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Sequential and Parallel Experimental Results with BipartiteMatching Algorithms�Jo~ao C. SetubalInstitute of Computing, CP 6176University of CampinasCampinas, SP 13083-970Brazilsetubal@dcc.unicamp.brAbstractWe present experimental results for four bipartite matching algorithms on 11 classesof graphs. The algorithms are depth-�rst search (dfs), breadth-�rst search (bfs), thepush-relabel algorithm [GT88b], and the algorithm by Alt, Blum, Mehlhorn, and Paul(abmp) [ABMP91]. dfs was thought to be a good choice for bipartite matching but ourresults show that, depending on the input graph, it can have very poor performance.bfs on the other hand has generally very good performance. The results also showthat the abmp and push-relabel implementations are similar in performance, but abmpwas faster in most cases. We did not �nd a clear-cut advantage of abmp over bfs orvice-versa, but both the abmp and push-relabel implementations have generally smallergrowth rates than bfs, and should thus be preferred if very large problems are tobe solved. For small problems bfs is the best choice. We also present experimentalresults from a parallel implementation of the push-relabel algorithm, showing that itcan be up to three times faster than its sequential implementation, on a shared-memorymultiprocessor using up to 12 processors.1 IntroductionThe bipartite matching problem is: given a bipartite graph G = (U; V; E), with n = jU j+jV j and m = jEj, we want to �nd a set of edges M � E of maximum cardinality suchthat no edge in the set shares a vertex with any other edge in the set. This set is amaximum matching. From a computational complexity point of view, in the case of sparsegraphs, the best sequential algorithm for �nding a maximum matching is by Hopcroft andKarp [HK73], which achieves a worst-case running time of O(pnm). For dense graphs thebest algorithm is by Alt, Blum, Mehlhorn, and Paul [ABMP91], having a worst-case boundof O(n1:5pm= logn).�This work was supported in part by grants from Brazilian Research Agencies FAPESP and CNPq.1



Bipartite matching is an important problem from a practical point of view, since it hasmany applications [AMO93]. Therefore it is important to know what algorithms have goodperformance in practice. Other computational studies of bipartite matching algorithmshave been done in the past, of which we are aware of two: Darby-Dowman [DD80] andChang and McCormick [CM90]. These studies showed or mentioned that implementations ofHopcroft and Karp's algorithm were considerably slower than implementations of two simpleaugmenting-path algorithms: depth-�rst search (dfs) and breadth-�rst search (bfs). Thesetwo algorithms have worst-case running time of O(nm). Darby-Dowman's experiments didnot show a signi�cant advantage of one type of search over the other, except that he notedthat by comparing total execution time on all his experiments bfs \was found to be over10% faster than" dfs, but no implementation \performed consistently better" on individualtest cases. Chang and McCormick, on the other hand, did not even consider bfs, comparingtheir implementation of dfs to two others of dfs as well. The implication seems to be thatdfs is the algorithm to solve bipartite matching problems in practice, in particular with aheuristic used by Chang and McCormick.Two new algorithms for bipartite matching have arisen in the past decade: one is thealready mentioned algorithm by Alt, Blum, Mehlhorn, and Paul [ABMP91] (which we callabmp), and the other is the push-relabel algorithm, developed by Goldberg [Gol87] andgeneralized by Goldberg and Tarjan [GT88b]. This last algorithm was developed for themaximum 
ow problem, but it can be readily specialized for bipartite matching, yielding arunning time of O(nm). In a preliminary work [Set93] we showed that implementations ofthe abmp and push-relabel algorithms were signi�cantly faster than an implementation ofHopcroft-Karp's algorithm. The question then remained: are these new algorithms fasterin practice than the simple-search algorithms? This paper tries to answer precisely thisquestion.In order to answer it we compared an implementation of dfs developed by Chang andMcCormick [CM90] to three others that we developed, one for each of the other threealgorithms. We used 11 di�erent input classes, with di�erent input sizes and di�erent in-stances for the same size, resulting in a total of 390 problems. The largest of these problemshad 131072 vertices and some 328000 edges. By comparison, in the main body of Darby-Dowman's thesis [DD80] results from runs on 11 problems are reported, the largest havingno more than 1000 vertices and no more than 2500 edges; Chang and McCormick [CM90]solved 60 problems, the largest with 4000 vertices and 147952 edges.A summary of the results is as follows. We found that there are several classes wheredfs's performance is dismal compared to the others, being in one case two orders of magni-tude slower than the fastest implementation. The abmp and push-relabel implementationshad similar performance, but abmp was faster in most cases. bfs was in general faster thanabmp for small graphs (up to thousands of vertices), while abmp was faster for large graphsin �ve of the classes.The push-relabel algorithm has one advantage over the others: it can be parallelized withrelative ease. We have done this and compared the parallel implementation to the sequentialimplementation, observing a speed-up of up to 3.2 with 12 shared-memory processors. Withsuch a speed-up the push-relabel implementation can be the fastest of all implementationstested in several of the input classes studied.2



The paper is structured as follows. We brie
y describe the algorithms and their sequen-tial implementations in section 2. We then describe how the sequential experiments wereconducted in section 3. Results and analysis are presented in section 4. A general conclu-sion of the sequential experiments is given in section 5. The remaining sections describe theparallel experiments, and �nal comments are made at the end.2 Sequential Implementations2.1 General informationAll implementations developed by the author deal with the two partitions, U and V , asseparate entities, each partition having its own data structure. Thus we speak of a uvertex, u 2 U , or of a v vertex, v 2 V . The main data structure used is an adjacency listfor each vertex.We note that all implementations (including dfs) consider the vertices in the sameorder, and adjacency lists are exactly the same.2.2 Initial MatchingAll implementations, in a �rst phase, �nd an initial, maximal matching, so all algorithmsstart with precisely the same maximal matching. A greedy strategy is used: we scan thevertex list of the U partition (according to the input order) and try to �nd an unmatchedneighbor for each u vertex.2.3 Depth-First-SearchThis algorithm �nds a maximum matching by looking for augmenting paths in a depth-�rstmanner. We used Chang and McCormick's code [CM90], written in fortran-77, whichhas the following heuristic to speed up the search: whenever the search fails, all labeledvertices are discarded, since they can't be on any augmenting path. This heuristic improvesthe implementation's performance when maximum matchings are not perfect.We replaced the original timing routines in the dfs code with calls to the same Ctiming interface used in all other implementations (described below). In addition, we wroteand tested a C dfs implementation and compared it to the fortran-77 code, observingessentially no di�erence in performance. This means that the language (or compiler) wasnot a factor in the running times.2.4 Breadth-First-SearchThis implementation �nds a maximum matching by looking for augmenting paths in abreadth-�rst manner. We wrote it in C using essentially the same ideas as in the dfsimplementation, including the heuristic mentioned above.3



2.5 Push-RelabelWe give here a brief description of the algorithm as applied to the bipartite matchingproblem. A full description can be found in [GT88b]. The algorithm works by applyingthe push and relabel operations to active vertices. A u vertex is active if it is unmatched,and its label is below n. A vertex's label is a lower bound on its distance to an exposed(unmatched) v vertex. The application of push to u consists of matching it to one of itsneighbors that has a label with a value one less its own, regardless of whether this neighboris already matched or not. A v vertex is active if it is \overmatched", that is, more thanone u vertex is matched to it. We push from v by unmatching all its mates except one. Thevertices to be unmatched also need to have labels one less than the v vertex. From time totime we can only push from an active vertex after a relabel operation: its label is changedto be one above the minimum of its neighbor's labels (mates' labels, in case of a v vertex).The algorithm terminates when there are no more active vertices.The active vertices are processed in fifo (queue) order. The initial greedy matching iscomplemented by the following action: if a u vertex was not able to �nd an unmatched vvertex, it mates with its �rst neighbor on its adjacency list. As a consequence, at the startof the algorithm proper all vertices in U are matched and the initial active vertices will bethe \overmatched" vertices in V .Even though the algorithm works as described, it has been found that a periodic globalrelabeling speeds up the implementation enormously. This observation was made in compu-tational studies of the push-relabel algorithm for the maximum 
ow problem [DM89, AS93].This global relabeling is a backwards breadth-�rst search performed on the residual graph(i.e. the directed graph implied by the current matchings), changing labels on vertices fromapproximate distances into exact distances. It is called every m=2:5 discharges, a dischargebeing the operation of taking an active vertex from the queue and trying to push from it.This frequency has a big impact on the implementation's performance, and the value usedwas determined empirically.2.6 abmpThe abmp algorithm can be thought of as a cross between the simple-search and push-relabel algorithms, in the following sense: augmenting paths are sought, but distance labelson the vertices are used to determine the directions in which paths are extended. Thedistance labels play essentially the same role as they do in the push-relabel algorithm, andare therefore approximate distances to the exposed vertices in V . A relabeling takes placewhenever a path cannot be extended. A global relabeling routine, very similar to the oneused in the push-relabel implementation, is invoked periodically to relabel all vertices. Theroutine is called after every n relabels; this frequency value was also determined empirically.As originally proposed [ABMP91], the algorithm processes vertices up to a certain dis-tance, then �nds the remaining augmenting paths using Hopcroft-Karp's algorithm. In ourimplementation we simply let the algorithm process all distances (up to n, since u verticesfurther than that cannot be matched). A queue is used to manage the unmatched verticesin U . Every time the global relabeling routine is invoked, it 
ushes the queue and �lls it4



with the currently unmatched vertices in U (with labels below n) in increasing order oftheir labels.2.7 Operation countsWe compared the implementations using two measures: cpu time and operation counts.Since the algorithms are di�erent it is not clear how an operation count of one can becompared to another. In the case of the dfs, bfs, and abmp implementations the operationswe counted were of two types: edge queries and edge switches. An edge query is countedwhenever we look at a neighbor of a vertex, be it from U or from V . An edge switch iscounted whenever we change an edge from matched to unmatched or vice-versa. In thecase of the push-relabel implementation we also counted edge queries, plus the number ofpushes. A push is an operation very similar to an edge switch.Note that by using operation counts as de�ned above we are underestimating the totalnumber of operations performed by the abmp and push-relabel implementations (since theyare more complex). Thus a simple-search implementation having the same operation countas one of the others will in general be faster. With this caveat in mind we believe theoperation count does give us a good measure to compare all algorithms. In addition, as willbe seen, there is a very good correlation between operation counts and cpu time.3 Setting for sequential experiments3.1 Machine and compilersThe sequential experiments were done on a Sun SPARCstation 2, running SUNOS 4.1.3with 32 MB of main memory.The dfs implementation was Chang and McCormick's own fortran-77 code, compiledwith Sun's f77 compiler using the -O option. All others were written in C by the authorand compiled with Sun's cc compiler using the -O option.3.2 Input graphsThe input graphs used to test the programs came from three di�erent graph generators.By varying the generators' input parameters a total of 11 di�erent classes of input graphswere obtained.3.2.1 Generator 1The �rst generator was written by the author and generates variations of random bipartitegraphs. We use the following de�nition of a random bipartite graph: vertices from the Upartition are considered in some arbitrary order. For each u vertex, x vertices from theV partition are chosen randomly and uniformly to be its neighbors. The variable x itselfis a binomial random variable, such that the expected degree of each u vertex is d. Thegenerator accepts as input the value of d and approximates the binomial random variableby simulating a Poisson random variable [Fel68].5



Three input classes were obtained with this generator. All of them have jU j = jV j andd = 5, and are thus described (with the tags we use to designate them in parenthesis):� random (random). The neighbors for each vertex in U are chosen from all vertices inV .� few groups (fewg). The vertices in U and V are divided into n1 groups of n2 verticeseach. The neighbors for a vertex belonging to U in group i are chosen at random fromvertices in groups i� 1, i, and i+ 1 in V . There is wrap-around, in that for group 1we use groups n1, 1 and 2 in the choice of neighbors, and for group n1 we use groupsn1 � 1, n1 and 1. The value for n1 is �xed at 32, and only n2 varies as we increasethe total number of vertices (n = 2n1n2).� many groups (manyg). Similar to the previous, but n1 is �xed at 256.The classes fewg and manygwere designed having in mind problems that can be reducedto bipartite matching, such as the maximum number of vertex-disjoint paths problem. Inthese problems the resulting graph in the reduction is bipartite, but if the original graph isplanar or nearly planar each vertex will only have as neighbors vertices in the surroundingarea.The programs were tested on instances having 2i vertices, where i = f14; 15; 16; 17g, foreach class. Given that the value selected for the average degree was 5 the number of edgeswas always approximately 2:5n. In each size, 20 instances were solved, using di�erent seedsfor the pseudo-random number generator (which was unix's random()). After building eachinstance the vertices on the U side are relabeled from 1 to n=2 by a random permutation.For these classes, we observed in the experiments that the initial matching matchedaround 86% of the vertices and maximum matchings got to about 99% of the vertices.3.2.2 Generator 2This generator was written by J. Stol� [personal communication]. It can generate sixdi�erent kinds of bipartite graphs, identi�ed by the tags band, fuzz, hexa, worm, rope, andzipf. The class descriptions, as provided by Stol�, are as follows.The graphs generated are all bipartite, with vertices U [1 : : :nu] and V [1 : : :nv ]. Beingm the number of edges, du = m=nu and dv = m=nv are the average degrees on each side.In all the graphs we generated we had nu = nv = n1=2, and the average degree du = dv = dwas 6.These graphs are partially random, so each quadruple (class,nu; nv; m) actually de�nesa large number of non-isomorphic instances with similar structure. The random choices area function of a user-speci�ed integer seed. The quintuple (class,nu; nv; m,seed) does de�nea unique graph. For each of the classes the programs were tested on instances having 2ivertices, where i = f12; 14; 16g. The number of edges was 3n. In each size, 5 instances weresolved, using di�erent seeds for the pseudo-random number generator (which was a libraryroutine of the modula-3 language). 6



After building each graph, as described below, the vertices on each side are relabeledfrom 1 to nv by two random and independent permutations. The relabeling also dependson the user-given seed.The class descriptions below consider only the \normal" case, where nu = nv and thenumber of edges m is compatible with the class's structure | as it was in all of our tests.When m is too small or too large, some of the \required" edges may be missing, or extra\�ller" edges may be present where none should.band: Vertex U [i] is always connected to vertex V [i], and possibly also to V [i+ k] and/orV [i�k], for small integers k. The probability of these extra edges decreases roughly linearlyfrom 1.0 at k = 0 to 0.0 at k � d. The trivial pairing U [i]{V [i] is thus a perfect matching.Other matchings may exist. For this class we observed in the experiments that the initialgreedy matching paired about 93% of the vertices.fuzz: About half of the vertices in U and V form a band-type graph, the \kernel". Eachof the remaining vertices (the \fuzz") is connected to a distinct \kernel" vertex on theopposite side. The number of edges in the kernel is m�n1=2, thus the average degree thereis almost 2d. The only perfect matching connects each fuzz vertex to the correspondingkernel vertex. A greedy maximal matching algorithm, using random labels, will tend topair kernel vertices with kernel vertices, and stop well below the maximum. We observedin the experiments that the initial matching paired about 78% of the vertices. Augmentingpaths are probably very short, at least for d � 6.hexa: The vertices on each side are divided into n1=2=b blocks of size b. One randombipartite hexagon is added between each block i on one side and each of the blocks i + kon the other side with jkj � K, for some K. The parameters b and K are chosen by theprogram in such a way that the average degree is correct (i.e., 3K=b = d) but few pairsof hexagons will have more than one vertex in common. The adjacency matrix is dividedinto blocks of size b� b. On each row, only the 2K + 1 blocks closest to the diagonal willbe non-empty. Each non-empty block contains 6 nonzero entries, two on each of 3 distinctrows and 3 distinct columns.For this class we oberved in the experiments that the initial matching paired about 83%of the vertices and maximum matchings paired about 95% of the vertices.worm: The vertices one each side are grouped into t blocks of size b = n1=2=t, numberedU0 : : :Ut�1 and V0 : : :Vt�1. Typically t is small, between 3 and 5. Block i on one side isconnected to block i+1 on the other side, for i = 0; 1; : : : ; t�2 ; and block Ut�1 is connectedto block Vt+1. (Thus, the graph is a fat \worm" that is folded and twisted over itself, sothat it zigzags between the two sides, �rst up and then down.) The connections betweenblocks alternate between perfect matchings (\m-type connections") and random bipartitegraphs of average degree d � 1 (\r-type connections"). The �rst and last connections areperfect matchings. The adjacency matrix is divided into t2 blocks of size b� b. All blocksare empty, except for the 2(t � 1) blocks immediately adjacent to the diagonal, and the7



last block on the diagonal itself. Each non-empty block contains either b ones on the blockdiagonal, or (d� 1)b ones randomly distributed.The only perfect matching is the union of all m-type connections. A greedy matchwould tend to use r-type edges, since they are more numerous, and hence fall short of themaximum. For this class we oberved in the experiments that the initial matching pairedbetween 80% and 84% of the vertices. Augmenting paths should have about 2t � 1 edges,and augmenting trees should have about (d� 1)t�1 vertices.rope: This is a longer version of class worm. Block size is equal to d so there are n=dblocks. For this class we oberved in the experiments that the initial matching paired about90% of the vertices.zipf: This is a random bipartite graph where the edge between ui and vj has \ideal"probability roughly proportional to 1=(ij). Thus it is very dense near the \core" verticesu0; v0, and thins out slowly towards the \periphery". If m is large compared to nunv , the\ideal" distribution above gives probabilities greater than 1 for some edges. Since paralleledges are not allowed, the algorithm implicitly reduces the actual probabilities of core edgesto the range [0 : : :1].The maximum matching is probably quite low. For one thing, there must be manyvertices of degree 0. Moreover, there must be many vertices of low degree that are attachedto the same core vertices. In the experiments we observed that the initial matching pairedbetween 62 and 69% of the vertices, while the maximum paired about 5% more vertices.3.2.3 Generator 3This generator was written by S. Frank Chang [personal communication]. It generates 0-1 matrices, and the nonzeros in each matrix are generated by blocks of rows. For eachblock of rows a range of columns is chosen by a random scheme based on input parameters.Another input parameter is the density of nonzeros. We obtained two input classes with thisgenerator: with density 15% (called bcm15) and 26% (called bcm26). Both values generategraphs far denser than those from the other classes. We observed that with 15% density theinitial matching paired from 61 to 68% of the vertices, and the maximum matching pairedfrom 72 to 83% of the vertices. With 26% density the initial matching paired about 76% ofthe vertices and the maximum matching was perfect or nearly so.We generated graphs with 2i vertices, i 2 f8; 9; 10g. In each size, 10 instances weregenerated using di�erent seeds for the pseudo-random number generator (which was unix'srandom()).3.3 Other informationFurther characteristics of the experiments were as follows:� At the end of each run the solution is checked for consistency and maximality in theC implementations. 8



� Running times for all implementations were measured with the system call getrusageby selecting �eld ru utime (cpu time).� Running times reported exclude input, checking, and output time, but do include theinitial matching time. In addition, the �gures reported are means over the number ofinstances solved in each size and class (the same applies to operation counts).� Asymptotic performance (growth rate) was estimated by doing a power regressionanalysis of the data, for both time and operation counts. In the tables below wepresent this in the column indexed by k, which is the exponent of n given by theanalysis. The value of k is somewhat uncertain due to the small number of datapoints in the regression analysis, and to the variance of the mean running time ormean operation count. More importantly, these growth rates do not necessarily re
ectthe complexity of the respective algorithms, since graph structure may change withincreased size. Thus, as the graphs grow, they may become harder or easier for animplementation. Nevertheless the computed growth rates for each input class do givean useful (albeit rough) relative indication of how fast the solution time (or operationcount) is increasing as the instances get larger.4 Results and analysis of sequential experimentsWe present the results below, separated by classes according to the generator they camefrom. Before that, we have some general remarks.We observed a good correlation between running times and operation counts. Moreover,the growth rates for running times were in most cases within 10% of the growth rates foroperation counts. These observations give us con�dence both in the absolute running timevalues observed and in the performance of one implementation relative to the others.4.1 Generator 1In tables 1, 2, and 3 we report the running times, operation counts, and respectivegrowth rates for classes random, fewg, and manyg, respectively.These tables show that the abmp, push-relabel and bfs implementations have similarperformance, while dfs was relatively quite slow, being about 30 times slower than abmpin classes random and fewg, for the largest size tested. bfs, although much faster than dfs,exhibited growth rates signi�cantly larger than abmp and push-relabel.4.2 Generator 2Tables 4 through 9 present the results for classes obtained from generator 2. In fourof these classes (band, fuzz, rope, and zipf) the simple-search algorithms had similar per-formance and that was better than the performance of the other two algorithms. In classzipf, dfs was 5 times faster than abmp for instances with n = 216. Note that maximummatchings in class zipf are far from perfect, thus in agreement with the expectation thatdfs and bfs should have good performance in these cases. But note also that abmp is9



Table 1: Results for class random.n! 214 215 216 217 ktime (secs)abmp 0.48 1.05 2.41 4.80 1.12bfs 0.52 1.44 4.09 9.97 1.43dfs 3.04 11.16 40.77 142.52 1.85push-relabel 0.64 1.37 3.11 6.49 1.12operation counts (thousands)abmp 170 363 841 1678 1.11bfs 255 677 1831 4289 1.37dfs 1492 5143 18088 61860 1.79push-relabel 311 672 1507 3100 1.11
Table 2: Results for class fewg.n! 214 215 216 217 ktime (secs)abmp 0.50 1.13 2.41 4.90 1.10bfs 0.50 1.52 3.95 10.13 1.44dfs 2.70 10.54 37.91 141.10 1.90push-relabel 0.61 1.33 3.09 6.75 1.16operation counts (thousands)abmp 190 417 868 1738 1.06bfs 272 776 1889 4555 1.35dfs 1384 5022 17011 61461 1.82push-relabel 306 649 1496 3251 1.1410



Table 3: Results for class manyg.n! 214 215 216 217 ktime (secs)abmp 0.83 1.74 3.77 8.77 1.13bfs 0.48 1.30 3.93 13.21 1.59dfs 0.89 3.45 15.57 70.89 2.11push-relabel 0.95 1.78 3.93 8.13 1.04operation counts (thousands)abmp 342 699 1481 3387 1.10bfs 312 797 2252 7059 1.50dfs 511 1812 7453 32019 1.99push-relabel 519 928 2031 4089 1.01
Table 4: Results for class band.n! 212 214 216 ktime (secs)abmp 0.11 0.42 1.90 1.03bfs 0.03 0.15 0.59 1.07dfs 0.03 0.18 0.87 1.21push-relabel 0.13 0.65 2.45 1.06operation counts (thousands)abmp 46 161 709 0.99bfs 21 84 287 0.94dfs 14 100 439 1.24push-relabel 75 319 1136 0.9811



Table 5: Results for class fuzz. Running times for bfs and dfs with n = 212 were too smallto obtain reliable values for k.n! 212 214 216 ktime (secs)abmp 0.04 0.18 0.73 1.05bfs 0.01 0.07 0.31 � 1dfs 0.00 0.04 0.22 � 1push-relabel 0.05 0.21 0.85 1.02operation counts (thousands)abmp 12 47 188 0.99bfs 4 17 70 1.03dfs 3 13 52 1.03push-relabel 16 62 249 0.99Table 6: Results for class hexa.n! 212 214 216 ktime (secs)abmp 0.10 0.46 2.09 1.10bfs 0.07 0.35 2.30 1.26dfs 0.13 1.71 21.10 1.84push-relabel 0.16 0.63 2.91 1.05operation counts (thousands)abmp 39 165 731 1.06bfs 37 178 1033 1.20dfs 76 870 9623 1.75push-relabel 85 322 1385 1.0112



Table 7: Results for class worm.n! 212 214 216 ktime (secs)abmp 0.09 0.47 2.01 1.12bfs 0.07 0.51 6.55 1.64dfs 0.51 5.41 262.80 2.25push-relabel 0.12 0.60 2.65 1.12operation counts (thousands)abmp 34 164 690 1.09bfs 42 286 3159 1.56dfs 295 2978 124738 2.18push-relabel 56 264 1139 1.09
Table 8: Results for class rope.n! 212 214 216 ktime (secs)abmp 0.23 0.98 4.09 1.04bfs 0.14 0.60 2.86 1.09dfs 0.12 0.63 3.08 1.17push-relabel 0.26 1.22 4.87 1.06operation counts (thousands)abmp 96 383 1528 1.00bfs 103 409 1835 1.04dfs 86 398 1878 1.11push-relabel 162 682 2596 1.0013



Table 9: Results for class zipf.n! 212 214 216 ktime (secs)abmp 0.08 0.30 1.29 1.00bfs 0.02 0.07 0.28 0.95dfs 0.02 0.06 0.25 0.91push-relabel 0.17 0.68 2.50 0.97operation counts (thousands)abmp 27 103 464 1.03bfs 9 28 98 0.86dfs 8 25 88 0.86push-relabel 116 463 1551 0.94still solving those problems in little more than one second. In terms of growth rates allimplementations are similar.In classes hexa and wormwe have again the same pattern detected in generator 1 classes:dfs has dismal performance, and bfs is much faster. However bfs still lags behind abmpand push-relabel in terms of growth rate; thus abmp comes out faster in the largest in-stances. Note that both hexa and worm have a block structure, as do fewg and manyg; inall these classes dfs had poor performance. But dfs was also slow in class random, whichhas no such structure.The growth rates observed in these experiments also show that inputs can become harderor easier with increased size. So in class worm the running time growth rate of dfs (2.25) isgreater than its worst-case complexity (2). In class zipf three of the implementations havesublinear growth rates, below the linear lower bound.4.3 Generator 3In tables 10 and 11 we present results from classes obtained with generator 3. In theseclasses running time depends primarily on m, since it grows faster than n when instancesget larger. Therefore the growth rates shown were computed with respect to the average mshown in the tables.bfs was fastest in both classes; dfs was fast in class bcm15 but it lagged behind both bfsand abmp in class bcm26. As noted above, class bcm15 has maximum matchings far fromperfect, whereas bcm26's maximum matchings are perfect or nearly perfect. So di�erencein performance here may indicate that dfs is more sensitive to the maximum matchingcardinality than bfs, even though both programs use the same heuristic to discard labelednodes (see section 2.3).It is also noteworthy the poor performance of push-relabel. The main reason is that forthese classes the implementations was very sensitive to the frequency of global relabeling.14



Table 10: Results for class bcm15. Running times for bfs and dfs with n = 28 were toosmall to obtain reliable values for k.n! 28 29 210avg. m! 9830 39322 157286 ktime (secs)abmp 0.02 0.11 0.53 1.18bfs 0.00 0.02 0.07 � 1dfs 0.00 0.02 0.09 � 1push-relabel 0.04 0.27 1.15 1.21operation counts (thousands)abmp 20 93 300 0.98bfs 9 32 96 0.85dfs 12 61 271 1.12push-relabel 63 278 909 0.96Table 11: Results for class bcm26.n! 28 29 210avg. m! 17039 68157 272630 ktime (secs)abmp 0.12 0.39 1.58 0.93bfs 0.08 0.30 1.37 1.02dfs 0.09 0.60 4.23 1.39push-relabel 0.15 1.35 10.38 1.53operation counts (thousands)abmp 59 201 823 0.95bfs 65 255 1201 1.05dfs 109 796 5488 1.41push-relabel 117 1127 8648 1.5515



Table 12: Overall results of sequential experiments. Running time in seconds, all classeswith n = 216; 2:5n � m � 3n. In boldface is the fastest time for each class.class abmp bfs dfs push-relabelband 1.90 0.59 0.87 2.45fewg 2.41 3.95 37.91 3.09fuzz 0.73 0.31 0.22 0.85hexa 2.09 2.30 21.10 2.91manyg 3.77 3.93 15.57 3.93random 2.41 4.09 40.77 3.11rope 4.09 2.86 3.08 4.87worm 2.01 6.55 262.80 2.65zipf 1.29 0.28 0.25 2.50The frequency adopted was good in some instances but bad in others, leading to quitedi�erent running times. This illustrates a weakness of push-relabel: when graphs are dense,it becomes di�cult to obtain a global relabeling frequency that is good in all cases. Theabmp implementation also depends on global relabeling, but no such weaknesses showedup in these experiments.5 Overall conclusion of sequential experimentsIn Table 12 we summarize results for 9 of the input classes used (those classes wherethere were instances of approximately the same size). The one clear conclusion we can drawfrom this table is that dfs can have very poor performance compared to the others, and inparticular compared to its counterpart bfs. Since the codes of these two implementationsare similar in size and complexity, these results show that bfs should always be preferredover dfs. This result is consistent with the behaviour of dfs and bfs in maximum 
owproblems, as shown in [AS93]. We can also say that abmp and push-relabel have similarperformance. abmp was fastest in most cases, but the running times are su�ciently closethat we cannot be positive in choosing one over the other.A comparison between abmp and bfs is more di�cult. While abmp \won" in moreclasses than did dfs, we don't claim that the set of classes used is indeed representative ofproblems habitually solved in practice. We can nevertheless say that abmp had in generalsmaller growth rates.Taking together all these observations and those made in previous sections, the exper-imental results of this paper point towards the following recommendations for bipartitematching practitioners (with the following two assumptions: input graphs should be sparseand an initial greedy matching is used):� In situations where small problems (up to thousands of vertices) have to be solved,either once or many times as sub-problems of other problems, bfs is the best choice.16



� In situations where large problems (tens of thousands of vertices or larger) have to besolved, the abmp or the push-relabel algorithms can be the best choice, depending onthe input graph structure.� When it is known beforehand that the maximum matching is well below perfect, bfsseems a better choice, even when the problem is large.6 Parallel ImplementationIn this section we describe the parallel implementation developed for the push-relabel algo-rithm. Parallel bipartite matching has attracted quite a bit of attention from the theoreticalpoint of view [Gro92, GPST92, GPV88, GT88a, SM89], but the algorithms described donot seem suitable for implementation.In the push-relabel algorithm, as seen in section 2.5, we have a collection of activevertices to which we apply the push and relabel operations. The algorithm is correct nomatter the order in which these operations are applied, as long as they are applicable. Thismeans that we can push from or relabel many active vertices simultaneously, making thealgorithm suitable for a parallel, coarse-grained implementation.Our implementation is geared towards shared-memory, few-processor machines. It isan adaptation of an implementation developed by Anderson and Setubal [AS95] for themaximum 
ow problem. Since the adaptation is relatively straightforward, here we limitourselves to a description of its highlights.There is a shared data structure (a global queue) that contains active vertices, andprocessors get the vertices from it and apply the push and/or relabel operations to them.Push operations may activate other vertices, which are then placed in the global queue.The performance of the implementation of course depends crucially on the number of activevertices available and how they are handed to the processors. Therefore, an adaptive schemeexists by which processors get a variable-sized set of active vertices from the global queueeach time they access it. The size of this set decreases or increases with the decrease orincrease in the total number of available active vertices throughout the execution.Another critical aspect of the implementation is the way global relabeling is applied. Itmust be executed concurrently with push/relabel operations, and this in general makes thealgorithm incorrect. A simple modi�cation of global relabeling to allow concurrency wasintroduced in [AS95], and this same modi�cation is used here.7 Setting for the parallel experimentsThe parallel experiments were conducted on a Sequent Symmetry S81 with 20 Intel 16Mhz80386 processors, and 32 MB of memory, running DYNIX 3.0. Each processor has a64 Kbyte cache memory. The program was written in C using the Parallel Program-ming Library provided with Sequent systems, which allows the forking of processes, oneper processor.The parallel experiments were not as extensive as the sequential ones. They were con-ducted with the main goal of verifying whether some speed-up could be achieved or not.17



The input classes used were obtained from a preliminary version of generator 1 (describedin section 3.2.1). In these classes d was chosen as 4, and their description is as follows:� random2. The neighbors for each vertex in U are chosen at random from all verticesin V .� fewg2. The vertices in U and V are divided into n1 groups of n2 vertices each. Theneighbors for a vertex belonging to U in group i are chosen at random from verticesin groups i � 1 and i in V , except for vertices in group 1. These have neighbors ingroup 1 in V only. The value for n1 is �xed at 30, and only n2 varies as we increasethe total number of vertices (n = 2n1n2). Note that the �rst group in U and the lastgroup in V have only 2 expected edges per vertex.� manyg2. Similar to the previous, but n1 is �xed at 500.As can be seen, these classes are very similar to the corresponding ones used in thesequential experiments. The instance sizes used were n 2 f30000; 60000; 120000g.Ten instances per class and size were solved, and each instance was solved 4 times andrunning time for an instance was taken as the mean over these 4 runs. This is necessarybecause we observed signi�cant variations from run to run. Finally, each instance was solvedusing 1, 2, 4, 8, and 12 processors.8 Results and analysis of parallel experimentsTables 13, 14, and 15 present the results for the parallel implementation on classesrandom2, fewg2, and manyg2, respectively. Figure 1 is a plot of the running times for classfewg2; the other classes have similar plots.Initially note that the parallel implementation with one processor di�ers from the se-quential implementation in one important respect (besides the use of locks): global rela-beling in the parallel implementation happens concurrently with push/relabel operations.This causes the observed increase in the number of operations from column seq to columnp = 1 in the tables. Regarding the speed-up �gures reported, note that each is the meanover the individual speed-ups computed for each instance. This individual speed-up in turnis computed as the sequential time for an instance divided by the mean time over 4 runswith 12 processors for that instance.As can be seen in the tables speed-ups larger than one were obtained for every classand size tested, and the speed-ups tend to get better as the size increases. On the otherhand, at 12 processors the decrease in running time over 8 processors is quite small, andin some cases there was actually an increase. We also note that an increase in the numberof processors also in general causes more total work to be done. This can be seen in theincrease in the total number of operations performed, given by lines disch and relab on thetables. (The count disch reported on the tables refers to the action of getting an activevertex and pushing from it until it becomes inactive.) In class manyg2 there was a slightdecrease in the total number of operations when the number of processors went from oneto two. As mentioned previously, the frequency of global relabeling has a big impact in the18



Table 13: Results for class random2. Time is in seconds; p is number of processors, and seqlabels the column corresponding to the sequential program. Line disch shows mean numberof discharges; line relab shows mean number of relabel operations.n = 30000; speed-up = 2.4p seq 1 2 4 8 12time 8.7 15.7 9.1 5.9 4.2 3.9disch 43238 46033 48139 51081 58249 70477relab 17588 18812 20035 22179 29230 40934n = 60000; speed-up = 2.6p seq 1 2 4 8 12time 18.5 33.5 18.7 11.3 8.4 7.2disch 89254 97266 100888 105029 119027 143774relab 36634 40822 42766 46083 60632 82911n = 120000; speed-up = 3.2p seq 1 2 4 8 12time 77.1 134.7 65.4 36.4 27.0 24.7disch 195755 208774 223232 231655 254705 280575relab 82513 88646 98184 105154 130295 152426Table 14: Results for class fewg2. Time is in seconds; p is number of processors, and seqlabels the column corresponding to the sequential program. Line disch shows mean numberof discharges; line relab shows mean number of relabel operations.n = 30000; speed-up = 1.9p seq 1 2 4 8 12time 13.8 26.9 15.5 10.0 7.5 7.4disch 80356 89606 89919 92810 101417 115213relab 37364 40707 41445 44323 53430 64887n = 60000; speed-up = 2.6p seq 1 2 4 8 12time 33.5 61.4 34.8 20.8 14.8 13.0disch 189324 203474 210476 215206 238042 277946relab 89819 93791 99119 105415 127473 159276n = 120000; speed-up = 3.1p seq 1 2 4 8 12time 87.6 152.5 85.0 53.1 33.7 28.5disch 410474 426162 426565 450914 465816 528364relab 196274 197184 199295 219446 240936 29104919



Table 15: Results for class manyg2. Time is in seconds; p is number of processors, and seqlabels the column corresponding to the sequential program. Line disch shows mean numberof discharges; line relab shows mean number of relabel operations.n = 30000; speed-up = 2.1p seq 1 2 4 8 12time 14.5 25.9 14.7 9.4 7.1 6.9disch 87164 90228 90029 93759 106636 126676relab 39106 39639 40418 44045 54753 70406n = 60000; speed-up = 2.0p seq 1 2 4 8 12time 35.5 65.5 38.2 24.0 19.0 18.2disch 210858 229238 222816 221149 247307 283217relab 97523 104207 102027 103839 125486 153867n = 120000; speed-up = 2.4p seq 1 2 4 8 12time 85.3 151.8 88.1 58.8 39.6 39.9disch 416300 456833 451365 463682 478123 563417relab 193499 208765 208621 220081 241405 297968
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Figure 1: Plot of running times for class fewg2 on 120,000-vertex instances.20



number of operations performed, and we believe that in this particular class two processorsapply global relabeling with a frequency that is more e�cient than the one applied by oneprocessor.Similarly to the maximum 
ow study [AS95], hardware e�ects such as bus contention,and lack of parallelism (insu�cient number of active vertices to keep all processors busymost of the time) are the main reasons that explain why it is di�cult to obtain betterspeed-ups. However, one additional reason speci�c to this work is that the frequency ofglobal relabelings at 12 processors is not high enough. This is what happens: by the timea global relabeling is completed, the next global relabeling is already due, because in themeantime the processors were able to complete more than the total number of dischargesnecessary to trigger the next global relabeling. As a consequence the number of dischargesand relabel operations increases markedly when the number of processors increases from 8to 12, as can be seen in the tables. It should be possible to overcome this problem, either bya careful tuning of the parameters involved or by having more than one global relabeling atthe same time. However, we do not expect any large improvements in the speed-ups evenwith these changes.9 Conclusions, comments, and further workConclusions from the sequential experiments were already given in section 5. Here wecomment on the relevance of the parallel results and outline some aspects where furtherwork would be interesting.As shown in section 8 the push-relabel algorithm can run up to three times faster thanits sequential counterpart. If such a speed-up were attained for all classes and instancesshown in table 12 the push-relabel parallel implementation would have been the fastest insix out of nine classes. This shows that for very large problems where the fastest possiblerunning time is necessary a parallel implementation of the push-relabel algorithm shouldbe considered.We believe that the abmp and push-relabel implementations developed for these ex-periments can be further improved. The push-relabel algorithm, in particular, has manyvariants, of which only one was used. One attractive variation is highest-label-�rst, wherevertices are processed not in queue ordering but according to their distance labels. In thecase of the maximum 
ow problem this variation is sometimes faster [AS93]. The 
exibil-ity of these algorithms also allow for the introduction of many heuristics. We used one ofthem, but there may be others. In particular it may be possible to better tune the globalrelabeling heuristic to obtain more e�cient results.Another aspect that should be studied in greater depth is the initial matching. We useda simple greedy strategy, but other methods can be used. We would like to know what thein
uence of this initial matching is on an implementation's performance. Simple experi-ments that we carried out showed that it is not necessarily the case that larger maximalmatchings translate into faster overall running times.In terms of other experiments, it would be interesting to test the implementations pre-sented in this paper on other classes of bipartite graphs; and investigate whether it is21
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