availability service built as a fixed service. The usage
of the trader and the mobility service are associated
and particularly important in heterogeneous environ-
ments.

Distributed Client / Server paradigm can be extended
with the usage of code migration. Migration or
mobility makes it possible to reduce network traffic,
to optimize load balancing, and to provide better
response time to the user. Mobility can be considered
as an essential component of future open systems
improving software distribution at large, specially if
the technology runs across multiple platforms. Addi-
tional requirements are introduced, particularly on
security and interoperability that make it hard to run
with the same performance of native code. But, after
all, native code is not mobile.

Some scientific applications in large experimental
areas need to run continuously during long periods
but also stand dynamic reconfigurations due to con-
tinuous upgrading of the experimental hardware/soft-
ware and also due to the search for special events.
For management of applications with the characteris-
tics above it is quite important to have the ability to
upgrade platforms and software over the life-cycle of
a process in a more flexible manner, replacing com-
ponents over time and / or a complete software
update.

Acknowledgments: The present work has support
from: FAPESP, CAPES and CNPq.

10 of 1110 of 11

6. References
[Cardozo93] .Cardozo, E., Sichman, J. S.,
Demazeau, Y.,Using the Active Object Model to
Implement Multi-Agents Systems, Proc.of the 5th
IEEE Conf.on Tools with Artificial Intelligence, Bos-
ton, USA, 93.

[CFA95]. OMG, Common Facilities Architecture,
Revision 4.0, OMG Document # 95-1-2, 3 January
95.

[CORBA9x]. OMG, The Common Object Request
Broker: Architecture and Specification, rev 2.0, july
1995.

[Fischer95].Fischer, G.,Rethinking and Reinvent-
ing Artificial Intelligence from the Perspective of
Human-Centered Computational Artifacts, Lecture
Notes in Artificial Intelligence, #991 Springer, Octo-
ber, 95, pp 1-11.

[Franklin96]. Franklin,S., Graesser,A., Is it an
Agent, or just a Program?: A Taxonomy for Autono-
mous Agents, Proc.of the 3rd International Workshop
on Agent Theories, Architectures, and Languages,
Springer, 96, http://www.msci.memphis.edu/~frank-
lin/AgentProg.html.

[Goldszmidt96]. Goldszmidt, G. S.,Distributed
Management by Delegation, PhD Thesis, Graduate
School of Arts and Sciences, Columbia University,
96.

[Java96].OSF, Java Mobile Code Paper, January
15, 96. http://www.gr.osf.org/projects/web/java/
whit_pap.htm.

[Javachip96].Sun Microsystems Inc., SunnyVale,
CA, USA February 2, 96, http://www.sun.com/sparc/
newsreleases/nr95-042.html.

[Iglesias95].C.Iglesias, J.C.Gonzalez, J.R.Velasco,
MIX: A General Purpose Multiagent Architecture,
Lecture Notes in Artificial Intelligence, #1037
Springer 96, pp 251-266.

[Lange95].Lange,D.B., Chang,D.T.,Aglets Work-
bench, IBM Corporation, August, 96, http://
www.ibm.co.jp/trl/aglets.

[Lima95]. Lima Jr., L.A.P., Madeira, E.R.M.,A
Model for a Federative Trader, Open Distributed

Processing: Experiences with Distributed Environ-
ment, pp.173-184, Chapman&Hall, 95.

[Loyolla94]. Loyolla, W.P.C., Madeira, E.R.M.
Mendes, M.J; Cardozo,E., Magalhães,M.F.,Multi-
ware Platform: An Open Distributed Environment for
Multimedia Cooperative Applications, IEEE Com-
puter Software & Applications Conference, COMP-
SAC’94, Taipei, Taiwan, November 1994.

[MAGMA95]. MAGMA:http://cosmos.imag.fr/
MAGMA/magma_research.html ,1st Feb., 95.

[Queiroz96]. Queiroz,A., Madeira,E., Manage-
ment of CORBA objects monitoring for the Multiware
platform, private communications.

[ObjInt1]. Schmidt,D.C., Vinoski,S.,Object Inter-
connections: Introduction to Distributed Object
Computing (Column1), C++ Report Magazine, Janu-
ary 95.

[ObjInt2]. Schmidt,D.C., Vinoski,S.,Object Inter-
connections: Modeling Distributed Object Applica-
tions (Column2), SIGS C++ Report Magazine,
February 95.

[ObjInt3]. Schmidt,D.C., Vinoski,S., Object Inter-
connections:Comparing Alternative Client-side Dis-
tributed Programming Techniques (Column3), SIGS
C++ Report Magazine, May 95.

http://siesta.cs.wustl.edu/~schmidt/publications.html.

[ObjInt4]. Schmidt,D.C., Vinoski,S., Object Inter-
connections: Comparing Alternative Server Pro-
gramming Techniques (Column4), SIGS C++ Report
Magazine, October 95.

http://siesta.cs.wustl.edu/~schmidt/publications.html.

[ObjInt5]. Schmidt,D.C., Vinoski,S., Object Inter-
connections:Comparing Alternative Programming
Techniques for Multi-threaded Servers (Column5-6-
7), SIGS C++ Report Magazine, February-April-
July/August 96. http://siesta.cs.wustl.edu/~schmidt/
publications.html.

[ObjInt8]. Schmidt,D.C., Vinoski,S., Object Inter-
connections:Distributed Callbacks and Decoupled
Communication in CORBA (Column8), SIGS C++
Report Magazine, October 96, http://
siesta.cs.wustl.edu/~schmidt/publications.html.

11 of 1111 of 11

[Orbix96]. IONA Technologies, Ltd.,OrbixTalk:
Management Overview, April 96, http://
www.iona.com/Orbix/Talk/MO/CorbaIntro.html.

[OSS95].OMG, Object Startup Service, IBM sub-
mission, OMG TC Document 95.10.7.

[Russel95].Russel, S., Norvig, P.,Artificial Intelli-
gence, A Modern Approach, Prentice Hall Series in
Artificial Intelligence, New Jersey, USA, 1995, page
33.

[Sichman95].Sichman, J. S., Demazeau, Y.,
Exploiting Social Reasoning to Enhance Adaptation
in Open Multi-Agent Systems, Lecture Notes in Arti-
ficial Intelligence, #991 Springer, October, 95, pp
253-263.

[Schmidt95]. Schmidt,D.C., Harrison,T., Al-
Shaer,E., Object Oriented Components for High-
speed Network Programming, Proc.of the USENIX
Conf. on Object-Oriented Technologies, Monterey,
CA, June 95, http://siesta.cs.wustl.edu/~schmidt/
publications.html.

[Trader95]. ODP, Trading Functions, ISO/IEC
JTC1/SC 21, 20 June, 95, ftp://ftp.dstc.edu.au/pub/
arch/RM-ODP.

[Vinoski93]. Vinoski, S.,Distributed Object Com-
puting With CORBA, C++ Report Magazine, july/
august 93.

