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I) INTRODUCTION
The future Broadband Integrated Services Digital Network will carry video, voice and

data applications with different Quality of Service requirements. The cell arrival stream

from integrated traffic is highly correlated and neglecting its correlations leads to a dra-

matic underestimation of the delay and loss rate. The departure (output) process of an

ATM multiplexer is also correlated. Only recently has attention been given to the analysis

of the output process of ATM multiplexers [1]-[6]. However, just few works have consid-

ered networks with prioritized flows. In this paper, we introduce a procedure for modelling

the output process of an ATM switching node [7]-[13] in which the priority level of the

arriving cells are correlated. Moreover, we specify a framework for queueing networks

with prioritized Markov modulated flows.

Only recently, have some studies derived the statistical properties of the output pro-

cess of queues with Markov Modulated input [1]-[4]. Saito [1] studied the output process

of the N/G/1 queue and particularly of the MMPP/D/1 queue. By comparing the z-trans-

form curves of the covariance of interarrival times for both input and output processes of

a queue, Saito concluded that covariances are likely to be preserved. Takine et al. [2]

derived expressions for the kth moment of the interdeparture time and the statistics of

busy and idle periods of a queue with Discrete-time Batch Markovian Arrival Process

input (D-BMAP/D/1/K queue). Park et al. [3] proposed a procedure for matching the out-

put process of a 2-MMBP/Geo/1/K queue with the statistics of a two state Markov Modu-

lated Bernoulli Process (2-MMBP). The statistics used were: mean and variance of

interdeparture time, the autocorrelation of the interdeparture time and of the counting

process with lag one. Fonseca and Silvester [4] modelled the output process of a D-

BMAP/D/1/K queue as a two-state Markov Modulated Bernoulli Process. They matched

the long-term index of dispersion for counts and covariances at lags one and two. This

procedure is reasonably accurate. Percentage errors of the delay and of the loss rate

estimation were respectively under 6.5% and 10%. This procedure was extended to con-

sider ATM multiplexer with selective discard mechanism in which the priority level of a

cell is independent of other cells. Percentage errors of the high and of the low priority
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classes were respectively under 15% and 10%. The priority independence assumption is

quite reasonable as a first order approximation. However, a more detailed analysis is

need in order to capture the existing bursts of high/low priority cells which corresponds to

conformance/violation periods of a rate control mechanism. In the present work, we

show how to model the output process of an ATM multiplexer with correlated priority flow.

The precise estimation of end-to-end performances depends on the accurate repre-

sentation of the flows in the network. To completely specify a queueing network frame-

work, we need to define three network flow operations: output process, splitting and

joining [14]-[15]. In [16], we illustrated how a framework for queueing networks with

Markov modulated flows can be used to compute end-to-end delays in ATM networks.

Our results were quite encouraging. We found percentage errors under 9% in a twenty

nodes tandem network and under 7% in networks with feed-forward topology. In order to

analyze ATM networks, we extend our framework to include flows with correlated priority.

This paper is organized as follows. Section II describes a framework for queueing

networks with Markov modulated flows. In section III we introduce a model for the output

process of a prioritized multiplexer. In section IV, we show numerical examples and

finally some conclusions are drawn in section V.

II) A QUEUEING NETWORK FRAMEWORK WITH

PRIORITIZED MARKOV MODULATED FLOWS

We assume that the input traffic of the queueing network is modelled as a prioritized

Discrete Time Batch Markovian Arrival Process (D-BMAP[H,L]). A D-BMAP [H, L] is a

D-BMAP process where arrivals can be classified as either high or low priority. In the Dis-

crete Time Batch Markovian Arrival Process [17]-[19], a batch may arrive at every dis-

crete time. The batch size probability mass function depends on the state of an underly-

ing Markov chain. A D-BMAP is completely specified by the matrices Dn whose elements

(dij)n give the probability that a transition from state i to state j occurs and a batch of size
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n arrives. In a D-BMAP [H, L] the probability of an arrival (cell) belong to a certain priority

class (priority probability) depends on the priority of the previous cell in the flow. After a

period with no-arrivals, the priority probability of the first arriving cell is independent of

any other cell in the flow. Thus, the “memory” of the priority classification exists between

two no-arrival periods. Let us define θ = (pH/NO, pH/H,,pL/L) where:

pH|NO - is the probability that the first cell after a period with no arrivals be high priority

pH|H - is the probability of a cell being high priority given that the previous one was

also high priority;

pL|L - is the probability of a cell being low priority given that the previous one was also

low priority;

We define a correlation measure ψ as pH|H + pL|L - 1. If pH|NO = pH|H = 1- pL|L (and

consequently ψ = 0) we have independent priorities. A positive value of ψ indicates that

cells of at least one of the classes tend to be agglutinated in bursts, meanwhile a nega-

tive value of ψ shows that for at least one class there is no tendency of burst formation.

The maximum value of ψ (=1) happens when pH|H = pL|L = 1 and corresponds to the situ-

ation in which we have whole bursts of just one priority level.

We consider open queueing networks. In each node there is a single server with con-

stant service time. The buffer space is organized as complete sharing with push-out. The

drop policy is Last-In-First-Drop and service is provided in a First-Come-First-Served

basis. In order to solve this queueing network with non-renewal flows, we employ the

parametric decomposition approximation [14]-[15]. The parametric decomposition

approximation evaluates the queues in the network as if they were stochastically inde-

pendent. The queues are analyzed in isolation only after the input flow parameters are

computed.

To complete specify a queueing network framework we need to define the stochastic

process resulting from: i) departures of a queue (output process), ii) splitting of a process

due to routing and iii) merging of processes which go to the same queue (joining). We

define the network flow operators as:
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Output process

At each discrete time, there is at most one single departure from the queue. In addi-

tion, the output process of a queue with Markov modulated process is correlated. Thus,

we represent the output process as a prioritized Markov Modulated Bernoulli Process.

We focus our attention on the two-state representation due to its low computational com-

plexity. The 2-MMBP[H, L] is totally specified by θ, and by φ = (p1, p2, ) where

pi (i =1,2) is the probability of having an arrival when the underlying Markov chain is in

state i, and  (i=1,2) is the transition probability in state i at each time instant. In the

next section, we specify a procedure to represent the output process as a 2-MMBP[H,L].

Splitting

We assume that routing is memoryless which means that the probability of a cell

departing from one node and going to another node is fixed. When characterizing the

flow between two nodes, we represent the output process of the first queue as an

MMBP[H,L] process with parameters φ = (p1, p2, ) and θ = (pH|NO, pH|H,,pL|L), and

then we model the flow that goes to the target queue as a second MMBP[H,L] with param-

eters  = (pij x p1, pij x p2, α1, α2) and where:

pij - is the probability that a cell leaves node i and goes to node j,

 = pH|H;

 = pL|L;

 = pH/NO x p0 + phigh x (1 - p0);

 - is the probability of having no

                                                                                  output process cell generation

 - is the unconditional probability of a cell from the output

                                               process be high priority

Note that it is implicit in  (and in ) that two consecutive cells of the output

process are forward to the target destination. Regarding  we need to consider that
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the absence of cells in the target destination can be either due to the absence of cells in

the output process or due to the forwarding of a cell to a different destination.

Alternate splitting operators such as correlated splitting [20] can be developed

beyond memoryless splitting.

Joining

The superposition of two D-BMAP processes, A and B, with ma, mb states and na, nb

maximum batch size is also a D-BMAP, process C, with mc = ma x mb states and nc = na

+ nb maximum batch size. The matrix with elements (dij)k specifies the probability

of going from state i to state j and having a batch arrival of size k and is computed as:

where  denotes the Krockener product of matrix A by matrix B.

To compute the aggregate process priority probability, θ(c) we need to take into con-

sideration not only the priority probability of each aggregating process but also their

probability of arrivals. Thus, we have:

where:
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 - is the probability of having ni arrivals from process i (i=a,b)

 - is the unconditional probability of having a high priority arrival in process i

The  expression is similar to the  except for the index “high” which is

replaced by the index “low” and for the index “H|H” which is replaced by the index “L|L”

III)THE OUTPUT PROCESS OF A D-BMAP[H,L]/D/1/K

QUEUE
In a work-conserving queue, a cell is lost if and only if it finds the buffer space full.

Consequently, if we disregard the priority classification of the cells, we notice that the

statistics of the output process of a D-BMAP[H,L]/D/1/K is the same of the output process

of a D-BMAP/D/1/K. Therefore, we compute the parameters for the output process in two

steps. In the first step, we model the output process as a two state MMBP without taking

into account the priority classification (we compute ). In the second

step, we compute  (Figure 1).

The First Step

The output process of a queue with Markov modulated inputs is a correlated single

arrival process. If we define the underlying Markov chain state as being the number of

cells in the system plus the state of the input process, we are able to exactly represent

the output process as a Markov Modulated Bernoulli Process. For instance, If we have a

gated server (i.e., if a cell finds the server empty at its arrival slot, it can only be transmit-

ted at the next slot) then, the matrices  and  are given by [17]:

pni
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phigh
i( )

pL L
c( )

pH H
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φ̂ p̂1 p̂2 α̂1 α̂2, , ,( )=
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Unfortunately, the exact MMBP representation is computationally unfeasible given

that the number of states to represent the process at the output of each queue grows as

a function of the buffer size and the number of states of the input process. Thus, we

approximately represent the output process as a two-state MMBP. We do so by matching

some statistics of the output process with the same statistics of the two-state MMBP. We

chose to use the long-term index of dispersion for counts (the mean to the variance ratio)

and the covariance of the count process at lags one and two.

We showed that these mentioned statistics result in accurate modelling of the output

process [4]. The matching procedure was extensively validated. The percentage error of

the delay and of the loss rate estimation were respectively under 7% and 10% in a two

node tandem network when the output process of the first queue is replaced by a two-

D̂0
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state MMBP [4]. We have used the matching procedure to estimate the end-to-end delay

in tandem and in feed-forward networks [16]. End-to-end performance results were

within a similar range of the percentage error for isolated queues. In an experiment with

a 20 node tandem network, the end-to-end delay error was less than 2% higher than the

error when we considered an isolated multiplexer. We have also used different D-BMAP

to validate the matching procedure and found similar results for different processes [21].

The Second Step

Given that we have already characterized the aggregate output process, we need to

compute the conditional probabilities that a cell belongs to a certain priority class. If we

had an infinite buffer space the output priority probability, , would be the same as the

input process priority probability, θ. However, in a finite buffer queue, we need to take

into account the loss rate per class due to buffer overflow. We compute  by equating

the unconditional (high/low) priority probabilities of the output process and of its D-

BMAP[H,L] representation. Moreover, we approximate the (priority/loss) probability by the

(priority/loss) rate. Thus, we have:

where:

Rhigh - high priority loss rate

Rlow - low priority loss rate

In order to compute the loss rate in a D-BMAP[H,L]/D/1/K queue, we use a loss rate

conservation law [24]. This law allows a solution with low computational complexity. The

conservation law establishes that the product of the aggregated loss rate by the aggre-
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gated arrival rate is equal to summation of the per class product of the loss rate by the

arrival rate. In other words:

where λ and R are respectively the aggregated arrival rate and aggregated loss rate and

λn and Rn are respectively the class n arrival rate and loss rate. The loss rate law is a

generalization of Clare and Rubin’s loss probability law for i.i.d. arrivals [22], and Jeon

and Viniotis’ law for Markov Modulated Poisson Processes.

To solve the D-BMAP[H,L]/D/1/K queue, we first solve the aggregated system by com-

puting the queue length distribution. We then derive the low priority loss rate by observ-

ing a tagged low priority cell and computing the probability that it is not dropped

(successfully transmitted) [7].

A detailed solution of the D-BMAP[H,L]/D/1/K queue, as well as a proof of the conser-

vation law can be found in [24].

V) NUMERICAL EXAMPLES
In this section we discuss the main findings regarding the accuracy of the computa-

tional procedure. Extensive validation data can be found in [24]. We also show a tandem

network example.

To verify the precision of our model, we consider two queues in tandem. The input of

the first queue is a D-BMAP[H, L] and the input of the second queue is the result of the

superposition of an interfering D-BMAP[H, L] and the output process of the first queue.

The interfering process is introduced in order to avoid the “non-queueing” phenomenon

in tandem networks. We compare the estimated loss rate per class at the second queue

when the output process is replaced by a two-state MMBP[H, L] (Figure 2) with loss rate

given by a simulation experiment. We report the percentage error which is defined as

 where psim is the probability given by the simulation experiment and

pest is the loss rate computed when we use the matching procedure. In the simulation

λR λnRn
n 1=

N

∑=

psim pest–

psim
------------------------------- 100×
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experiments, we use independent replication method with 95% confidence interval. To

avoid any distortion of the percentage error, we limit the range of simulation results to

those which can be obtained through Monte Carlo techniques (from 10-8 to 10-1); there-

fore avoiding the use of rare event simulation [25].

The input to the first queue and the interfering process are both two state

D-BMAP[H, L] with the same transition probability in each state ( ) [2]. The batch size is

Poisson distributed with mean  (state 1) and  (state 2) where ρ is the

overall traffic intensity and c is a parameter. It was demonstrated in [2] that the square

coefficient of variation ( ) and the correlation coefficient of the number of arrivals at

lag n ( ) are respectively given by:

We consider that the probability that a cell belongs to a priority class does not depend

on the state of the underlying Markov chain for both input and interfering processes.

Tables 1 and 2 show respectively the high and the low priority loss rate for a wide

range of values. Our procedure is more accurate when it estimates loss rate for the low

priority class than it is for the high priority class. The errors of the low priority loss rate

estimation are similar to the errors of the aggregated loss rate. We also notice that our

procedure is more precise for high values of the loss rate than it is for lower ones. Errors

were below 17% for the high priority class and below 13% for the low priority class.

In order to evaluate the impact of the offered load, its coefficient of variation and its

correlation coefficient on the accuracy of the procedure, we vary respectively ρ,c and α.

Figure 3 show the high priority loss rate as a function of ρ (for input φ = (c = 0.9, α = 0.9)

θ = (0.9, 0.8, 0.5) and interfering φ = (ρ = 0.4, c = 0.5, α = 0.9) and θ = (0.9, 0.8, 0.5)). In

the top part of the figure, we show the actual analytical and the simulation values and in

the bottom part we show the corresponding percentage error. As the offered load

increases, our procedure becomes more accurate. Figure 4 shows the percentage error

α
1 c+( ) ρ 1 c–( ) ρ

Cv
2

Cc n( )
Cv

2 ρ 1–
c

2
+=

Cc n( ) c
2ρ

1 c
2ρ+

------------------ 2α 1–( ) n×=
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as a function of ρ for different values of pH|H. We note that the procedure is more precise

for higher values of pH|H (for longer high priority bursts). Figure 5 and 6 are respectively

similar to figure 3 and 4 except that it is for the low priority class. The same remark of

Figure 3 applies to Figure 5. We note that for the low priority class the impact of the prior-

ity burst length is less significant than it is for the high priority class.

Figure 7 and 8 respectively display the percentage error of the high and of the low

priority class when we vary c (for input φ= (ρ = 0.8, α = 0.9), θ = (0.9, 0.8, 0.5) and inter-

fering (ρ = 0.4, c = 0.1, α = 0.9), θ = (0.9, 0.8, 0.5)). We notice that our procedure gives

slightly more accurate results for higher values of the input process coefficient of varia-

tion. The impact of the coefficient of variation on the precision is a little more pronounced

for the high priority class than for the low priority one. For the high priority class the max-

imum difference in the percentage error is 3% whereas for the low priority class the max-

imum difference is 2%. For the high priority class, the accuracy increases significantly as

pH|H increases. For the low priority class, the impact on the accuracy is much less signif-

icant when we increase pL|L. In our validation experiments we also noticed that the preci-

sion of the procedure as a function of the coefficient of variance depends on the

correlation coefficient. For positively correlated streams, we found out that the procedure

is approximately 2% more precise than for negatively correlated streams. Figure 9 and

10 show respectively the accuracy of the procedure as a function of the input process

correlation coefficient for the high and for the low priority class. In other words, the proce-

dure is slightly more accurate for positively correlated streams than for negatively corre-

lated ones.

To make sure that the interfering process parameters did not impact our results, we

varied the interfering process ρ, c and α. No significant impact on the precision of our

results was found.

In Figure 11 we show an example of a four node tandem network where we vary

the offered load to the first queue. The interfering process parameters is the same for the

three other queues (the first queue does not have an interfering process) We compute

the end-to-end loss rate as 1 - Π (1 - pi) where pi is the loss rate at queue i. In the top
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part of Figure 11 we show the end-to-end loss rate computed using the computational

procedure and the simulation estimation. The bottom part of the figure shows the respec-

tive percentage error. We note that the precision increases as the offered load increases.

Additional examples can be found in [24].

VI) CONCLUSIONS
In this paper, we introduce a procedure for modelling the output process of a

D-BMAP[H,L]/D/1/K queue with push-out buffer policing in which the priority level of a cell

depends on the priority level of other cells in the flow. The modelling is carried out in two

major steps. In the first step, we characterize the output process disregarding the priority

mechanism. In the second phase, we compute the probability that a cell belongs to a pri-

ority class. Our procedure is shown to be accurate. Errors of the estimated high and low

priority are respectively under 13% and 17%. Moreover, we describe a framework for the

analysis of queueing networks with prioritized Markov modulated flow. We are currently

validating the queueing network framework for more generally connected networks. We

are also comparing the impact of different work-conserving buffer organizations on the

end-to-ed loss rate.
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Figure 1: The computational procedure for the modelling of an ATM multiplexer with
selective discard.

Figure 2: Scheme for validation of the matching procedure.
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Figure 3: High priority Loss rate x offered load
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Figure 4: Percentage error of the high priority loss rate x offered load
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Figure 5: Low priority loss rate x offered load
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Figure 6: Low priority loss rate x offered load
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Figure 7: Percentage error of the High priority class loss rate x c
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Figure 8: Percentage error of the low priority class loss rate x c
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Figure 9: Percentage error of the High priority class loss rate x α
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Figure 10: Percentage error of the low priority class loss rate x α
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Figure 11: A tandem network example
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