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Abstract

Continuing the work begun by Philip Hall in 1935, we here give
necessary and sufficient conditions for the existence, in a bipartite
graph, of a set of edges satisfying specified lower and upper bounds.
Here the graph is directed bipartite; lower and upper bounds are
specified by integer-valued functions, { and u, on the collection
of all directed sets of vertices, or perhaps on some subcollection,
such as the collection of singletons. We require these functions to
be super- and sub-modular, respectively. An (/, u)-transversal is
a set ¢ of edges that satisfies these bounds. A second restriction,
g Ct Cr, for edge sets ¢ and r, is also permitted.

One might hope to give necessary and sufficient conditions for
the existence of a general (/,u)-transversal. In this paper, this
is done for the special case in which the domain of one of the
functions, say wu, is restricted to singletons. Graph G contains an
(I, u)-transversal ¢ such that ¢ C ¢ C r if and only if for each X
in Dom! and each subset N of VG, IX < uN + [¢,7](X & N).
This function [g, r], when applied to a set Y of vertices of G, is the
number of edges of r directed away from Y minus the number of
edges of ¢ directed toward Y.
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This work 1s motivated by the Woodall Conjecture, which
states: in any directed graph, a largest packing of transversals
of directed coboundaries is equal in size to a smallest directed cut.
We observe that the domain of this Conjecture can be reduced to
directed bipartite graphs. For such graphs, the partial ({, u)-theory
developed here is used to show that the edge set of any directed
bipartite graph can be partitioned into two subsets, one a transver-
sal of directed coboundaries, the other a (k — 1)-transversal of the
vertex coboundaries. In this application we require the supermod-
ularity of the size of a maximum partition of a directed coboundary
into directed cuts.

1 Woodall’s Conjecture and Directed Bipar-
tite Graphs

Let G be a graph with vertex set VG and edge set e(¢. For any set X
of vertices in ¢, X denotes set VG \ X. The coboundary of a set X of
vertices in G is the set of edges that each have one end in X and one
end in X. A set d of edges is a coboundary if there is a set X of vertices
such that d = 6 X. A cut is a minimal nonnull coboundary.

For directed graph G, each edge a of GG leaves its positive end pa and
enters its negative end na. The constituents of a coboundary 6.X are
tX ={ae€déX :pa€ X}and 6 X := {a € 6X : na € X}. Vertex
set X is outdirected if =X = 0, indirected if 67X = (; in either case X
is directed. For X a directed set of vertices, 6 X is a directed coboundary.
A directed cut is a cut that is a directed coboundary.

A transversal of directed cuts in G is a set t of edges that intersects
(has a nonnull intersection with) each directed cut.

Woodall’s Conjecture In directed graph G, let T* be a mazimum
packing of directed cut tranversals; let d,. be a minimum directed cut:

then [T = |d.]|.



Woodall [11] described this Conjecture as the Menger dual of the

Lucchesi-Younger Theorem A minimum directed cut transversal has
size equal to that of a maximum packing of directed cuts: |t.| = |D*|.

[7, 8, 6]

A graph G is directed bipartite if its edge set e(G is a directed cobound-
ary in G. Equivalently, G' has a directed bipartition, a bipartition
(V*,V7) such that each edge o has pa in V't and na in V.

The Woodall Conjecture can be reduced, without loss of generality, to
directed bipartite graphs. Let GG be any directed graph, with maximum
packing T* and minimum directed cut d.. Let k := |d.|. For each vertex
vin G that is not a source or sink, replace v in GG by two vertices, a source
vT and sink v~, whose incident edges are those in G with positive end v
and negative end v, respectively. Add k edges directed from v+ to v~
The sources and sinks are left unchanged. Let G’ denote the directed
bipartite graph thus obtained. Now, each directed cut of G is a directed
cut of G'. And each directed cut of GG/ that is not in  has at least k
edges. Moreover, for every packing of transversals of G’, the images of
these transversals in G make up a packing of directed cut transversals of
(. So the minimax equality holds in G if and only if it holds in directed
bipartite graph G’.

2 f-Coverings and Supermodular Functions

In this section, we characterize when an f-covering in a directed graph
exists in terms of the existence of a supermodular function satisfying a
certain inequality.

For directed graph G, let f be a real-valued function defined on some
subsets of VG. An f-covering is a set ¢ of edges of GG such that for each
X in the domain Dom f of f, fX <|tNétX|—|tNé X|. Given two
real-valued functions f and ¢, we say that f < g if Dom f C Dom g and,
for all X in Dom f, fX < gX. Note that < is transitive.

Whenever the domain of f is closed under intersection and union, f

is supermodular if f(XNY )+ f(XUY)> fX + fY foreach X, Y in



Dom f; f is submodular if the reverse inequality holds, and modular if
equality holds.

For ¢ and r subsets of eG, let [q,r] := [r]* — [¢]~, where [r]TX :=
|6t X Nnr| and [¢]7X := |6~ X Ng|, for all subsets X of VG. Let [{]
abbreviate [t,t]. Then t is an f-covering if and only if f < [¢].

Proposition 1 For edge sets q, v and vertex sets X, Y of G,

[g. 7] X + g, 7)Y = [g.r](XNY) + g, r)(XUY)
+ [§tXnéYnr| 4+ [6XnstYnr|
— [6tXnéYng| — |[6XnétYng|.

Proof. The asserted equation follows from

PP X +[r]TY = [r]T(XNnY) + [FT(XUY)
+ [§tXnéYnr| 4+ [67Xné&tYnr|,

and the similar relation for ¢.O
Corollary [q,r] is submodular if ¢ C r and modular if ¢ = r.O
The main result of this section is

Theorem 2 For directed graph G, let [ be a real-valued function on
subsets of the vertex set of G; let g and r be subsets of eG such that
qg C r. There is an f-covering t satisfying g Ct C v if and only if there
exists a supermodular integer-valued function h such that f < h < |[q,r].

Proof. For necessity, let ¢ be an f-covering satisfying ¢ C ¢ C r. Then
f <1It] =[t,t] <[g,r]. The inequality is satisfied with [¢] in the role of
h. By the above Corollary, [t] is modular.

For sufficiency, let h be an integer-valued supermodular function such
that f < h < [gq,7r]. We use induction on r \ ¢. If this difference is null,
i.e., ¢ = r, then [¢q,7] = [¢,q] = [q], whereupon f < [¢], i.e., ¢ is an
[f-covering.

Assume then that r\ ¢ is nonnull.



Lemma For each edge o in 1\ q, either h < [q,r \ {a}] or h <
[qu{a},r].

Proof. Since h < [q,r], either

(a) h<[gr\{a}], or
(b) 3X C VG such that hX = [¢,7]X and a € 6T X.

Likewise, either

(a) h<[qu{a},r] or
(b) 3Y C VG such that AY =[¢,7]Y and o € 67Y.

Suppose that in each case, alternative (b) holds. Then a € 6t X N6~V
whence by Proposition 1,

[, 7] X +[q,r]Y > [q,7](XOY ) + [q,r](XUY).

The left side is equal to hX 4+ hY'; the right side is at least as large as
MXNY )+ h(XUY). This contradicts the supermodularity of . So
at least one of alternatives (a) holds. O

Under each of the alternatives of the Lemma, there is by induction
hypothesis an f-covering ¢ such that ¢ C¢ C r. The Theorem follows by
induction. O

3 (l,u)-Transversals for Directed Bipartite
Graphs

Consider a graph ¢ with directed bipartition (VT,V ™). We seek nec-
essary and sufficient conditions for the existence of a set of edges in GG
satisfying lower and upper bounds, [ and u, on directed coboundaries.
The first such Theorem we take to be Hall’s [5]: the lower bound is 1
on each vertex in VT; the upper bound is 1 on each vertex in VG. There
exists such an ([, u)-transversal in GG if and only if, for each subset X of

VT, |X| < |N|, where N is the neighbor set of X.



Hall’s Theorem has been generalized to arbitrary integer-valued func-
tions [ and u on the vertices of . As a notational device, the domains
of [ and u are extended to subsets of VG by [X := > {lv:v € X} and
likewise for u. There exists an (I, u)-transversal in G if and only if, for
each X and N such that one of X and N is a subset of V1 and the other
a subset of V'~ the following inequality holds:

IX < uN +]6X \ 6N]. (1)

There have been results which extend this Theorem further, so that
the domain of one of [ and u includes directed subsets of VG other
than singletons. Theorems of this type have been found by McWhirter-
Younger [9], Rolle [10], Edmonds-Giles [1] and Feofiloff [2, 3]. The gen-
eralization described here is easy to relate to special cases, even to Hall’s
Theorem.

We begin with a general definition of (I, u)-transversal. Let V¥ and
V™~ be the collections of all outdirected and indirected subsets of VG,
respectively. Let [ be an integer-valued function on some subcollec-
tion Dom{ of VT that is closed under intersection and union; for X in
VT NV~ wetake X = 0; finally, [ is supermodular. Let u have the same
defining properties over V7, except that u is submodular rather than su-
permodular. Subset ¢ of eG is an (I, u)-transversal if IX < |6TX Nt|
for each X in Doml, and |6~ X N¢| < uX for each X in Domu. More
compactly, set ¢ of edges is an ([, u)-transversal if [ < [t] and —u < [¢].
Note that an (I, u)-transversal is a directed cut transversal if [X > 1 for
each X in VT \ V™.

Let the join of | and —u be a function (I/,—u) whose domain is
DomlU Domu and whose value is [X if X € Doml, and —uX if
X € Domwu. Set t of edges is an ([, u)-transversal if and only if
(I, —u)y < [t]. Consequently, an (/,u)-transversal is an (I, —u)-covering,
and conversely.

In the following Theorem, function u is restricted to singletons and
co-singletons: Domu := {{v} :v € V-}U {{v}:v € Vt}. Under these
restrictions, we adopt the following notational conventions: uv := u{v}



for v € V™ and wv := u{v} for v € V*. Moreover, for N a subset of
VG, uN =3 {uv:v € N}. We also assume that u > 0.

Theorem 3 Let G be a graph with directed bipartition (VY , V™). Let q
and r be subsets of eGG such that ¢ C r. There exists an (I, u)-transversal
t such that ¢ Ct C r if and only if for each X in Dom! and subset N
of VG,

IX <uN +[q,r](X & N).

Remark To see that this inequality generalizes (1), observe that

if X CVH N CV-, then X \ 6N = 6H(XUN)=6H(X G N);
if X CV-,N CVH*, then 6X \ 6N = 6HX\N) =6+ X @ N).

Proof of Theorem 3. To prove necessity, consider any X in Dom! and
subset N of VG. Let Ny := NN X and Ny := N\ X. Let ¢ be an (I, u)-
transversal. By hypothesis, [ < [t]; by the Corollary of Proposition 1, []
is modular. Thus,

IX < [{X =[t)(XDN)+[t]N1 — [t] Nz
By hypothesis, [t] <« and 0 < u, whence

LNy < [i]TPNy < w(VTNnDNg)
—[t]Ny < [t]7Ny < w(V™ N Ny)

uN1
UNQ.

Using these inequalities, we conclude that

X ulN1 4+ uNy + [t]( X & N)

<
< uN+ [t} (X $ N).

By hypothesis, ¢ C ¢t C r, whence [t] < [q,7]: the cited inequality holds.
To prove sufficiency, assume that the inequality stated in the Theo-
rem holds. Define function h : 2V¢ — Z by

RY = maz{i{X —uN:Y =X ® N, X € Doml,N CVG}.



Function & is well-defined since for every subset Y of VG, it is the case
that Y = X @Y for X = ) € Doml. We claim that this function h
satisfies (I, —u) < h < [g,r] and is supermodular. Assuming this, since h
is integer-valued, there is, by Theorem 2, an (I, —u)-covering ¢ such that
g Ct Cr. An (I, —u)-covering is an ([, u)-transversal. So the proof is
completed by verifying this claim.

(i) (I, —u) < h <[g,7].

For X in Dom !, X = X &0, whence hX > I[X —ul) = [X. ForY C V(Q,
Y =03Y, whence bY > 10 — Y = —uY . Thus (I, —u) < h.

For Y a subset of VG, there exist X in Dom! and subset N of
VG, where Y = X @ N, such that hY = [X — ulN. Since [X — uN <
[¢,7](X & N) = [q,7]Y, there follows h < [g,7].

(ii) h is supermodular.

Let Y, Y’ be subsets of VG. There exist X, X’ in Dom[ and subsets
N,N' of VG, whereY = X & N, Y’ = X' @& N’, for which

Y = 1X — uN
Y = IX'" — wuN'.

Let X;:= XNX', Xy := X UX'. By the supermodularity of /,
X +1X’ <IX7+IXyp.

Let Y7 := Y NY’', Yy := YUY’. There is just one pair Ny, Ny of
subsets of VG such that Y; = X; & N7, Yy = Xy @ Ny, namely, Ny :=
XY, Nu = Xu @ Yu. A look at the Venn Diagrams (Figure 1)
verifies that NN N’ O Nyn Ny and NUN' O NyU Ny, since u is
nonnegative,

uN +uN'> uNy + uNg.

Therefore
LY + hY’ <IX7—uN;+I1Xy— uNy.

The right side of this inequality is at most AY; + hYr;. We conclude that
h is supermodular.O
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4 An Application of the (/, u)-Transversal The-
orem

Proposition 4 For directed bipartite graph G, let k be the size of a
minimum directed cut. There is a transversal t of directed cuts such that
eG \'t is a (k — 1)-transversal of vertex coboundaries.

A subset t of eGG is a (k — 1)-transversal of vertex coboundaries if each
nonisolated vertex of (G has at least k — 1 edges of ¢ incident.

Proof of Proposition 4. For each set of vertices X in VT, denote by
1 X the cardinality of a maximum partition of 6 X into nonnull directed
coboundaries. Frank, Seb6é and Tardos [4] showed that function p is
supermodular. Let [ be this function u. Let u be the function on vertices
which assigns each vertex v the value [6{v}| — (k — 1) if v is nonisolated,
and 0 otherwise.

Consider the conditions of the (I, u)-transversal Theorem, with ¢ := ()
and r := eG. If X € Vt and N C VG, let Nt := NNVT and
N~ := NnNV~. By the hypotheses on k and r, and the definition of [
and u,

kX < |6X],
6Nt < k-uNT,
[N~ < k-uN~.

Every edge of 6 X either has one end in N or lies in §7(X & N), whence
[OX[ < [ENT|+[6NT]+ [67(X & N)|.
From these inequalities we conclude that
kX <k[uNtT+uN" 460X & N)| /K,

whence (X < uN + [0,eG](X @ N), i.e., the conditions of Theorem 3
are satisfied. By that Theorem, GG has an (I, u)-transversal ¢. For these
values of [ and u, set ¢ is a transversal of directed cuts and eG \ t is a
(k — 1)-transversal of vertex coboundaries.O

While this result is modest, it suggests that a strengthened (/,u)-
transversal Theorem could have useful implications for the Woodall Con-
jecture.
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