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Abstract

We present experimental results for four bipartite matching algorithms on 11 classes
of graphs. The algorithms are depth-first search (DFs), breadth-first search (BFs), the
push-relabel algorithm [GT88b], and the algorithm by Alt, Blum, Mehlhorn, and Paul
(ABMP) [ABMP91]. DFs was thought to be a good choice for bipartite matching but our
results show that, depending on the input graph, it can have very poor performance.
BFS on the other hand has generally very good performance. The results also show
that the ABMP and push-relabel implementations are similar in performance, but ABMP
was faster in most cases. We did not find a clear-cut advantage of ABMP over BFS or
vice-versa, but both the ABMP and push-relabel implementations have generally smaller
growth rates than BFs, and should thus be preferred if very large problems are to
be solved. For small problems BFS is the best choice. We also present experimental
results from a parallel implementation of the push-relabel algorithm, showing that it
can be up to three times faster than its sequential implementation, on a shared-memory
multiprocessor using up to 12 processors.

1 Introduction

The bipartite matching problem is: given a bipartite graph G' = (U, V, F), with n = |U| +
|V| and m = |E|, we want to find a set of edges M C E of maximum cardinality such
that no edge in the set shares a vertex with any other edge in the set. This set is a
mazimum matching. From a computational complexity point of view, in the case of sparse
graphs, the best sequential algorithm for finding a maximum matching is by Hopcroft and
Karp [HK73], which achieves a worst-case running time of O(y/nm). For dense graphs the
best algorithm is by Alt, Blum, Mehlhorn, and Paul [ABMP91], having a worst-case bound

of O(n'®/m/logn).
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Bipartite matching is an important problem from a practical point of view, since it has
many applications [AMO93]. Therefore it is important to know what algorithms have good
performance in practice. Other computational studies of bipartite matching algorithms
have been done in the past, of which we are aware of two: Darby-Dowman [DD80] and
Chang and McCormick [CM90]. These studies showed or mentioned that implementations of
Hoperoft and Karp’s algorithm were considerably slower than implementations of two simple
augmenting-path algorithms: depth-first search (DFs) and breadth-first search (BFs). These
two algorithms have worst-case running time of O(nm). Darby-Dowman’s experiments did
not show a significant advantage of one type of search over the other, except that he noted
that by comparing total execution time on all his experiments BFs “was found to be over
10% faster than” DFs, but no implementation “performed consistently better” on individual
test cases. Chang and McCormick, on the other hand, did not even consider BFs, comparing
their implementation of DFs to two others of Drs as well. The implication seems to be that
DFS is the algorithm to solve bipartite matching problems in practice, in particular with a
heuristic used by Chang and McCormick.

Two new algorithms for bipartite matching have arisen in the past decade: one is the
already mentioned algorithm by Alt, Blum, Mehlhorn, and Paul [ABMP91] (which we call
ABMP), and the other is the push-relabel algorithm, developed by Goldberg [Gol87] and
generalized by Goldberg and Tarjan [GT88b]. This last algorithm was developed for the
maximum flow problem, but it can be readily specialized for bipartite matching, yielding a
running time of O(nm). In a preliminary work [Set93] we showed that implementations of
the ABMP and push-relabel algorithms were significantly faster than an implementation of
Hopecroft-Karp’s algorithm. The question then remained: are these new algorithms faster
in practice than the simple-search algorithms? This paper tries to answer precisely this
question.

In order to answer it we compared an implementation of DFs developed by Chang and
McCormick [CM90] to three others that we developed, one for each of the other three
algorithms. We used 11 different input classes, with different input sizes and different in-
stances for the same size, resulting in a total of 390 problems. The largest of these problems
had 131072 vertices and some 328000 edges. By comparison, in the main body of Darby-
Dowman’s thesis [DD80] results from runs on 11 problems are reported, the largest having
no more than 1000 vertices and no more than 2500 edges; Chang and McCormick [CM90]
solved 60 problems, the largest with 4000 vertices and 147952 edges.

A summary of the results is as follows. We found that there are several classes where
DFs’s performance is dismal compared to the others, being in one case two orders of magni-
tude slower than the fastest implementation. The ABMP and push-relabel implementations
had similar performance, but ABMP was faster in most cases. BFS was in general faster than
ABMP for small graphs (up to thousands of vertices), while ABMP was faster for large graphs
in five of the classes.

The push-relabel algorithm has one advantage over the others: it can be parallelized with
relative ease. We have done this and compared the parallel implementation to the sequential
implementation, observing a speed-up of up to 3.2 with 12 shared-memory processors. With
such a speed-up the push-relabel implementation can be the fastest of all implementations
tested in several of the input classes studied.



The paper is structured as follows. We briefly describe the algorithms and their sequen-
tial implementations in section 2. We then describe how the sequential experiments were
conducted in section 3. Results and analysis are presented in section 4. A general conclu-
sion of the sequential experiments is given in section 5. The remaining sections describe the
parallel experiments, and final comments are made at the end.

2 Sequential Implementations

2.1 General information

All implementations developed by the author deal with the two partitions, U and V, as
separate entities, each partition having its own data structure. Thus we speak of a u
vertex, u € U, or of a v vertex, v € V. The main data structure used is an adjacency list
for each vertex.

We note that all implementations (including DFs) consider the vertices in the same
order, and adjacency lists are exactly the same.

2.2 Initial Matching

All implementations, in a first phase, find an initial, maximal matching, so all algorithms
start with precisely the same maximal matching. A greedy strategy is used: we scan the
vertex list of the U partition (according to the input order) and try to find an unmatched
neighbor for each u vertex.

2.3 Depth-First-Search

This algorithm finds a maximum matching by looking for augmenting paths in a depth-first
manner. We used Chang and McCormick’s code [CM90], written in FORTRAN-77, which
has the following heuristic to speed up the search: whenever the search fails, all labeled
vertices are discarded, since they can’t be on any augmenting path. This heuristic improves
the implementation’s performance when maximum matchings are not perfect.

We replaced the original timing routines in the DFs code with calls to the same C
timing interface used in all other implementations (described below). In addition, we wrote
and tested a C DFs implementation and compared it to the FORTRAN-77 code, observing
essentially no difference in performance. This means that the language (or compiler) was
not a factor in the running times.

2.4 Breadth-First-Search

This implementation finds a maximum matching by looking for augmenting paths in a
breadth-first manner. We wrote it in C using essentially the same ideas as in the DFs
implementation, including the heuristic mentioned above.



2.5 Push-Relabel

We give here a brief description of the algorithm as applied to the bipartite matching
problem. A full description can be found in [GT88b]. The algorithm works by applying
the push and relabel operations to active vertices. A u vertex is active if it is unmatched,
and its label is below n. A vertex’s label is a lower bound on its distance to an exposed
(unmatched) v vertex. The application of push to u consists of matching it to one of its
neighbors that has a label with a value one less its own, regardless of whether this neighbor
is already matched or not. A » vertex is active if it is “overmatched”, that is, more than
one u vertex is matched to it. We push from » by unmatching all its mates except one. The
vertices to be unmatched also need to have labels one less than the » vertex. From time to
time we can only push from an active vertex after a relabel operation: its label is changed
to be one above the minimum of its neighbor’s labels (mates’ labels, in case of a v vertex).
The algorithm terminates when there are no more active vertices.

The active vertices are processed in FIFO (queue) order. The initial greedy matching is
complemented by the following action: if a u vertex was not able to find an unmatched v
vertex, it mates with its first neighbor on its adjacency list. As a consequence, at the start
of the algorithm proper all vertices in U are matched and the initial active vertices will be
the “overmatched” vertices in V.

Even though the algorithm works as described, it has been found that a periodic global
relabeling speeds up the implementation enormously. This observation was made in compu-
tational studies of the push-relabel algorithm for the maximum flow problem [DM89, AS93].
This global relabeling is a backwards breadth-first search performed on the residual graph
(i.e. the directed graph implied by the current matchings), changing labels on vertices from
approximate distances into exact distances. It is called every m/2.5 discharges, a discharge
being the operation of taking an active vertex from the queue and trying to push from it.
This frequency has a big impact on the implementation’s performance, and the value used
was determined empirically.

2.6 ABMP

The ABMP algorithm can be thought of as a cross between the simple-search and push-
relabel algorithms, in the following sense: augmenting paths are sought, but distance labels
on the vertices are used to determine the directions in which paths are extended. The
distance labels play essentially the same role as they do in the push-relabel algorithm, and
are therefore approximate distances to the exposed vertices in V. A relabeling takes place
whenever a path cannot be extended. A global relabeling routine, very similar to the one
used in the push-relabel implementation, is invoked periodically to relabel all vertices. The
routine is called after every n relabels; this frequency value was also determined empirically.

As originally proposed [ABMP91], the algorithm processes vertices up to a certain dis-
tance, then finds the remaining augmenting paths using Hopcroft-Karp’s algorithm. In our
implementation we simply let the algorithm process all distances (up to n, since u vertices
further than that cannot be matched). A queue is used to manage the unmatched vertices
in U. Every time the global relabeling routine is invoked, it flushes the queue and fills it



with the currently unmatched vertices in U (with labels below n) in increasing order of
their labels.

2.7 Operation counts

We compared the implementations using two measures: CPU time and operation counts.
Since the algorithms are different it is not clear how an operation count of one can be
compared to another. In the case of the DFs, BFs, and ABMP implementations the operations
we counted were of two types: edge queries and edge switches. An edge query is counted
whenever we look at a neighbor of a vertex, be it from U or from V. An edge switch is
counted whenever we change an edge from matched to unmatched or vice-versa. In the
case of the push-relabel implementation we also counted edge queries, plus the number of
pushes. A push is an operation very similar to an edge switch.

Note that by using operation counts as defined above we are underestimating the total
number of operations performed by the ABMP and push-relabel implementations (since they
are more complex). Thus a simple-search implementation having the same operation count
as one of the others will in general be faster. With this caveat in mind we believe the
operation count does give us a good measure to compare all algorithms. In addition, as will
be seen, there is a very good correlation between operation counts and CPU time.

3 Setting for sequential experiments

3.1 Machine and compilers

The sequential experiments were done on a Sun SPARCstation 2, running SUNOS 4.1.3
with 32 MB of main memory.

The DFs implementation was Chang and McCormick’s own FORTRAN-77 code, compiled
with Sun’s £77 compiler using the -O option. All others were written in C by the author
and compiled with Sun’s cc compiler using the -O option.

3.2 Input graphs

The input graphs used to test the programs came from three different graph generators.
By varying the generators’ input parameters a total of 11 different classes of input graphs
were obtained.

3.2.1 Generator 1

The first generator was written by the author and generates variations of random bipartite
graphs. We use the following definition of a random bipartite graph: vertices from the U
partition are considered in some arbitrary order. For each u vertex, x vertices from the
V' partition are chosen randomly and uniformly to be its neighbors. The variable z itself
is a binomial random variable, such that the expected degree of each u vertex is d. The
generator accepts as input the value of d and approximates the binomial random variable
by simulating a Poisson random variable [Fel68].



Three input classes were obtained with this generator. All of them have |U| = |V] and
d = 5, and are thus described (with the tags we use to designate them in parenthesis):

e random (random). The neighbors for each vertex in U are chosen from all vertices in

V.

o few groups (fewg). The vertices in U and V are divided into ny groups of ny vertices
each. The neighbors for a vertex belonging to U in group ¢ are chosen at random from
vertices in groups ¢ — 1, z, and ¢ + 1 in V. There is wrap-around, in that for group 1
we use groups ny, 1 and 2 in the choice of neighbors, and for group ny we use groups
n1 — 1, mq and 1. The value for ny is fixed at 32, and only ns varies as we increase
the total number of vertices (n = 2nyngy).

e many groups (manyg). Similar to the previous, but ny is fixed at 256.

The classes fewg and manyg were designed having in mind problems that can be reduced
to bipartite matching, such as the maximum number of vertex-disjoint paths problem. In
these problems the resulting graph in the reduction is bipartite, but if the original graph is
planar or nearly planar each vertex will only have as neighbors vertices in the surrounding
area.

The programs were tested on instances having 2 vertices, where i = {14, 15, 16,17}, for
each class. Given that the value selected for the average degree was 5 the number of edges
was always approximately 2.5n. In each size, 20 instances were solved, using different seeds
for the pseudo-random number generator (which was UNIX’s random() ). After building each
instance the vertices on the U side are relabeled from 1 to n/2 by a random permutation.

For these classes, we observed in the experiments that the initial matching matched
around 86% of the vertices and maximum matchings got to about 99% of the vertices.

3.2.2 Generator 2

This generator was written by J. Stolfi [personal communication]. It can generate six
different kinds of bipartite graphs, identified by the tags band, fuzz, hexa, worm, rope, and
zipf. The class descriptions, as provided by Stolfi, are as follows.

The graphs generated are all bipartite, with vertices U[1...n,] and V[1...n,]. Being
m the number of edges, d, = m/n, and d, = m/n, are the average degrees on each side.
In all the graphs we generated we had n, = n, = ny/3, and the average degree d, = d, = d
was 6.

These graphs are partially random, so each quadruple (class,n,,n,, m) actually defines
a large number of non-isomorphic instances with similar structure. The random choices are
a function of a user-specified integer seed. The quintuple (class,n,,n,, m,seed) does define
a unique graph. For each of the classes the programs were tested on instances having 2°
vertices, where ¢ = {12, 14, 16}. The number of edges was 3n. In each size, 5 instances were
solved, using different seeds for the pseudo-random number generator (which was a library
routine of the MODULA-3 language).



After building each graph, as described below, the vertices on each side are relabeled
from 1 to n, by two random and independent permutations. The relabeling also depends
on the user-given seed.

The class descriptions below consider only the “normal” case, where n, = n, and the
number of edges m is compatible with the class’s structure — as it was in all of our tests.
When m is too small or too large, some of the “required” edges may be missing, or extra
“filler” edges may be present where none should.

band: Vertex U[i] is always connected to vertex V[i], and possibly also to V[i + k] and/or
V[i— k], for small integers k. The probability of these extra edges decreases roughly linearly
from 1.0 at £ = 0 to 0.0 at k &~ d. The trivial pairing U[i]-V[i] is thus a perfect matching.
Other matchings may exist. For this class we observed in the experiments that the initial
greedy matching paired about 93% of the vertices.

fuzz: About half of the vertices in U and V form a band-type graph, the “kernel”. Each
of the remaining vertices (the “fuzz”) is connected to a distinct “kernel” vertex on the
opposite side. The number of edges in the kernel is m — ny /9, thus the average degree there
is almost 2d. The only perfect matching connects each fuzz vertex to the corresponding
kernel vertex. A greedy maximal matching algorithm, using random labels, will tend to
pair kernel vertices with kernel vertices, and stop well below the maximum. We observed
in the experiments that the initial matching paired about 78% of the vertices. Augmenting
paths are probably very short, at least for d = 6.

hexa: The vertices on each side are divided into n;,,/b blocks of size b. One random
bipartite hexagon is added between each block ¢ on one side and each of the blocks ¢ + k
on the other side with |k| < K, for some K. The parameters b and K are chosen by the
program in such a way that the average degree is correct (i.e., 3K /b = d) but few pairs
of hexagons will have more than one vertex in common. The adjacency matrix is divided
into blocks of size b X b. On each row, only the 2K 4 1 blocks closest to the diagonal will
be non-empty. Each non-empty block contains 6 nonzero entries, two on each of 3 distinct
rows and 3 distinct columns.

For this class we oberved in the experiments that the initial matching paired about 83%
of the vertices and maximum matchings paired about 95% of the vertices.

worm: The vertices one each side are grouped into ¢ blocks of size b = ny,/t, numbered
Up...Us_qy and Vy...V;_q. Typically ¢t is small, between 3 and 5. Block ¢ on one side is
connected to block 41 on the other side, for¢ = 0,1,...,t—2; and block U;_1 is connected
to block Viyq1. (Thus, the graph is a fat “worm” that is folded and twisted over itself, so
that it zigzags between the two sides, first up and then down.) The connections between
blocks alternate between perfect matchings (“m-type connections”) and random bipartite
graphs of average degree d — 1 (“r-type connections”). The first and last connections are
perfect matchings. The adjacency matrix is divided into ¢? blocks of size b x b. All blocks
are empty, except for the 2(¢ — 1) blocks immediately adjacent to the diagonal, and the



last block on the diagonal itself. Fach non-empty block contains either b ones on the block
diagonal, or (d — 1)b ones randomly distributed.

The only perfect matching is the union of all m-type connections. A greedy match
would tend to use r-type edges, since they are more numerous, and hence fall short of the
maximum. For this class we oberved in the experiments that the initial matching paired
between 80% and 84% of the vertices. Augmenting paths should have about 2t — 1 edges,

and augmenting trees should have about (d — 1)'~! vertices.

rope: This is a longer version of class worm. Block size is equal to d so there are n/d
blocks. For this class we oberved in the experiments that the initial matching paired about
90% of the vertices.

zipf: This is a random bipartite graph where the edge between w; and v; has “ideal”
probability roughly proportional to 1/(¢j). Thus it is very dense near the “core” vertices
Ug, Vg, and thins out slowly towards the “periphery”. If m is large compared to n,n,, the
“ideal” distribution above gives probabilities greater than 1 for some edges. Since parallel
edges are not allowed, the algorithm implicitly reduces the actual probabilities of core edges
to the range [0...1].

The maximum matching is probably quite low. For one thing, there must be many
vertices of degree (). Moreover, there must be many vertices of low degree that are attached
to the same core vertices. In the experiments we observed that the initial matching paired
between 62 and 69% of the vertices, while the maximum paired about 5% more vertices.

3.2.3 Generator 3

This generator was written by S. Frank Chang [personal communication]. It generates 0-
1 matrices, and the nonzeros in each matrix are generated by blocks of rows. For each
block of rows a range of columns is chosen by a random scheme based on input parameters.
Another input parameter is the density of nonzeros. We obtained two input classes with this
generator: with density 15% (called bem15) and 26% (called bem26). Both values generate
graphs far denser than those from the other classes. We observed that with 15% density the
initial matching paired from 61 to 68% of the vertices, and the maximum matching paired
from 72 to 83% of the vertices. With 26% density the initial matching paired about 76% of
the vertices and the maximum matching was perfect or nearly so.

We generated graphs with 2° vertices, ¢ € {8,9,10}. In each size, 10 instances were
generated using different seeds for the pseudo-random number generator (which was UNIX’s
random()).

3.3 Other information

Further characteristics of the experiments were as follows:

e At the end of each run the solution is checked for consistency and maximality in the
C implementations.



¢ Running times for all implementations were measured with the system call getrusage
by selecting field ru_utime (CPU time).

¢ Running times reported exclude input, checking, and output time, but do include the
initial matching time. In addition, the figures reported are means over the number of
instances solved in each size and class (the same applies to operation counts).

¢ Asymptotic performance (growth rate) was estimated by doing a power regression
analysis of the data, for both time and operation counts. In the tables below we
present this in the column indexed by k, which is the exponent of n given by the
analysis. The value of k£ is somewhat uncertain due to the small number of data
points in the regression analysis, and to the variance of the mean running time or
mean operation count. More importantly, these growth rates do not necessarily reflect
the complexity of the respective algorithms, since graph structure may change with
increased size. Thus, as the graphs grow, they may become harder or easier for an
implementation. Nevertheless the computed growth rates for each input class do give
an useful (albeit rough) relative indication of how fast the solution time (or operation
count) is increasing as the instances get larger.

4 Results and analysis of sequential experiments

We present the results below, separated by classes according to the generator they came
from. Before that, we have some general remarks.

We observed a good correlation between running times and operation counts. Moreover,
the growth rates for running times were in most cases within 10% of the growth rates for
operation counts. These observations give us confidence both in the absolute running time
values observed and in the performance of one implementation relative to the others.

4.1 (Generator 1

In tables 1, 2, and 3 we report the running times, operation counts, and respective
growth rates for classes random, fewg, and manyg, respectively.

These tables show that the ABMP, push-relabel and BFs implementations have similar
performance, while DFs was relatively quite slow, being about 30 times slower than ABMP
in classes random and fewg, for the largest size tested. BFs, although much faster than DFs,
exhibited growth rates significantly larger than ABMP and push-relabel.

4.2 (Generator 2

Tables 4 through 9 present the results for classes obtained from generator 2. In four
of these classes (band, fuzz, rope, and zipf) the simple-search algorithms had similar per-
formance and that was better than the performance of the other two algorithms. In class
zipf, DFs was 5 times faster than ABMP for instances with n = 2'¢. Note that maximum
matchings in class zipf are far from perfect, thus in agreement with the expectation that
DFs and BFS should have good performance in these cases. But note also that ABMP is



Table 1: Results for class random.

L n—  [ovt] o] €] 27 k|
‘ time (secs) |
ABMP 0.48 | 1.05 2.41 4.80 || 1.12
BFS 0.52 | 1.44 4.09 9.97 | 1.43
DFS 3.04 | 11.16 | 40.77 | 142.52 || 1.85
push-relabel || 0.64 | 1.37 3.11 6.49 || 1.12
‘ operation counts (thousands)
ABMP 170 363 841 1678 || 1.11
BFS 255 677 | 1831 4289 || 1.37
DFS 1492 | 5143 | 18088 | 61860 || 1.79
push-relabel 311 672 | 1507 3100 | 1.11

Table 2: Results for class fewg.

‘ n — H 914 ‘ 915 ‘ 916 ‘ 917 ‘ L ‘
‘ time (secs) |
ABMP 0.50 1.13 241 4.90 || 1.10
BFS 0.50 1.52 3.95 10.13 || 1.44
DFS 2.70 | 10.54 | 37.91 | 141.10 || 1.90
push-relabel || 0.61 | 1.33 3.09 6.75 || 1.16
‘ operation counts (thousands)
ABMP 190 417 868 1738 || 1.06
BFS 272 776 | 1889 4555 || 1.35
DFS 1384 | 5022 | 17011 | 61461 || 1.82
push-relabel 306 649 | 1496 3251 || 1.14
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Table 3: Results for class manyg.

L n— o] 2] 2] 27 k|
‘ time (secs) |
ABMP 083 1.74 | 3.77| &.77 | 1.13
BFS 0.48 | 1.30 | 3.93 | 13.21 || 1.59
DFS 0.89 | 3.45 | 15.57 | 70.89 || 2.11
push-relabel || 0.95 | 1.78 | 3.93 8.13 || 1.04
‘ operation counts (thousands)
ABMP 342 | 699 | 1481 | 3387 || 1.10
BFS 312 | 797 | 2252 | 7059 || 1.50
DFS 511 | 1812 | 7453 | 32019 || 1.99
push-relabel || 519 | 928 | 2031 | 4089 || 1.01

Table 4: Results for class band.

[ n—

[ 2] 2] 20 & |

‘ time (secs) |
ABMP 0.11 ] 0.42 | 1.90 | 1.03
BFS 0.03 | 0.15 | 0.59 || 1.07
DFS 0.03 | 0.18 | 0.87 || 1.21
push-relabel || 0.13 | 0.65 | 2.45 || 1.06

‘ operation counts (thousands) |
ABMP 46 | 161 | 709 | 0.99
BFS 21 84 | 287 || 0.94
DFS 14 | 100 | 439 || 1.24
push-relabel 75| 319 | 1136 || 0.98

11



Table 5: Results for class fuzz. Running times for BFs and DFs with n = 2!? were too small
to obtain reliable values for k.

[ 2] 2] 2] & |

mn —
‘ time (secs) |
ABMP 0.04 | 0.18 | 0.73 || 1.05
BFS 0.01]0.07 031 || =
DFS 0.00 |1 0.04 | 0.22 | =
push-relabel || 0.05 | 0.21 | 0.85 || 1.02
‘ operation counts (thousands ‘
ABMP 12 47 | 188 0.99
BFS 4 17 70 || 1.03
DFS 3 13 52 1| 1.03
push-relabel 16 62 | 249 | 0.99
Table 6: Results for class hexa.
[ n— [ofom] 2°] & |
‘ time (secs) ‘
ABMP 0.10 | 0.46 | 2.09 || 1.10
BFS 0.07 1035 ] 2.30 || 1.26
DFS 0.13 ] 1.71 | 21.10 || 1.84
push-relabel || 0.16 | 0.63 | 2.91 || 1.05
‘ operation counts (thousands) ‘
ABMP 39 | 165 731 || 1.06
BFS 37| 178 | 1033 || 1.20
DFS 76 | 870 | 9623 || 1.75
push-relabel 85| 322 | 1385 || 1.01
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Table 7: Results for class worm.

| n— o] 2"] 2°f k |
‘ time (secs) ‘
ABMP 0.09 | 0.47 2.01 | 1.12
BFS 0.07 | 0.51 6.55 || 1.64
DFS 0.51 | 5.41 | 262.80 | 2.25
push-relabel || 0.12 | 0.60 2.65 || 1.12

operation cou

nts (thousands)

ABMP 34 | 164 690 || 1.09
BFS 42 | 286 3159 || 1.56
DFS 295 | 2978 | 124738 || 2.18

push-relabel 56 | 264 1139 || 1.09
Table 8: Results for class rope.
L n—  [2fov] 20 & |
‘ time (secs) |
ABMP 0.23 | 0.98 | 4.09 || 1.04
BFS 0.14 | 0.60 | 2.86 || 1.09
DFS 0.12 ] 0.63 | 3.08 || 1.17
push-relabel || 0.26 | 1.22 | 4.87 || 1.06
‘ operation counts (thousands) |
ABMP 96 | 383 | 1528 || 1.00
BFS 103 | 409 | 1835 || 1.04
DFS 86 | 398 | 1878 || 1.11
push-relabel || 162 | 682 | 2596 || 1.00
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Table 9: Results for class zipf.

L n— [ 22 2"] 29 & |
‘ time (secs) |
ABMP 0.08 | 0.30 | 1.29 || 1.00
BFS 0.02 |1 0.07 | 0.28 || 0.95
DFS 0.02 | 0.06 | 0.25 | 0.91

push-relabel || 0.17 | 0.68 | 2.50 || 0.97

‘ operation counts (thousands) |

ABMP 27 1 103 464 || 1.03
BFS 9 28 98 | 0.86
DFS 8 25 88 1 0.86

push-relabel || 116 | 463 | 1551 || 0.94

still solving those problems in little more than one second. In terms of growth rates all
implementations are similar.

In classes hexa and worm we have again the same pattern detected in generator 1 classes:
DFS has dismal performance, and BFs is much faster. However BFs still lags behind ABMP
and push-relabel in terms of growth rate; thus ABMP comes out faster in the largest in-
stances. Note that both hexa and worm have a block structure, as do fewg and manyg; in
all these classes DFs had poor performance. But DFs was also slow in class random, which
has no such structure.

The growth rates observed in these experiments also show that inputs can become harder
or easier with increased size. So in class worm the running time growth rate of DFs (2.25) is
greater than its worst-case complexity (2). In class zipf three of the implementations have
sublinear growth rates, below the linear lower bound.

4.3 (Generator 3

In tables 10 and 11 we present results from classes obtained with generator 3. In these
classes running time depends primarily on m, since it grows faster than n when instances
get larger. Therefore the growth rates shown were computed with respect to the average m
shown in the tables.

BFS was fastest in both classes; DFs was fast in class bem15 but it lagged behind both BFs
and ABMP in class bcm26. As noted above, class bem1b has maximum matchings far from
perfect, whereas bcm26’s maximum matchings are perfect or nearly perfect. So difference
in performance here may indicate that DFS is more sensitive to the maximum matching
cardinality than Brs, even though both programs use the same heuristic to discard labeled
nodes (see section 2.3).

It is also noteworthy the poor performance of push-relabel. The main reason is that for
these classes the implementations was very sensitive to the frequency of global relabeling.
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Table 10: Results for class bcm15. Running times for BFs and DFs with n = 2% were too
small to obtain reliable values for k.

n — 28 2° 210
avg. m — | 9830 | 39322 | 157286 k

time (secs)

ABMP 0.02 0.11 0.53 || 1.18
BFS 0.00 0.02 0.07 || ~
DFS 0.00 0.02 0.09 ~

push-relabel | 0.04 0.27 1.15 || 1.21

‘ operation counts (thousands)

ABMP 20 93 300 || 0.98
BFS 9 32 96 || 0.85
DFS 12 61 271 || 1.12

push-relabel 63 278 909 || 0.96

Table 11: Results for class bem?26.

n— 98 29 210
aveg. m — | 17039 | 68157 | 272630 k

time (secs) ‘

ABMP 0.12 0.39 1.58 || 0.93
BFS 0.08 0.30 1.37 | 1.02
DFS 0.09 0.60 4.23 || 1.39

push-relabel 0.15 1.35 10.38 || 1.53

‘ operation counts (thousands)

ABMP 59 201 823 || 0.95
BFS 65 255 1201 || 1.05
DFS 109 796 5488 || 1.41

push-relabel 117 | 1127 8648 || 1.55
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Table 12: Overall results of sequential experiments. Running time in seconds, all classes
with n = 216, 2.5n < m < 3n. In boldface is the fastest time for each class.

‘ class ‘ ABMP ‘ BFS ‘ DFS ‘ push-relabel ‘
band 1.90 | 0.59 0.87 2.45
fewg 2.41 | 3.95| 37.91 3.09
fuzz 0.73 | 0.31 0.22 0.85
hexa 2.09 | 2.30 | 21.10 2.91
manyg | 3.77 | 3.93 | 15.57 3.93

random | 2.41 | 4.09 | 40.77 3.11
rope 4.09 | 2.86 3.08 4.87
worm 2.01 | 6.55 | 262.80 2.65
zipf 1.29 | 0.28 0.25 2.50

The frequency adopted was good in some instances but bad in others, leading to quite
different running times. This illustrates a weakness of push-relabel: when graphs are dense,
it becomes difficult to obtain a global relabeling frequency that is good in all cases. The
ABMP implementation also depends on global relabeling, but no such weaknesses showed
up in these experiments.

5 Overall conclusion of sequential experiments

In Table 12 we summarize results for 9 of the input classes used (those classes where
there were instances of approximately the same size). The one clear conclusion we can draw
from this table is that DFS can have very poor performance compared to the others, and in
particular compared to its counterpart Brs. Since the codes of these two implementations
are similar in size and complexity, these results show that Brs should always be preferred
over DFs. This result is consistent with the behaviour of DFs and BFS in maximum flow
problems, as shown in [AS93]. We can also say that ABMP and push-relabel have similar
performance. ABMP was fastest in most cases, but the running times are sufficiently close
that we cannot be positive in choosing one over the other.

A comparison between ABMP and BFS is more difficult. While ABMP “won” in more
classes than did DFs, we don’t claim that the set of classes used is indeed representative of
problems habitually solved in practice. We can nevertheless say that ABMP had in general
smaller growth rates.

Taking together all these observations and those made in previous sections, the exper-
imental results of this paper point towards the following recommendations for bipartite
matching practitioners (with the following two assumptions: input graphs should be sparse
and an initial greedy matching is used):

e In situations where small problems (up to thousands of vertices) have to be solved,
either once or many times as sub-problems of other problems, BFs is the best choice.

16



e In situations where large problems (tens of thousands of vertices or larger) have to be
solved, the ABMP or the push-relabel algorithms can be the best choice, depending on
the input graph structure.

o When it is known beforehand that the maximum matching is well below perfect, BFs
seems a better choice, even when the problem is large.

6 Parallel Implementation

In this section we describe the parallel implementation developed for the push-relabel algo-
rithm. Parallel bipartite matching has attracted quite a bit of attention from the theoretical
point of view [Gro92, GPST92, GPV88, GT88a, SM89], but the algorithms described do
not seem suitable for implementation.

In the push-relabel algorithm, as seen in section 2.5, we have a collection of active
vertices to which we apply the push and relabel operations. The algorithm is correct no
matter the order in which these operations are applied, as long as they are applicable. This
means that we can push from or relabel many active vertices simultaneously, making the
algorithm suitable for a parallel, coarse-grained implementation.

Our implementation is geared towards shared-memory, few-processor machines. It is
an adaptation of an implementation developed by Anderson and Setubal [AS95] for the
maximum flow problem. Since the adaptation is relatively straightforward, here we limit
ourselves to a description of its highlights.

There is a shared data structure (a global queue) that contains active vertices, and
processors get the vertices from it and apply the push and/or relabel operations to them.
Push operations may activate other vertices, which are then placed in the global queue.
The performance of the implementation of course depends crucially on the number of active
vertices available and how they are handed to the processors. Therefore, an adaptive scheme
exists by which processors get a variable-sized set of active vertices from the global queue
each time they access it. The size of this set decreases or increases with the decrease or
increase in the total number of available active vertices throughout the execution.

Another critical aspect of the implementation is the way global relabeling is applied. It
must be executed concurrently with push/relabel operations, and this in general makes the
algorithm incorrect. A simple modification of global relabeling to allow concurrency was
introduced in [AS95], and this same modification is used here.

7 Setting for the parallel experiments

The parallel experiments were conducted on a Sequent Symmetry S81 with 20 Intel 16 Mhz
80386 processors, and 32 MB of memory, running DYNIX 3.0. FEach processor has a
64 Kbyte cache memory. The program was written in C using the Parallel Program-
ming Library provided with Sequent systems, which allows the forking of processes, one
per processor.

The parallel experiments were not as extensive as the sequential ones. They were con-
ducted with the main goal of verifying whether some speed-up could be achieved or not.
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The input classes used were obtained from a preliminary version of generator 1 (described
in section 3.2.1). In these classes d was chosen as 4, and their description is as follows:

e random2. The neighbors for each vertex in U are chosen at random from all vertices

n V.

o fewg2. The vertices in U and V are divided into ny groups of ny vertices each. The
neighbors for a vertex belonging to U in group ¢ are chosen at random from vertices
in groups ¢ — 1 and ¢ in V', except for vertices in group 1. These have neighbors in
group 1 in V only. The value for ny is fixed at 30, and only ny varies as we increase
the total number of vertices (n = 2nyn3). Note that the first group in U and the last
group in V have only 2 expected edges per vertex.

e manyg2. Similar to the previous, but ny is fixed at 500.

As can be seen, these classes are very similar to the corresponding ones used in the
sequential experiments. The instance sizes used were n € {30000,60000, 120000}.

Ten instances per class and size were solved, and each instance was solved 4 times and
running time for an instance was taken as the mean over these 4 runs. This is necessary
because we observed significant variations from run to run. Finally, each instance was solved
using 1, 2, 4, 8, and 12 processors.

8 Results and analysis of parallel experiments

Tables 13, 14, and 15 present the results for the parallel implementation on classes
random2, fewg?2, and manyg?2, respectively. Figure 1 is a plot of the running times for class
fewg?2: the other classes have similar plots.

Initially note that the parallel implementation with one processor differs from the se-
quential implementation in one important respect (besides the use of locks): global rela-
beling in the parallel implementation happens concurrently with push/relabel operations.
This causes the observed increase in the number of operations from column seq to column
p = 1 in the tables. Regarding the speed-up figures reported, note that each is the mean
over the individual speed-ups computed for each instance. This individual speed-up in turn
is computed as the sequential time for an instance divided by the mean time over 4 runs
with 12 processors for that instance.

As can be seen in the tables speed-ups larger than one were obtained for every class
and size tested, and the speed-ups tend to get better as the size increases. On the other
hand, at 12 processors the decrease in running time over 8 processors is quite small, and
in some cases there was actually an increase. We also note that an increase in the number
of processors also in general causes more total work to be done. This can be seen in the
increase in the total number of operations performed, given by lines disch and relab on the
tables. (The count disch reported on the tables refers to the action of getting an active
vertex and pushing from it until it becomes inactive.) In class manyg2 there was a slight
decrease in the total number of operations when the number of processors went from one
to two. As mentioned previously, the frequency of global relabeling has a big impact in the
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Table 13: Results for class random?2. Time is in seconds; p is number of processors, and seq
labels the column corresponding to the sequential program. Line disch shows mean number
of discharges; line relab shows mean number of relabel operations.

n = 30000; speed-up = 2.4

P seq 1 2 4 8 12
time 8.7 15.7 9.1 5.9 4.2 3.9
disch | 43238 | 46033 | 48139 | 51081 | 58249 | 70477
relab | 17588 | 18812 | 20035 | 22179 | 29230 | 40934
n = 60000; speed-up = 2.6

P seq 1 2 4 8 12
time 18.5 33.5 18.7 11.3 8.4 7.2
disch | 89254 | 97266 | 100888 | 105029 | 119027 | 143774
relab | 36634 | 40822 | 42766 | 46083 | 60632 | 82911
n = 120000; speed-up = 3.2

P seq 1 2 4 8 12
time 77.1 134.7 65.4 36.4 27.0 24.7
disch | 195755 | 208774 | 223232 | 231655 | 254705 | 280575
relab | 82513 | 88646 | 98184 | 105154 | 130295 | 152426

Table 14: Results for class fewg2. Time is in seconds; p is number of processors, and seq
labels the column corresponding to the sequential program. Line disch shows mean number
of discharges; line relab shows mean number of relabel operations.

n = 30000; speed-up = 1.9

P seq 1 2 4 8 12
time 13.8 26.9 15.5 10.0 7.5 74
disch | 80356 | 89606 | 89919 | 92810 | 101417 | 115213
relab | 37364 | 40707 | 41445 | 44323 | 53430 | 64887
n = 60000; speed-up = 2.6

P seq 1 2 4 8 12
time 33.5 61.4 34.8 20.8 14.8 13.0
disch | 189324 | 203474 | 210476 | 215206 | 238042 | 277946
relab | 89819 | 93791 | 99119 | 105415 | 127473 | 159276
n = 120000; speed-up = 3.1

P seq 1 2 4 8 12
time 87.6 152.5 85.0 53.1 33.7 28.5
disch | 410474 | 426162 | 426565 | 450914 | 465816 | 528364
relab | 196274 | 197184 | 199295 | 219446 | 240936 | 291049
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Table 15: Results for class manyg2. Time is in seconds; p is number of processors, and seq
labels the column corresponding to the sequential program. Line disch shows mean number
of discharges; line relab shows mean number of relabel operations.

n = 30000; speed-up = 2.1

P seq 1 2 4 8 12
time 14.5 25.9 14.7 9.4 7.1 6.9
disch | 87164 | 90228 | 90029 | 93759 | 106636 | 126676
relab | 39106 | 39639 | 40418 | 44045 | 54753 | 70406
n = 60000; speed-up = 2.0

P seq 1 2 4 8 12
time 35.5 65.5 38.2 24.0 19.0 18.2
disch | 210858 | 229238 | 222816 | 221149 | 247307 | 283217
relab | 97523 | 104207 | 102027 | 103839 | 125486 | 153867
n = 120000; speed-up = 2.4

P seq 1 2 4 8 12
time 85.3 151.8 88.1 58.8 39.6 39.9
disch | 416300 | 456833 | 451365 | 463682 | 478123 | 563417
relab | 193499 | 208765 | 208621 | 220081 | 241405 | 297968

160 |

parallel time <—
10 sequential time 4 - 7|

120 -

100 -

time T+

(seconds) 80 -
60

40 -

20 - .

0 ! ! ! ! !
2 4 6 8 10 12

number of processors

Figure 1: Plot of running times for class fewg2 on 120,000-vertex instances.
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number of operations performed, and we believe that in this particular class two processors
apply global relabeling with a frequency that is more efficient than the one applied by one
processor.

Similarly to the maximum flow study [AS95], hardware effects such as bus contention,
and lack of parallelism (insufficient number of active vertices to keep all processors busy
most of the time) are the main reasons that explain why it is difficult to obtain better
speed-ups. However, one additional reason specific to this work is that the frequency of
global relabelings at 12 processors is not high enough. This is what happens: by the time
a global relabeling is completed, the next global relabeling is already due, because in the
meantime the processors were able to complete more than the total number of discharges
necessary to trigger the next global relabeling. As a consequence the number of discharges
and relabel operations increases markedly when the number of processors increases from 8
to 12, as can be seen in the tables. It should be possible to overcome this problem, either by
a careful tuning of the parameters involved or by having more than one global relabeling at
the same time. However, we do not expect any large improvements in the speed-ups even
with these changes.

9 Conclusions, comments, and further work

Conclusions from the sequential experiments were already given in section 5. Here we
comment on the relevance of the parallel results and outline some aspects where further
work would be interesting.

As shown in section 8 the push-relabel algorithm can run up to three times faster than
its sequential counterpart. If such a speed-up were attained for all classes and instances
shown in table 12 the push-relabel parallel implementation would have been the fastest in
six out of nine classes. This shows that for very large problems where the fastest possible
running time is necessary a parallel implementation of the push-relabel algorithm should
be considered.

We believe that the ABMP and push-relabel implementations developed for these ex-
periments can be further improved. The push-relabel algorithm, in particular, has many
variants, of which only one was used. One attractive variation is highest-label-first, where
vertices are processed not in queue ordering but according to their distance labels. In the
case of the maximum flow problem this variation is sometimes faster [AS93]. The flexibil-
ity of these algorithms also allow for the introduction of many heuristics. We used one of
them, but there may be others. In particular it may be possible to better tune the global
relabeling heuristic to obtain more efficient results.

Another aspect that should be studied in greater depth is the initial matching. We used
a simple greedy strategy, but other methods can be used. We would like to know what the
influence of this initial matching is on an implementation’s performance. Simple experi-
ments that we carried out showed that it is not necessarily the case that larger maximal
matchings translate into faster overall running times.

In terms of other experiments, it would be interesting to test the implementations pre-
sented in this paper on other classes of bipartite graphs; and investigate whether it is
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possible to obtain better parallel speed-ups, either with the push-relabel algorithm or with
some other algorithm.
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