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Automatic visualization of two-dimensional cellular complexesRober Marcone Rosimarcone@inf.ufes.br Jorge Stol�stolfi@dcc.unicamp.brInstituto de Computa�c~aoUniversidade Estadual de Campinas �May 31, 1996AbstractA two-dimensional cellular complex is a partition of a surface into a �nite numberof elements|faces (open disks), edges (open arcs), and vertices (points). The topologyof a cellular complex consists of the abstract incidence and adjacency relations amongits elements.Here we describe a program that, given only the topology of a cellular complex,computes a geometric realization of the same|that is, a speci�c partition of a speci�csurface in three-space|guided by various aesthetic and presentational criteria.1 Introduction and motivation1.1 Cellular complexesIn the boundary representation technique, commonly used in computer graphics and engi-neering, a solid object is de�ned indirectly by its surface, which is in turn described as theunion of one or more faces|simple surface patches, at or curved. Faces are bounded byedges|line segments, straight or curved|whose endpoints are the vertices of the model.When building or using such a model, it is generally convenient to handle separately itstopological properties (the contacts between faces, edges, and vertices) from its geometricalproperties (vertex coordinates, face equations, etc.) This separation greatly improves themodularity and versatility of geometric algorithms [15, 23].A two-dimensional cellular complex is a mathematical structure that captures the topo-logical aspects of such a boundary model, freed from all geometrical data. Formally, it canbe de�ned as a �nite set S, a permutation � of the elements of S, and a set � of triples(r; d; s), where r; s 2 S, r 6= s, and d is a sign (either + or �); and such that every elementof S occurs exactly twice in these triples.�This reasearch was supported in part by the National Council for Scienti�c and Technological Develop-ment of Brazil (CNPq), the Foundation for Research Support of the State of S~ao Paulo (FAPESP), and byUNICAMP's Teaching and Research Support Fund (FAEP).



Visualization of cellular complexes 2Intuitively, the elements of S represent the sides of one or more polygons; �(s) is theside following s around the same polygon, in counterclockwise order; and each triple (r; d; s)speci�es that side r must be identi�ed with side s, taken in the same sense if d = +, or inopposite senses if d = �.1.2 Topological visualizationThe topology of a cellular complex, even a small one, may be quite hard to understandfrom its combinatorial description. For instance, a complex with a single four-sided facemay de�ne four di�erent surface topologies (sphere, torus, Klein bottle, and projectiveplane), depending on how the sides are glued to each other [16, 1]. See �gure 1.
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b(h)Figure 1: The four distinct cellular complexes with one four-sided face:(a,b) torus, (c,d) Klein bottle, (e,f) projective plane, (g,h) sphere. Sideswith same label are identi�ed as shown by the arrows.)The large psychological distance between combinatorics and topology is a major obstaclewhen developing and debugging algorithms that deals with boundary models. Since thetopological and geometrical sections of such an algorithm are largely independent of eachother, one cannot rely on the visual appearance of the object to verify the topologicalinformation. Faces that look adjacent on the screen may not be adjacent in the topologicaldata structure, and vice-versa.Motivated by this di�culty, we developed and implemented an agorithm for the auto-matic visualization of the topology of a cellular complex. Given only the number of elementsin the complex, and the incidence relations among them, our algorithm constructs a speci�cgeometric surface in three-space, and a speci�c partition of it into discs, arcs and points,that displays those incidence relations|hopefully, in a visually e�ective way. Thus, for ex-ample, given a combinatorial description of the complex shown in �gure 1(a), our algorithmwill automatically generate a picture like 1(b).



Visualization of cellular complexes 31.3 What is a good realization?Any cellular complex has in�nitely many geometric representations; and not all of them arehelpful for understanding its structure. In order to choose a \good" representation, we willrely on some general geometric properties which, according to intuition and experiment,seem to be associated with visual clarity.For one thing, it seems desirable that the surface be as smooth and at as possible, inorder to minimize self-occlusions and avoid distracting the viewer's attention with graphicalartifacts (folds, shadows, silhouette edges, etc.) which are not features of the complex itself.For the same reason, it is desirable that the surface be free from self-intersections; or, ifthat is not possible (as in the case of a Klein bottle), that the extent of self-intersection besomehow minimized.Not only must the surface be easy to understand, but also the edges of the complex mustbe drawn on that surface in a visually e�ective way: they must be well-separated, smooth,as straight as possible, and neither too long nor too short. Note that these requirementsmay indireclty a�ect the shape of the surface. For example, the complex shown in �gure 2(a)must be drawn on a surface with the topology of a sphere; however, a truly spherical surface,as in �gure 2(b), seems less appropriate than the sausage-shaped surface of �gure 2(c).
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Visualization of cellular complexes 41.4 Energy functionsIn order to formalize those requirements, we borrowed a tool from our colleagues who havebeen working on the plane graph drawing problem: the concept of an energy function [20, 9],a quantitative measure of how badly a solution fails to meet a certain visual e�ectivenesscriterion. For example, we can de�ne numerical functions that measure the total curvatureof the surface, the amount of self-intersection, the variance of edge lengths, and so forth.Once we select such a function as being the measure of badness, we only need to �nd, amongall possible realizations of the complex, the one which has the minimum energy.1.5 Related workThis work can be viewed as a three-dimensional extension of the plane graph-drawing prob-lem [11, 21]. Such extensions have been considered before; however, it is generally assumedthat the input is an ordinary graph, and the output is merely a collection of points and linesegments in three space, without any surface elements.Ferguson, Rockwood and Cox [13] addressed the problem of automatically generating asurface with given topology. Since the topology of a surface is completely determined byits connectivity (an integer) and its orientability (a single bit), they were able to solve theproblem by a direct construction. We cannot use this approach for our problem, since wemust �nd both a \good" surface with the right topology, and \good" drawing of a speci�edgraph on that surface. As we observed in section 1.3, these two sub-problems cannot besolved separately.Another related work is Brakke's Surface Evolver [6, 5], a general program to studythe evolution of surfaces under arbitrary force laws|such as surface tension, elastic bending,gas pressure, etc. Brakke's evolver has been used to determine empirically the surfaces ofminimum energy for various topologies [19]. However, the energies used in those experimentswere chosen for mathematical and physical signi�cance, rather than visual e�ectiveness.Furthermore, the energies depended only on the shape of the surface, there being no graphto be drawn on it.A related problem, with obvious practical interest, is that of optimizing a mesh of giventopological type so as to best approximate a given set of data points in R3. A fairly generalsolution was given by Hoppe, DeRose, and others [17]. Their approach is based, like ours, onminimizing an \energy" that is a function of the mesh coordinates. However, the similarityends there. Their energy function measures only the closeness of �t to the data points andthe \economy" of the mesh (number of vertices and total squared edge length), withoutconcern for smoothness or visual e�ectiveness. More importantly, they assume that a goodinitial guess for the mesh shape is given as input to their algorithm.Energy minimization of a �xed topology has also been proposed as a paradigm forsolid modeling, for example in the design of smooth �lets and chamfers; for the smoothinterpolation of space curves [8, 30]; and for interpolation of scattered data points in R3.However, in those works the surface to be optimized generally has a very simple topology|a disk, possibly with a few holes|and its boundary curve is �xed and known. Thanks tothese conditions, those authors could model the surface by a regular grid of triangles or



Visualization of cellular complexes 5B�ezier patches; and a simple interpolation of the boundary curves provides a good initialapproximation to the optimum shape. Thus, the energy optimization does not have toworry about multiple minima or degenerate solutions, which are a major concern in ourcase (see section 3).Moreton and S�equin [27, 26] considered the problem of realizing a general cellular com-plex with a collection of parametric surface patches, joined with C1 continuity, given thecordinates and tangent planes at the vertices of the complex. They solve the problem in twostages, �rst choosing polynomial curves for the edges of the complex, then �tting surfacepatches to those edges. Our approach di�ers from theirs in the nature of the surface model(we use a mesh of at triangles) and in the input data required by the program (we do notrequire any geometrical data, not even vertex coordinates).The general idea of using general \energy functions" to quantify the \ugliness" of adrawing apparently became popular after the paper by Kamada [20]. Indeed, some of theenergy functions that we use are very similar to Kamada's \spring" models|in spirit, ifnot in detail. Other energy functions that we use are similar to the integral of the bendingenergy (generally assumed to be the square of the surface's curvature), which is often usedas the penalty function in minimal surface research [18, 8, 5, 19, 27, 28].2 Visualization model2.1 Encoding the cellular complexThe input to our tool is a purely combinatorial data structure that describes the incidencerelationships between the faces, edges and vertices of the complex.In the literature one can �nd dozens of data structures that were developed for thispurpose [3, 12, 7, 31, 23]. For our work, we selected the quad-edge data structure [15, 24], avariant of the winged edge and half-edge structures [3], widely used in CAD and computergraphics. The main reason for this choice was that the quad-edge structure allows theencoding of non-orientable cellular complexes, such as the one of �gure 1(c,d).The quad-edge structure also allows degree-1 vertices, loop edges, multiple edges withthe same two endpoints, and faces which are incident to both sides of the same edge. Thesefeatures require special attention in our algorithms, as we shall see.On the other hand, the quad-edge structure requires that every face be equivalent to adisk|just as in the mathematical de�nition of a cellular complex. This restriction greatlysimpli�es the data structure and its use.Some solid modeling data strutures are more liberal in this respect, allowing faces withtwo or more border loops (i.e., with one or more holes). Models that include such featurescan still be handled by our algorithm, provided we �rst \cut open" any face with k � 2loops, by adding k�1 extra edges between those loops. Fortunately, this preprocessing stepis quite trivial, since it is purely topological|it is not necessary to specify the shape andposition of those extra edges.Some data structures also allow models with \free borders", namely edges that haveonly one face incidence, instead of two. In other words, those structures allow some sides ofsome faces to remain unglued. The resulting surface has one or more \holes", each of them



Visualization of cellular complexes 6surrounded by a closed ring of unglued edges. For example, if we glue two opposite sides osa square, leaving the other two unglued, we get either an open-ended cylinder (two holes)or a M�obius strip (one hole).In order to handle such models with out tool, we must �rst \close" each hole with anextra \ghost" face. This operation can be easily performed in linear time; the resultingcomplex de�nes a borderless surface (technically, a compact two-dimensional topologicalmanifold), and can be represented by the quad-edge structure. Our tool is programmed toignore those ghost faces during shape optimization, and also when rendering the optimizedsurface.2.2 TilesAn obvious way to model the geometry of the surface is to model each face of the complexas a piece of polynomial surface, implicit or parametric, with continuity constraints imposedon pairs of adjacent patches [25, 2]. However, the faces of the complex may have any numberof sides, which may be glued among themselves in almost any fashion. In general, it is notpossible to realize such a face as a single polynomial surface patch of bounded degree.Therefore, instead of viewing the surface as the union of faces, we view it as the unionof tiles. Each tile is a four-sided surface patch, containing exactly on edge e of the complex.See �gure 3.
Figure 3: A two-dimensional complex on the plane, showing the primaledges (solid), dual edges (dashed), and tile boundaries (dotted).The other diagonal of the tile can be taken to represent the edge e� of the dual complex [15].The dual C� of a complex C is a repartition of the same surface: it has one vertex insideeach face of C, and vice-versa; and each edge of one complex crosses, once and transversally,exactly one edge of the other.



Visualization of cellular complexes 72.3 Realizing a tileSince each tile has only four sides, and therefore only four neighboring tiles, we can inprinciple realize it as a geometric object of bounded complexity.One obvious alternative is to use a parametric polynomial patch [25, 27]: a polynomialmapping of the unit square [0 .. 1]2 of R2 to R3. The main di�culty of this approach is toguarantee a smooth join (with tangent plane continuity, and possibly curvature continuity)between adjacent tiles. Moreover, we must be careful to avoid degeneracies|points wherethe tangent plane is unde�ned|inside the tiles.These constraints are rather di�cult to enforce in our tiling model. The main source ofdi�culty is that a tile may have to be joined to itself (see, for example, the light gray tile in�gure 3. In order to get continuity without degeneracy at the corner between those two sides,we must use polinomials of degree 5 or more. Note that the �rst partial derivatives of thepolynomials are necessarily zero at that corner, so the tangent-plane continuity constraintmust be expressed in terms of higher-order derivatives.Moreover, if the complex has faces and vertices of high degree, it may be necessaryto use higher-degree polynomials merely to allow the tiles to connect to each other in therequired topology. Higher degrees may also be required in order to reduce the number ofself-intersections and to keep the elements of the complex well-separated.Finally, many of the energy functions we considered would be hard to evaluate forpolynomial patches, since they would be expressed as complicated surface integrals whichprobably not admit a closed form.2.4 Triangulated tilesGiven these di�culties of the polynomial approach, we decided to model each tile as apolyhedral surface; speci�cally, a grid of k�k four-sided cells, each consisting of four planetriangles. See �gure 4.
 e(a) =) (b)Figure 4: The tile (a) for some edge e, modeled as a 5� 5 grid (b).In other words, we replace the original cellular complex C, with m edges, by a re�nedcomplex T having 6mk2 edges and 4mk2 triangles. The elements of C are unions of elements



Visualization of cellular complexes 8of T . In particular, the vertices of C are a subset of the vertices of T , and the edges of Care polygonal paths in T , running diagonally across the corresponding tiles.Obviously, having adopted a polyhedral model, we must give up any hope of obtaininga really smooth surface; instead, we may seek to reduce and equalize the external dihedralangles between adjacent triangles. In this way, by using a large enough tile order k, we canin principle obtain surfaces that are arbitrarily \smooth" almost everywhere. Moreover,we can always blur out the corners when the surface is rendered, by standard computergraphics tricks such as Gouraud shading [14].The best value for the parameter k depends on the complex and on the intended ap-plication. In some cases, we may be able to get by with k = 1 or k = 2. However, as weshall see, we must take k � 3 if the complex includes vertices or faces of degree 1; andwe may want to use a larger k in order to obtain a smoother surface. Also, for complexeswith intricate topology, we may need to use a larger k to allow the surface to fold properly,or to reduce the number of self-intersections, or to keep the elements of the complex wellseparated.Note that, if we had opted for polynomial patches instead of triangular meshes, thesesame reasons would force us to use polynomials of higher degree. Indeed, a triangulatedtile of order k� k has about the same number of degrees of freedom as a polynomial patchof degree kp2 in each variable.We do not yet have any reliable rules for choosing the value k for agiven complex. Wecan only remark that that k = 5 was su�cient for all the examples we tried.2.5 Building the triangulationWe will now describe in detail how to construct the triangulation T from the given complexC. The �rst step is to build a triangulated k� k tile for each edge of C. We will denote byTu the union of all these triangulated tiles.Next the sides of these tiles are glued in pairs, as prescribed by the adjacency relationbetween the edges of C. If, in the complex C, edge b follows edge a in counterclockwiseorder out of some vertex v, then the left side of a's tile, from bottom to top, gets glued tothe bottom side of b's tile, from left to right. The \gluing" entails the identi�cation of allcorresponding vertices and edges of Tu that make up those two sides. We shall denote thetriangulated mesh that results by Tg.Finally, the mesh Tg is subjected to a \cleanup" procedure, that removes any topological\degeneracies" which may have been introduced by the gluing step. The nature of thosedegeneracies, and their removal, are described in the next section. The outcome of this stepis the desired triangulation T .To encode the topology of the mesh T , and of the partial meshes that arise during itsconstruction, we use the same quad-edge representation that we use for the original complex.(We could have saved some space by using a data structure specialized for triangular meshes;however, the generality of the quad-edge is quite valuable here, since the partial meshes oftenhave non-triangular faces. In particular, because the quad-edge structure does not allowfree borders, each tile of Tu includes a dummy exterior face with 4k sides, that completesit to a sphere. These exterior faces disappear automatically during the gluing step.)



Visualization of cellular complexes 92.6 DegeneraciesNote that the gluing procedure above may end up gluing a tile to itself, sometimes evenforming a one-sided surface. In those cases the resulting mesh may contain degeneracies oftwo types: twin edges|two or more distinct edges with the same two endpoints|and twintriangles|two or more distinct triangles with the same three vertices.Figure 5 illustrates these problems, in this case when the left and bottom sides of a tileof order k = 2 (a) get glued together (b), resulting in the mesh of �gure 5(c). Note thatvertices q and r were identi�ed with with t and s, respectively; and the triangulation edgesqr and rv were identi�ed with ts and sv. As a consequence, triangles ruv and ruw becametwins of suv and suw; and edges ru and rw became twins of su and sw.
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Visualization of cellular complexes 10(such as the shaded cell in �gure 5(a)). Let's also say that a vertex of a triangulated tileis of type C, S, or I, according to whether it lies at the corner of the tile, along one of itssides, or in the tile's interior. See �gure 6.
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Figure 6: Vertex types in Tu: C = corner, S = side, I = interior.We then have:Theorem 1 If k � 2, the triangles of Tu that become twins in Tg are precisely those con-tained in the critical cells of Tu.Proof: It is easy to check that each critical cell of Tu will always gives rise to two pairs oftwin triangles in Tg, as shown in �gure 5. We need to prove that all twin triangles are ofthis sort.Let R0g and R00g be distinct twin triangles of Tg, and let ag; bg; cg be their common vertices.Let R0u and R00u be the corresponding triangles in Tu, with vertices a0u; b0u; c0u and a00u; b00u; c00u.Observe that the vertices of a triangle of Tu may have only one of these six type com-binations: III, IIS, ICC, ISC, ISS. The gluing process identi�es only C{C or S{S vertexpairs; so R0u and R00u must have the same type.Note that all triangle types include at least one I vertex, and that no I vertices getidenti�ed in the gluing step. It follows that the triangles already had at least one I vertexin common in Tu; and, therefore, they belonged to the same tile.Now, the type of the two triangles cannot be III, otherwise they would not have becometwins. The type cannot be ISS, since two triangles of that type never have an I vertex incommon. And triangles of type ICC do not arise when k � 2.So, the only possible types are IIS and ISC. In the ISC case, R0u and R00u must share theI vertex from the structure of the tiles, it is obvious that the C vertex must be shared, too.In the IIS case, they must have two I vertices shared. In either case, pairs of triangles withthe required pattern of shared vertices occur only in corner cells.To conclude the proof, observe that in both cases the unshared vertices are of type S.Since tile sides are glued in pairs, the only way two S vertices can get identi�ed is when thecontaining sides get glued together. We conclude that the cell is a critical one.QED.



Visualization of cellular complexes 11Theorem 2 If k � 3, the edges of Tu that become twins in Tg are precisely the S{I edgesof critical cells.Proof: Clearly, all those edges will become twins in Tg. We need to show that they are theonly ones to become so.Let e0g and e00g be distinct twin edges of Tg, with endpoints ag and bg; and let e0u and e00ube the correspondinng edges of Tu, with endpoints a0u; b0u and a00u; b00u, respectively.Since gluing identi�es only S{S or C{C pairs, corresponding endpoints must be of thesame type. If k � 2, the possible type combinations for an edge of Tu are SS, SC, SI, IC, orII. The combination II can be excluded, otherwise the two edges would not have becometwins. The combinations SS or SC can be excluded, too; such edges lie on the tile boundary,and the identi�cation of two S vertices implies the identi�cation of all edges and verticesalong the corresponding tile sides|which would contradict the assmption e0g 6= e00g.Therefore, each of the edges e0u and e00u must have one I endpoint, which is shared; andone S or C endpoint, which is not shared. If k � 3, the only pairs of edges that satisfy theserequirements lie in a corner cell; and, in that case, the unshared endpoints must be of typeS. Since S vertices get identi�ed only when the corresponding sides get glued together, weconclude that the cell must be a critical one.QED.2.7 The cleanup procedureThanks to theorems 1 and 2, the cleanup procedure is quite simple (provided k � 3).Whenever we glue together two adjacent sides of the same tile, we need only remove thefour triangles in the corresponding critical cell, together with six of its eight edges; and thenidentify the two remaining edges, as shown in �gure 5(d).Since a tile has only four sides, it contains at most two critical cells, at opposite cornersof the tile. If k � 3, the critical cells are pairwise disjoint, not only in Tu but also in Tg.Therefore, the critical cells can be excised from Tg independently from each other, in anyorder|even as the tiles are being glued.Moreover, the cleanup procedure does not cause any additional vertices to be identi�ed,and therefore it cannot itself create new twin edges or twin triangles.Finally, if k � 3, at least two edges of Tu along each tile diagonal will survive the cleanupprocedure. Thanks to this property, no edge of the original complex will be completelyobliterated by the cleanup.3 The energy functionSince each tile is modeled by a set of at triangles, the shape of the triangulated mesh iscompletely determined by the coordinates of its vertices VT = fv1; : : vng. Assuming a �xednumbering of the vertices, we de�ne a con�guration of the mesh as an n-tuple x1; x2; : : :xnof points in R3. An energy function, which measures some kind of \badness" or \ugliness"of the surface, is therefore a function from (R3)n to R. We have thus reduced the problemto that of �nding the minimum of this function.



Visualization of cellular complexes 12There are may ways in which a solution may be \ugly" or confusing, and a good energyfunction must be sensitive to all of them. Therefore, it is natural to consider energy formulasthat combine several simpler functions, each designed to penalize a particular defect. Inall our experiments, we always used some linear combination E = Pi wiEi of the basicenergy functions described below, with non-negative weights wi chosen separately for eachexperiment.3.1 Basic energy functionsLet VC, EC, DC, and FC denote the vertices, primal edges, dual edges, and faces of acomplex C. Let also ~EC and ~DC denote the set of all directed edges (every edge taken inits two directions), respectively primal and dual. The basic energy formulas that we haveused in our tests were:� the bending energy Eb = qjFT j Xe2ET le�2ewhere le is the length of edge e, and �e is the external dihedral angle at that edge.Minimizing Eb tends to atten out the surface, and distribute its curvature evenlyamong all edges.� the excentricity energy Ex = jVT j Xv2VT jv � bvj2where bv is the barycenter of all neighbors of vertex v. Minimizing Ex also tends toatten out the surface, and equalize the edge lengths.� the repulsion energy Er = 1jFT j2 Xr;s2FTr 6=s 1jcr � csj2 + �2r + �2swhere cr; cs are the centroids of triangles r and s, and �r; �s are their average radii.(This energy can be understood as the eletrostatic potential of a set of fuzzy electriccharges, located at the triangle centroids). Minimizing Er tends to spread out thetriangles in space, thus avoiding self-intersections and fold-overs.� and the patch area energy Ea = Xe2~EC[ ~DC �AeA0 + A0Ae � 2�where Ae is the area of the quarter-tile associated with the directed edge e of theoriginal complex, and A0 = �=jECj is its \ideal" area. Minimizing Ea tends to keepthe total surface area close to 4�, and equalize the tile areas, so that the edges of theoriginal complex are spread out uniformly over the surface.



Visualization of cellular complexes 13Note that none of these terms can be used by itself, since each attains its minimum onlyat degenerate con�gurations. For instance, the repulsion energy Er is minimized when thesurface spreads out to in�nity; whereas the bending energy Eb is minimum when the surfacehas contracted to a point. However, the asymptotic behavior of the two formulas is suchthat any nontrivial convex combination of them will attain its minimum at con�gurationsof bounded and nonzero radius.The purpose of the scaling factors in the formulas above, such as pjFT j in the formulaof Eb, is to make the formulas largely insensitive to the number of triangles in the mesh.This property allows us to use the same weights for optimizing meshes of di�erent resolu-tion (di�erent values of k). In particular, this property would allow us to use multiscaletechniques|computing the energy minimum for a coarse mesh, and using the result as thestarting point for optimizing a �ner mesh.3.2 Bad energy functionsWe tried and discarded several other energy formulas, such as� and the vertex spread energy Ev = jVT j�1 Xv2VT jvj2� the edge stretch energy Ee = Xe2ET( lel0 + l0le � 2)� the triangle area energy Et = Xs2FT(AsA0 + A0As � 2)where le is the length of edge e, As is the area of triangle s, l0 = 2�=pjET j is the \fair"edge length, and A0 = 4�=jFT j is the \fair" area of each triangle.Minimizing Ev tends to pull all vertices towards the origin, and therefore this energyterm could be used to counteract the inationary tendencies of Er. However, this samee�ect also tends to crumple long complexes like that of �gure 2 into compact knots.The problem with Ee and Et is that they are more sensitive to the shape and size of thetriangles of T than to the shape of the surface and of the elements of C. As a result, eachtile tends to assume the shape of a at square, and the surface tends to exhibit extraneousbumps and ridges at the joints between tiles.3.3 Selecting the weightsHow do we choose the weights wi of the various energy terms? This is still a major openquestion, for which we have no answer better than trial-and-error. At best, we can ourintuitive understanding of the energy functions to guess the direction in which to changethe weights so as to e�ect a given change in the surface. (See section 6.)It would be trivial to implement a GUI-based tool that allowed direct adjustment ofthe weights by the user, with visual feedback. At present, our optimization algorithm isstill too slow for this sort of interactive use: it would take tens of minutes to (re)compute



Visualization of cellular complexes 14the optimum con�guration after a small change in the weights. However, considering thatstill know very little about the \shape" of the energy functions, and have little expertise innumerical optimization, it is likely that the computation time can be reduced by by severalorders of magnitude.A more speculative solution is to let the computer learn the weights from examples, asEades and Mendon�ca [10] did for the plane graph drawing problem. The idea is to givethe computer a collection of \good" realizations of cellular complexes|generated, say, byad-hoc programs or manual editing with solid modeling tools| and let the computer �ndthe combination of weights that comes closest to reproducing those shapes.3.4 Critical weights: Er � EbTo illustrate the kind of issues that a�ect weight selection, consider the following simpli�edsituation. The triangular mesh is a single tile of order k = 3, all of whose vertices but oneare �xed at their \natural" positions in a square, as shown in �gure 7. Only the centervertex is free to move, and only in the direction perpendicular to the square.
hFigure 7: A testbed for energy weights.Figure 8(a,b) shows qualitative graphs of the repulsion energy Er and bending energy Ebof this con�guration, as a function of the height h of the variable vertex above the square.

Er

h(a) Eb

h(b)Figure 8: Graphs of (a) Er and (b) Eb for �gure 7.The important details are that Er has a quadratic maximum at h = 0, and then attensout as h goes to in�nity; whereas Eb has a quadratic minimum at h = 0, and growsasymptotically like O(jhj).



Visualization of cellular complexes 15Now consider the graph of the mixed energy E = �Er + (1 � �) + Eb. If � is smallenough so that @2E=@h2 > 0, the graph of E against h looks pretty much like that of Eb,with a single minimum at h = 0. However, if � is large enough to make @2E=@h2 < 0, thegraph will have a maximum at h = 0, and two symmetric minima at �nite and non-zerovalues of h. See �gure 9(a).
h

 E

small alpha

large alpha(a) (b)Figure 9: (a) Graph of E = �Er + (1� �)Eb for the mesh of �gure 7.(b) The \pineapple" e�ect.In the more realistic case of a closed triangular mesh whose vertices are all free to move,an excess of Er over Eb may result in minimal con�gurations with a \pineapple" texture,in which the the vertices lie alternately above and below a smoother \mean" surface. See�gure 9(b), for example, where the energy function was E = 9Er + 0:02Eb+ 5Ev + 9Ev.4 OptimizationHaving constructed the triangular mesh, and chosen an energy function, we are faced withproblem of �nding the con�guration of minimum energy.Recall that a complex with m edges results in a mesh with about 4mk2 triangles. Recallalso that k must be at least 3 to ensure that the original edges survive the removal of twintriangles. It follows that even small complexes lead to meshes with hundreds of vertices,and thus to energy functions with hundreds of variables. Moreover, the functions are highlynon-linear and convoluted, with many local minima.Obviously there is little hope of �nding the global minimum of such a function. Even�nding a local minimum is a non-trivial task. Fortunately, a true minimum is not neces-sary for visualization purpopses; all we need is a con�guration whose enery is low enough.Moreover, since the program cannot tell when the energy is \low enough", in practice we�x a computation budget and use the best con�guration we can �nd within that limit.



Visualization of cellular complexes 164.1 General optimization methodsTo solve this problem, we have tried various general purpose numerical optimization tech-niques, especially:� Kirkpatrick's simulated annealing [22, 29];� Nelder and Mead's downhill simplex method [29, p.289];� Powell and Brent's principal directions method [29, p.298];� the naive single coordinate optimization, with periodic diagonal steps [29, p.294];� a gradient descent method with adaptive stepsize.Our tests showed that the e�ectiveness of these methods generally increases from top tobottom. It is a unfortunate that we also implemented the methods roughly in that order;so that the one we found most e�ective|gradient descent|is also the one we have lessexperience with.The tests were performed on various triangulated meshes, with up to a few hundredvertices. The initial guess for the optimization was either a random con�guration|whereeach vertex was chosen independently and uniformly in the unit cube|or a reasonablysmooth con�guration obtained by the heuristic methods described in the next section. Thee�ectiveness of an algorithm was judged from its energy evolution curve: the energy of theminimum con�guration found, as a function of total CPU time. The ranking of the methodswas generally the same on all tests, and consistent over time.Simulated annealing was so slow that we gave up on it after a few tests. The Nadler-Mead and Brent-Powell algorithms were faster, but still not fast enough to be usable:even after several hours of CPU time, the best con�gurations found were still far fromsmooth. Moreover, those two methods require 
(n2) storage for a function of n variables,and therefore are limited to complexes with a few tens of edges.The naive minimization method consists of optimizing one variable at a time (using, forinstance, Brent's univariate minimization algorithm [29, p.283]), while all other variablesare held �xed. This process is applied to each coordinate in turn, in cyclic fashion. Theminimum con�guration thus evolves by a sequence of steps parallel to the coordinate axes.A simple but very e�ective improvement is to take a \diagonal" step every n+1 such \axial"steps, along the line connecting the outcomes of the �rst and the last of these steps.We implemented this naive method only for the sake of comparison, since textbooksgenerally claim it is slower than Brent-Powell. To our surprise, it turned out to be muchfaster. The main reason, which was obvious on hindsight, is that our energy functions are thesum of many terms, each depending on a few vertices only. When varying one coordinate ata time, we could save time by recomputing only the terms that depended on that coordinate.Thus, while the naive algorithm performed somewhat more energy evaluations than Powell'smethod, each evaluation was faster by one or two orders of magnitude.The general gradient descent method keeps improving the best con�guration p foundso far along the path de�ned by the di�erential equation dp=dt = �rE(p). We avoided



Visualization of cellular complexes 17this method for a long time, since we wrongly assumed that computing the gradient of ourenergy functions (hundreds of partial derivatives of a formula with hundreds of operations)would be too di�cult and expensive.Only much later did we realize that, since our functions are sums of simple terms, thegradient too has the same structure, and thus is relatively easy to compute. Indeed, as Baurand Strassen [4] have proved, systematic use of the chain derivation rule reduces the costof computing the gradient of any algebraic or transcendental formula to a small constanttimes the cost of computing the energy itself.We eventually implemented this method too, using a simple adaptive Euler integratorto follow the steepest descent path. This turned out to be the most e�ective of all generalmethods, producing fairly smooth surfaces from scratch in tens of minutes instead of tensof hours. Still, we believe there is much room for improvement, for instance in the step-size adjustment logic. In particular, there are several gradient-based algorithms that aretheoretically better than gradient-descent, such as Fletcher-Reeves and Polak-Ribi�ere [29,p.301], which we haven't had the time to try.4.2 Heuristic methodsThe general-purpose methods above can be applied to a large class of functions, and inprinciple will converge to a true local optimum if allowed to run for a su�ciently long time.However, exactness is relevant only towards the end of the optimization. When startingfrom a random con�guration, the �rst task of any optimization algorithm is to untanglethe surface and smooth out its largest wrinkles, which are bad under any reasonable energyfunction. This initial stage can be carried out by an ad hoc (heuristic) method that doesnot depend on the particular energy function being minimized.We have successfully used two such methods, the smoothing heuristic and the spreadingheuristic. Both are local operations that are applied to each vertex v in turn, cyclically, upto a prescribed number of passes.The smoothing heuristic adjusts the position of vertex v, keeping all other vertices �xed,so as to approximately minimize the bending energy of the edges in the star of v (thoseedges which are incident to v, or connect two neighbors of v). To simplify the computations,the new position of v is restricted to the straight line a+ t~n, where a is the barycenter of theneighbors of v, ~n is the normal to the surface at v (also computed from those neighbors),and t is a free parameter.The spreading heuristic keeps the vertex v �xed, but rotates its neighbors u1; : : uk aroundthe axis a + t~n so as to better equalize the angles uivui+1, when projected on a planeperpendicular to ~n.Applying one pass of either heuristic to all vertices has the e�ect of distributing thecorresponding \stress" (exterior dihedral angles and projected edge angles) more uniformlythroughout the whole mesh, and allowing neighboring defects of opposite direction to canceleach other out.In our experience, these heuristics work very well, at least for triangular meshes with afew hundred vertices. Usually, the surfaces obtained after 20-50 passes were already smoothenough for topology visualization purposes.



Visualization of cellular complexes 18However, the smoothing action of these heuristics is a di�usion-like process, in the sensethat the rate at wich stress \ows" over the surface decreases as its distribution becomesmore uniform. As in any di�usion process, the number of passes needed to achieve a givenlevel of surface smoothness should scale as the square of the graph-theoretic diameter ofthe triangulation.Therefore, after a hundred or so passes, the heuristics generally become ine�ective, eventhough the con�guration may still be visibly non-optimal. To advance beyond this point, wemust switch to more intelligent methods, such as gradient descent. Moreover, the heuristicsare not sensitive to certain defects, such as self-intersections or unequal tile areas; and,obviously, they pay no attention to the weights wi. To take these factors into account, wemust apply an \exact" method, using the heuristically smoothed con�guration merely as agood starting point.4.3 Local minima and global minimaGenerally speaking, the methods above will only �nd a localminimum of the energy function,near the starting con�guration. Of course, what we would like to get is the global minimum.Unfortunately our energy functions are full of local minima, separated by high en-ergy barriers. Typically, these local minima correspond to con�gurations with unnecessaryself-intersections. As a rule, removing such self-intersections would require going throughcon�gurations of high curvature, and therefore high energy.It should be possible to use combinatorial heuristics, such as simulated annealing, toextend the search beyond the nearest local minimum; but we haven't been able to get itto work fast enough. At present, our best strategy is simply to repeat the search severaltimes, starting from di�erent random con�gurations, and select the best result by visualinspection.This simple strategy may seem hopeless, considering the large number of \bad" localminima that we expect our functions to have. However, in our tests is has worked suprisinglywell; �ve to ten trials were enough to �nd the global optimum, even for meshes with hundredsof vertices (see section 5). A possible explanation, which seems geometrically plausible, isthat the \attraction basin" of the global optimum|the set of starting points from whichthe optimizer coverges to that con�guration{is likely to be much wider than the basins ofother local minima.5 ResultsIn this section we show some geometric realizations of topological complexes that we pro-duced with our tools. The output of our tool is a text �le that describes a computer graphicsmodel of the �nal con�guration: a set of translucent triangles in R3, plus some thin cylin-ders and small spheres, painted black, that trace out the edges and vertices of the originalcomplex. These �les were then rendered with POVRAY, a public domain ray tracer [32]. Mostof these images were rendered with Gouraud shading [14] to smooth out the edges of thetriangulation.



Visualization of cellular complexes 195.1 TorusFigure 10 shows several stages in the optimization of the simplest complex with toroidaltopology, illustrated in �gure 1(a). The original complex has one vertex, one square face,and two edges; when modeled with tiles of order k = 5, it becomes a triangular mesh with200 triangles, 300 edges, and 100 vertices.
(a) (b) (c)
(d) (e) (f)Figure 10: Heuristic smoothing (b{d) and energy optimization (e{f) of asimple torus complex.Figure 10(a) shows the initial random con�guration. Figures 10(b{d) show the results of5, 30, and 100 passes of the smoothing heuristic, interleaved with that many passes ofthe spreading heuristic, applied to con�guration (a). Figures 10(e,f) show the results ofoptimizing con�guration (d) with the Grad method, respectively after 100 and 1000 energyevaluations. The energy function used was Eb +Ea +Ex + 5Er.We performed this test �ve times, starting from di�erent random con�gurations. Of the�ve �nal con�gurations, two had the \correct" shape, like te one shown above; the otherthree were still self-intersecting in various ways.



Visualization of cellular complexes 205.2 SausageThe next example is based on a \sausage" complex similar to that of �gure 2(a), withonly two \stages" instead of four. The triangulated model had 360 faces, 540 edges, and182 vertices. Figure 11 shows the state after 0, 15, and 100 passes of the smoothing andspreading heuristics (a{c); and then after 2000 steps of the Grad method (d), with energyfunction Eb +Ea +Ex.
(a) (b) (c)

(d) (e) (f)Figure 11: Visualization of a sausage-like complex.Apparently, the heuristics and the energy optimization were both terminated before theyhad time to converge to their respective optima (which, almost certainly, should be \straight"sausages). Even so, it is already evident that the optimum shapes for the two methods arequite di�erent.5.3 Klein bottleFigure 12 refer to the \Klein bottle" complex of �gure 1(c). Modeling this complex with5� 5 tiles resulted in a triangulation with 200 triangles, 300 edges, and 100 vertices.The resulting shapes are shown in �gure 12. To each of 10 independent random con-�gurations, we applied 100 passes of each heuristic (a,c), followed 1000 steps of the Grad



Visualization of cellular complexes 21optimizer (b,d), with energy Eb+Ea+Ex+5Er. Seven of these trials yielded the \crossed-tube" solution (a,b); the other three yielded the \crossed hole" solution (c,d).
(a) (b)
(c) (d)Figure 12: Klein bottle representations: \crossed tube" (a,b) and\crossed hole" (c,d).Figure 12(b) can be understood as a torus that has been cut open and then reglued ina \crossed" fashion, as shown in �gure 13(a). Note that the resulting surface is self-interesecting and has two \pinch points" (A = A0 and B = B0) where the curvature isin�nite. Figure 12(d) is similar, except that the cut goes around the hole of the torus,rather than through it.
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B’BFigure 13: Understanding the \crossed-tube" solution.Of course, since the Klein surface is non-orientable, it is not possible to realize it in R3without self-intersections. Still, we could hope to obtain at least a \smooth" surface, whosecurvature is �nite everywhere|as in the \classical" Klein bottle, shown in �gure 1(d).Unfortunately, our tools are still not smart enough to do that. . The energy optimizationphase is generally incapable of transforming a con�guration with pinch points (such as�gures 12(b,d)) into one without them (such as �gure 1)(d). Even if the pinch-free solutionhas lower energy (which may not be true, depending on the energy function), the twosolutions are probably separated by higher-energy barriers.5.4 Orange and tritorusFigure 14 shows two additional realizations produced by our tool.
(a) (b)Figure 14: Two additional examples: orange and tritorus.



Visualization of cellular complexes 23The \orange-like" complex on the left is a sphere sliced into seven sectors (wedges) by sevenmeridians. Its modeling with 3� 3 tiles resulted in 252 triangles, 378 edges, e 128 vertices.The con�guration shown was obtained from a random one after 100 passes of the smoothingand spreading heuristics, without energy optimization.The complex on the right has 12 square faces, 24 edges, and 8 vertices, glued so as tomake a tritorus (a sphere with three handles). More precisely, the faces are glued in pairs toform six open-ended cylinders, and these are glued toghether so that their axes are the edgesof a tetrahedron. Its model with 3� 3 tiles had 864 triangles, 1296 edges, and 428 vertices.We generated 10 random con�gurations of this model, and we subjected each of them to 100passes of the smoothing and spreading heuristics. The resulting shapes were all reasonablysmooth, but only one of them was free from self-intersections. We manually selected thatcon�guration and subjected it to a couple thousand steps of the Grad optimizer, with theresult shown above.5.4.1 Stars...?The examples that follow record an unplanned test of our motivating hypothesis, namelythat an automatic topology visualizer can be a valuable tool for debugging solid modelingalgorithms.One of our test cases was the complex with 15 faces, 25 edges, and 12 vertices shown in�gure 15. Informally, this complex can be described as �ve \half-sausages" (see section 5.2)joined so as to make a �ve-pointed star.
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a e i m qb f j n rFigure 15: A star-like complex.Modeling this complex with 3 � 3 tiles produced a triangulation with 900 triangles, 1350edges, and 452 vertices. Starting from a random con�guration, after 100 passes of thespreading heuristic and 300 passes of the smoothing heuristic we got the con�gurationshown in �gure 16:
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Figure 16: The star complex, �rst try...Looking at this image, we immediately noticed that the complex had the wrong topology.(Note, for example, the vertices of degree 2 near the center.)Eventually we found a mistake in the program that created the input complex. We �xedthis mistake and repeated the test, with the result shown in �gure 17.

Figure 17: The star complex, second try....From this image we could see that the complex still had the wrong topology. Indeed, wesoon found a second mistake in our code.



Visualization of cellular complexes 25Having �xed this second mistake, we got the picture shown in �gure 18 (after 100spreading passes and 900 smoothing passes):

Figure 18: The star complex|at last: : :This con�guration is still not energy-optimal: the �ve rays of the star have unequal sizes,and two of them (the \arms") are turned inside-out with respect to the other three. Evenso, it already allows us to visually check that all but a few of the incidences of the inputcomplex are correct.For the record, here is the Modula-3 code that we used to build this complex. Themain procedure is MakeStar, which builds a star with n arms, each having s bands; thusthe complex of �gure 15 would be the result of MakeStar(5; 1). The auxiliary procedureMakeOrange builds a complex like that of �gure 14, left, with n slices. The procedureBuildTower is then called repeatedly, in order to erect on each face of this \orange" a towerof h storeys, with 2 quadrilaterals each, capped by a 2-sided face. An Arc is a directed andoriented edge. The procedures Onext, Oprev, Lnext, Sym, Rot, Tor ( = Rot�1), Splice,and MakeEdge are standard quad-edge operators; see the Guibas and Stol� paper [15] fortheir de�nition.



Visualization of cellular complexes 26PROCEDURE MakeStar (n, h: CARDINAL): Arc =VAR o: Arc;BEGINo := MakeOrange(n);FOR k := 1 TO n DOo := Onext(o);BuildTower(2, h, o);END;RETURN oEND MakeStar;PROCEDURE MakeOrange(n: CARDINAL): Arc =VAR fst, a, b: Arc;BEGINa := Rot(MakeEdge());Splice(a, Sym(a));fst := a;FOR i := 2 TO n DOb := Rot(MakeEdge());Splice(b, Sym(b)); Splice(b, Sym(a));a := b;END;Splice(fst, Sym(a));RETURN Tor(fst)END MakeOrange;PROCEDURE BuildTower(h: CARDINAL; a: Arc) =VAR s, e, t: Arc;BEGINt := a;FOR i := 1 TO h DOt := Oprev(t);s := Rot(MakeOrange(2)); (* A ring of 2 edges *)FOR j := 1 TO 2 DOe := MakeEdge();Splice(t, e); Splice(Sym(e), Oprev(s));t := Lnext(t);s := Lnext(s) (* was "s := Rnext(s)" (error 1) *)END;t := Onext(s); (* was "t := s" (error 2) *)END;END BuildTower;Figure 19: The star-building code.



Visualization of cellular complexes 276 Varying the weightsThe images in this section illustrate the variety of e�ects that can be achieved merelyby adjusting the weights in a mixed energy formula. In all these examples, we used thetorus complex of section 5.1, modeled with 3� 3 tiles. An initial random con�guration wassubjected to 50 passes of the smoothing heuristic interleaved with 20 passes of the spreadingheuristic, and then optimized with 5000 steps of the Grad method. The energy combinationused is listed under each image.
0:33Eb + 0:33Ex + 0:33Er 0:83Eb + 0:08Ex + 0:08Er
0:08Eb + 0:08Ex + 0:83Er 0:08Eb + 0:83Ex + 0:08ErFigure 20: Combinations of Eb, Ex, and ErNotice how increasing the weight of Ex causes the surface to shrink, while increasing Ercauses it to expand.Notice also how the hole of the \donut" tends to collapse when the weight of Eb isincreased at the expense of Er. Recall that Eb is the sum of the exterior dihedral angles,squared, weighted by the respective edge lengths. One way to reduce Eb is to compress thehole to a narrow cylinder, as shown in the top right image. That way, a good portion thesurface's curvature gets con�ned to the edges around the hole's rim, which are very short.
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0:33Eb + 0:33Ea+ 0:33Er 0:83Eb + 0:08Ea + 0:08Er
0:08Eb + 0:08Ea+ 0:83Er 0:08Eb + 0:83Ea + 0:08ErFigure 21: Combinations of Eb, Ea, and Er.In �gure 21, Ex has been replaced by Ea, which is sensitive to the area of the surface butnot to its shape. The hole-shrinking tendency of Eb is stronger than before, and we mustuse a lot of Er just to keep the hole open.
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0:33Eb + 0:33Ea + 0:33Ex 0:83Eb + 0:08Ea + 0:08Ex
0:08Eb + 0:08Ea + 0:83Ex 0:08Eb + 0:83Ea + 0:08ExFigure 22: Combinations of Eb, Ea, and Ex.In �gure 22, where Er has been omitted, it is the joint action of Ea and Ex that keeps thehole from collapsing under the inuence of Eb.
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0:33Ea+ 0:33Ex + 0:33Er 0:83Ea + 0:08Ex + 0:08Er
0:08Ea+ 0:08Ex + 0:83Er 0:08Ea + 0:83Ex + 0:08ErFigure 23: Combinations of Ea, Ex, and Er.In all four combinations of Ea, Ex, and Er that we tried (�gure 23), the �nal surface hadtwo self-intersections (and four pinch points), so that one half of the torus was inside-out.



Visualization of cellular complexes 317 Conclusions and future workOur experiments to date are encouraging, but there is still a lot of work to be done here.To begin with, we need to work more on the energy minimization code; speedups by sev-eral orders of magnitude seem possible, just by using better optimization algorithms. Weneed methods that can overcome the barriers between local minima; either combinatorialoptimization tools, such as simulated annealing and genetic algorithms, or (more likely)multiscale techniques.We still undertand very little about the e�ects of the various energy functions, and theproper weights to use. Both experiment and intuition suggest that we rede�ne our energyfunctions to penalize extreme cases more strongly. For example, the bending energy Ebshould probably be modi�ed go to in�nity when the dihedral angle �e tends to 180�.We also need to develop energy functions that penalize self-intersections more stronglythan the functions we have got. One possibility is to use the total length of the self-intersection curves, perhaps weighted by some function of the dihedral angle. On thesame line, we need to improve the heuristic methods so that they are more e�ective at\uncrossing" and untangling the triangulation. Presently, both heuristics visit the verticesof the mesh in random order; perhaps they would be more e�ective if applied in someneighbor-to-neighbor order (breadth-�rst or depth-�rst).References[1] A. V. Arkhangel'ski�i and L. S. Pontryagin. General Topology I, volume 17 of Ency-clopaedia of Mathematical Sciences. Springer-Verlag, 1990.[2] Chandrajit L. Bajaj. Smoothing polyhedra using implicit algebraic splines. In SIG-GRAPH'92 Conference Proceedings, volume 26, pages 79{88, 1992. In ComputerGraphics 26 (2).[3] Bruce G. Baumgart. A polyhedron representation for computer vision. In Proceedingsof 1975 AFIPS National Computer Conference, volume 44, pages 589{596, 1975.[4] Walter Baur and Volker Strassen. The complexity of partial derivatives. TheoreticalComputer Science, 22:317{330, 1983.[5] Kenneth A. Brakke. The Surface Evolver. Experimental Mathematics, 1(2):141{165,1992.[6] Kenneth A. Brakke. Surface Evolver Manual. The Geometry Center, The GeometryCenter, Minneapolis, MN, December 1993.[7] Erik Brisson. Representing geometric structures in d dimensions: Topology and order.Discrete Comput. Geom., 9:387{426, 1993.
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