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A Temporal Extension to the Parsimonious Covering Theory

Jacques Wainer and Alexandre de Melo Rezende

Abstract

This paper presents a temporal extension to the parsimonious covering theory (PCT),
so instead of associating to each disorder a set of manifestation as it is done in PCT),
one associates to each disorder a temporal graph that contains information about dura-
tion and elapsed time between the beginning of the manifestations. The definitions of
solutions for temporal diagnostic problems is presented as well as algorithms that com-
pute this solution. We also include some limited form of probabilistic information into
the model in order to study how categorical rejection, the elimination of explanations
that contain a disease for which a necessary manifestation is not present, interacts with
temporal information. An application in a medical domain is presented and discussed.

1 Introduction

Diagnostic reasoning is a complex cognitive process that involves the knowledge about a
particular domain, general and domain specific heuristics about the diagnostic reasoning
itself, and constrains imposed by cognitive limitations of the human diagnosticians. Par-
simonious covering theory (PCT) [Pen90] is an attempt to formalize diagnostic reasoning.
PCT has the advantage that it makes it explicit and self-contained the roles of the domain
knowledge, domain heuristics, general diagnostic heuristics and provides some intuitions on
how human cognitive limitations could impart on a diagnostic problem solving.

A limitation of PCT is that the domain specific knowledge is atemporal, that is, to each
disease (cause) one associates a set of symptoms (effects), but it is not possible to specify
how these symptoms evolve with time. Because of this atemporality, PCT can only be used
to solve diagnostic problems in which all relevant symptoms are observable at the moment
of diagnostic. But in many medical domain, and we expect in other diagnostic domains,
that is not the case.

This paper extends the basic PCT so to each disease one can associate a temporal
evolution of symptoms, or a history of symptoms. We call this extension temporal PCT
(t-PCT). In a second extension, we included some limited form of probabilistic information
to the t-PCT in order to explore how categorical rejection, that is, the elimination of a
disease due to the fact that one of its necessary manifestations is not present, would work
in temporal domains. We call this second extension categorical/temporal PCT (ct-
PCT).

The next section describes the basic Parsimonious Covering Theory. Section 3 discusses
the temporal PCT and section 4 discusses the categorical/temporal PCT. Section 5 reports
on a diagnostic system for food borne diseases we implemented, and compare its efliciency



causes(my) = {dy,dq,ds,ds} causes(mq) = {ds,ds,d7,do}

(
causes(msz) = {dy, ds,ds,ds} causes(my) = {dy,ds,ds}
causes(ms) = {dr,ds, dg} causes(mg) = {dz, dy,ds}

Figure 1: Causal network of a diagnostic knowledge base KB = (D, M, C).

with a standard PCT implementation of the same diagnostic system. Finally section 6
discusses the limitations of the model proposed, and explore some future research topics.

2 Basics of Parsimonious Covering Theory

The basic version of PCT [Pen90] uses two finite sets to define the scope of diagnostic
problems (see Figure 1). They are the set D, representing all possible disorders d; that
can occur, and the set M, representing all possible manifestations m; that may occur
when one or more disorders are present.

The relation €', from D to M, associates each individual disorder to its manifestations.
An association (d;, m;) in C' means that d; may directly cause m;; it does not mean that d;
necessarily causes m;. The sets D, M, and C together are the knowledge base (/K B) of a
diagnostic problem.

To complete the problem formulation we need a particular diagnostic case. We use M+,
a subset of M, to denote the set of observations, that is, manifestations that are present
in the case.

Definition 1 A diagnostic problem P is a pair (K B,Ca) where:
e KB =(D,M,C) is the knowledge base, composed of

— D ={dy,dy,...,d,} is a finite, non-empty set of objects, called disorders;

— M = {my,mq,...,my} is a finite, non-empty set of objects, called manifesta-
tions;

— C CDx M is a relation called causation; and

o Ca=(MT) is the case, and M™ C M is the set of observations.



2.1 Solution for Diagnostic Problems

In order to formally characterize the solution of a diagnostic problem, PCT defines the
notion of “cover”, based on the causal relation C', the criterion for parsimony, and the
concept of an explanation (explanatory hypothesis).

Definition 2 For any d; € D and m; € M in a diagnostic problem P
o effects(d;) = {m;|(d;,m;) € C}, the set of manifestation directly caused by d;;
o causes(m;) = {dj|(d;,m;) € C}, the set of disorders which can directly cause m;.

The set ef fects(d;) represents all manifestations that may be caused by disorder d;, and
causes(m;) represent all disorders that may cause manifestation m;. These functions can
be easily generalized to have sets as their arguments.

Definition 3 The set Dy, C D is a cover of My C M if My C ef fects(Dy,).

Definition 4 A set £/ C D is an explanation of M for a diagnostic problem iff F covers
M, and satisfies a given parsimony criterion.

In the following definition we present the possible parsimony criteria:
Definition 5

o A cover Dy of My is said to be minimum if its cardinality is the smallest among all
covers of Mj.

o A cover Dy of My is said to be irredundant if none of its proper subsets is also a
cover of Mj; it is redundant otherwise.

o A cover Dy, of My is said to be relevant if it is a subset of causes(My); it is irrel-
evant otherwise.

In many diagnostic problems, one is generally interested in knowing all plausible expla-
nations for a case rather than just a single explanation because they, as alternatives, can
somehow affect the course of actions taken by the diagnostician. This leads to the following
definition of the problem solution:

Definition 6 The solution of a diagnostic problem P=(K B,Ca), designated Sol(P), is
the set of all explanations of MT.

In this paper we will use irredundancy as the parsimonious criterion, as suggested by
[Pen90]. If one is interested in developing general algorithms for diagnostic problems, irre-
dundancy seems to be the preferable choice since from the set of all irredundant explanations
one can mechanically generate the set of all minimal explanations (by selecting the sets of
minimal cardinality) and the set of all relevant explanations (by systematically adding new
disorders to some of the irredundant explanations).



It is important to notice that minimality, which most likely one would choose as the
parsimony criteria based on the Occam razor principle, is not a general heuristic, but a
domain specific choice. For example in domains where disorders have different likehood
or prior probabilities it may be more plausible say that two fairly common disorders are
responsible for a set of observations, than to say that a single extremely rare disorder is the
cause.

2.2 Limitations of PCT

The main problem with the basic version of PCT is that the solution of a problem tends
to have many alternative explanations. Irredundancy as the parsimony criteria is too weak
a criteria to significantly reduce the number of alternative explanations and thus, for most
practical applications there is the need remove some of the explanations from the solution
based on domain specific heuristics. Or, at least, provide a way of ranking the explanations
in the solution set so that more “plausible” explanations are presented before less “plausible”
ones.

A more elaborated version of PCT (called probabilistic causal model) is also presented
in [Pen90] which incorporates probabilities to the links between a disorder and its mani-
festations, that is, the probability that the manifestation occurs provided that the disorder
is present. This probabilistic information can be used to rank the explanations by the
probability of it being the correct one.

Furthermore, this probabilistic information allows one to remove from the solution set
those explanations that contain a disorder for which a necessary manifestation was not
observed in the case. If a disorder d; necessarily causes a manifestation m;, that is, if
the probability that m; is present given d; is 1, then if m; is known not to be among the
observations of the case, then one can remove the explanations that contain d;. This is
called categorical rejection. We will discuss categorical rejection, in particular in the
presence of temporal information further below in this paper.

2.3 Algorithms for PCT

There are basically two approaches for developing algorithms for PCT based on how the set
M is presented. The set could be presented a priori to the algorithm, in which case we
will say that the algorithm is non-interactive. This seems appropriate in situations when
one can monitor all possible manifestations, so that the knowledge of which manifestations
are present in the case is readily available. In the second alternative, the observations in
M™ are presented to the algorithm one at a time, possibly as the answer to a question
posed by the diagnostic system. This approach seems more appropriate in situation where
it may be costly to obtain all observations, which is the case for medical diagnostics.

Algorithms may also differ in the parsimonious criterium used to define an explanation:
irredundancy or minimality. [Reg85] discusses two algorithms that uses minimality as the
parsimonious criterium, HT an interactive algorithm, and SOLVE a non-interactive. [Pen90]
presents the interactive algorithm BIPARTITE which uses irredundancy as the parsimonious
criterium, which will be the base for the algorithms presented in this paper.



BIPARTITE makes use of generators, a compact representation of alternative explanations
for a case. For the sake of completeness, we will very briefly describe some concepts and
operations on generators since they are relevant for the algorithms we develop later in this
paper. The interest reader should refer to [Pen90] for a more complete explanation.

If 91,92 .. .9, are pairwise disjoint subsets of D, then G; = {¢1,92...9m} is a generator,
and the class generated by Gy is [G1] = {{dy,ds,...,dp}|d; € ¢;}. G = {G1,Gs,...,GN}
is a generator-set if Gy is a generator, and [G7] N [Gj] = 0.

We define the operations res, div and augres, where G and () are generator-set, G’y
and () are generators, H; C D, and ¢; € ();. Fach operation has multiple definitions
depending whether the arguments are generator-sets, generators or sets of disorders.

_ ] a if Q=10
res(G,Q) = { res(res(G,Q7),Q —{Qs}) otherwise
res(G,Hy) = U res(Gr, Hr)
Gre
B 0 ifQ;=10
T@S(le QJ) - { T@S(G[, q]) U T@S(di?](G[, q])7 QJ — {q]} otherwise

res(Gr, Hy) = {é{gl_ﬂb"'vgn_ﬂl}} ifgi—Hy#Qforal i,1<i<n

otherwise

dio(G,Hy) = | J div(Gr, Hy)
GreG
div(Gr, Hr) =  {Qk|Qr = {qk1: Gh2s - - - qin
gi— Hy ifj <k
and ¢z =< g;NHy ifj =k

augres(G, Hr) = U augres(Gr, Hr)
Gred
—Hy,...,go— Hi, AYY iftg—Hi #0,A#0
augres(G[,H[) — é{gl I g I }} ;tierwisé# 7£

where A = Hy — i, g

2.4 Conclusions

PCT is a conceptually simple and powerful theory of diagnostic reasoning. It clearly sepa-
rates the role of domain knowledge (sets M, D and principally the relation '), the role of
general diagnostic reasoning (the parsimony criteria and the definition of cover), and domain
heuristic (the choice of the parsimony criteria, the algorithms to further reduce or to rank
the solution set, the algorithms for generating questions in an interactive algorithm). This
separation allows one to gather and express the domain knowledge separately from domain



heuristics, as opposed to rule base diagnostic systems [Sho76, Wei78], for example. For many
domains of medical diagnsotics, PCT seems an appropriate model of diagnostics, because
the form of the knowledge available in medical manuals and text boooks [Man90, Ber92] are
in the form need by the PCT knowledge base: a description of what symptoms a particular
disease cause (or may cause).

3 Temporal PCT

The aim of this research is to extend PCT so that instead of associating to each disorder a
set of manifestation, one could associate an evolution of manifestations. Thus, the knowl-
edge base could state that disorder dy causes first my which will last between 2 and 5 days,
followed in 2 to 3 days by mo which may last an undetermined amount of time, and will
be followed at any moment by ms. And so on. We accomplish this temporal representa-
tion using a graph, where vertices are manifestations and directed arcs between vertices
represent temporal precedence. If there is quantitative information about the duration of
the manifestation, it is associated with the corresponding node; if there is quantitative in-
formation about the elapsed time between the start of two manifestations, it is associated
with the corresponding arc. Furthermore, quantitative information are not represented as a
single number, but as an interval. Therefore one can state that a manifestation will follow
another in 2 to 3 days. To each disorder one associates one such temporal graph.

Furthermore, one would also like to allow for some uncertainty in expressing the in-
formation about the observations. Describing the case, one should be able to say that
a particular manifestation started anytime from 5 to 7 days ago, and lasted from 2 to 4
hours, that another manifestation is also present but one has no information when it started.
This uncertainty about the temporal information about the observations in the case can be
accomplished by using temporal graph to represent the case as well.

3.1 Temporal Representation

Time points will be the primitive objects to represent temporal information. Intervals
are defined as non-empty convex sets of time points (points on the time line), represented
by I = [I7,I"] such that I~ and IT are the extreme points of interval I, respectively
(I= < I*; I > It indicates an empty interval ). We use the following notations of
intervals operations:

e I+ J=["+J 1T+ J%];
o INJ = [mazx(I~,J7),min(IT,JT)];
e [ <p= It < p, where pis a time point.

A temporal graph is a direct, acyclic, transitive, and not necessarily connected graph
where the nodes are manifestations. The existence of an arc from m; and m; in a temporal
graph denotes the fact that the beginning of the occurrence of manifestation m; must
precede the beginning of the occurrence of m;.
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DISTS((m4, m5)) = [1, 3] DISTg((mQ, m5)) = [2, 5]
DISTS((m5, m6)) = [2, 5] DURg(mz) = [10, 15]
DISTS((m4,m6)) [3,8] DURg(TTl{,) = [7, 13]

l

DURg(m6) = [1, 2

Figure 2: Temporal graphs of the disorders dg and dg with their temporal distance functions
and duration functions.

Definition 7 The temporal graph of a disorder d; € D, G; = (V}, Aj), is a direct,
transitive and acyclic graph defined as:

o V; C M = set of manifestations directly caused by d;, and

o A; ={(my, m;)| the beginning of m; occurs before the beginning of m; when the disorder
d; is said to be present}.

The impossibility to define cycles is a major restriction on the expressive power of the
temporal representation formalism. In other words, it is not possible to represent recurring
events. Nevertheless, this restriction is important since it reduces the complexity of the
reasoning process [Con91].

The temporal distance between manifestations and the duration of a manifestation are
represented by functions on the graph, denoted by DIST and DUR, respectively. The
temporal distance function DIST associates an interval R = [R™, RT] to each arc of a
temporal graph G;. DIST(Gy, (m;, m;)) = R for (m;,m;) € A;, which we will abbreviate
as DISTi((m;,m;)) = R, states that the elapsed time between the beginning of m; and the
beginning of m; in the temporal graph G of d; must be within the interval R. The duration
function DU R associates to each vertex m; of a temporal graph G; em G an interval J,
that specifies that the duration of m; must be within the interval .J.

The transitivity of the temporal graph must be consistently carried over to the DIST
function: if DIST(m;, m;) = Ry and DIST(m;, my) = Ry then DISTi(m;, my) =R1+ Rs.

Figure 2 illustrates the temporal information about the disorders dg and dg of the
diagnostic problem shown in Figure 1.

3.2 Temporal Diagnostic Problem Formulation

Definition 8 The knowledge base of a temporal diagnostic problem is the tuple KB =
(D,M,G,DIST, DUR) where D and M are defined as before, G is a set of temporal graphs,
each one associated with one disorder of D, DIST and DUR are the temporal information
functions defined above.

In order to represent the case, we will need the set of observations M T, as before, and the
temporal information about these observations. The function BEGT associates an interval



to some of the observations in M*. BEGY(m;) =1, m; € MT, states that m; started at
any time within interval I. The origin of the time line for describing BEG™ is arbritrary,
provided the same origin is used in all temporal information for that case.

Similarly, the function DU R associates to some of the observations in M ™ an interval,
such that the duration of the observation was anything within that interval. It is important
to notice that the model allows for incomplete knowledge about the observations. Both the
beginning and the duration of a observation can be stated as an interval or they may not
be stated at all.

Definition 9 A temporal diagnostic problem P is a pair (K B,Ca) where KB is de-
fined above, and Ca = (M*, BEGY, DUR™T) is the case.

One can define the ef fects and causes functions in a similar way to definition 2. For
example causes(m;) = {di|m; € V, for any temporal graph G; = (V}, 4;) € G'}, represents
the set of disorders that may cause m;.

3.3 Solution for a Temporal Diagnostic Problem

In order to define a solution for a diagnostic problem, we need to define a set of concepts
about temporal inconsistency. This will eventually allow us to remove the explanations that
contain disorders in which the evolution of manifestations contradicts the evolution of the
observations in the case. For example, if for a certain disorder mq precedes mg but in the
case, the occurrence of my started after the occurrence of my, then one can disregard all
explanations that contain such disorder, since it contradicts the temporal information in
the case.

Definition 10 For a dynamic diagnostic problem P let G; = (Vi, A)) € G, (m;,m;) € Ay,
such that m;,m; € M*. The arc (m;, m;) is temporally inconsistent with the case
if

DIST[((mZ', m])) N (BEG+(m]‘) — BEG"’(mZ)) =10.

BEG*(m;)— BEG™(m;) is the possible range for the elapsed time between the beginning of
m; and m;, given the uncertainty on the exact moments that the two observations occurred.
DISTi((m;, m;)) corresponds to the range that the disorder d; allows for the elapsed time
between the manifestations. If there is no intersection between these two intervals, then
none of the possible distances between the beginning of the observations corresponds to what
the disorder expects, and thus the arc (m;, m;) as specified by the disease d; is temporally
inconsistent with the case. The inconsistency criterion defined above is equivalent to one

described in [Con93].

Definition 11 For a dynamic diagnostic problem P let G = (V}, A;) € G the temporal

graph of a disorder d; € D. The disorder d; is temporally inconsistent with the case
Ca={(M*,BEGY, DUR™) iff

o exist at least one arc (m;, m;) € Ay temporally inconsistent with respect to the case ,
or



o cuaist at least a vertex mj € Vi, such that, m; € M+ and DURi(m;)NDURY(m;) = 0.

Thus a disorder is temporally inconsistent with the case, if it has a temporally inconsistent
arc, or if the range for the duration of one of its manifestations does not agree with the
range for the duration of the corresponding observation.

Finally, based on the above definitions, we formalize the notions of temporally consistent
explanation and temporally consistent solution.

Definition 12 A set £ C D is said to be a temporally consistent explanation of the
case for a dynamic diagnostic problem P iff

1. E covers Mt, and

2. F satisfies a given parsimony criterion, and

3. for any d; € F, d; is not temporally inconsistent with the case.

Definition 13 The temporally consistent solution of a dynamic diagnostic problem
P = (Kb,Ca) designated by Sol(P), is the set of all temporally consistent explanations of
the case.

3.4 Algorithm

We present here an interactive algorithm that computes all explanations to a temporal di-
agnostic problem. The algorithm is a modification of the BIPARTITE algorithm in [Pen90].
The important aspect of the algorithm is that temporal consistency is not implemented as
a filter, that is, it is not applied after the original BIPARTITE algorithm has generated
the solution, but it is incorporated very early into the process of merging the causes on the
“new” observation into the set of current explanations. Thus the algorithm has to deal with
smaller sets of explanations.

The auxiliary function CT'C' (check temporal consistency) is used when the beginning
of a new observation m; is given, and returns the set of disorders evoked by m; that are
temporally inconsistent with BEG™(m;).

function CTC(Dy, G, DIST, BEG*, m;)
variables
Dy set-of-disorders; (* temporally inconsistent disorders *)
neighbors: set-of-arcs; (* *)
inconsistent: boolean; (* flag *)
begin
Dr = 0;
while Dy, # 0 do
di € Dy;
Gr= W1, A e G;
neighbors = {(m;, m;)|(m;, m;) € A;, and BEG™ (m;) is defined } U
{(mj, my)|(m;, my) € A, and BEG™ (my,) is defined };
inconsistent = false;
while neighbors # ) and not inconsistent do

WO 0 =~ O O = W N =
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11
12
13
14
15
16
17
18
19
20
21

(m;, my) € neighbors;
if (BEG™ (m;) + DIST((m;, my))) N BEGY(mg) =0

then
tnconsistent =true;
D =Dru {dl};
endif
neighbors = neighbors — {(m;, my)};
endwhile

DL = DL — {dl};

endwhile
return Dy;

end

function t-BIPARTITE(KB)
variables

0 =1 O O =~ W N~

11
12
13
14
15
16
17
18
19
20
21
22
23
24

m;: manifestation; (* new observation *)
hypothesis: generator-set; (* all explanations *)
D¢, (* consistent disorders *)
Dy, (* all inconsistent disorders *)
H, (* disorders evoked by m; *)
Hr, (* inconsistent disorders due to BEG *)
H: set-of-disorders; (* inconsistent disorders due to DUR *)
MT: set-of-manifestations;
BEGH,
DU R*: function;
begin
hypothesis = {0};
D¢ = 0;
Dy = 0;
M+ =0
while MoreObservations do

Hp=10;
H; = 0;
m; = NextObservation; (* obtain next observation *)
H = causes(m; );
H=H-—Dy:
if DUR™(m;) is defined
then
H} = {dl|dl € H, and DUR[(m]) N DUR"’(m]) = @},
endif
if BEG™(m;) is defined
then
H; =CTC((H — Hj) N D¢, G, DIST, BEG™ ,m;);
endif
hypothesis = res(hypothesis, Hy U HY);
(*seleciona as hipéteses correntes nao inconsistentes™)
Dy ID[UH[UH};
De = (DC UH) — (H]UH});
if (H— Dr) =0 or (hypothesis = ) and M™* # ()

10



25 then

26 return nil (* there is no consistent explanation *)
27 else

28 hypothesis = revise(hypothesis, H — Dr);

29 endif

30 Mt =Mt uU{m;};

31 endwhile

32 return hypothests

33  end.

The function revise in line 28 is define as

revise(G, Hy) = Fnres(Q,F)
where F' = div(G, Hy) and Q) = augres(G, Hr)

The functions MoreObservations and NextObservation are entry-points for the module
that interacts with the patient, asking questions about the presence of manifestations. In
order to ask effective questions this module must have access to current set of explanations,
the knowledge base and very likely will use domain specific heuristics to select the question
to ask.

At the beginning of a new cycle, after a new observation has been entered (line 9), the
disorders evoked by the new observation are checked for temporal consistency with the case
information so far (line 11). Then explanations that contain the temporally inconsistent
disorders are eliminated from the set of current hypotheses (line 20) and the new temporally
consistent evoked disorders are used to update the set of hypothesis (line 28).

The example below illustrates the basic ideas of the algorithm. For example in Figure
1, we have that S1 = {{d1}, {d2}, {ds,ds}, {das,ds}} is the set of all explanations (irredun-
dant covers) of M = {my, m4} which are temporally consistent with BEG™(m4) = [10, 10]
and DUR™ = (. Note that all irredundant covers for M ™ are consistent given BEG™ and
DURT. Each time a new observation is discovered and the beginning or duration are avail-
able, we verify the temporal consistency of the hypotheses in 57, and update the hypotheses
in the correct way. Thus, consider ms new observation of M*, and BEG™(ms) = [16, 18]
and DURY(ms) = [2,3]. First, we obtain the disorders evoked by ms (i.e. causes(ms) =
{d7,ds,dy}) that are temporally inconsistent with BEG™Y(ms) and DU RT(ms5). As an illus-
tration, consider dg and dg the disorders in Figure 2. Disorder dg is temporally inconsistent
because the arc (my, ms) with label [1,3] is inconsistent with BEGY(m4) and BEG™ (ms5)
by Definition 10 (making the correct substitutions we have ([10,10]+ [1,3]) N [16, 18] = 0).
On the other hand, disorder dg is temporally inconsistent because the duration of ms in
dg is inconsistent with DU R (ms), by Definition 11 (making the correct substitutions we
have [7,13]N[2,3] = 0).

In the next step, we remove all explanations in 57 that contain these temporally in-
consistent disorders. Thus, S; = {{d1},{d2}} is the set of all explanations that are not
inconsistent. It is worth noting that once a disorder is considered temporally inconsistent it
can not be part of any hypothesis. Finally, the consistent disorders (only d7 in this case) are
used to update the current explanations. S5 = {{d1,d7},{ds,d7}} is thus the set of all ex-
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planations temporally consistent with the case (with ms added). If no other manifestation
is present than S5 represents the temporally consistent solution.

3.5 Discussion

This section presented our first extension to PCT, which includes temporal representation
of manifestations and observations in the original PCT. As we discussed, this temporal
representation allows for many kinds of uncertainty. Time information may be expressed
as intervals or may not be expressed at all, both for the knowledge base and for the case.
In fact, the t-PCT is a true extension of the original PCT, since by not providing any
temporal information one has both a PCT knowledge base and a PCT case, and in this case
the definition of a solution for a temporal diagnostic problem will coincide with the PCT’s
definition of solution for a diagnostic problem.

This true extension property is mainly a positive trait since many diagnostic domains
(including some medical domains) are atemporal in the sense described above, and t-PCT
could be the appropriate diagnostic theory for them as well. But the true extension property
places at least some limits in the range of uncertainty allow to describe the case: it is not
possible to state that a observation has already occurred, but it is not present anymore.
Or in other words, it is not possible to state constraint on both the beginning time and
duration of manifestations (for example that the beginning time plus the duration is less
then the current time) without stating them.

The time representation used here is similar to the ones used by other researchers both in
medical domains [Ham87, Con91, Con93] and robotics [Dou93]. But to our knowledge, this
is the first time such representation is used in conjunction with the Parsimonious Covering
Theory.

4 Categorical Temporal Diagnostics

As we mentioned, the basic PCT can be extended so that probabilities can be associated
to each manifestation in a disorder. This information, together with the prior probabili-
ties of the disorders themselves allow one to rank the explanations based on the posterior
probability that the disorders are really present given the observations.

But besides ranking the explanations, probabilities can be used to categorically reject
some explanations from the solution. If a disorder d; necessarily causes the manifestation
m; and m; is not among the observations of the case, then one can reject all explanations
that contain d;. When the manifestations are not atemporal but occur in time, one has to
be sure that there has been enough time for the manifestation m; above to occur, before
categorically rejecting all explanations that contain d;.

4.1 Problem Formulation and its Solutions

In this paper we are not interested in a general probabilistic (numeric) information relating
manifestations and disorders, but just some information whether the disorder necessarily
causes the manifestation, or whether the causation is only possible. Thus, in the knowledge
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base KB we add a function POSS that attributes to each vertex of each temporal graph
either the label N, for necessary, or the label P, for possible. Thus, POSS(G,m;) = N,
abbreviated as PO SS;(m;) = N, states that disorder d; necessarily causes the manifestation
m;.

For categorical diagnostic problems, one is interested in manifestations known to be
absent in the case, called negative observations. Thus we add, M~ the set of nega-
tive observations, and I, the time point that represents the moment of diagnosis, to
M, BEGT, DURT as the components of the case Ca.

We can now define when a disorder is categorically inconsistent with the case.

Definition 14 Let P=(K B,Ca) be a categorical diagnostic problem and G = (V}, A;) € G.
The disorder d; is categorically inconsistent with the case iff

e exist an arc (m;,my) in Ay, such that, POSS)(m;) =N, m; € M~ emy € MT, or

e exist an arc (m;,m;) in A;, such that, POSS;(m;) = N, m; € M~, m; € MT and
BEG"’(mi) + DIST(mZ', m]‘) < Liow-

The definition above has two conditions. For both of them, the disorder d; is categorically
inconsistent due to the combination of two factors: a necessary manifestation is not present
(POSSi(m;) = N and m; € M™) and there has been enough time for it to happen. In
the first condition, the second factor is warranted because a later manifestation has already
occurred ((m;, my) in A; and my, € MT). In the second one, this factor is warranted because
all values of a set of valid values (time points) for the beginning m; are lower or equal than
the actual instant (BEGT(m;) + DIST(mi,m;) < Liow)-
Finally, we define an explanation of a categorical dynamic diagnostic problem.

Definition 15 A set I C D is said to be a consistent explanation of the case for an
open dynamic diagnostic problem P = (K B, Ca) iff

o I covers Mt, and
o I satisfies a given parsimony criterion, and
o for any d; € F, d; is not temporally inconsistent, and

o for any d; € F, d; is not categorically inconsistent.

4.2 Algorithm

We present below an algorithm that interactively solves a categorical/temporal diagnsotic
problem.

function ct-BIPARTITE(KB)
variables
m;: manifestation; (* new observation *)
hypothesis: generator-set; (* all explanations *)

D¢, (* consistent disorders (temp. and categ.) *)

13
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Dy, (* inconsistent disorders (temp. and categ.)*)
H, (* disorders evoked by m;*)
Hr, H}, Her, Hy: set-of-disorders;
Lecrct, Lerea, L, La, L3, Lysets;
MT: set-of-manifestations; (* observations *)
BEGT, DURT: function;
Iow: time point; (* now *)
begin
hypothesis = {0};
D¢ = 0;
Dr = 0;
Lerer =0;
Lerea =0;
M+ =0
Inow =NOoW;
while MoreObservations do
m; = NextObservation,
H = causes(m; );
H=H-—Dy:
if NextObservation.status = present (* m; € M+ *)
then

Hr =0

Her ={di|l{di, ML} € Lcict, and mj € Mp};

=
e
(l

U {di|{di, A} € Lerea, and there exists an arc (m;, my) € A, such that

BEG*(m;) + DISTi((m;,mp)) < Lnow };
Lerer = {{di, Mp}|{di, M} € Leren, and di € Her ks
Lerer = {{di, A} |{di, A} € Legcs, and di € Herls
if DURY (m;) is defined

then
H} = {dl|dl € H— Heg, and DUR[(m]) N DUR"’(m]) = 0}
endif
if BEG*(m;) is defined
then
Hy = CTC((H — (HC] U H})) NDe,G,DIST, BEGT, m]');
endif

hypothesis = res(hypothesis, Hoy U Hy U Hp);
D[ID[UHC[UH]UH};

De I(DcUH)—(HC[UH[UH});

if (H — Dr) = 0 or (hypothesis = ) and M+ # ()

then
return nil (* there is no consistent explanation *)
else
hypothesis = revise(hypothesis, H — Dr);
endif

Mt =M*TU {m]}
else (*m; € M™%)
H, = {dl|dl € H, and POSSl(m]) = N};
L= {{dl,MLHdl € Hy, and My = {mk|(m],mk) € Al}};

14
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43 Lo = {{d;, Mp}{dy, M} € L1, M n M+ £ 0};

44 chz{dl|{dl,ML}EL2};

45 Hy=Hy - Her,

46 Ly = {{dl,AHdl € Hy,and A = {(ml, mj)|(mi, mZ) S Al}};
47 Ly = {{di, A}|{di, A} € L3, and there exists an arc (m;, m;) € A, such that
48 BEG™(m;) 4+ DIST((mi, m;)) < Inow};

49 HC]IHC]U{dl|{dl,A}EL4}

50 hypothesis = res(hypothesis, Her);

51 Dr=DrUHegr;

52 DC = DC — D];

53 Lercr = UPDATE(LCICl, Ly — Lz);

54 Leorcs = UPDATE(LC]CQ, Ly — L4);

55 if hypothesis = ) and M+ £ )

56 return nil

57 endif

58 endif

58 endwhile

60 return hypothests

61 end.

The algorithm works by keeping track of two lists of disorders that are candidates for
categorical rejection. A disorder is a candidate for categorical rejection if one of its
necessary manifestations is not present in the case, but for which one does not have yet
enough information on whether that necessary manifestation should have already occurred
or not (the second factor in the two conditions in definition 14).The list L. is defined as
Leir = {{di, {my,...,my}}, ...} such that d; is a candidate for categorical rejection and
{mi1,...,my} is the set of manifestations that happens after the necessary manifestation
of d; that is not present in the case. If one of the my; is entered in a later cycle as an
observation then, d; can be surely declared as a categorical inconsistent, and placed in the
list Dy. Similarly, the list L. is defined as Leo = {{d;, {(m;,m;) € A;,...},...} where
d; is a candidate for categorical rejection and m; is the necessary manifestation that is not
present in the case.

In its main loop, the algorithm is divided into two segments: lines 14 to 37 treat a new
observation (m; € M%), while lines 39 to 58 treat a negative observation (m; ¢ M™T). If
the manifestation is present then line 17 determines all disorders in L.y and L. that
indeed became categorically inconsistent by the presence of m;. Lines 20 and 21 update
the lists, and lines 22 to 39 basically repeat the correspondent segment of code in algorithm
t-BIPARTITE, taking also into consideration the categorically inconsistent disorders.

In case the manifestation m; is not present, the algorithm has to determine which
disorders became categorically inconsistent and add them to Dy (line 51), which disorders
are candidates for categorical rejection, and update the lists L. and L.. accordingly.
This is performed by the function UPDATE below which guarantees that there is only one
entry in each list for each disorder,

function UPDATE(L¢ ¢, L)
variables
L1, La, L3: sets;
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begin
Ly = {{dl,Cl U Cz}Hdl,Cl} € Lere and {dl,Cz} € L};
Ly = {{d1,01}|{d1,01} € Lere, such that A {dl,Cz} € L};
L3 = {{d1,01}|{d1,01} € L, such that A {dl,Cz} € LCIC};
return L, U Lo U Ls;

end

O O s W N =

5 Implementation

We developed a small example of a medical diagnostic system as a test for the theory
developed herein. This diagnostic system deals with food-borne diseases which is a domain
of application where temporal information is very important. The domain included all 28
diseases presented in [Man90, chap. 86], which amounted to around 60 different symptoms.

The whole knowledge base was developed in four days, based mainly on that medical
manual. A specialist was consulted once during the development phase, mainly to provide
the categorical information on the manifestations of each disease, since such information
was not always available (or was unclear) in the manual. The specialist also verified the
temporal graphs for some of the diseases. The total time of consultation with the specialist
was arround two hours.

A version of the knowledge base without the categorical or temporal information was
also developed. The intention was to compare the efficiency and accuracy of the diagnos-
tic algorithm for both the ct-PCT and the original PCT, which would use this restricted
knowledge base.

When developing the knowledge base we faced two main problems. The first was that
categorical information was not readily available in the medical manuals [Man90, Ber92].
We had to consult the specialist for that information, and in some cases where the manual
would provide categorical information, the specialist’s opinion would disagree with that.

The second problem, which was already identified in [Pen90], is that PCT does not
deal with the fact that diseases and specially manifestations are organized into hierarchies:
particular manifestation m, may be a specialization of another manifestation m;. PCT does
not define what should be done if the disease expect m; but we have information that the
more specific m, did occur, or the reverse, if the disease expects m, but the only available
information is that the more general m; occurred. We had this problem in the case of two
diseases: Chinese restaurant syndrome which has as one of its manifestations paresthesias,
and paralytic shelfish poisoning (PSP) which has paresthesias of the lips, tongue and throat
as manifestations [Man90]. We decided to treat paresthesias and paresthesias of the lips,
tongue and throat as four different manifestations.

We tested the system with some artificial (non-clinical) cases and the solution was
verified by the specialist. For a particular case, the ct-BIPARTITE (with the tempo-
ral/categorical knowledge base and with some temporal information about the case) per-
formed 70% faster than the BIPARTITE algorithm (with the atemporal knowledge base and
atemporal case). For this case, the ct-BIPARTITE found only one explanation with one
cause, against 6 explanations with one cause for the BIPARTITE. The number of expla-
nations with two causes in the solution was 2 for the ct-BIPARTITE against 73 for the
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BIPARTITE.

The ct-BIPARTITE algorithm and the original BIPARTITE algorithm used for comparison
were implemented in Arity Prolog on a PC-286 computer. Although it is an information of
limited utility, the ct-BIPARTITE program would compute the solution for problems in this
domain in two seconds, on the average.

6 Conclusions

This work has presented two extensions of the original Parsimonious Covering Theory. The
first extension allows one to associate to each disorder an evolution of manifestations, and
the second allows one to add categorical information about the necessity or possibility of
a manifestation occurring in a disease. We believe that the two extensions can be treated
independently, that is one is about time, and the other a weakening of the probabilistic
causal model [Pen90], in which only the information whether a manifestation is necessary
or possible is used.

The temporal/categorical extension to PCT has some limitations. First, it does not
allow for cycles in the temporal graphs. This poses some limits on the adequacy of the
representation to model some phenomena. For example, in medical diagnostics, few but
important diseases have recurrent events. Malaria is one of them [Ber92]: one distinguishes
different forms of malaria by the period between the re-occurrence of the fever episodes.

Second, it does not allow to state that a observation has already happened and is
no longer present without stating explicitly the time and duration for the observation.
We believe that this limitation is a severe one, specially for medical domains, and we are
currently working to solve it.

Another important limitation refers to multiple simultaneous disorders. PCT assumes
that multiple disorders that cause the same manifestation do not interfere with each other.
That is, if both d; and d; cause my, then they can both be part of an explanation for the
observation my. Unfortunately, in the presence of temporal information it is very unlikely
that two disorders will not interfere with each other. As an example, let us suppose that d;
causes my, with duration / and d; causes m;, with duration J. Then certainly the presence of
both disorders simultaneously will cause some change on the duration of my (the same can
be true for the temporal relation of mj with other manifestations in both d; and d;). This
has been documented in other areas of medical diagnostics [Pat81]. PCT, and therefore our
extension to it, cannot represent and deal with this interference. In the example above, if
either I and J are mutually inconsistent (I NJ = () or either one of them is inconsistent
with the duration of the observation my (DURY(my)NINJ = () then the hypothesis that
contains both d; and d; will be discarded as temporally inconsistent with the case. How
to represent interference among disorders and how to incorporate it to the PCT and its
extensions are important research topics that still need to be investigated.

This PCT extension presented in this paper suggested a few lines of further research,
some of them derived from the limitations of PCT itself, and others derived specifically
from the temporal aspects of this theory. As PCT related issues we can mention:

e development of domain specific heuristics to rank explanations. The explanations in
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a solution set should be ranked so that more “relevant” explanations are presented
before “less relevant” ones. A possible domain independent heuristics would be to
include probabilistic information in the knowledge base and rank the explanations
according to their posterior probabilities. But there are a set of domain specific
heuristics which must be explored. In the medical domain, for example one can rank
the explanations based on the severity of future developments of the diseases (an
explanation that contains a mortal disease should gain “relevance”), urgency of the
treatment (an explanation that contains a disease that must be treated as soon as
possible should also gain “relevance”).

o development of algorithms and heuristics for question asking. Asking questions about
the presence or absence of a manifestation involves both algorithmic and heuristics
aspects. On the algorithmic side one would want to reduce the number of explanations
in the solution set. If the knowledge base contains categorical information, then
asking for manifestations that are necessary for the diseases that belong to the current
explanations may reduce the number of these explanations if they were not present.
If the knowledge base only contains temporal information, then one should ask for
the manifestations that have not been checked that belong to the diseases in the
explanation, in the hope that if present, the temporal information will make some of
the diseases inconsistent. The algorithm would have to evaluate which question would
be most effective in reducing the solution set.

On the heuristic side, one has to take into consideration that in medicine, investi-
gating the presence of a manifestation may involve tests, which may be costly, life-
threatening, take a very long time to yield the results, and so on. The heuristics has
to balance the impact of the information gained by performing the test against the
many costs of performing it.

o extending the PCT theory to deal with interference among disorders, as discussed
above.

On the specific temporal aspects of the theory, a research issue were brought up by the
physicians questions on the idea of temporal inconsistency. Some of the specialists where
uncomfortable by the fact that a disease would be disconsidered from the explanations based
on the fact that it was temporally inconsistent with the case. We believe that this uneasiness
derives from a conceptual difference between how intervals are used by the physician in a
diagnostic and by this model. In this model, the interval denotes the mazimum possible
range for a time measure (distance or duration), whereas for the physician it represents the
typical range for that measure. Thus the fact that a measure does falls within the typical
interval should not be enough to characterize the measure as inconsistent with the interval.

This suggests that temporal consistency should not be a boolean attribute, but a fuzzy
one: if a measure falls within the typical interval, it is fully consistent, and its consistency
would decrease the further away from the is from the typical interval. The idea of fuzziness
must then be carried over to all concepts in the model.
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