O conteúdo do presente relatório é de única responsabilidade do(s) autore(s). (The contents of this report are the sole responsibility of the author(s).)

On Clique-Complete Graphs

Cláudio Leonardo Lucchesi Célia Picinin de Mello Jayme Luiz Szwarcfiter

Relatório Técnico DCC-09/92

On Clique-Complete Graphs

Cláudio Leonardo Lucchesi* Célia Picinin de Mello[†] Jayme Luiz Szwarcfiter[‡]

November 18, 1992

Abstract

A graph is clique-complete if no two of its maximal cliques are disjoint. A vertex is universal if it is adjacent to all other vertices in the graph. We prove that every clique-complete graph either contains a universal vertex or an induced subgraph in an indexed family $\mathcal{Q} := \{Q_{2n+1} : n \geq 1\}$, defined in the text. We show that this is precisely the family of minimal graphs which are clique-complete but have no universal vertices. The minimality used here refers to induced subgraphs.

For $n \geq 2$, we show that Q_{2n+1} is neither perfect nor planar. It follows that every planar clique-complete graph without a universal vertex contains an induced subgraph isomorphic to Q_3 . A similar result holds for perfect clique-complete graphs without universal vertices. We also specialize the latter result for certain classes of perfect graphs.

^{*}DCC-IMECC-UNICAMP - Supported in part by CNPq - 500588/91.

[†]DCC-IMECC-UNICAMP - Supported in part by CAPES - 2565/91 and CNPq - 142810/92.

[‡]NCE/UFRJ.

1 Clique-complete Graphs

We present in this paper a proof of a revised version of a conjecture due to the second-named author, first presented in her Ph. D. thesis [1], written under the supervision of the third-named author.

Theorem 1 A clique-complete graph free of universal vertices contains an induced subgraph isomorphic to Q_{2n+1} , for some positive integer n.

A graph G here is a simple graph, that is, a graph without loops and multiple edges. We denote by VG the vertex set of G. A clique K in a graph G is a set of vertices pairwise adjacent in G; clique K is maximal if no proper superset of K is a clique, and maximum if no larger set of vertices is a clique.

For each vertex v of graph G, we denote by N(v) the neighborhood of v, that is, the set consisting of v plus each vertex to which v is adjacent. Vertex v is universal in G if it is adjacent to each vertex of VG - v, that is, if N(v) = VG. We extend the domain of N to subsets X of VG by making $N(X) := \bigcup_{v \in X} N(v)$.

Graph G is clique-complete if every two of its maximal cliques have nonnull intersection. Every nonnull complete graph is clique-complete. In fact, every graph containing a universal vertex is clique-complete. A more interesting example is shown in Figure 1.

For X a set of vertices of G, we denote by G[X] the subgraph of G induced by X, that is, the vertex set of G[X] is X and the edge set of G[X] consists of those edges of G having both ends in X.

We now define graph Q_n , for each integer $n \geq 3$. A *circuit* C_n is a connected graph with $n \geq 3$ vertices, each of which has degree 2:

- $VQ_n := \{u_1, u_2, \cdots, u_n\} \cup \{v_1, v_2, \cdots, v_n\}$ is a set of 2n vertices.
- $Q_n[\{v_1, \dots, v_n\}] \simeq \overline{C_n}$.
- For each i, $(1 \le i \le n)$, $N(u_i) = VQ_n v_i$.

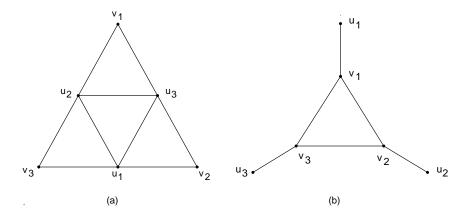


Figure 1: (a) Graph Q_3 , the smallest clique-complete graph free of universal vertices. (b) The complement of Q_3 .

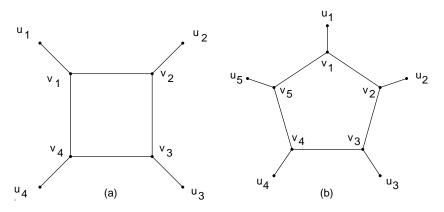


Figure 2: (a) Graph $\overline{Q_4}$. (b) Graph $\overline{Q_5}$.

Figure 2 shows graphs $\overline{Q_4}$ and $\overline{Q_5}$.

Proposition 2 For each odd integer n, $(n \geq 3)$, graph Q_n is clique-complete.

Proof. Let A be any maximal clique of Q_n . Since $Q_n[\{v_1, \dots, v_n\}] = \overline{C_n}$, we have

$$|A \cap \{v_1, \dots, v_n\}| \le (n-1)/2.$$

On the other hand, for each i $(1 \le i \le n)$, precisely one of u_i and v_i lies in A, since u_i is universal in $G - v_i$. Consequently, |A| = n, whence

$$|A \cap \{u_1, \dots, u_n\}| \ge (n+1)/2.$$

Since this inequality holds for every maximal clique A of Q_n , this graph is clique-complete.

Proposition 3 Graph Q_n is free of universal vertices and also free of induced subgraphs isomorphic to Q_p , for every integer p such that $3 \le p \ne n$.

Proof. Graph $\overline{Q_n}$ is free of isolated vertices, whence Q_n is free of universal vertices. For each integer $k \geq 3$, $\overline{Q_k}$ contains precisely one circuit, which consists of k vertices. We conclude that if $3 \leq p \neq n$ then no subgraph of Q_n is isomorphic to Q_p .

2 Proof of Theorem 1

Graph G is critical if for each induced proper subgraph H of G, either H contains a universal vertex or H is not clique-complete.

Proof of Theorem 1. Let G be a clique-complete graph free of universal vertices. We show, by induction on |VG|, that G contains an induced subgraph isomorphic to Q_{2n+1} , for some positive integer n.

If G is not critical, then it contains an induced proper subgraph, H, that is clique-complete and free of universal vertices. By induction

hypothesis, H contains an induced subgraph isomorphic to Q_{2n+1} . If G is critical, then, by Theorem 4, asserted below, $G \simeq Q_{2n+1}$. In both cases the assertion holds.

Theorem 4 Every graph G free of universal vertices, clique-complete and critical, is isomorphic to Q_{2n+1} , for some positive integer n.

Proof. We derive first some properties of G.

Proposition 5 The complement \overline{G} of G is connected.

Proof. Assume the contrary. Let X be the vertex set of a connected component of \overline{G} . Thus, in G,

$$VG \setminus X \subseteq N(v) (\forall v \in X).$$

Let H := G[X], $K := G[VG \setminus X]$. Since G is free of universal vertices, so too are H and K. Since G is critical, neither H nor K are clique-complete. Let A_H and B_H be disjoint maximal cliques of H; likewise, denote by A_K and B_K disjoint maximal cliques of K.

Sets $A_H \cup A_K$ and $B_H \cup B_K$ are disjoint maximal cliques of G, a contradiction.

Proposition 6 The complement \overline{G} of G is not bipartite.

Proof. Assume the contrary, let $\{A, B\}$ be a bipartition of \overline{G} .

Consider first the case in which A and B are both nonnull. By Proposition 5, \overline{G} is connected, thus each vertex of A (respectively, B), is adjacent in \overline{G} to at least one vertex of B (respectively, A). We conclude in this case that A and B are (disjoint) maximal cliques of G, a contradiction.

We may thus assume that at least one of A and B, say, A, is null. By Proposition 5, \overline{G} is connected. It follows that G consists of at most one vertex. Since G is clique-complete, it consists of precisely one vertex, a universal vertex.

In both cases, a contradiction is obtained, which proves that \overline{G} is not bipartite. \Box

Vertex v of G is quasi-universal if it is adjacent to all but one vertex of VG - v; that is, $VG \setminus N(v)$ is a singleton. The unique element of $VG \setminus N(v)$ is antipodal to v. It should be noticed that each vertex u_i of Q_n is quasi-universal, v_i its antipodal.

Proposition 7 Graph G contains a quasi-universal vertex.

Proof. Let u be a vertex of maximum degree in G. Since G is free of universal vertices, $VG \setminus N(u)$ is nonnull, let v be one of its vertices, let H := G[N(u) + v]. Since u has maximum degree in G, H is free of universal vertices. Since G is critical, either H = G or H is not clique-complete.

It thus suffices to show that H is clique-complete. For this, assume that there exist in H two disjoint maximal cliques, A and B. By definition of H, vertex u is quasi-universal in H, v its antipodal vertex. It follows that one of A and B contains u, the other contains v. Say, $u \in A, v \in B$.

Clique A is maximal in G, for A is maximal in H, u lies in A and no vertex of $VG \setminus VH$ is adjacent to u, by definition of H.

Set $B \cup (VG \setminus VH)$ includes some maximal clique C of G, for B is maximal in H. Thus A and C are disjoint maximal cliques in G, a contradiction.

Indeed, H is clique-complete and free of universal vertices. By the criticality of G, G = H, whence u is quasi-universal in G.

Let $RG := \{v \in VG : G - v \text{ is clique-complete}\}$. Clearly, the antipodal of every quasi-universal vertex of G lies in RG. The following assertion establishes the converse.

Proposition 8 Each vertex v of RG is the antipodal of some quasi-universal vertex, denoted u(v), in G.

Proof. By hypothesis, G - v is clique-complete and G is critical. Thus, G - v contains a universal vertex, u(v). But G is free of universal vertices, whence u(v) is quasi-universal in G, v its antipodal vertex.

Proposition 9 For each vertex v of RG, $u(v) \in VG \setminus RG$.

Proof. Assume the contrary. By Proposition 8, u(v) is the antipodal vertex of some quasi-universal vertex w in G. Clearly, w=v. This implies that $\{v,u(v)\}$ is the vertex set of a connected component of \overline{G} . By Proposition 5, \overline{G} is a complete graph with just two vertices. Thus G consists of two isolated vertices, therefore it is not clique-complete, a contradiction.

We have thus established that RG is the set of vertices that are antipodal to quasi-universal vertices of G.

Proposition 10 For each vertex v of RG, each of its non-neighbors, except u(v), lies in RG.

Proof. Let w be a vertex in $VG \setminus N(v)$, distinct from u(v). Assume, to the contrary, that G-w is not clique-complete. Let A and B be disjoint maximal cliques of G-w. Since G is clique-complete, A+w and B+w are (maximal) cliques in G. Since $w \in VG \setminus N(v)$, vertex v does not lie in $A \cup B$. By the maximality of A and B, and since $w \neq u(v)$, it follows that $u(v) \in A \cap B$, a contradiction. \square

We are now in position to show that $G \simeq Q_{2n+1}$, for some positive integer n. By Propositions 8 and 9, $u: RG \to VG \setminus RG$. Clearly, u is injective.

We now show that u is surjective, that is, $\{RG, u(RG)\}$ is a partition of VG. For this, let $S := RG \cup u(RG)$.

By Proposition 8, each vertex of u(RG) is adjacent to each vertex of $VG \setminus RG$. On the other hand, by Proposition 10, each vertex of RG is

adjacent to each vertex of $VG \setminus S$. We conclude that each vertex of S is adjacent to each vertex of $VG \setminus S$.

By Proposition 5, \overline{G} is connected, whence one of S and $VG \setminus S$ is null. By Proposition 7, G contains a quasi-universal vertex, whence its antipodal vertex lies in RG. We conclude that VG = S and u is bijective.

By Proposition 6, \overline{G} is not bipartite. Since each vertex of u(RG) has degree one in \overline{G} , it follows that $\overline{G}[RG]$ is not bipartite.

Let X be a minimal subset of RG such that $\overline{G}[X]$ is not bipartite. Clearly, $\overline{G}[X]$ is a circuit, say, C_{2n+1} . Consequently, $G[X \cup u(X)] \simeq Q_{2n+1}$.

By Propositions 2 and 3, Q_{2n+1} is clique-complete and free of universal vertices. Since G is critical, we conclude that $G \simeq Q_{2n+1}$.

The proof of Theorem 4 completes the proof of Theorem 1. $\Box\Box$

From Theorems 1 and 4 we deduce that family $\mathcal{Q} := \{Q_{2n+1} : n \geq 1\}$ is the family of minimal clique-complete graphs free of universal vertices.

Corollary 11 A graph free of universal vertices is clique-complete and critical if and only if it is isomorphic to Q_{2n+1} , for some positive integer n.

Proof. Theorem 4 asserts that every clique-complete critical graph free of universal vertices is isomorphic to Q_{2n+1} , for some positive integer n. To prove the converse, let n be a positive integer, let H be a clique-complete induced proper subgraph of Q_{2n+1} . By Theorem 1, either H contains a universal vertex or it contains an induced subgraph isomorphic to Q_{2p+1} , for some positive integer p. In the latter case, Q_{2n+1} would contain a proper induced subgraph isomorphic to Q_{2p+1} , in contradiction to Proposition 3. Therefore, H contains a universal vertex. Since this conclusion holds for every clique-complete proper induced subgraph of Q_{2n+1} , this graph is critical.

We conclude this section by giving a finite family of graphs that occur as induced subgraphs of each clique-complete graph. This family consists

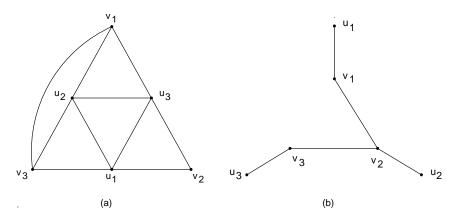


Figure 3: (a) Graph Q'_3 . (b) The complement of Q'_3 .

of just two graphs, namely, Q_3 and Q'_3 , the latter obtained from Q_3 by adding one edge joining v_1 and v_3 (Figure 3).

Corollary 12 A graph free of universal vertices and clique-complete contains one of Q_3 and Q_3' as an induced subgraph.

Proof. Graph $\overline{Q_3'}$ is an induced subgraph of $\overline{Q_n}$ for each $n \geq 4$ (see Figure 3). Thus Q_3' is an induced subgraph of Q_n , for each $n \geq 4$. The assertion follows from Theorem 1.

3 Conclusions

Graph G is perfect if, for each induced subgraph H of G, its chromatic number equals the size of its maximum clique [2].

Every perfect graph is free of induced circuits C_{2n+1} and their complements, for any integer $n \geq 2$. Thus, for each $n \geq 2$, Q_{2n+1} is not perfect. On the other hand, Q_3 is perfect.

Corollary 13 Every clique-complete perfect graph free of universal vertices contains Q_3 as induced subgraph.

We observe that graph Q_3 is neither a comparability nor a co-comparability graph [2].

Corollary 14 Every clique-complete (co-)comparability graph contains a universal vertex. □

Corollary 15 Every clique-complete interval graph contains a universal vertex.

Finally, it follows that every clique-complete graph free of universal vertices and not containing Q_3 as an induced subgraphs necessarily contains the complete graph K_{2n+1} for $n \geq 2$.

Corollary 16 Every clique-complete planar graph free of universal vertices contains Q_3 as an induced subgraph.

References

- [1] C. P. de Mello. Sobre Grafos Clique-Completos. PhD thesis, COPPE-UFRJ, 1992. (In Portuguese).
- [2] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. San Diego, Academic Press, 1980.

Relatórios Técnicos

- 01/92 Applications of Finite Automata Representing Large Vocabularies, C. L. Lucchesi, T. Kowaltowski
- 02/92 Point Set Pattern Matching in d-Dimensions, P. J. de Rezende, D. T. Lee
- 03/92 On the Irrelevance of Edge Orientations on the Acyclic Directed Two Disjoint Paths Problem, C. L. Lucchesi, M. C. M. T. Giglio
- 04/92 A Note on Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams, W. Jacometti
- 05/92 An (l, u)-Transversal Theorem for Bipartite Graphs, C. L. Lucchesi, D. H. Younger
- 06/92 Implementing Integrity Control in Active Databases, C. B. Medeiros, M. J. Andrade
- 07/92 New Experimental Results For Bipartite Matching, J. C. Setubal
- 08/92 Maintaining Integrity Constraints across Versions in a Database, C. B. Medeiros

Departamento de Ciência da Computação — IMECC Caixa Postal 6065 Universidade Estadual de Campinas 13081-970 — Campinas — SP

BRASIL

reltec@dcc.unicamp.br