Combinatória Poliédrica Poliedro dos Emparelhamentos

Rafael C. S. Schouery rafael@ic.unicamp.br

Universidade Estadual de Campinas

Atualizado em: 2023-11-06 15:54

Seja G=(V,A) um grafo

Seja G=(V,A) um grafo

Um emparelhamento E em G

Seja G = (V, A) um grafo

Um emparelhamento E em G

• é um subconjunto de *A*

Seja
$$G = (V, A)$$
 um grafo

Um emparelhamento E em G

- é um subconjunto de *A*
- ullet tal que se $e=\{i,j\}$ e $f=\{k,l\}$ são arestas distintas de E

Seja
$$G=(V,A)$$
 um grafo

Um emparelhamento E em G

- é um subconjunto de *A*
- ullet tal que se $e=\{i,j\}$ e $f=\{k,l\}$ são arestas distintas de E
- ullet então $e\cap f=\emptyset$

Seja
$$G = (V, A)$$
 um grafo

Um emparelhamento E em G

- é um subconjunto de *A*
- ullet tal que se $e=\{i,j\}$ e $f=\{k,l\}$ são arestas distintas de E
- ullet então $e\cap f=\emptyset$

Problema do Emparelhamento Máximo: Dado um grafo G=(V,A) e uma função de custo $c\colon A\to \mathbb{R}$, achar um emparalhemento E em G tal que c(E) seja máximo.

O poliedro dos emparelhamentos de um grafo é o fecho convexo dos vetores de incidência dos emparelhamentos em G:

O poliedro dos emparelhamentos de um grafo é o fecho convexo dos vetores de incidência dos emparelhamentos em G:

$$P_{\mathrm{Emp}}(G) = \mathrm{conv}\{\boldsymbol{\chi}^E \in \mathbb{R}^A \colon E \text{ \'e um emparelhamento em } G\}$$

O poliedro dos emparelhamentos de um grafo é o fecho convexo dos vetores de incidência dos emparelhamentos em G:

$$P_{\mathrm{Emp}}(G) = \mathrm{conv}\{\boldsymbol{\chi}^E \in \mathbb{R}^A \colon E \text{ \'e um emparelhamento em } G\}$$

Note que \emptyset e $\{a\}$, para todo $a \in A$, são emparelhamentos em G

O poliedro dos emparelhamentos de um grafo é o fecho convexo dos vetores de incidência dos emparelhamentos em G:

$$P_{\mathrm{Emp}}(G) = \mathrm{conv}\{\boldsymbol{\chi}^E \in \mathbb{R}^A \colon E \text{ \'e um emparelhamento em } G\}$$

Note que \emptyset e $\{a\}$, para todo $a \in A$, são emparelhamentos em G

• E os vetores de incidência destes são afim-independentes

O poliedro dos emparelhamentos de um grafo é o fecho convexo dos vetores de incidência dos emparelhamentos em G:

$$P_{\mathrm{Emp}}(G) = \mathrm{conv}\{ oldsymbol{\chi}^E \in \mathbb{R}^A \colon E \ ext{\'e} \ \mathsf{um} \ \mathsf{emparelhamento} \ \mathsf{em} \ G \}$$

Note que \emptyset e $\{a\}$, para todo $a \in A$, são emparelhamentos em G

• E os vetores de incidência destes são afim-independentes

Lema. O poliedro $P_{\rm Emp}(G)$ tem dimensão plena, ou seja, $\dim(P_{\rm Emp}(G))=|A|$.

3

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

ullet Se $S=\{v\}$, escrevemos apenas $\delta(v)$

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

ullet Se $S=\{v\}$, escrevemos apenas $\delta(v)$

Considere o poliedro $P_1(G)$ definido por

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

ullet Se $S=\{v\}$, escrevemos apenas $\delta(v)$

Considere o poliedro $P_1(G)$ definido por

$$x_a \ge 0, \quad \forall a \in A$$

 $x(\delta(v)) \le 1, \quad \forall v \in V$

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

ullet Se $S=\{v\}$, escrevemos apenas $\delta(v)$

Considere o poliedro $P_1(G)$ definido por

$$x_a \ge 0, \quad \forall a \in A$$

 $x(\delta(v)) \le 1, \quad \forall v \in V$

Essas inequações são válidas para $P_{\mathrm{Emp}}(G)$ e $P_{\mathrm{Emp}}(G) \subseteq P_1(G)$

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

ullet Se $S=\{v\}$, escrevemos apenas $\delta(v)$

Considere o poliedro $P_1(G)$ definido por

$$x_a \ge 0, \quad \forall a \in A$$

 $x(\delta(v)) \le 1, \quad \forall v \in V$

Essas inequações são válidas para $P_{\mathrm{Emp}}(G)$ e $P_{\mathrm{Emp}}(G) \subseteq P_1(G)$

De fato, $P_1(G)$ é uma formulação inteira para o problema:

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

ullet Se $S=\{v\}$, escrevemos apenas $\delta(v)$

Considere o poliedro $P_1(G)$ definido por

$$x_a \ge 0, \quad \forall a \in A$$

 $x(\delta(v)) \le 1, \quad \forall v \in V$

Essas inequações são válidas para $P_{\mathrm{Emp}}(G)$ e $P_{\mathrm{Emp}}(G) \subseteq P_1(G)$

De fato, $P_1(G)$ é uma formulação inteira para o problema:

• Se $\boldsymbol{x} \in P_1(G) \cap \mathbb{Z}^A$, então \boldsymbol{x} corresponde a um emparelhamento

Para um conjunto $S\subseteq V$, denote por $\delta(S)$ as arestas que têm apenas uma das pontas em S

ullet Se $S=\{v\}$, escrevemos apenas $\delta(v)$

Considere o poliedro $P_1(G)$ definido por

$$x_a \ge 0, \quad \forall a \in A$$

 $x(\delta(v)) \le 1, \quad \forall v \in V$

Essas inequações são válidas para $P_{\mathrm{Emp}}(G)$ e $P_{\mathrm{Emp}}(G) \subseteq P_1(G)$

De fato, $P_1(G)$ é uma formulação inteira para o problema:

- Se $x \in P_1(G) \cap \mathbb{Z}^A$, então x corresponde a um emparelhamento
- Se E é um emparelhamento, então $\chi^E \in P_1(G)$

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\mathrm{Emp}}(G) \neq P_1(G)$

$$P_{\mathrm{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\text{Emp}}(G) \neq P_1(G)$

•
$$\boldsymbol{x}=(\frac{1}{2},\frac{1}{2},\frac{1}{2})\in P_1(K_3)\setminus P_{\mathrm{Emp}}(K_3)$$
 (e \boldsymbol{x} é um vértice)

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\text{Emp}}(G) \neq P_1(G)$

•
$$\boldsymbol{x}=(\frac{1}{2},\frac{1}{2},\frac{1}{2})\in P_1(K_3)\setminus P_{\mathrm{Emp}}(K_3)$$
 (e \boldsymbol{x} é um vértice)

No caso acima, ${\boldsymbol x}$ não satisfaz a desigualdade ${\boldsymbol x}(A) \le 1$ em que A é o conjunto das arestas de um K_3

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\text{Emp}}(G) \neq P_1(G)$

•
$$\boldsymbol{x}=(\frac{1}{2},\frac{1}{2},\frac{1}{2})\in P_1(K_3)\setminus P_{\mathrm{Emp}}(K_3)$$
 (e \boldsymbol{x} é um vértice)

No caso acima, ${\boldsymbol x}$ não satisfaz a desigualdade ${\boldsymbol x}(A) \le 1$ em que A é o conjunto das arestas de um K_3

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\text{Emp}}(G) \neq P_1(G)$

•
$$\boldsymbol{x}=(\frac{1}{2},\frac{1}{2},\frac{1}{2})\in P_1(K_3)\setminus P_{\mathrm{Emp}}(K_3)$$
 (e \boldsymbol{x} é um vértice)

No caso acima, ${\boldsymbol x}$ não satisfaz a desigualdade ${\boldsymbol x}(A) \le 1$ em que A é o conjunto das arestas de um K_3

De forma geral,

ullet Se temos um conjunto $S\subseteq V$

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\text{Emp}}(G) \neq P_1(G)$

•
$$x = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \in P_1(K_3) \setminus P_{\text{Emp}}(K_3)$$
 (e x é um vértice)

No caso acima, \boldsymbol{x} não satisfaz a desigualdade $\boldsymbol{x}(A) \leq 1$ em que A é o conjunto das arestas de um K_3

- Se temos um conjunto $S \subseteq V$
- tal que $|S| \ge 3$ e |S| é ímpar

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\text{Emp}}(G) \neq P_1(G)$

•
$$x = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \in P_1(K_3) \setminus P_{\text{Emp}}(K_3)$$
 (e x é um vértice)

No caso acima, ${\boldsymbol x}$ não satisfaz a desigualdade ${\boldsymbol x}(A) \le 1$ em que A é o conjunto das arestas de um K_3

- Se temos um conjunto $S \subseteq V$
- tal que $|S| \ge 3$ e |S| é ímpar
- então qualquer emparelhamento em G tem no máximo (|S|-1)/2 arestas no conjunto A(S)

$$P_{\text{Emp}}(G) \subseteq P_1(G) = \{ \boldsymbol{x} \colon x_a \ge 0, \forall a \in A; x(\delta(v)) \le 1, \forall v \in V \}$$

Mas existe G tal que $P_{\text{Emp}}(G) \neq P_1(G)$

•
$$x = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \in P_1(K_3) \setminus P_{\text{Emp}}(K_3)$$
 (e x é um vértice)

No caso acima, ${\boldsymbol x}$ não satisfaz a desigualdade ${\boldsymbol x}(A) \le 1$ em que A é o conjunto das arestas de um K_3

- Se temos um conjunto $S \subseteq V$
- tal que $|S| \ge 3$ e |S| é ímpar
- então qualquer emparelhamento em G tem no máximo (|S|-1)/2 arestas no conjunto A(S)
- ullet Ou seja, $x(A(S)) \leq (|S|-1)/2$ é válida para $P_{\mathrm{Emp}}(G)$

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\mathrm{Emp}}(G)$

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\mathrm{Emp}}(G)$

Como

$$P_{\text{Emp}}(G) = \text{conv}\{\boldsymbol{x} \in \mathbb{Z}^A \colon \boldsymbol{x} \in P_1(G)\} = P_1(G)_I$$

é possível obter a restrição acima a partir de uma sequência de combinações cônicas e arredondamentos

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\mathrm{Emp}}(G)$

Como

$$P_{\text{Emp}}(G) = \text{conv}\{\boldsymbol{x} \in \mathbb{Z}^A \colon \boldsymbol{x} \in P_1(G)\} = P_1(G)_I$$

é possível obter a restrição acima a partir de uma sequência de combinações cônicas e arredondamentos

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\rm Emp}(G)$

Como

$$P_{\text{Emp}}(G) = \text{conv}\{\boldsymbol{x} \in \mathbb{Z}^A \colon \boldsymbol{x} \in P_1(G)\} = P_1(G)_I$$

é possível obter a restrição acima a partir de uma sequência de combinações cônicas e arredondamentos

1. Some
$$x(\delta(v)) \leq 1$$
 para todo $v \in S$

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\rm Emp}(G)$

Como

$$P_{\text{Emp}}(G) = \text{conv}\{\boldsymbol{x} \in \mathbb{Z}^A \colon \boldsymbol{x} \in P_1(G)\} = P_1(G)_I$$

é possível obter a restrição acima a partir de uma sequência de combinações cônicas e arredondamentos

- 1. Some $x(\delta(v)) \leq 1$ para todo $v \in S$
- 2. Some $-x_e \leq 0$ para todo $e \in \delta(S)$

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\rm Emp}(G)$

Como

$$P_{\text{Emp}}(G) = \text{conv}\{\boldsymbol{x} \in \mathbb{Z}^A \colon \boldsymbol{x} \in P_1(G)\} = P_1(G)_I$$

é possível obter a restrição acima a partir de uma sequência de combinações cônicas e arredondamentos

- 1. Some $x(\delta(v)) \leq 1$ para todo $v \in S$
- 2. Some $-x_e \leq 0$ para todo $e \in \delta(S)$
- 3. Obtendo $x(A(S)) \leq |S|/2$ e arredondando

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\mathrm{Emp}}(G)$

Como

$$P_{\text{Emp}}(G) = \text{conv}\{\boldsymbol{x} \in \mathbb{Z}^A \colon \boldsymbol{x} \in P_1(G)\} = P_1(G)_I$$

é possível obter a restrição acima a partir de uma sequência de combinações cônicas e arredondamentos

- 1. Some $x(\delta(v)) \leq 1$ para todo $v \in S$
- 2. Some $-x_e \leq 0$ para todo $e \in \delta(S)$
- 3. Obtendo $x(A(S)) \leq |S|/2$ e arredondando
- 4. Temos que $x(A(S)) \leq \lfloor |S|/2 \rfloor = (|S|-1)/2$

Facetas

Veremos que

$$x(A(S)) \leq (|S|-1)/2 \quad \forall S \subseteq V \text{ tal que } |S| \text{ \'e impar}$$
 (por vezes) definem facetas de $P_{\rm Emp}(G)$

Como

$$P_{\text{Emp}}(G) = \text{conv}\{\boldsymbol{x} \in \mathbb{Z}^A \colon \boldsymbol{x} \in P_1(G)\} = P_1(G)_I$$

é possível obter a restrição acima a partir de uma sequência de combinações cônicas e arredondamentos

De fato,

- 1. Some $x(\delta(v)) \leq 1$ para todo $v \in S$
- 2. Some $-x_e \leq 0$ para todo $e \in \delta(S)$
- 3. Obtendo $x(A(S)) \leq |S|/2$ e arredondando
- 4. Temos que $x(A(S)) \le \lfloor |S|/2 \rfloor = (|S|-1)/2$

Com o resultado que veremos, isso significa que $P_1(G)$ tem posto de Chvátal igual a 1

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\mathrm{Emp}}(G)$ é descrito pelo sistema

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

(1) $x_a \ge 0$, para todo $a \in A$

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \leq 1$, para todo $v \in V$

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \leq 1$, para todo $v \in V$
- (3) $x(A(S)) \leq (|S|-1)/2$, para todo $S \subseteq V$, $|S| \geq 3$ e ímpar

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \le 1$, para todo $v \in V$
- (3) $x(A(S)) \leq (|S|-1)/2$, para todo $S \subseteq V$, $|S| \geq 3$ e ímpar

Pela prova, toda faceta é de um desses três tipos

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \leq 1$, para todo $v \in V$
- (3) $x(A(S)) \leq (|S|-1)/2$, para todo $S \subseteq V$, $|S| \geq 3$ e ímpar

Pela prova, toda faceta é de um desses três tipos

• Mas nem toda restrição acima define faceta

7

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \leq 1$, para todo $v \in V$
- (3) $x(A(S)) \leq (|S|-1)/2$, para todo $S \subseteq V$, $|S| \geq 3$ e ímpar

Pela prova, toda faceta é de um desses três tipos

• Mas nem toda restrição acima define faceta

Inequações do tipo (3) são chamadas de blossom inequalities

7

Teorema. Para cada aresta $a \in A$ a inequação

$$x_a \ge 0$$

define uma faceta do poliedro $P_{\mathrm{Emp}}(G)$.

Teorema. Seja G = (V, A) um grafo conexo com pelo menos 3 vértices, e seja v um vértice de G. Então a inequação

$$x(\delta(v)) \le 1$$

define uma faceta de $P_{\rm Emp}(G)$ se, e somente se, os dois vizinhos de v são não-adjacentes sempre que ${\rm grau}(v)=2$.

Um grafo é hipo-emparelhável se não possui emparelhamento perfeito, mas ao remover qualquer um de seus vértices, o grafo resultante possui um emparelhamento perfeito

Um grafo é hipo-emparelhável se não possui emparelhamento perfeito, mas ao remover qualquer um de seus vértices, o grafo resultante possui um emparelhamento perfeito

Um grafo é k-conexo se a remoção de qualquer conjunto de k vértices não desconecta o grafo

Um grafo é hipo-emparelhável se não possui emparelhamento perfeito, mas ao remover qualquer um de seus vértices, o grafo resultante possui um emparelhamento perfeito

Um grafo é k-conexo se a remoção de qualquer conjunto de k vértices não desconecta o grafo

Teorema. Seja G=(V,A) um grafo conexo com pelo menos 3 vértices, e seja $S\subseteq V$ tal que $|S|\geq 3$ e ímpar. Então a inequação

$$x(A(S)) \le (|S| - 1)/2$$

define uma faceta de $P_{\rm Emp}(G)$ se e somente se o subgrafo induzido por S é 2-conexo e hipo-emparalhável.

Voltado ao $P_1(G)$

Será que existem grafos G tais que $P_1(G) = P_{\text{Emp}}(G)$?

Voltado ao $P_1(G)$

Será que existem grafos G tais que $P_1(G) = P_{\text{Emp}}(G)$?

Sim! Na verdade, podemos provar que $P_1(G) = P_{\mathrm{Emp}}(G)$ se e somente se G é um grafo bipartido

Voltado ao $P_1(G)$

Será que existem grafos G tais que $P_1(G) = P_{\text{Emp}}(G)$?

Sim! Na verdade, podemos provar que $P_1(G) = P_{\mathrm{Emp}}(G)$ se e somente se G é um grafo bipartido

Teorema. Seja G=(V,A) um grafo bipartido. Então $P_{\mathrm{Emp}}(G)=P_1(G).$

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Podemos definir então o seguinte poliedro dos emparelhamentos perfeitos:

 $P_{\mathrm{Perf}}(G) = \mathrm{conv}\{\boldsymbol{\chi}^{E} \in \mathbb{R}^{A} \colon E \text{ \'e um emparelhamento perfeito em } G\}$

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Podemos definir então o seguinte poliedro dos emparelhamentos perfeitos:

$$P_{\mathrm{Perf}}(G) = \mathrm{conv}\{oldsymbol{\chi}^E \in \mathbb{R}^A \colon E ext{ \'e um emparelhamento perfeito em } G\}$$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Podemos definir então o seguinte poliedro dos emparelhamentos perfeitos:

$$P_{\mathrm{Perf}}(G) = \mathrm{conv}\{oldsymbol{\chi}^E \in \mathbb{R}^A \colon E ext{ é um emparelhamento perfeito em } G\}$$

Teorema. O poliedro $P_{\mathrm{Perf}}(G)$ é descrito pelo seguinte sistema: (1) $x_a \geq 0$, para todo $a \in A$

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Podemos definir então o seguinte poliedro dos emparelhamentos perfeitos:

$$P_{\mathrm{Perf}}(G) = \mathrm{conv}\{oldsymbol{\chi}^{E} \in \mathbb{R}^{A} \colon E \text{ \'e um emparelhamento perfeito em } G\}$$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Podemos definir então o seguinte poliedro dos emparelhamentos perfeitos:

$$P_{\mathrm{Perf}}(G) = \mathrm{conv}\{oldsymbol{\chi}^E \in \mathbb{R}^A \colon E ext{ \'e um emparelhamento perfeito em } G\}$$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Podemos definir então o seguinte poliedro dos emparelhamentos perfeitos:

$$P_{\mathrm{Perf}}(G) = \mathrm{conv}\{oldsymbol{\chi}^E \in \mathbb{R}^A \colon E ext{ é um emparelhamento perfeito em } G\}$$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Segue do Teorema do $P_{\rm Emp}(G)$

Um emparelhamento E é perfeito se todo vértice de G é incidente a uma aresta de E

Podemos definir então o seguinte poliedro dos emparelhamentos perfeitos:

$$P_{\mathrm{Perf}}(G) = \mathrm{conv}\{oldsymbol{\chi}^E \in \mathbb{R}^A \colon E ext{ \'e um emparelhamento perfeito em } G\}$$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Segue do Teorema do $P_{\rm Emp}(G)$

ullet E também implica no Teorema do $P_{\mathrm{Emp}}(G)$

Teoremas e Exercício

Teorema (de König). Num grafo bipartido, a cardinalidade de um emparelhamento máximo é igual ao número mínimo de vértices que cobrem todas as areas do grafo.

Teoremas e Exercício

Teorema (de König). Num grafo bipartido, a cardinalidade de um emparelhamento máximo é igual ao número mínimo de vértices que cobrem todas as areas do grafo.

Teorema. Num grafo bipartido, a cardinalidade de uma cobertura mínima de arestas é igual à cardinalidade de um conjunto estável máximo.

Teoremas e Exercício

Teorema (de König). Num grafo bipartido, a cardinalidade de um emparelhamento máximo é igual ao número mínimo de vértices que cobrem todas as areas do grafo.

Teorema. Num grafo bipartido, a cardinalidade de uma cobertura mínima de arestas é igual à cardinalidade de um conjunto estável máximo.

Exercício. Prova que os vértices do poliedro $P_1(G)$, conhecido como o poliedro fracionário dos emparelhamentos, só tem componentes em $\{0,1/2,1\}$.

Separação do $P_{\mathrm{Perf}}(G)$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

Separação do $P_{\mathrm{Perf}}(G)$

Teorema. O poliedro $P_{\operatorname{Perf}}(G)$ é descrito pelo seguinte sistema:

(1) $x_a \ge 0$, para todo $a \in A$

Separação do $P_{\operatorname{Perf}}(G)$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Considere o problema:

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Considere o problema:

Dado um vetor $\mathbf{y} \in \mathbb{R}^A$, decidir se \mathbf{y} satisfaz (1), (2) e (3). Se não, encontrar uma inequação violada por \mathbf{y} .

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Considere o problema:

Dado um vetor $\mathbf{y} \in \mathbb{R}^A$, decidir se \mathbf{y} satisfaz (1), (2) e (3). Se não, encontrar uma inequação violada por \mathbf{y} .

Decidir se y satisfaz (1) e (2) é fácil

Separação do $P_{\mathrm{Perf}}(G)$

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Considere o problema:

Dado um vetor $\mathbf{y} \in \mathbb{R}^A$, decidir se \mathbf{y} satisfaz (1), (2) e (3). Se não, encontrar uma inequação violada por \mathbf{y} .

Decidir se y satisfaz (1) e (2) é fácil

• Vamos supor que satisfaz (1) e (2)

Teorema. O poliedro $P_{Perf}(G)$ é descrito pelo seguinte sistema:

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) = 1$, para todo $v \in V$
- (3) $x(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar

Considere o problema:

Dado um vetor $\mathbf{y} \in \mathbb{R}^A$, decidir se \mathbf{y} satisfaz (1), (2) e (3). Se não, encontrar uma inequação violada por \mathbf{y} .

Decidir se \boldsymbol{y} satisfaz (1) e (2) é fácil

- Vamos supor que satisfaz (1) e (2)
- e testar se satisfaz (3)

Separação do $P_{\mathrm{Perf}}(G)$

Dado um vetor $\boldsymbol{y} \in \mathbb{R}^A$, decidir se \boldsymbol{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \boldsymbol{y} .

Dado um vetor $\boldsymbol{y} \in \mathbb{R}^A$, decidir se \boldsymbol{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \boldsymbol{y} .

Considere y como custos associados as arestas de G

Dado um vetor $\boldsymbol{y} \in \mathbb{R}^A$, decidir se \boldsymbol{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \boldsymbol{y} .

Considere y como custos associados as arestas de G

O problema consiste em testar se

Dado um vetor $\boldsymbol{y} \in \mathbb{R}^A$, decidir se \boldsymbol{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \boldsymbol{y} .

Considere y como custos associados as arestas de G

O problema consiste em testar se

• G tem um corte $\delta(W)$

Dado um vetor $\boldsymbol{y} \in \mathbb{R}^A$, decidir se \boldsymbol{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \boldsymbol{y} .

Considere y como custos associados as arestas de G

O problema consiste em testar se

- G tem um corte $\delta(W)$
- ullet com |W| impar

Dado um vetor $\boldsymbol{y} \in \mathbb{R}^A$, decidir se \boldsymbol{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \boldsymbol{y} .

Considere y como custos associados as arestas de G

O problema consiste em testar se

- G tem um corte $\delta(W)$
- com |W| ímpar
- com custo $y(\delta(W)) < 1$

Dado um vetor $\pmb{y} \in \mathbb{R}^A$, decidir se \pmb{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \pmb{y} .

Considere y como custos associados as arestas de G

O problema consiste em testar se

- G tem um corte $\delta(W)$
- ullet com |W| ímpar
- com custo $y(\delta(W)) < 1$

Um corte $\delta(W)$ com |W| ímpar é chamado de corte ímpar

Dado um vetor $\pmb{y} \in \mathbb{R}^A$, decidir se \pmb{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \pmb{y} .

Considere y como custos associados as arestas de G

O problema consiste em testar se

- G tem um corte $\delta(W)$
- com |W| ímpar
- com custo $y(\delta(W)) < 1$

Um corte $\delta(W)$ com |W| ímpar é chamado de corte ímpar

Queremos então encontrar um corte ímpar de custo mínimo em um grafo com custos não-negativos associados às suas arestas

Dado um vetor $\boldsymbol{y} \in \mathbb{R}^A$, decidir se \boldsymbol{y} satisfaz $y(\delta(W)) \geq 1$, para todo $W \subseteq V$, |W| ímpar. Se não, encontrar uma inequação violada por \boldsymbol{y} .

Considere y como custos associados as arestas de G

O problema consiste em testar se

- G tem um corte $\delta(W)$
- com |W| ímpar
- com custo $y(\delta(W)) < 1$

Um corte $\delta(W)$ com |W| ímpar é chamado de corte ímpar

Queremos então encontrar um corte ímpar de custo mínimo em um grafo com custos não-negativos associados às suas arestas

• Problema que pode ser resolvido em tempo polinomial

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

(1) $x_a \ge 0$, para todo $a \in A$

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \le 1$, para todo $v \in V$

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \leq 1$, para todo $v \in V$
- (3) $x(A(S)) \leq (|S|-1)/2$, para todo $S \subseteq V$, $|S| \geq 3$ e impar

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \leq 1$, para todo $v \in V$
- (3) $x(A(S)) \leq (|S|-1)/2$, para todo $S \subseteq V$, $|S| \geq 3$ e ímpar

Separação:

Teorema. Para qualquer grafo G=(V,A), o poliedro $P_{\rm Emp}(G)$ é descrito pelo sistema

- (1) $x_a \ge 0$, para todo $a \in A$
- (2) $x(\delta(v)) \leq 1$, para todo $v \in V$
- (3) $x(A(S)) \leq (|S|-1)/2$, para todo $S \subseteq V$, $|S| \geq 3$ e ímpar

Separação:

Dado x' satisfazendo (1) e (2) encontrar um subconjunto $S \subseteq V$, |S| impar, tal que x'(A(S)) > (|S|-1)/2, ou provar que tal S não existe.

Dado x' satisfazendo $x_a \geq 0$, para todo $a \in A$ e $x(\delta(v)) \leq 1$, para todo $v \in V$, encontrar um subconjunto $S \subseteq V$, |S| ímpar, tal que x'(A(S)) > (|S|-1)/2, ou provar que tal S não existe.

Dado x' satisfazendo $x_a \geq 0$, para todo $a \in A$ e $x(\delta(v)) \leq 1$, para todo $v \in V$, encontrar um subconjunto $S \subseteq V$, |S| ímpar, tal que x'(A(S)) > (|S|-1)/2, ou provar que tal S não existe.

Considere variáveis de folga s_v para $x(\delta(v)) \leq 1$

Dado x' satisfazendo $x_a \geq 0$, para todo $a \in A$ e $x(\delta(v)) \leq 1$, para todo $v \in V$, encontrar um subconjunto $S \subseteq V$, |S| ímpar, tal que x'(A(S)) > (|S|-1)/2, ou provar que tal S não existe.

Considere variáveis de folga s_v para $x(\delta(v)) \leq 1$

• Isto é, $s_v = 1 - x(\delta(v))$

Dado x' satisfazendo $x_a \geq 0$, para todo $a \in A$ e $x(\delta(v)) \leq 1$, para todo $v \in V$, encontrar um subconjunto $S \subseteq V$, |S| ímpar, tal que x'(A(S)) > (|S|-1)/2, ou provar que tal S não existe.

Considere variáveis de folga s_v para $x(\delta(v)) \leq 1$

• Isto é, $s_v = 1 - x(\delta(v))$

Somando $x(\delta(v)) + s_v = 1$ para todo $v \in S$, obtemos

$$2x(A(S)) + x(\delta(S)) + s(S) = |S|$$

Dado x' satisfazendo $x_a \geq 0$, para todo $a \in A$ e $x(\delta(v)) \leq 1$, para todo $v \in V$, encontrar um subconjunto $S \subseteq V$, |S| ímpar, tal que x'(A(S)) > (|S|-1)/2, ou provar que tal S não existe.

Considere variáveis de folga s_v para $x(\delta(v)) \leq 1$

• Isto é, $s_v = 1 - x(\delta(v))$

Somando $x(\delta(v)) + s_v = 1$ para todo $v \in S$, obtemos

$$2x(A(S)) + x(\delta(S)) + s(S) = |S|$$

Portanto,

$$x(A(S)) \le (|S| - 1)/2 \iff \frac{|S| - x(\delta(S)) - s(S)}{2} \le (|S| - 1)/2$$
$$\iff x(\delta(S)) + s(S) \ge 1$$

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

Basta fazer o seguinte:

• Adicione um novo vértice universal w a G

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

- Adicione um novo vértice universal w a G
- ullet Defina as capacidade de $\{v,w\}$ como s_v'

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

- Adicione um novo vértice universal w a G
- ullet Defina as capacidade de $\{v,w\}$ como s_v'
- Defina as outras capacidade de acordo com x'

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

- Adicione um novo vértice universal w a G
- ullet Defina as capacidade de $\{v,w\}$ como s_v'
- Defina as outras capacidade de acordo com x'
- ullet Queremos um corte ímpar de custo mínimo que não contém w

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

- Adicione um novo vértice universal w a G
- ullet Defina as capacidade de $\{v,w\}$ como s'_v
- Defina as outras capacidade de acordo com x'
- Queremos um corte ímpar de custo mínimo que não contém w
- Consideramos que |V(G)| é par (s.p.g.)

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S)) > (|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S)) + s'(S) < 1$

- Adicione um novo vértice universal w a G
- ullet Defina as capacidade de $\{v,w\}$ como s_v'
- Defina as outras capacidade de acordo com x'
- ullet Queremos um corte ímpar de custo mínimo que não contém w
- Consideramos que |V(G)| é par (s.p.g.)
 - Um corte ímpar $\delta(S)$ divide $V(G) \cup \{w\}$ em dois conjuntos

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S))>(|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S))+s'(S)<1$

- Adicione um novo vértice universal w a G
- ullet Defina as capacidade de $\{v,w\}$ como s_v'
- Defina as outras capacidade de acordo com x'
- ullet Queremos um corte ímpar de custo mínimo que não contém w
- Consideramos que |V(G)| é par (s.p.g.)
 - Um corte ímpar $\delta(S)$ divide $V(G) \cup \{w\}$ em dois conjuntos
 - Com |S| ímpar e $V(G) \setminus S$ ímpar

Dado x', calculamos $s'_v = 1 - x'(\delta(v))$ para todo $v \in V$

Então, encontrar S tal que x'(A(S)) > (|S|-1)/2 é equivalente a encontrar S tal que $x'(\delta(S)) + s'(S) < 1$

- Adicione um novo vértice universal w a G
- ullet Defina as capacidade de $\{v,w\}$ como s_v'
- Defina as outras capacidade de acordo com x'
- ullet Queremos um corte ímpar de custo mínimo que não contém w
- Consideramos que |V(G)| é par (s.p.g.)
 - Um corte ímpar $\delta(S)$ divide $V(G) \cup \{w\}$ em dois conjuntos
 - Com |S| ímpar e $V(G) \setminus S$ ímpar
 - Um deles não tem ${\color{red} w}$