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Abstract. We consider the following question: can split graphs with odd maximum
degree be edge-coloured with maximum degree colours? We show that any odd maxi-
mum degree split graph can be transformed into a special split graph. For this special
split graph, we were able to solve the question, in case the graph has a quasi-universal
vertex.

Sumadrio. Consideramos o seguinte problema: grafos split com grau maximo impar
admitem uma coloracao de arestas com grau maximo cores? Mostramos como qualquer
grafo split com grau maximo impar pode ser transformado em um grafo split especial.
Para este grafo split especial, resolvemos o problema proposto no caso do grafo admitir
um vértice quase-universal.

1 Introduction

An edge-colouring of a graph is an assignment of colours to its edges such that no adjacent
edges have the same colour. The chromatic index of a graph is the minimum number of
colours required to produce an edge-colouring for that graph.

An easy lower bound for the chromatic index is the maximum vertex degree A. A
celebrated theorem by Vizing states that these two quantities differ by at most one [1].
Graphs whose chromatic index equals the maximum degree are said to be Class 1; graphs
whose chromatic index exceeds the maximum degree by one are said to be Class 2.

Very little is known about the complexity of computing the chromatic index in general.
It is known that complete graphs and chordless cycles are Class 1 if and only if the number
of vertices is even. Bipartite graphs are all Class 1. Planthold [2, 3] proved that graphs
with a universal vertex or with a quasi-universal vertex can be classified in polynomial
time. Hoffman and Rodger [4] derived a similar result for complete multipartite graphs.
The four-colour problem is equivalent to saying that all 2-connected 3-regular planar graphs
are Class 1. In previous papers, we settled the question for doubly chordal graphs with odd
maximum degree [5] and for indifference graphs with at most three maximal cliques [6].
Doubly chordal graphs include interval graphs and strongly chordal graphs. These results
summarize all that is known about edge-colouring specific classes of graphs.

In this note, we consider the following question: can split graphs with odd maximum
degree be edge-coloured with A colours? Edge-colouring of split graphs was first considered
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in [7]. In that work, we discussed local sufficient conditions for a graph to be Class 2. We
considered subclasses of chordal graphs, such as split graphs and interval graphs.

We begin this note characterizing two subclasses of split graphs, which we call EaAsy and
DIFFICULT. The EASY ones can be easily coloured by a pullback technique [5]. We essentially
“borrow” the colour from a complete graph. The DIFFICULT ones, as the name indicates,
are hard to colour, but this class has the important property that if all its members are
Class 1, then all odd maximum degree split graphs are Class 1.

Next, we show that every DIFFICULT graph can be transformed into an EASY one by
repeated applications of a subdivision operation on vertices. The idea is to use this trans-
formation to transfer the colouring of the EAsy graph to the DIFFICULT one. The transfor-
mation increases the number of vertices but keeps the number of edges constant. We were
able to colour some DIFFICULT graphs with this technique, and we show these results in the
sequel. Specifically, we decided the cases where one subdivision operation is enough.

2 Definitions and notations

General terms

In this paper, G denotes a simple, undirected, finite, connected graph. V(G) and E(G) are
the vertex and edge sets of G. A stable set is a set of vertices pairwise non-adjacent in G.
A clique is a set of vertices pairwise adjacent in G. A mazimal clique of G is a clique not
properly contained in any other clique. A mazimum clique of G is a clique of maximum
size, i.e., a clique with the largest possible number of vertices.

A subgraph of G is a graph H with V(H) C V() and E(H) C E(G). For X C V(G),
we denote by G[X] the subgraph induced by X , that is, V(G[X]) = X and F(G[X]) consists
of those edges of I/((') having both ends in X.

For each vertex v of a graph G, Adj(v) denotes the set of vertices that are adjacent to v.
In addition, N(v) denotes the neighbourhood of v, that is, N(v) = Adj(v)U {v}. The degree
of a vertex v is deg(v) = |Adj(v)|. The maximum degree of a graph G is then A(G) =
max,ey () deg(v). A vertex u is universal if deg(u) = [V(G)| — 1. A vertex u is quasi-
universal if deg(u) = |V(G)| — 2. Given a graph G and k > 1, we denote by G* the graph
having V(G*) = V(G) and satisfying 2y € E(G*) if and only if z and y are distinct and
their distance in G is at most k. The diameter of G is diam(G) = max,, ey (@) dist(v, w).

K, denotes the complete graph on n > 1 vertices.

A split graph is a graph whose vertex set admits a partition into a stable set and a
clique.

Colouring

An assignment of colours to the vertices of G is a function A\:V(G) — S. The elements
of the set S are called colours. A conflict in an assignment of colours is the existence of
two adjacent vertices with the same colour. A wvertez-colouring of a graph is an assignment
of colours such that there are no conflicts. The chromatic number of a graph G is the
minimum number of colours used among all vertex-colourings of G' and is denoted by x(G).
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An assignment of colours to the edges of GG is a function x: F(G) — 5. Again, the
elements of the set S are called colours. A conflict in an assignment of colours is the
existence of two edges with the same colour incident to a common vertex. A vertex u is
said to be satisfied when k(uv) = r(uw) implies v = w, for all neighbours v, w of u. An
edge-colouring of a graph is an assignment of colours such that every vertex is satisfied or,
equivalently, such that there are no conflicts. The chromatic index of a graph G is the
minimum number of colours used among all edge-colourings of G and is denoted by \'(G).

A graph G is said to be Class 1 if X'(G) = A(G) and Class 2 if X'(G) = A(G) + 1.
Vizing’s theorem [1] states that there are no other possibilities: all graphs are either Class
1 or Class 2. A constructive proof of Vizing’s theorem appeared in [8].

3 EASY and DIFFICULT

Recall that split graph is a graph G for which V(&) can be partitioned into two sets A and
B such that A is a clique and B is a stable set. A splitting clique A of GG is a maximal
clique such that V(G)\ A is a stable set of (. Note that every splitting clique is a clique
of maximum size in G.

We concentrate on split graphs of odd maximum degree A, as mentioned in the intro-
duction. We now define a subclass of odd maximum degree split graphs called EASY, which
contains all graphs we consider easy to colour with A colours. An odd maximum degree

split graph G is said to be EasY if x(G?) = A(G) + 1.
Theorem 1 Easy C Class 1.

The proof is based on the concept of a pullback function. A pullback from graph G to
graph f is a function f:V(G) — V(H) such that

e [ is a homomorphism, i.e., f takes adjacent vertices of G into adjacent vertices of H;
e [ is injective when restricted to each neighbourhood.

The following results relate edge-colouring to pullbacks. They are proved in [5].

Theorem 2 If [ is a pullback from G to H and H is k-edge-colourable, then G is k-edge-
colourable.

Theorem 3 Composition of pullbacks is a pullback.

Any graph satisfying y(G?) = A(G) + 1 admits a pullback into the complete graph
Ka41. In particular, EASY graphs can be coloured with A colours because they admit a
pullback into the graph Ka41, a complete graph with an even number of vertices.

We now define the subclass of DIFFICULT graphs. An odd maximum degree split graph
G is said to be DIFFICULT when:

e all vertices in a splitting clique A of G have degree A(G);
o diam(G) < 2.
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The importance of this class is justified by Theorem 4 below. Together with Theorem 2
they imply that if we prove that pDIFFICULT C Class 1, then all odd maximum degree split
graphs are Class 1.

Theorem 4 If G is any odd mazimum degree split graph, then there is a DIFFICULT graph
H with A(G) = A(H) and a pullback function f:V(G) — V(H).

Proof: Suppose G is a split graph with diam(G) > 2. Let V() be partitioned into
a splitting clique A and a stable set B. If there is a vertex v in A with deg(v) < A,
then we add an edge between v and any vertex u not adjacent to ». This addition does
not change the maximum degree because deg(u) < A. If u now sees every vertex of A,
then A’ = AU {u} is now a splitting clique with corresponding stable set B’ = B\ {u}. By
repeating this operation as many times as necessary, we eventually obtain a graph satisfying
the first condition in the definition of DIFFICULT.

If at this point the diameter is greater than 2, we take any two vertices & and y with
dist(xz,y) = 3 and join them into a single vertex z. If vertex z sees every vertex of A,
then A’ = AU {z} is now a splitting clique with corresponding stable set B’ = B\ {z}. If
necessary, we add edges incident to z until we obtain a graph satisfying the first condition
in the definition of DIFFICULT.

Furthermore, there is a pullback function from the old graph into the new one that maps
x and y into z and maps the other vertices into themselves. By repeating this operation as
many times as necessary, we eventually obtain a graph with diameter at most 2. The final
pullback is just the composition of all the previous pullbacks. [ |

4 Transforming DIFFICULT into EASY

Given a graph G and an integer k, we define remain(G, k) as the least number of vertices
of G whose removal leaves a graph that admits a vertex-colouring with k colours. Note that
if G is an EASY graph, then remain(G%, A+ 1) = 0. On the other hand, given a DIFFICULT
graph G such that r = remain(G?, A+ 1) > 0, the removal of any stable set of size r from
G leaves a graph H with remain(H?* A +1) = 0.

Given a graph G, a vertex subdivision operation transforms ¢ into a graph s(G') and
is defined as follows. Let v € V() and let Adj(v) be partitioned into sets Vi,---, V. In
s(G), we have one new vertex v;, for each set V;. The vertex and edge sets are defined as:
V(s(G)) = VI(G)\{v} U{v1, -, v} and E(s(G)) = (E(G)\{vw : w € Adj(v)})U{vu; :
u; € Vi}. We say that vertex v is subdivided into vertices vy, ..., v;.

The main result of this section shows how to transform a DIFFICULT graph into an EASY
graph.

Theorem 5 For every DIFFICULT graph, there is a series of subdivision operations that
transforms it into an EASY graph.
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Proof: Let (G be a DIFFICULT graph with remain(G?, A+1) > 0. We shall prove that there
is a subdivision operation that transforms ¢ into s(() such that: remain(s(G)?, A +1) <
remain(G% A +1).

Let r = remain(G?, A + 1) > 0. By definition, there exists a set R of r vertices of
whose removal leaves a graph G’ such that (G')? admits a vertex-colouring C' with A + 1
colours. Let v € R. Define the following subsets of Adj(v):

PreV; ={n € Adj(v): C(n) # i;n € Adj(w) = C(w) # i}.

We note that Adj(v) = UPreV,. Indeed, if z € Adj(v) but @ ¢ UPreV;, then N(2)NC; #
0, for 1 <i<A+1,and Adj(z)N R # (0. This implies deg(x) > A + 1, a contradiction.

Some sets PreV,; are possibly empty and the sets PreV; are not necessarily disjoint. Now
there exists a collection of sets Vi,...,V; that partitions Adj(v) and such that V; C PreV,,
for 1 < < A4 1. Moreover, there are at least two distinct indices ¢ and 7 with V; and V;
not empty. If only one V; is not empty, then it is possible to colour ». Then, this partition
defines a subdivision of vertex v which in turn defines the required graph s(G). u

5 When the graph is almost EASY

Let GG be a DIFFICULT graph, with the usual partition of V(&) into sets A and B. Let |A| = «
and |B| = b. In this section, we solve the case remain(G* A + 1) = 1. We show how to
use a subdivision operation together with a pullback to get the required edge-colouring of
G with A colours.

Let v be any vertex of B. Label the vertices of B\ v with labels 1,...,s. We note that
we have the following relations: s =b—- 1, A=a—-14+b—-1=a+b-2.

As in the proof of Theorem 5, subdivide vertex v into vertices v, ...,v,. The set Adj(v)
is partitioned into Vi, ..., Vs, accordingly. We note that graphs G and s(G') have the same
number of edges. In order to obtain the required edge-colouring of G, we shall first obtain
an edge-colouring of s(G') with A colours.

Now we proceed to exhibit a pullback from s(G) to Kayq.

Vertices of B\ v continue to have labels 1,...,s. Now label v; with label 7 (1 <1 < s),
and label vertices in Vq,..., Vs, with labels s+1,s+2,...,s4 deg(v), following the ordering
of the subscripts of the sets V;.

Note that s < b — 1, because v € B. On the other hand, deg(v) < a — 1, because no
vertex of B sees all vertices of A. Hence s + deg(v) < a+b— 2 = A. Finally, to finish the
pullback, label the vertices of A\ Adj(v) with labels not used so far.

To see that this edge-colouring of s(G) is in fact an edge-colouring of ¢, consider the
edge joining vertex @ € V; to vertex v;. Let us compute the size of the interval of the sums
label(x) + i, where # € V; and 1 < ¢ < 5. The minimum possible is 1 + s+ 1 = s + 2.
The maximum possible is s + s + deg(v) = 2s + deg(v). Hence this interval has size:
2s+deg(v)—(s+2)+1=s+deg(v)— 1. Now s+ deg(v) < A implies that the size of this
interval is at most A — 1. In particular, we get that these values belong to distinct classes
modulo A.

Therefore, we have the following theorem:
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Theorem 6 Let G be a split graph with odd mazimum degree. Suppose that G satisfies
remain(G*, A +1) < 1. Then G is Class 1.

6 Conclusions

We have reported our progress on edge-colouring odd maximum degree graphs. Since it is
NP-complete to decide [9] whether an odd maximum degree graph is Class 1, we have been
solving the problem for special classes: doubly chordal graphs [5] and indifference graphs [6].
We conjectured in [7] that every odd maximum degree split graph is Class 1.

In this note we have given positive evidence for this conjecture by proving it for special
cases. Qur method defines two functions: subdivision, which maps a split graph into a
particular Class 1 split graph; and pullback, a special kind of homomorphism.
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