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A Temporal Extension to the Parsimonious Covering TheoryJacques Wainer and Alexandre de Melo RezendeAbstractThis paper presents a temporal extension to the parsimonious covering theory (PCT),so instead of associating to each disorder a set of manifestation as it is done in PCT,one associates to each disorder a temporal graph that contains information about dura-tion and elapsed time between the beginning of the manifestations. The de�nitions ofsolutions for temporal diagnostic problems is presented as well as algorithms that com-pute this solution. We also include some limited form of probabilistic information intothe model in order to study how categorical rejection, the elimination of explanationsthat contain a disease for which a necessary manifestation is not present, interacts withtemporal information. An application in a medical domain is presented and discussed.1 IntroductionDiagnostic reasoning is a complex cognitive process that involves the knowledge about aparticular domain, general and domain speci�c heuristics about the diagnostic reasoningitself, and constrains imposed by cognitive limitations of the human diagnosticians. Par-simonious covering theory (PCT) [Pen90] is an attempt to formalize diagnostic reasoning.PCT has the advantage that it makes it explicit and self-contained the roles of the domainknowledge, domain heuristics, general diagnostic heuristics and provides some intuitions onhow human cognitive limitations could impart on a diagnostic problem solving.A limitation of PCT is that the domain speci�c knowledge is atemporal, that is, to eachdisease (cause) one associates a set of symptoms (e�ects), but it is not possible to specifyhow these symptoms evolve with time. Because of this atemporality, PCT can only be usedto solve diagnostic problems in which all relevant symptoms are observable at the momentof diagnostic. But in many medical domain, and we expect in other diagnostic domains,that is not the case.This paper extends the basic PCT so to each disease one can associate a temporalevolution of symptoms, or a history of symptoms. We call this extension temporal PCT(t-PCT). In a second extension, we included some limited form of probabilistic informationto the t-PCT in order to explore how categorical rejection, that is, the elimination of adisease due to the fact that one of its necessary manifestations is not present, would workin temporal domains. We call this second extension categorical/temporal PCT (ct-PCT).The next section describes the basic Parsimonious Covering Theory. Section 3 discussesthe temporal PCT and section 4 discusses the categorical/temporal PCT. Section 5 reportson a diagnostic system for food borne diseases we implemented, and compare its e�ciency1
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654321 causes(m1) = fd1; d2; d3; d4g causes(m2) = fd5; d6; d7; d9gcauses(m3) = fd2; d3; d5; d6g causes(m4) = fd1; d2; d8gcauses(m5) = fd7; d8; d9g causes(m6) = fd2; d4; d8gFigure 1: Causal network of a diagnostic knowledge base KB = hD;M;Ci.with a standard PCT implementation of the same diagnostic system. Finally section 6discusses the limitations of the model proposed, and explore some future research topics.2 Basics of Parsimonious Covering TheoryThe basic version of PCT [Pen90] uses two �nite sets to de�ne the scope of diagnosticproblems (see Figure 1). They are the set D, representing all possible disorders dl thatcan occur, and the set M , representing all possible manifestations mj that may occurwhen one or more disorders are present.The relation C, from D to M , associates each individual disorder to its manifestations.An association hdl; mji in C means that dl may directly cause mj ; it does not mean that dlnecessarily causes mj . The sets D, M , and C together are the knowledge base (KB) of adiagnostic problem.To complete the problem formulation we need a particular diagnostic case. We useM+,a subset of M , to denote the set of observations, that is, manifestations that are presentin the case.De�nition 1 A diagnostic problem P is a pair hKB;Cai where:� KB = hD;M;Ci is the knowledge base, composed of{ D = fd1; d2; : : : ; dng is a �nite, non-empty set of objects, called disorders;{ M = fm1; m2; : : : ; mkg is a �nite, non-empty set of objects, called manifesta-tions;{ C � D �M is a relation called causation; and� Ca = hM+i is the case, and M+ �M is the set of observations.2



2.1 Solution for Diagnostic ProblemsIn order to formally characterize the solution of a diagnostic problem, PCT de�nes thenotion of \cover", based on the causal relation C, the criterion for parsimony, and theconcept of an explanation (explanatory hypothesis).De�nition 2 For any dl 2 D and mj 2M in a diagnostic problem P� effects(dl) = fmj jhdl; mji 2 Cg, the set of manifestation directly caused by dl;� causes(mj) = fdljhdl; mji 2 Cg, the set of disorders which can directly cause mj.The set effects(dl) represents all manifestations that may be caused by disorder dl, andcauses(mj) represent all disorders that may cause manifestation mj . These functions canbe easily generalized to have sets as their arguments.De�nition 3 The set DL � D is a cover of MJ �M if MJ � effects(DL).De�nition 4 A set E � D is an explanation of M+ for a diagnostic problem i� E coversM+, and satis�es a given parsimony criterion.In the following de�nition we present the possible parsimony criteria:De�nition 5� A cover DL of MJ is said to be minimum if its cardinality is the smallest among allcovers of MJ .� A cover DL of MJ is said to be irredundant if none of its proper subsets is also acover of MJ ; it is redundant otherwise.� A cover DL of MJ is said to be relevant if it is a subset of causes(MJ ); it is irrel-evant otherwise.In many diagnostic problems, one is generally interested in knowing all plausible expla-nations for a case rather than just a single explanation because they, as alternatives, cansomehow a�ect the course of actions taken by the diagnostician. This leads to the followingde�nition of the problem solution:De�nition 6 The solution of a diagnostic problem P=hKB;Cai, designated Sol(P ), isthe set of all explanations of M+.In this paper we will use irredundancy as the parsimonious criterion, as suggested by[Pen90]. If one is interested in developing general algorithms for diagnostic problems, irre-dundancy seems to be the preferable choice since from the set of all irredundant explanationsone can mechanically generate the set of all minimal explanations (by selecting the sets ofminimal cardinality) and the set of all relevant explanations (by systematically adding newdisorders to some of the irredundant explanations).3



It is important to notice that minimality, which most likely one would choose as theparsimony criteria based on the Occam razor principle, is not a general heuristic, but adomain speci�c choice. For example in domains where disorders have di�erent likehoodor prior probabilities it may be more plausible say that two fairly common disorders areresponsible for a set of observations, than to say that a single extremely rare disorder is thecause.2.2 Limitations of PCTThe main problem with the basic version of PCT is that the solution of a problem tendsto have many alternative explanations. Irredundancy as the parsimony criteria is too weaka criteria to signi�cantly reduce the number of alternative explanations and thus, for mostpractical applications there is the need remove some of the explanations from the solutionbased on domain speci�c heuristics. Or, at least, provide a way of ranking the explanationsin the solution set so that more \plausible" explanations are presented before less \plausible"ones.A more elaborated version of PCT (called probabilistic causal model) is also presentedin [Pen90] which incorporates probabilities to the links between a disorder and its mani-festations, that is, the probability that the manifestation occurs provided that the disorderis present. This probabilistic information can be used to rank the explanations by theprobability of it being the correct one.Furthermore, this probabilistic information allows one to remove from the solution setthose explanations that contain a disorder for which a necessary manifestation was notobserved in the case. If a disorder di necessarily causes a manifestation mj , that is, ifthe probability that mj is present given di is 1, then if mj is known not to be among theobservations of the case, then one can remove the explanations that contain di. This iscalled categorical rejection. We will discuss categorical rejection, in particular in thepresence of temporal information further below in this paper.2.3 Algorithms for PCTThere are basically two approaches for developing algorithms for PCT based on how the setM+ is presented. The set could be presented a priori to the algorithm, in which case wewill say that the algorithm is non-interactive. This seems appropriate in situations whenone can monitor all possible manifestations, so that the knowledge of which manifestationsare present in the case is readily available. In the second alternative, the observations inM+ are presented to the algorithm one at a time, possibly as the answer to a questionposed by the diagnostic system. This approach seems more appropriate in situation whereit may be costly to obtain all observations, which is the case for medical diagnostics.Algorithms may also di�er in the parsimonious criterium used to de�ne an explanation:irredundancy or minimality. [Reg85] discusses two algorithms that uses minimality as theparsimonious criterium, HT an interactive algorithm, and SOLVE a non-interactive. [Pen90]presents the interactive algorithm BIPARTITE which uses irredundancy as the parsimoniouscriterium, which will be the base for the algorithms presented in this paper.4



BIPARTITEmakes use of generators, a compact representation of alternative explanationsfor a case. For the sake of completeness, we will very brie
y describe some concepts andoperations on generators since they are relevant for the algorithms we develop later in thispaper. The interest reader should refer to [Pen90] for a more complete explanation.If g1; g2 : : : gm are pairwise disjoint subsets of D, then GI = fg1; g2 : : : gmg is a generator,and the class generated by GI is [GI ] = ffd1; d2; : : : ; dmgjdi 2 gig. G = fG1; G2; : : : ; GNgis a generator-set if GI is a generator, and [GI ] \ [GJ ] = ;.We de�ne the operations res, div and augres, where G and Q are generator-set, GIand QJ are generators, HI � D, and qj 2 QJ . Each operation has multiple de�nitionsdepending whether the arguments are generator-sets, generators or sets of disorders.res(G;Q) = ( G if Q = ;res(res(G;QJ); Q� fQJg) otherwiseres(G;HI) = [GI2G res(GI ; HI)res(GI ; QJ) = ( ; if QJ = ;res(GI ; qj) [ res(div(GI; qj); QJ � fqjg otherwiseres(GI ; HI) = ( ffg1 �HI ; : : : ; gn �HIgg if gi �HI 6= ; for all i; 1 � i � n; otherwisediv(G;HI) = [GI2Gdiv(GI; HI)div(GI; HI) = fQkjQk = fqk1; qk2; : : : qkngand qkj = 8><>: gj �HI ifj < kgj \HI ifj = kgj ifj > kaugres(G;HI) = [GI2G augres(GI ; HI)augres(GI ; HI) = ( ffg1 �HI ; : : : ; gn �HI ; Agg if gi �HI 6= ;; A 6= ;; otherwisewhere A = HI �Sni=1 gi2.4 ConclusionsPCT is a conceptually simple and powerful theory of diagnostic reasoning. It clearly sepa-rates the role of domain knowledge (sets M , D and principally the relation C), the role ofgeneral diagnostic reasoning (the parsimony criteria and the de�nition of cover), and domainheuristic (the choice of the parsimony criteria, the algorithms to further reduce or to rankthe solution set, the algorithms for generating questions in an interactive algorithm). Thisseparation allows one to gather and express the domain knowledge separately from domain5



heuristics, as opposed to rule base diagnostic systems [Sho76, Wei78], for example. For manydomains of medical diagnsotics, PCT seems an appropriate model of diagnostics, becausethe form of the knowledge available in medical manuals and text boooks [Man90, Ber92] arein the form need by the PCT knowledge base: a description of what symptoms a particulardisease cause (or may cause).3 Temporal PCTThe aim of this research is to extend PCT so that instead of associating to each disorder aset of manifestation, one could associate an evolution of manifestations. Thus, the knowl-edge base could state that disorder d1 causes �rst m1 which will last between 2 and 5 days,followed in 2 to 3 days by m2 which may last an undetermined amount of time, and willbe followed at any moment by m3. And so on. We accomplish this temporal representa-tion using a graph, where vertices are manifestations and directed arcs between verticesrepresent temporal precedence. If there is quantitative information about the duration ofthe manifestation, it is associated with the corresponding node; if there is quantitative in-formation about the elapsed time between the start of two manifestations, it is associatedwith the corresponding arc. Furthermore, quantitative information are not represented as asingle number, but as an interval. Therefore one can state that a manifestation will followanother in 2 to 3 days. To each disorder one associates one such temporal graph.Furthermore, one would also like to allow for some uncertainty in expressing the in-formation about the observations. Describing the case, one should be able to say thata particular manifestation started anytime from 5 to 7 days ago, and lasted from 2 to 4hours, that another manifestation is also present but one has no information when it started.This uncertainty about the temporal information about the observations in the case can beaccomplished by using temporal graph to represent the case as well.3.1 Temporal RepresentationTime points will be the primitive objects to represent temporal information. Intervalsare de�ned as non-empty convex sets of time points (points on the time line), representedby I = [I�; I+] such that I� and I+ are the extreme points of interval I , respectively(I� � I+; I� > I+ indicates an empty interval I). We use the following notations ofintervals operations:� I + J = [I� + J�; I+ + J+];� I \ J = [max(I�; J�); min(I+; J+)];� I � p) I+ � p, where p is a time point.A temporal graph is a direct , acyclic, transitive, and not necessarily connected graphwhere the nodes are manifestations. The existence of an arc from mi and mj in a temporalgraph denotes the fact that the beginning of the occurrence of manifestation mi mustprecede the beginning of the occurrence of mj .6
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9DIST8((m4;m5)) = [1; 3]DIST8((m5;m6)) = [2; 5]DIST8((m4;m6)) = [3; 8]DUR8(m6) = [1; 2] DIST9((m2;m5)) = [2; 5]DUR9(m2) = [10; 15]DUR9(m5) = [7; 13]Figure 2: Temporal graphs of the disorders d8 and d9 with their temporal distance functionsand duration functions.De�nition 7 The temporal graph of a disorder dl 2 D, Gl = (Vl; Al), is a direct,transitive and acyclic graph de�ned as:� Vl �M � set of manifestations directly caused by dl, and� Al =f(mi; mj)j the beginning of mi occurs before the beginning of mj when the disorderdl is said to be presentg.The impossibility to de�ne cycles is a major restriction on the expressive power of thetemporal representation formalism. In other words, it is not possible to represent recurringevents. Nevertheless, this restriction is important since it reduces the complexity of thereasoning process [Con91].The temporal distance between manifestations and the duration of a manifestation arerepresented by functions on the graph, denoted by DIST and DUR, respectively. Thetemporal distance function DIST associates an interval R = [R�; R+] to each arc of atemporal graph Gl. DIST (Gl; (mi; mj)) = R for (mi; mj) 2 Al, which we will abbreviateas DISTl((mi; mj)) = R, states that the elapsed time between the beginning of mj and thebeginning of mi in the temporal graph Gl of dl must be within the interval R. The durationfunction DUR associates to each vertex mi of a temporal graph Gl em G an interval J ,that speci�es that the duration of mi must be within the interval J .The transitivity of the temporal graph must be consistently carried over to the DISTfunction: if DISTl(mi; mj) = R1 and DISTl(mj ; mk) = R2 then DISTl(mi; mk) =R1+R2.Figure 2 illustrates the temporal information about the disorders d8 and d9 of thediagnostic problem shown in Figure 1.3.2 Temporal Diagnostic Problem FormulationDe�nition 8 The knowledge base of a temporal diagnostic problem is the tuple KB =hD;M;G;DIST;DURi where D and M are de�ned as before, G is a set of temporal graphs,each one associated with one disorder of D, DIST and DUR are the temporal informationfunctions de�ned above.In order to represent the case, we will need the set of observationsM+, as before, and thetemporal information about these observations. The function BEG+ associates an interval7



to some of the observations in M+. BEG+(mj) = I , mj 2 M+, states that mj started atany time within interval I . The origin of the time line for describing BEG+ is arbritrary,provided the same origin is used in all temporal information for that case.Similarly, the function DUR+ associates to some of the observations in M+ an interval,such that the duration of the observation was anything within that interval. It is importantto notice that the model allows for incomplete knowledge about the observations. Both thebeginning and the duration of a observation can be stated as an interval or they may notbe stated at all.De�nition 9 A temporal diagnostic problem P is a pair hKB;Cai where KB is de-�ned above, and Ca = hM+; BEG+; DUR+i is the case.One can de�ne the effects and causes functions in a similar way to de�nition 2. Forexample causes(mj) = fdljmj 2 Vl, for any temporal graph Gl = (Vl; Al) 2 Gg, representsthe set of disorders that may cause mj .3.3 Solution for a Temporal Diagnostic ProblemIn order to de�ne a solution for a diagnostic problem, we need to de�ne a set of conceptsabout temporal inconsistency. This will eventually allow us to remove the explanations thatcontain disorders in which the evolution of manifestations contradicts the evolution of theobservations in the case. For example, if for a certain disorder m1 precedes m2 but in thecase, the occurrence of m1 started after the occurrence of m2, then one can disregard allexplanations that contain such disorder, since it contradicts the temporal information inthe case.De�nition 10 For a dynamic diagnostic problem P let Gl = (Vl; Al) 2 G, (mi; mj) 2 Al,such that mi; mj 2 M+. The arc (mi; mj) is temporally inconsistent with the casei� DISTl((mi; mj))\ (BEG+(mj)� BEG+(mi)) = ;.BEG+(mj)�BEG+(mi) is the possible range for the elapsed time between the beginning ofmi and mj , given the uncertainty on the exact moments that the two observations occurred.DISTl((mi; mj)) corresponds to the range that the disorder dl allows for the elapsed timebetween the manifestations. If there is no intersection between these two intervals, thennone of the possible distances between the beginning of the observations corresponds to whatthe disorder expects, and thus the arc (mi; mj) as speci�ed by the disease dl is temporallyinconsistent with the case. The inconsistency criterion de�ned above is equivalent to onedescribed in [Con93].De�nition 11 For a dynamic diagnostic problem P let Gl = (Vl; Al) 2 G the temporalgraph of a disorder dl 2 D. The disorder dl is temporally inconsistent with the caseCa = hM+; BEG+; DUR+i i�� exist at least one arc (mi; mj) 2 Al temporally inconsistent with respect to the case ,or 8



� exist at least a vertex mj 2 Vl, such that, mj 2M+ and DURl(mj)\DUR+(mj) = ;.Thus a disorder is temporally inconsistent with the case, if it has a temporally inconsistentarc, or if the range for the duration of one of its manifestations does not agree with therange for the duration of the corresponding observation.Finally, based on the above de�nitions, we formalize the notions of temporally consistentexplanation and temporally consistent solution.De�nition 12 A set E � D is said to be a temporally consistent explanation of thecase for a dynamic diagnostic problem P i�1. E covers M+, and2. E satis�es a given parsimony criterion, and3. for any dl 2 E, dl is not temporally inconsistent with the case.De�nition 13 The temporally consistent solution of a dynamic diagnostic problemP = hKb;Cai designated by Sol(P ), is the set of all temporally consistent explanations ofthe case.3.4 AlgorithmWe present here an interactive algorithm that computes all explanations to a temporal di-agnostic problem. The algorithm is a modi�cation of the BIPARTITE algorithm in [Pen90].The important aspect of the algorithm is that temporal consistency is not implemented asa �lter, that is, it is not applied after the original BIPARTITE algorithm has generatedthe solution, but it is incorporated very early into the process of merging the causes on the\new" observation into the set of current explanations. Thus the algorithm has to deal withsmaller sets of explanations.The auxiliary function CTC (check temporal consistency) is used when the beginningof a new observation mj is given, and returns the set of disorders evoked by mj that aretemporally inconsistent with BEG+(mj).function CTC(DL; G;DIST;BEG+ ;mj)variablesDI : set-of-disorders; (* temporally inconsistent disorders *)neighbors: set-of-arcs; (* *)inconsistent: boolean; (* 
ag *)1 begin2 DI = ;;3 while DL 6= ; do4 dl 2 DL;5 Gl = (Vl; Al) 2 G;6 neighbors = f(mi;mj)j(mi;mj) 2 Al, and BEG+(mj) is de�ned g [7 f(mj ;mk)j(mj;mk) 2 Al, and BEG+(mk) is de�ned g;8 inconsistent = false;9 while neighbors 6= ; and not inconsistent do9



10 (mi;mk) 2 neighbors;11 if (BEG+(mi) +DISTl ((mi;mk))) \BEG+(mk) = ;12 then13 inconsistent =true;14 DI = DI [ fdlg;15 endif16 neighbors = neighbors � f(mi;mk)g;17 endwhile18 DL = DL � fdlg;19 endwhile20 return DI ;21 endfunction t-BIPARTITE(KB)variablesmj : manifestation; (* new observation *)hypothesis: generator-set; (* all explanations *)DC , (* consistent disorders *)DI , (* all inconsistent disorders *)H, (* disorders evoked by mj *)HI, (* inconsistent disorders due to BEG *)H0I: set-of-disorders; (* inconsistent disorders due to DUR *)M+: set-of-manifestations;BEG+,DUR+: function;1 begin2 hypothesis = f;g;3 DC = ;;4 DI = ;;5 M+ = ;;6 while MoreObservations do7 HI = ;;8 H0I = ;;9 mj = NextObservation; (* obtain next observation *)10 H = causes(mj );11 H = H �DI ;12 if DUR+(mj) is de�ned13 then14 H 0I = fdljdl 2 H, and DURl(mj) \DUR+(mj) = ;g;15 endif16 if BEG+(mj) is de�ned17 then18 HI = CTC((H �H0I) \DC ; G;DIST;BEG+;mj);19 endif20 hypothesis = res(hypothesis;HI [H0I);21 (*seleciona as hip�oteses correntes n~ao inconsistentes*)22 DI = DI [HI [H0I ;23 DC = (DC [H)� (HI [H0I);24 if (H �DI ) = ; or (hypothesis = ; and M+ 6= ;)10



25 then26 return nil (* there is no consistent explanation *)27 else28 hypothesis = revise(hypothesis;H �DI);29 endif30 M+ = M+ [ fmjg;31 endwhile32 return hypothesis33 end.The function revise in line 28 is de�ne asrevise(G;HI) = F \ res(Q;F )where F = div(G;HI) and Q = augres(G;HI)The functions MoreObservations and NextObservation are entry-points for the modulethat interacts with the patient, asking questions about the presence of manifestations. Inorder to ask e�ective questions this module must have access to current set of explanations,the knowledge base and very likely will use domain speci�c heuristics to select the questionto ask.At the beginning of a new cycle, after a new observation has been entered (line 9), thedisorders evoked by the new observation are checked for temporal consistency with the caseinformation so far (line 11). Then explanations that contain the temporally inconsistentdisorders are eliminated from the set of current hypotheses (line 20) and the new temporallyconsistent evoked disorders are used to update the set of hypothesis (line 28).The example below illustrates the basic ideas of the algorithm. For example in Figure1, we have that S1 = ffd1g; fd2g; fd3; d8g; fd4; d8gg is the set of all explanations (irredun-dant covers) ofM+ = fm1; m4g which are temporally consistent with BEG+(m4) = [10; 10]and DUR+ = ;. Note that all irredundant covers for M+ are consistent given BEG+ andDUR+. Each time a new observation is discovered and the beginning or duration are avail-able, we verify the temporal consistency of the hypotheses in S1, and update the hypothesesin the correct way. Thus, consider m5 new observation of M+, and BEG+(m5) = [16; 18]and DUR+(m5) = [2; 3]. First, we obtain the disorders evoked by m5 (i.e. causes(m5) =fd7; d8; d9g) that are temporally inconsistent with BEG+(m5) and DUR+(m5). As an illus-tration, consider d8 and d9 the disorders in Figure 2. Disorder d8 is temporally inconsistentbecause the arc (m4; m5) with label [1; 3] is inconsistent with BEG+(m4) and BEG+(m5)by De�nition 10 (making the correct substitutions we have ([10; 10]+ [1; 3])\ [16; 18] = ;).On the other hand, disorder d9 is temporally inconsistent because the duration of m5 ind9 is inconsistent with DUR+(m5), by De�nition 11 (making the correct substitutions wehave [7; 13]\ [2; 3] = ;).In the next step, we remove all explanations in S1 that contain these temporally in-consistent disorders. Thus, S2 = ffd1g; fd2gg is the set of all explanations that are notinconsistent. It is worth noting that once a disorder is considered temporally inconsistent itcan not be part of any hypothesis. Finally, the consistent disorders (only d7 in this case) areused to update the current explanations. S3 = ffd1; d7g; fd2; d7gg is thus the set of all ex-11



planations temporally consistent with the case (with m5 added). If no other manifestationis present than S3 represents the temporally consistent solution.3.5 DiscussionThis section presented our �rst extension to PCT, which includes temporal representationof manifestations and observations in the original PCT. As we discussed, this temporalrepresentation allows for many kinds of uncertainty. Time information may be expressedas intervals or may not be expressed at all, both for the knowledge base and for the case.In fact, the t-PCT is a true extension of the original PCT, since by not providing anytemporal information one has both a PCT knowledge base and a PCT case, and in this casethe de�nition of a solution for a temporal diagnostic problem will coincide with the PCT'sde�nition of solution for a diagnostic problem.This true extension property is mainly a positive trait since many diagnostic domains(including some medical domains) are atemporal in the sense described above, and t-PCTcould be the appropriate diagnostic theory for them as well. But the true extension propertyplaces at least some limits in the range of uncertainty allow to describe the case: it is notpossible to state that a observation has already occurred, but it is not present anymore.Or in other words, it is not possible to state constraint on both the beginning time andduration of manifestations (for example that the beginning time plus the duration is lessthen the current time) without stating them.The time representation used here is similar to the ones used by other researchers both inmedical domains [Ham87, Con91, Con93] and robotics [Dou93]. But to our knowledge, thisis the �rst time such representation is used in conjunction with the Parsimonious CoveringTheory.4 Categorical Temporal DiagnosticsAs we mentioned, the basic PCT can be extended so that probabilities can be associatedto each manifestation in a disorder. This information, together with the prior probabili-ties of the disorders themselves allow one to rank the explanations based on the posteriorprobability that the disorders are really present given the observations.But besides ranking the explanations, probabilities can be used to categorically rejectsome explanations from the solution. If a disorder dj necessarily causes the manifestationmi and mi is not among the observations of the case, then one can reject all explanationsthat contain dj . When the manifestations are not atemporal but occur in time, one has tobe sure that there has been enough time for the manifestation mi above to occur, beforecategorically rejecting all explanations that contain dj .4.1 Problem Formulation and its SolutionsIn this paper we are not interested in a general probabilistic (numeric) information relatingmanifestations and disorders, but just some information whether the disorder necessarilycauses the manifestation, or whether the causation is only possible. Thus, in the knowledge12



base KB we add a function POSS that attributes to each vertex of each temporal grapheither the label N , for necessary, or the label P , for possible. Thus, POSS(Gl; mj) = N ,abbreviated as POSSl(mj) = N , states that disorder dl necessarily causes the manifestationmj .For categorical diagnostic problems, one is interested in manifestations known to beabsent in the case, called negative observations. Thus we add, M�, the set of nega-tive observations, and Inow , the time point that represents the moment of diagnosis, toM+; BEG+; DUR+ as the components of the case Ca.We can now de�ne when a disorder is categorically inconsistent with the case.De�nition 14 Let P=hKB;Cai be a categorical diagnostic problem and Gl = (Vl; Al) 2 G.The disorder dl is categorically inconsistent with the case i�� exist an arc (mj ; mk) in Al, such that, POSSl(mj) = N , mj 2M� e mk 2M+, or� exist an arc (mi; mj) in Al, such that, POSSl(mj) = N , mj 2 M�, mi 2 M+ andBEG+(mi) +DIST (mi; mj) � Inow.The de�nition above has two conditions. For both of them, the disorder dl is categoricallyinconsistent due to the combination of two factors: a necessary manifestation is not present(POSSl(mj) = N and mj 2 M�) and there has been enough time for it to happen. Inthe �rst condition, the second factor is warranted because a later manifestation has alreadyoccurred ((mj ; mk) in Al andmk 2M+). In the second one, this factor is warranted becauseall values of a set of valid values (time points) for the beginning mj are lower or equal thanthe actual instant (BEG+(mi) +DISTl(mi; mj) � Inow).Finally, we de�ne an explanation of a categorical dynamic diagnostic problem.De�nition 15 A set E � D is said to be a consistent explanation of the case for anopen dynamic diagnostic problem P = hKB;Cai i�� E covers M+, and� E satis�es a given parsimony criterion, and� for any dl 2 E, dl is not temporally inconsistent, and� for any dl 2 E, dl is not categorically inconsistent.4.2 AlgorithmWe present below an algorithm that interactively solves a categorical/temporal diagnsoticproblem.function ct-BIPARTITE(KB)variablesmj : manifestation; (* new observation *)hypothesis: generator-set; (* all explanations *)DC , (* consistent disorders (temp. and categ.) *)13



DI , (* inconsistent disorders (temp. and categ.)*)H, (* disorders evoked by mj*)HI, H 0I, HCI, H1: set-of-disorders;LCIC1, LCIC2, L1; L2; L3; L4:sets;M+: set-of-manifestations; (* observations *)BEG+, DUR+: function;Inow: time point; (* now *)1 begin2 hypothesis = f;g;3 DC = ;;4 DI = ;;5 LCIC1 = ;;6 LCIC2 = ;;7 M+ = ;;8 Inow=now;9 while MoreObservations do10 mj= NextObservation;11 H = causes(mj );12 H = H �DI ;13 if NextObservation.status = present (* mj 2M+ *)14 then15 HI = ;;16 H 0I = ;;17 HCI = fdljfdl;MLg 2 LCIC1, and mj 2MLg;18 [ fdljfdl; Ag 2 LCIC2, and there exists an arc (mj ;mk) 2 A, such that19 BEG+(mj) +DISTl((mj ;mk)) � Inowg;20 LCIC1 = ffdl;MLgjfdl;MLg 2 LCIC1, and dl 62 HCIg;21 LCIC2 = ffdl; Agjfdl; Ag 2 LCIC2, and dl 62 HCIg;22 if DUR+(mj) is de�ned23 then24 H 0I = fdljdl 2 H �HCI, and DURl(mj) \DUR+(mj) = ;g;25 endif26 if BEG+(mj) is de�ned27 then28 HI = CTC((H � (HCI [H0I)) \DC ; G;DIST;BEG+;mj);29 endif30 hypothesis = res(hypothesis;HCI [HI [H0I);31 DI = DI [HCI [HI [H0I ;32 DC = (DC [H)� (HCI [HI [H0I);33 if (H �DI ) = ; or (hypothesis = ; and M+ 6= ;)34 then35 return nil (* there is no consistent explanation *)36 else37 hypothesis = revise(hypothesis;H �DI );38 endif39 M+ =M+ [ fmjg40 else (*mj 2M�*)41 H1 = fdljdl 2 H, and POSSl(mj) = Ng;42 L1 = ffdl;MLgjdl 2 H1, and ML = fmkj(mj ;mk) 2 Algg;14



43 L2 = ffdl;MLgjfdl;MLg 2 L1;ML \M+ 6= ;g;44 HCI = fdljfdl;MLg 2 L2g;45 H1 = H1 �HCI;46 L3 = ffdl; Agjdl 2 H1, and A = f(mi;mj)j(mi;mi) 2 Algg;47 L4 = ffdl; Agjfdl; Ag 2 L3, and there exists an arc (mi;mj) 2 A, such that48 BEG+(mi) +DISTl((mi;mj)) � Inowg;49 HCI = HCI [ fdljfdl; Ag 2 L4g50 hypothesis = res(hypothesis;HCI );51 DI = DI [HCI;52 DC = DC �DI ;53 LCIC1 = UPDATE(LCIC1; L1 � L2);54 LCIC2 = UPDATE(LCIC2; L3 � L4);55 if hypothesis = ; and M+ 6= ;56 return nil57 endif58 endif58 endwhile60 return hypothesis61 end.The algorithm works by keeping track of two lists of disorders that are candidates forcategorical rejection. A disorder is a candidate for categorical rejection if one of itsnecessary manifestations is not present in the case, but for which one does not have yetenough information on whether that necessary manifestation should have already occurredor not (the second factor in the two conditions in de�nition 14).The list Lcic1 is de�ned asLcic1 = ffdl; fml1; : : : ; mlkgg; : : :g such that dl is a candidate for categorical rejection andfml1; : : : ; mlkg is the set of manifestations that happens after the necessary manifestationof dl that is not present in the case. If one of the mli is entered in a later cycle as anobservation then, dl can be surely declared as a categorical inconsistent, and placed in thelist DI . Similarly, the list Lcic2 is de�ned as Lcic2 = ffdl; f(mi; mj) 2 Al; : : :g; : : :g wheredl is a candidate for categorical rejection and mj is the necessary manifestation that is notpresent in the case.In its main loop, the algorithm is divided into two segments: lines 14 to 37 treat a newobservation (mj 2 M+), while lines 39 to 58 treat a negative observation (mj 62 M+). Ifthe manifestation is present then line 17 determines all disorders in Lcic1 and Lcic2 thatindeed became categorically inconsistent by the presence of mj . Lines 20 and 21 updatethe lists, and lines 22 to 39 basically repeat the correspondent segment of code in algorithmt-BIPARTITE, taking also into consideration the categorically inconsistent disorders.In case the manifestation mj is not present, the algorithm has to determine whichdisorders became categorically inconsistent and add them to DI (line 51), which disordersare candidates for categorical rejection, and update the lists Lcic1 and Lcic2 accordingly.This is performed by the function UPDATE below which guarantees that there is only oneentry in each list for each disorder,function UPDATE(LCIC; L)variablesL1; L2; L3: sets; 15



1 begin2 L1 = ffdl; C1 [ C2gjfdl; C1g 2 LCIC and fdl; C2g 2 Lg;3 L2 = ffdl; C1gjfdl; C1g 2 LCIC , such that 6 9 fdl; C2g 2 Lg;4 L3 = ffdl; C1gjfdl; C1g 2 L, such that 6 9 fdl; C2g 2 LCICg;5 return L1 [ L2 [ L3;6 end5 ImplementationWe developed a small example of a medical diagnostic system as a test for the theorydeveloped herein. This diagnostic system deals with food-borne diseases which is a domainof application where temporal information is very important. The domain included all 28diseases presented in [Man90, chap. 86], which amounted to around 60 di�erent symptoms.The whole knowledge base was developed in four days, based mainly on that medicalmanual. A specialist was consulted once during the development phase, mainly to providethe categorical information on the manifestations of each disease, since such informationwas not always available (or was unclear) in the manual. The specialist also veri�ed thetemporal graphs for some of the diseases. The total time of consultation with the specialistwas arround two hours.A version of the knowledge base without the categorical or temporal information wasalso developed. The intention was to compare the e�ciency and accuracy of the diagnos-tic algorithm for both the ct-PCT and the original PCT, which would use this restrictedknowledge base.When developing the knowledge base we faced two main problems. The �rst was thatcategorical information was not readily available in the medical manuals [Man90, Ber92].We had to consult the specialist for that information, and in some cases where the manualwould provide categorical information, the specialist's opinion would disagree with that.The second problem, which was already identi�ed in [Pen90], is that PCT does notdeal with the fact that diseases and specially manifestations are organized into hierarchies:particular manifestationma may be a specialization of another manifestationmb. PCT doesnot de�ne what should be done if the disease expect mb but we have information that themore speci�c ma did occur, or the reverse, if the disease expects ma but the only availableinformation is that the more general mb occurred. We had this problem in the case of twodiseases: Chinese restaurant syndrome which has as one of its manifestations paresthesias,and paralytic shel�sh poisoning (PSP) which has paresthesias of the lips, tongue and throatas manifestations [Man90]. We decided to treat paresthesias and paresthesias of the lips,tongue and throat as four di�erent manifestations.We tested the system with some arti�cial (non-clinical) cases and the solution wasveri�ed by the specialist. For a particular case, the ct-BIPARTITE (with the tempo-ral/categorical knowledge base and with some temporal information about the case) per-formed 70% faster than the BIPARTITE algorithm (with the atemporal knowledge base andatemporal case). For this case, the ct-BIPARTITE found only one explanation with onecause, against 6 explanations with one cause for the BIPARTITE. The number of expla-nations with two causes in the solution was 2 for the ct-BIPARTITE against 73 for the16



BIPARTITE.The ct-BIPARTITE algorithm and the original BIPARTITE algorithm used for comparisonwere implemented in Arity Prolog on a PC-286 computer. Although it is an information oflimited utility, the ct-BIPARTITE program would compute the solution for problems in thisdomain in two seconds, on the average.6 ConclusionsThis work has presented two extensions of the original Parsimonious Covering Theory. The�rst extension allows one to associate to each disorder an evolution of manifestations, andthe second allows one to add categorical information about the necessity or possibility ofa manifestation occurring in a disease. We believe that the two extensions can be treatedindependently, that is one is about time, and the other a weakening of the probabilisticcausal model [Pen90], in which only the information whether a manifestation is necessaryor possible is used.The temporal/categorical extension to PCT has some limitations. First, it does notallow for cycles in the temporal graphs. This poses some limits on the adequacy of therepresentation to model some phenomena. For example, in medical diagnostics, few butimportant diseases have recurrent events. Malaria is one of them [Ber92]: one distinguishesdi�erent forms of malaria by the period between the re-occurrence of the fever episodes.Second, it does not allow to state that a observation has already happened and isno longer present without stating explicitly the time and duration for the observation.We believe that this limitation is a severe one, specially for medical domains, and we arecurrently working to solve it.Another important limitation refers to multiple simultaneous disorders. PCT assumesthat multiple disorders that cause the same manifestation do not interfere with each other.That is, if both di and dj cause mk then they can both be part of an explanation for theobservation mk. Unfortunately, in the presence of temporal information it is very unlikelythat two disorders will not interfere with each other. As an example, let us suppose that dicausesmk with duration I and dj causesmk with duration J . Then certainly the presence ofboth disorders simultaneously will cause some change on the duration of mk (the same canbe true for the temporal relation of mk with other manifestations in both di and dj). Thishas been documented in other areas of medical diagnostics [Pat81]. PCT, and therefore ourextension to it, cannot represent and deal with this interference. In the example above, ifeither I and J are mutually inconsistent (I \ J = ;) or either one of them is inconsistentwith the duration of the observation mk (DUR+(mk)\ I \J = ;) then the hypothesis thatcontains both di and dj will be discarded as temporally inconsistent with the case. Howto represent interference among disorders and how to incorporate it to the PCT and itsextensions are important research topics that still need to be investigated.This PCT extension presented in this paper suggested a few lines of further research,some of them derived from the limitations of PCT itself, and others derived speci�callyfrom the temporal aspects of this theory. As PCT related issues we can mention:� development of domain speci�c heuristics to rank explanations. The explanations in17



a solution set should be ranked so that more \relevant" explanations are presentedbefore \less relevant" ones. A possible domain independent heuristics would be toinclude probabilistic information in the knowledge base and rank the explanationsaccording to their posterior probabilities. But there are a set of domain speci�cheuristics which must be explored. In the medical domain, for example one can rankthe explanations based on the severity of future developments of the diseases (anexplanation that contains a mortal disease should gain \relevance"), urgency of thetreatment (an explanation that contains a disease that must be treated as soon aspossible should also gain \relevance").� development of algorithms and heuristics for question asking. Asking questions aboutthe presence or absence of a manifestation involves both algorithmic and heuristicsaspects. On the algorithmic side one would want to reduce the number of explanationsin the solution set. If the knowledge base contains categorical information, thenasking for manifestations that are necessary for the diseases that belong to the currentexplanations may reduce the number of these explanations if they were not present.If the knowledge base only contains temporal information, then one should ask forthe manifestations that have not been checked that belong to the diseases in theexplanation, in the hope that if present, the temporal information will make some ofthe diseases inconsistent. The algorithm would have to evaluate which question wouldbe most e�ective in reducing the solution set.On the heuristic side, one has to take into consideration that in medicine, investi-gating the presence of a manifestation may involve tests, which may be costly, life-threatening, take a very long time to yield the results, and so on. The heuristics hasto balance the impact of the information gained by performing the test against themany costs of performing it.� extending the PCT theory to deal with interference among disorders, as discussedabove.On the speci�c temporal aspects of the theory, a research issue were brought up by thephysicians questions on the idea of temporal inconsistency. Some of the specialists whereuncomfortable by the fact that a disease would be disconsidered from the explanations basedon the fact that it was temporally inconsistent with the case. We believe that this uneasinessderives from a conceptual di�erence between how intervals are used by the physician in adiagnostic and by this model. In this model, the interval denotes the maximum possiblerange for a time measure (distance or duration), whereas for the physician it represents thetypical range for that measure. Thus the fact that a measure does falls within the typicalinterval should not be enough to characterize the measure as inconsistent with the interval.This suggests that temporal consistency should not be a boolean attribute, but a fuzzyone: if a measure falls within the typical interval, it is fully consistent, and its consistencywould decrease the further away from the is from the typical interval. The idea of fuzzinessmust then be carried over to all concepts in the model.18
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