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On the edge-colouring of split graphsCelina M. H. de Figueiredo� Jo~ao Meidanisy C�elia Picinin de MelloyAbstract. We consider the following question: can split graphs with odd maximumdegree be edge-coloured with maximum degree colours? We show that any odd maxi-mum degree split graph can be transformed into a special split graph. For this specialsplit graph, we were able to solve the question, in case the graph has a quasi-universalvertex.Sum�ario. Consideramos o seguinte problema: grafos split com grau m�aximo ��mparadmitem uma colora�c~ao de arestas com grau m�aximo cores? Mostramos como qualquergrafo split com grau m�aximo ��mpar pode ser transformado em um grafo split especial.Para este grafo split especial, resolvemos o problema proposto no caso do grafo admitirum v�ertice quase-universal.1 IntroductionAn edge-colouring of a graph is an assignment of colours to its edges such that no adjacentedges have the same colour. The chromatic index of a graph is the minimum number ofcolours required to produce an edge-colouring for that graph.An easy lower bound for the chromatic index is the maximum vertex degree �. Acelebrated theorem by Vizing states that these two quantities di�er by at most one [1].Graphs whose chromatic index equals the maximum degree are said to be Class 1; graphswhose chromatic index exceeds the maximum degree by one are said to be Class 2.Very little is known about the complexity of computing the chromatic index in general.It is known that complete graphs and chordless cycles are Class 1 if and only if the numberof vertices is even. Bipartite graphs are all Class 1. Planthold [2, 3] proved that graphswith a universal vertex or with a quasi-universal vertex can be classi�ed in polynomialtime. Ho�man and Rodger [4] derived a similar result for complete multipartite graphs.The four-colour problem is equivalent to saying that all 2-connected 3-regular planar graphsare Class 1. In previous papers, we settled the question for doubly chordal graphs with oddmaximum degree [5] and for indi�erence graphs with at most three maximal cliques [6].Doubly chordal graphs include interval graphs and strongly chordal graphs. These resultssummarize all that is known about edge-colouring speci�c classes of graphs.In this note, we consider the following question: can split graphs with odd maximumdegree be edge-coloured with � colours? Edge-colouring of split graphs was �rst considered�Instituto de Matem�atica, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21944-970 Riode Janeiro, RJ, Brasil. celina@cos.ufrj.br. Partially supported by CNPq.yInstituto de Computa�c~ao, Universidade Estadual de Campinas, Caixa Postal 6065, 13081-970 Campinas,SP, Brasil. fmeidanis,celiag@dcc.unicamp.br. Partially supported by FAPESP and CNPq.1



On the edge-colouring of split graphs 2in [7]. In that work, we discussed local su�cient conditions for a graph to be Class 2. Weconsidered subclasses of chordal graphs, such as split graphs and interval graphs.We begin this note characterizing two subclasses of split graphs, which we call easy anddifficult. The easy ones can be easily coloured by a pullback technique [5]. We essentially\borrow" the colour from a complete graph. The difficult ones, as the name indicates,are hard to colour, but this class has the important property that if all its members areClass 1, then all odd maximum degree split graphs are Class 1.Next, we show that every difficult graph can be transformed into an easy one byrepeated applications of a subdivision operation on vertices. The idea is to use this trans-formation to transfer the colouring of the easy graph to the difficult one. The transfor-mation increases the number of vertices but keeps the number of edges constant. We wereable to colour some difficult graphs with this technique, and we show these results in thesequel. Speci�cally, we decided the cases where one subdivision operation is enough.2 De�nitions and notationsGeneral termsIn this paper, G denotes a simple, undirected, �nite, connected graph. V (G) and E(G) arethe vertex and edge sets of G. A stable set is a set of vertices pairwise non-adjacent in G.A clique is a set of vertices pairwise adjacent in G. A maximal clique of G is a clique notproperly contained in any other clique. A maximum clique of G is a clique of maximumsize, i.e., a clique with the largest possible number of vertices.A subgraph of G is a graph H with V (H) � V (G) and E(H) � E(G). For X � V (G),we denote by G[X ] the subgraph induced by X , that is, V (G[X ]) = X and E(G[X ]) consistsof those edges of E(G) having both ends in X .For each vertex v of a graph G, Adj(v) denotes the set of vertices that are adjacent to v.In addition, N(v) denotes the neighbourhood of v, that is, N(v) = Adj(v)[fvg. The degreeof a vertex v is deg(v) = jAdj(v)j. The maximum degree of a graph G is then �(G) =maxv2V (G) deg(v). A vertex u is universal if deg(u) = jV (G)j � 1. A vertex u is quasi-universal if deg(u) = jV (G)j � 2. Given a graph G and k � 1, we denote by Gk the graphhaving V (Gk) = V (G) and satisfying xy 2 E(Gk) if and only if x and y are distinct andtheir distance in G is at most k. The diameter of G is diam(G) = maxv;w2V (G) dist(v; w).Kn denotes the complete graph on n � 1 vertices.A split graph is a graph whose vertex set admits a partition into a stable set and aclique.ColouringAn assignment of colours to the vertices of G is a function �:V (G) ! S. The elementsof the set S are called colours. A con
ict in an assignment of colours is the existence oftwo adjacent vertices with the same colour. A vertex-colouring of a graph is an assignmentof colours such that there are no con
icts. The chromatic number of a graph G is theminimum number of colours used among all vertex-colourings of G and is denoted by �(G).



On the edge-colouring of split graphs 3An assignment of colours to the edges of G is a function �:E(G) ! S. Again, theelements of the set S are called colours. A con
ict in an assignment of colours is theexistence of two edges with the same colour incident to a common vertex. A vertex u issaid to be satis�ed when �(uv) = �(uw) implies v = w, for all neighbours v, w of u. Anedge-colouring of a graph is an assignment of colours such that every vertex is satis�ed or,equivalently, such that there are no con
icts. The chromatic index of a graph G is theminimum number of colours used among all edge-colourings of G and is denoted by �0(G).A graph G is said to be Class 1 if �0(G) = �(G) and Class 2 if �0(G) = �(G) + 1.Vizing's theorem [1] states that there are no other possibilities: all graphs are either Class1 or Class 2. A constructive proof of Vizing's theorem appeared in [8].3 easy and difficultRecall that split graph is a graph G for which V (G) can be partitioned into two sets A andB such that A is a clique and B is a stable set. A splitting clique A of G is a maximalclique such that V (G) n A is a stable set of G. Note that every splitting clique is a cliqueof maximum size in G.We concentrate on split graphs of odd maximum degree �, as mentioned in the intro-duction. We now de�ne a subclass of odd maximum degree split graphs called easy, whichcontains all graphs we consider easy to colour with � colours. An odd maximum degreesplit graph G is said to be easy if �(G2) = �(G) + 1.Theorem 1 easy � Class 1.The proof is based on the concept of a pullback function. A pullback from graph G tograph H is a function f :V (G)! V (H) such that� f is a homomorphism, i.e., f takes adjacent vertices of G into adjacent vertices of H ;� f is injective when restricted to each neighbourhood.The following results relate edge-colouring to pullbacks. They are proved in [5].Theorem 2 If f is a pullback from G to H and H is k-edge-colourable, then G is k-edge-colourable.Theorem 3 Composition of pullbacks is a pullback.Any graph satisfying �(G2) = �(G) + 1 admits a pullback into the complete graphK�+1. In particular, easy graphs can be coloured with � colours because they admit apullback into the graph K�+1, a complete graph with an even number of vertices.We now de�ne the subclass of difficult graphs. An odd maximum degree split graphG is said to be difficult when:� all vertices in a splitting clique A of G have degree �(G);� diam(G) � 2.



On the edge-colouring of split graphs 4The importance of this class is justi�ed by Theorem 4 below. Together with Theorem 2they imply that if we prove that difficult � Class 1, then all odd maximum degree splitgraphs are Class 1.Theorem 4 If G is any odd maximum degree split graph, then there is a difficult graphH with �(G) = �(H) and a pullback function f :V (G)! V (H).Proof: Suppose G is a split graph with diam(G) > 2. Let V (G) be partitioned intoa splitting clique A and a stable set B. If there is a vertex v in A with deg(v) < �,then we add an edge between v and any vertex u not adjacent to v. This addition doesnot change the maximum degree because deg(u) < �. If u now sees every vertex of A,then A0 = A[ fug is now a splitting clique with corresponding stable set B0 = B n fug. Byrepeating this operation as many times as necessary, we eventually obtain a graph satisfyingthe �rst condition in the de�nition of difficult.If at this point the diameter is greater than 2, we take any two vertices x and y withdist(x; y) = 3 and join them into a single vertex z. If vertex z sees every vertex of A,then A0 = A [ fzg is now a splitting clique with corresponding stable set B0 = B n fzg. Ifnecessary, we add edges incident to z until we obtain a graph satisfying the �rst conditionin the de�nition of difficult.Furthermore, there is a pullback function from the old graph into the new one that mapsx and y into z and maps the other vertices into themselves. By repeating this operation asmany times as necessary, we eventually obtain a graph with diameter at most 2. The �nalpullback is just the composition of all the previous pullbacks.4 Transforming difficult into easyGiven a graph G and an integer k, we de�ne remain(G; k) as the least number of verticesof G whose removal leaves a graph that admits a vertex-colouring with k colours. Note thatif G is an easy graph, then remain(G2;�+ 1) = 0. On the other hand, given a difficultgraph G such that r = remain(G2;�+ 1) > 0, the removal of any stable set of size r fromG leaves a graph H with remain(H2;�+ 1) = 0.Given a graph G, a vertex subdivision operation transforms G into a graph s(G) andis de�ned as follows. Let v 2 V (G) and let Adj(v) be partitioned into sets V1; � � � ; Vt. Ins(G), we have one new vertex vi, for each set Vi. The vertex and edge sets are de�ned as:V (s(G)) = V (G) n fvg [ fv1; � � � ; vtg and E(s(G)) = (E(G) n fvw : w 2 Adj(v)g)[ fviui :ui 2 Vig. We say that vertex v is subdivided into vertices v1; : : : ; vt.The main result of this section shows how to transform a difficult graph into an easygraph.Theorem 5 For every difficult graph, there is a series of subdivision operations thattransforms it into an easy graph.



On the edge-colouring of split graphs 5Proof: Let G be a difficult graph with remain(G2;�+1) > 0. We shall prove that thereis a subdivision operation that transforms G into s(G) such that: remain(s(G)2;�+ 1) <remain(G2;�+ 1).Let r = remain(G2;� + 1) > 0. By de�nition, there exists a set R of r vertices of Gwhose removal leaves a graph G0 such that (G0)2 admits a vertex-colouring C with � + 1colours. Let v 2 R. De�ne the following subsets of Adj(v):PreVi = fn 2 Adj(v) : C(n) 6= i;n 2 Adj(w)) C(w) 6= ig:We note thatAdj(v) = [PreVi. Indeed, if x 2 Adj(v) but x 62 [PreVi, then N(x)\Ci 6=;, for 1 � i � �+ 1, and Adj(x) \R 6= ;. This implies deg(x) � �+ 1, a contradiction.Some sets PreVi are possibly empty and the sets PreVi are not necessarily disjoint. Nowthere exists a collection of sets V1; : : : ; Vt that partitions Adj(v) and such that Vj � PreVi,for 1 � i � �+ 1. Moreover, there are at least two distinct indices i and j with Vi and Vjnot empty. If only one Vi is not empty, then it is possible to colour v. Then, this partitionde�nes a subdivision of vertex v which in turn de�nes the required graph s(G).5 When the graph is almost easyLet G be a difficult graph, with the usual partition of V (G) into setsA and B. Let jAj = aand jBj = b. In this section, we solve the case remain(G2;� + 1) = 1. We show how touse a subdivision operation together with a pullback to get the required edge-colouring ofG with � colours.Let v be any vertex of B. Label the vertices of B n v with labels 1; : : : ; s. We note thatwe have the following relations: s = b� 1, � = a� 1 + b� 1 = a+ b� 2.As in the proof of Theorem 5, subdivide vertex v into vertices v1; : : : ; vs. The set Adj(v)is partitioned into V1; : : : ; Vs, accordingly. We note that graphs G and s(G) have the samenumber of edges. In order to obtain the required edge-colouring of G, we shall �rst obtainan edge-colouring of s(G) with � colours.Now we proceed to exhibit a pullback from s(G) to K�+1.Vertices of B n v continue to have labels 1; : : : ; s. Now label vi with label i (1 � i � s),and label vertices in V1; : : : ; Vs, with labels s+1; s+2; : : : ; s+deg(v), following the orderingof the subscripts of the sets Vi.Note that s � b � 1, because v 2 B. On the other hand, deg(v) � a � 1, because novertex of B sees all vertices of A. Hence s + deg(v) � a + b� 2 = �. Finally, to �nish thepullback, label the vertices of A nAdj(v) with labels not used so far.To see that this edge-colouring of s(G) is in fact an edge-colouring of G, consider theedge joining vertex x 2 Vi to vertex vi. Let us compute the size of the interval of the sumslabel(x) + i, where x 2 Vi and 1 � i � s. The minimum possible is 1 + s + 1 = s + 2.The maximum possible is s + s + deg(v) = 2s + deg(v). Hence this interval has size:2s+ deg(v)� (s+2)+ 1 = s+ deg(v)� 1. Now s+ deg(v) � � implies that the size of thisinterval is at most �� 1. In particular, we get that these values belong to distinct classesmodulo �.Therefore, we have the following theorem:



On the edge-colouring of split graphs 6Theorem 6 Let G be a split graph with odd maximum degree. Suppose that G satis�esremain(G2;�+ 1) � 1. Then G is Class 1.6 ConclusionsWe have reported our progress on edge-colouring odd maximum degree graphs. Since it isNP-complete to decide [9] whether an odd maximum degree graph is Class 1, we have beensolving the problem for special classes: doubly chordal graphs [5] and indi�erence graphs [6].We conjectured in [7] that every odd maximum degree split graph is Class 1.In this note we have given positive evidence for this conjecture by proving it for specialcases. Our method de�nes two functions: subdivision, which maps a split graph into aparticular Class 1 split graph; and pullback, a special kind of homomorphism.Acknowledgements. This work was done while the authors were visiting the Departmentof Combinatorics and Optimization at the University of Waterloo, Canada. The �rst authorholds a post-doctoral grant from CNPq Proc. 204383/88-9. The second and third authorsacknowledge support from CNPq/ProTeM-CC-II, Project ProComb - Proc. 680065/94-6and FAPESP.References[1] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diket. Analiz., 3:25{30,1964. In russian.[2] M. Plantholt. The chromatic index of graphs with a spanning star. J. of Graph Theory,5:45{53, 1981.[3] M. Plantholt. The chromatic index of graphs with large maximum degree. DiscreteMath., 47:91{96, 1983.[4] D. G. Ho�man and C. A. Rodger. The chromatic index of complete multipartite graphs.J. of Graph Theory, 16:159{163, 1992.[5] C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. A greedy method foredge-colouring odd maximum degree doubly chordal graphs. Congressus Numerantium,111:170{176, 1995.[6] C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. On edge-colouring indi�erencegraphs. Lecture Notes in Computer Science, 911:286{299, 1995.[7] C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. Local conditions for edge-coloring. Technical report, DCC 95-17, UNICAMP, 1995. Anais da II O�cina Nacionalem Problemas Combinat�orios.[8] J. Misra and D. Gries. A constructive proof of Vizing's theorem. Inf. Proc. Lett.,41:131{133, 1992.
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