MC-202 Curso de C - Parte 3

Rafael C. S. Schouery rafael@ic.unicamp.br

Universidade Estadual de Campinas

2° semestre/2018

A Cifra de César é uma das formas mais simples de criptografia

• E uma das mais fáceis de quebrar...

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- cada letra é trocada pela k-ésima letra após ela

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- cada letra é trocada pela k-ésima letra após ela
 - Se k = 1, a é trocada por b, b por c, c por d, etc

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- cada letra é trocada pela k-ésima letra após ela
 - Se k = 1, a é trocada por b, b por c, c por d, etc
 - Se k = 2, a é trocada por c, b por d, c por e, etc

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- cada letra é trocada pela k-ésima letra após ela
 - Se k = 1, a é trocada por b, b por c, c por d, etc
 - Se k = 2, a é trocada por c, b por d, c por e, etc
 - Se k = -1, a é trocada por z, b por a, c por b, etc

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- cada letra é trocada pela k-ésima letra após ela
 - Se k = 1, a é trocada por b, b por c, c por d, etc
 - Se k = 2, a é trocada por c, b por d, c por e, etc
 - Se k = -1, a é trocada por z, b por a, c por b, etc
- ao chegar no final do alfabeto, nós voltamos para o início

A Cifra de César é uma das formas mais simples de criptografia

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- cada letra é trocada pela k-ésima letra após ela
 - Se k = 1, a é trocada por b, b por c, c por d, etc
 - Se k = 2, a é trocada por c, b por d, c por e, etc
 - Se k = -1, a é trocada por z, b por a, c por b, etc
- ao chegar no final do alfabeto, nós voltamos para o início

Cifra de César para k = 6:

A Cifra de César é uma das formas mais simples de criptografia

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- ullet cada letra é trocada pela k-ésima letra após ela
 - Se k = 1, a é trocada por b, b por c, c por d, etc
 - Se k = 2, a é trocada por c, b por d, c por e, etc
 - Se k = -1, a é trocada por z, b por a, c por b, etc
- ao chegar no final do alfabeto, nós voltamos para o início

Cifra de César para k=6: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

A Cifra de César é uma das formas mais simples de criptografia

- E uma das mais fáceis de quebrar...
- Dado um parâmetro inteiro k
- cada letra é trocada pela k-ésima letra após ela
 - Se k = 1, a é trocada por b, b por c, c por d, etc
 - Se k = 2, a é trocada por c, b por d, c por e, etc
 - Se k = -1, a é trocada por z, b por a, c por b, etc
- ao chegar no final do alfabeto, nós voltamos para o início

Cifra de César para k=6: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

Para desencriptar, basta fazer o mesmo processo para -k

Vamos fazer um programa que encripta uma sequência de letras usando a cifra de César

Vamos fazer um programa que encripta uma sequência de letras usando a cifra de César

Para isso precisamos:

Vamos fazer um programa que encripta uma sequência de letras usando a cifra de César

Para isso precisamos:

• Saber como representar letras no C

Vamos fazer um programa que encripta uma sequência de letras usando a cifra de César

Para isso precisamos:

- Saber como representar letras no C
- Como ler e imprimir letras no C

Vamos fazer um programa que encripta uma sequência de letras usando a cifra de César

Para isso precisamos:

- Saber como representar letras no C
- Como ler e imprimir letras no C
- Como converter as letras de uma maneira prática

Uma letra ou caractere em C é representado pelo tipo char

• é um número inteiro

- é um número inteiro
 - normalmente tem 8 bits (está entre −128 e 127)

- é um número inteiro
 - − normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc

- é um número inteiro
 - normalmente tem 8 bits (está entre -128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos

- é um número inteiro
 - − normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII

- é um número inteiro
 - − normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere

- é um número inteiro
 - normalmente tem 8 bits (está entre -128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples

- é um número inteiro
 - − normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples
 - ex: 'a', 'b', 'c', '\n', etc...

- é um número inteiro
 - − normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples
 - ex: 'a', 'b', 'c', '\n', etc...
 - 'a' significa o número do caractere a na tabela ASCII

- é um número inteiro
 - normalmente tem 8 bits (está entre -128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples
 - ex: 'a', 'b', 'c', '\n', etc...
 - 'a' significa o número do caractere a na tabela ASCII
 - não precisamos saber qual é esse número exatamente...

- é um número inteiro
 - normalmente tem 8 bits (está entre -128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples
 - ex: 'a', 'b', 'c', '\n', etc...
 - 'a' significa o número do caractere a na tabela ASCII
 - não precisamos saber qual é esse número exatamente...
- para ler e imprimir usamos %c

- é um número inteiro
 - normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples
 - ex: 'a', 'b', 'c', '\n', etc...
 - 'a' significa o número do caractere a na tabela ASCII
 - não precisamos saber qual é esse número exatamente...
- para ler e imprimir usamos %c
 - quando queremos o caractere em si

- é um número inteiro
 - normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples
 - ex: 'a', 'b', 'c', '\n', etc...
 - 'a' significa o número do caractere a na tabela ASCII
 - não precisamos saber qual é esse número exatamente...
- para ler e imprimir usamos %c
 - quando queremos o caractere em si
 - ex: printf("letra: %c, código: %d", 'a', 'a');

- é um número inteiro
 - normalmente tem 8 bits (está entre −128 e 127)
 - podemos somar, subtrair, multiplicar, dividir, etc
 - como se fosse um int mas com menos valores válidos
- representa caracteres usando a tabela ASCII
 - cada número representa um caractere
- representamos constantes usando aspas simples
 - ex: 'a', 'b', 'c', '\n', etc...
 - 'a' significa o número do caractere a na tabela ASCII
 - não precisamos saber qual é esse número exatamente...
- para ler e imprimir usamos %c
 - quando queremos o caractere em si
 - ex: printf("letra: %c, código: %d", 'a', 'a');
 - imprime letra: a, código: 97

32	(espaço)	51	3	70	F	89	Υ	108	- 1
33	!	52	4	71	G	90	Z	109	m
34	33	53	5	72	Н	91	[110	n
35	#	54	6	73		92	\	111	0
36	\$	55	7	74	J	93]	112	р
37	%	56	8	75	K	94	\wedge	113	q
38	&	57	9	76	L	95	_	114	r
39	,	58	:	77	M	96	4	115	S
40	(59	;	78	Ν	97	а	116	t
41)	60	<	79	0	98	b	117	u
42	*	61	=	80	Р	99	С	118	V
43	+	62	>	81	Q	100	d	119	W
44	,	63	?	82	R	101	е	120	Х
45	-	64	@	83	S	102	f	121	У
46		65	Α	84	Т	103	g	122	Z
47	/	66	В	85	U	104	h	123	{
48	0	67	С	86	V	105	i	124	
49	1	68	D	87	W	106	j	125	}
50	2	69	Ε	88	X	107	k	126	~

```
32
      (espaço)
                 51
                            70
                                       89
                                              Υ
                                                   108
33
                 52
                            71
                                  G
                                       90
                                                   109
                                                          m
34
                 53
                       5
                            72
                                  Н
                                       91
                                                   110
                                                          n
35
         #
                 54
                       6
                            73
                                       92
                                                   111
                                                          0
         $
36
                 55
                            74
                                       93
                                                   112
                                                          p
37
         %
                 56
                       8
                            75
                                  K
                                       94
                                                   113
                                                          q
38
         &
                 57
                            76
                                       95
                                                   114
39
                 58
                            77
                                  M
                                       96
                                                   115
                                                          S
40
                 59
                            78
                                       97
                                                   116
                                                          t
                                  Ν
                                              а
41
                 60
                            79
                                  0
                                       98
                                                   117
                                              b
                                                          u
42
                                  Ρ
                                       99
                 61
                            80
                                              С
                                                   118
                                                          ٧
43
                 62
                            81
                                  Q
                                       100
                                              d
                                                   119
                       >
                                                          W
44
                 63
                                  R
                                       101
                            82
                                                   120
                                              е
                                                          Х
45
                                  S
                 64
                       @
                            83
                                       102
                                               f
                                                   121
                                                          У
46
                 65
                            84
                                       103
                                                   122
                       Α
                                              g
47
                       В
                                       104
                                              h
                 66
                            85
                                  U
                                                   123
48
         0
                 67
                       С
                            86
                                       105
                                                   124
49
                 68
                       D
                            87
                                  W
                                       106
                                                   125
                       Ε
                                               k
50
                 69
                            88
                                  Χ
                                       107
                                                   126
```

Existem também \t (9 - tab) e \n (12 - quebra de linha)

```
32
      (espaço)
                  51
                        3
                            70
                                        89
                                               Υ
                                                    108
33
                  52
                            71
                                        90
                                                    109
                                                           m
34
                  53
                        5
                            72
                                   Н
                                        91
                                                    110
                                                           n
35
         #
                  54
                       6
                            73
                                        92
                                                    111
                                                           0
         $
36
                  55
                            74
                                        93
                                                    112
                                                           р
37
         %
                  56
                             75
                                   K
                                        94
                                                    113
38
         &
                  57
                            76
                                        95
                                                    114
39
                  58
                            77
                                  M
                                        96
                                                    115
                                                           S
40
                  59
                                        97
                                                    116
                                                           t
                             78
                                               а
41
                 60
                            79
                                        98
                                                    117
                                               b
42
                                        99
                 61
                            80
                                                    118
                                               C
43
                 62
                            81
                                  Q
                                        100
                                               d
                                                    119
                                                           W
44
                 63
                                   R
                                        101
                            82
                                                    120
                                               e
                                                           Х
45
                                   S
                 64
                       @
                            83
                                        102
                                               f
                                                    121
46
                 65
                                        103
                                                    122
                       Α
                            84
                                               g
47
                       В
                                        104
                 66
                            85
                                   U
                                                    123
48
         0
                 67
                       C
                            86
                                        105
                                                    124
49
                 68
                                  W
                                        106
                                                    125
                       D
                            87
                        F
50
                 69
                            88
                                   Χ
                                        107
                                               k
                                                    126
```

Existem também \t (9 - tab) e \n (12 - quebra de linha)

Outros códigos não-negativos não são imprimíveis

```
32
                  51
                        3
                             70
                                               Υ
                                                    108
      (espaço)
                                        89
33
                  52
                             71
                                        90
                                                    109
                                                           m
34
                  53
                             72
                                        91
                                                    110
                                                            n
35
         #
                  54
                        6
                             73
                                        92
                                                    111
                                                            0
         $
36
                  55
                             74
                                        93
                                                    112
37
         %
                  56
                             75
                                   K
                                        94
                                                    113
38
         &
                  57
                             76
                                        95
                                                    114
39
                  58
                             77
                                        96
                                                    115
                                                            S
40
                  59
                                        97
                                                    116
                             78
                                               а
41
                             79
                                        98
                                                    117
                  60
                                               b
42
                  61
                             80
                                        99
                                                    118
                                               C
43
                  62
                             81
                                        100
                                                    119
                                               d
                                                           W
44
                  63
                             82
                                   R
                                        101
                                                    120
                                               e
                                                            Х
45
                                   S
                  64
                        @
                             83
                                        102
                                                f
                                                    121
46
                                        103
                                                    122
                  65
                        Α
                             84
                                               g
47
                  66
                        В
                             85
                                   U
                                        104
                                                    123
48
         0
                  67
                        C
                             86
                                        105
                                                    124
49
                                        106
                  68
                        D
                             87
                                   W
                                                    125
                        F
50
                  69
                             88
                                   Χ
                                        107
                                                k
                                                    126
```

Existem também \t (9 - tab) e \n (12 - quebra de linha)

- Outros códigos não-negativos não são imprimíveis
- códigos negativos são usados para outros caracteres

```
1 #include <stdio.h>
2
3 int main() {
4 int k;
5 char plain, cripto;
6 scanf("%d ", &k);
7
    scanf("%c", &plain);
   while (plain != '#') {
8
9
    cripto = 'A' + (plain - 'A' + 26 + k) % 26;
   printf("%c", cripto);
10
    scanf("%c", &plain);
11
12 }
13 printf("\n");
14 return 0;
15 }
```

```
1 #include <stdio.h>
3 int main() {
4 int k;
5 char plain, cripto;
6 scanf("%d ", &k);
7
    scanf("%c", &plain);
8 while (plain != '#') {
9
    cripto = 'A' + (plain - 'A' + 26 + k) % 26;
   printf("%c", cripto);
10
scanf("%c", &plain);
12 }
13 printf("\n");
14 return 0;
15 }
```

```
1 #include <stdio.h>
3 int main() {
4 int k;
5 char plain, cripto;
6 scanf("%d ", &k);
7
    scanf("%c", &plain);
8 while (plain != '#') {
      cripto = 'A' + (plain - 'A' + 26 + k) % 26;
9
    printf("%c", cripto);
10
      scanf("%c", &plain);
11
12 }
13 printf("\n");
14 return 0;
15 }
```

Detalhes:

• Há um espaço após o %d

```
1 #include <stdio.h>
3 int main() {
4 int k;
5 char plain, cripto;
  scanf("%d ", &k);
    scanf("%c", &plain);
    while (plain != '#') {
8
      cripto = 'A' + (plain - 'A' + 26 + k) % 26;
9
    printf("%c", cripto);
10
      scanf("%c", &plain);
11
12 }
13 printf("\n");
14 return 0;
15 }
```

- Há um espaço após o %d
 - − consome os próximos caracteres brancos: espaço, \n e \t

```
1 #include <stdio.h>
3 int main() {
4 int k;
5 char plain, cripto;
  scanf("%d ", &k);
    scanf("%c", &plain);
    while (plain != '#') {
8
      cripto = 'A' + (plain - 'A' + 26 + k) % 26;
9
    printf("%c", cripto);
10
      scanf("%c", &plain);
11
12
13 printf("\n");
14 return 0;
15 }
```

- Há um espaço após o %d
 - consome os próximos caracteres brancos: espaço, \n e \t
 - sem isso, o scanf leria um \n

```
1 #include <stdio.h>
3 int main() {
4 int k;
5 char plain, cripto;
6 scanf("%d ", &k);
    scanf("%c", &plain);
    while (plain != '#') {
8
      cripto = 'A' + (plain - 'A' + 26 + k) % 26;
9
    printf("%c", cripto);
10
      scanf("%c", &plain);
11
12
13 printf("\n");
14 return 0:
15 }
```

- Há um espaço após o %d
 - consome os próximos caracteres brancos: espaço, \n e \t
 - sem isso, o scanf leria um \n
 - cuidado, o C é chato na leitura de caracteres...

```
1 #include <stdio.h>
3 int main() {
4 int k;
5 char plain, cripto;
  scanf("%d ", &k);
    scanf("%c", &plain);
    while (plain != '#') {
      cripto = 'A' + (plain - 'A' + 26 + k) % 26;
9
      printf("%c", cripto);
10
      scanf("%c", &plain);
11
12
  printf("\n");
14 return 0:
15 }
```

- Há um espaço após o %d
 - consome os próximos caracteres brancos: espaço, \n e \t
 - sem isso, o scanf leria um \n
 - cuidado, o C é chato na leitura de caracteres...
- Em C, -37 % 26 é -11 e -15 % 26 é -15

```
1 #include <stdio.h>
3 int main() {
4 int k;
5 char plain, cripto;
   scanf("%d ", &k);
    scanf("%c", &plain);
    while (plain != '#') {
      cripto = 'A' + (plain - 'A' + 26 + k) % 26;
      printf("%c", cripto);
10
      scanf("%c", &plain);
11
12
  printf("\n");
14 return 0:
15 }
```

- Há um espaço após o %d
 - consome os próximos caracteres brancos: espaço, \n e \t
 - sem isso, o scanf leria um \n
 - cuidado, o C é chato na leitura de caracteres...
- Em C, -37 % 26 é -11 e -15 % 26 é -15
 - por isso é necessário somar 26 na linha 9

Como no Python, os operadores de comparação a seguir:

Como no Python, os operadores de comparação a seguir:

Como no Python, os operadores de comparação a seguir:

- <, <=, >, >=, == e !=
- mas não temos o operador is

Como no Python, os operadores de comparação a seguir:

- <, <=, >, >=, == e !=
- mas n\(\tilde{a}\) temos o operador is

Em C, não temos o tipo bool

Como no Python, os operadores de comparação a seguir:

- <, <=, >, >=, == e !=
- mas não temos o operador is

Em C, não temos o tipo bool

O C considera o valor o como falso

Como no Python, os operadores de comparação a seguir:

- <, <=, >, >=, == e !=
- mas não temos o operador is

Em C, não temos o tipo bool

- O C considera o valor o como falso
- E valores diferentes de 0 como verdadeiro

Como no Python, os operadores de comparação a seguir:

- <, <=, >, >=, == e !=
- mas n\(\tilde{a}\) temos o operador is

Em C, não temos o tipo bool

- O C considera o valor o como falso
- E valores diferentes de 0 como verdadeiro

Os operadores lógicos são diferentes em C:

Como no Python, os operadores de comparação a seguir:

- <, <=, >, >=, == e !=
- mas n\(\tilde{a}\) temos o operador is

Em C, não temos o tipo bool

- O C considera o valor o como falso
- E valores diferentes de 0 como verdadeiro

Os operadores lógicos são diferentes em C:

	Python	С
Е	and	&&
Ou	or	-11
Não	not	!

Queremos buscar por um padrão em um texto

Queremos buscar por um padrão em um texto

• Permitimos usar * como coringa

.

Queremos buscar por um padrão em um texto

Permitimos usar * como coringa

Por exemplo, se procurarmos por *os no seguinte texto:

Queremos buscar por um padrão em um texto

Permitimos usar * como coringa

Por exemplo, se procurarmos por *os no seguinte texto:

Muito além, nos confins inexplorados da região mais brega da Borda Ocidental desta Galáxia, há um pequeno sol amarelo e esquecido.¹

¹Douglas Adams, O Guia do Mochileiro das Galáxias, Editora Arquiteto, 2004

Queremos buscar por um padrão em um texto

Permitimos usar * como coringa

Por exemplo, se procurarmos por *os no seguinte texto:

Muito além, nos confins inexplorados da região mais brega da Borda Ocidental desta Galáxia, há um pequeno sol amarelo e esquecido.¹

encontraremos nos e dos

¹Douglas Adams, O Guia do Mochileiro das Galáxias, Editora Arquiteto, 2004

Queremos buscar por um padrão em um texto

Permitimos usar * como coringa

Por exemplo, se procurarmos por *os no seguinte texto:

Muito além, nos confins inexplorados da região mais brega da Borda Ocidental desta Galáxia, há um pequeno sol amarelo e esquecido.¹

encontraremos nos e dos

Para cada posição do texto, verifique se o padrão começa ali

¹Douglas Adams, O Guia do Mochileiro das Galáxias, Editora Arquiteto, 2004

Queremos buscar por um padrão em um texto

Permitimos usar * como coringa

Por exemplo, se procurarmos por *os no seguinte texto:

Muito além, nos confins inexplorados da região mais brega da Borda Ocidental desta Galáxia, há um pequeno sol amarelo e esquecido.¹

encontraremos nos e dos

Para cada posição do texto, verifique se o padrão começa ali

• Existem algoritmos melhores do que esse

¹Douglas Adams, O Guia do Mochileiro das Galáxias, Editora Arquiteto, 2004

Queremos buscar por um padrão em um texto

Permitimos usar * como coringa

Por exemplo, se procurarmos por *os no seguinte texto:

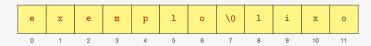
Muito além, nos confins inexplorados da região mais brega da Borda Ocidental desta Galáxia, há um pequeno sol amarelo e esquecido.¹

encontraremos nos e dos

Para cada posição do texto, verifique se o padrão começa ali

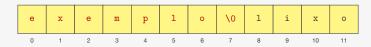
- Existem algoritmos melhores do que esse
- Vamos trabalhar com strings sem acentos

¹Douglas Adams, O Guia do Mochileiro das Galáxias, Editora Arquiteto, 2004


Strings em C são vetores de char terminados com '\0'

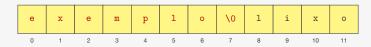
Strings em C são vetores de char terminados com '\0'

 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres


Strings em C são vetores de char terminados com '\0'

 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres

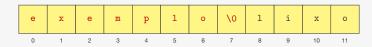
Strings em C são vetores de char terminados com '\0'


 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres

O tamanho da string é o número de caracteres até o '\0'

Strings em C são vetores de char terminados com '\0'

 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres

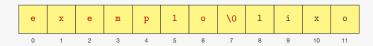


O tamanho da string é o número de caracteres até o '\0'

```
1 int tamanho(char string[]) {
2   int i;
3   for (i = 0; string[i] != '\0'; i++);
4   return i;
5 }
```

Strings em C são vetores de char terminados com '\0'

 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres


O tamanho da string é o número de caracteres até o '\0'

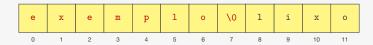
```
1 int tamanho(char string[]) {
2   int i;
3   for (i = 0; string[i] != '\0'; i++);
4   return i;
5 }
```

Note que esse for tem um bloco vazio

Strings em C são vetores de char terminados com '\0'

 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres

O tamanho da string é o número de caracteres até o '\0'


```
1 int tamanho(char string[]) {
2   int i;
3   for (i = 0; string[i] != '\0'; i++);
4   return i;
5 }
```

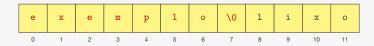
Note que esse for tem um bloco vazio

é raro usarmos isso (e algumas pessoas não gostam)

Strings em C são vetores de char terminados com '\0'

 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres

O tamanho da string é o número de caracteres até o '\0'


```
1 int tamanho(char string[]) {
2   int i;
3   for (i = 0; string[i] != '\0'; i++);
4   return i;
5 }
```

Note que esse for tem um bloco vazio

- é raro usarmos isso (e algumas pessoas não gostam)
- poderia ser trocado por um while (exercício)

Strings em C são vetores de char terminados com '\0'

 Por exemplo, podemos ter um vetor de char com 12 posições mas a string ter apenas 7 caracteres

O tamanho da string é o número de caracteres até o '\0'

```
1 int tamanho(char string[]) {
2   int i;
3   for (i = 0; string[i] != '\0'; i++);
4   return i;
5 }
```

Note que esse for tem um bloco vazio

- é raro usarmos isso (e algumas pessoas não gostam)
- poderia ser trocado por um while (exercício)
- um for desses pode ser um bug no seu programa

Imprimindo uma substring

Queremos uma função que imprima um trecho de um texto

Imprimindo uma substring

Queremos uma função que imprima um trecho de um texto

• imprimiremos o pedaço correspondente ao padrão

Imprimindo uma substring

Queremos uma função que imprima um trecho de um texto

• imprimiremos o pedaço correspondente ao padrão

```
1 void imprime_padrao(char texto[], int ini, int fim) {
2    int j;
3    printf("%d: ", ini);
4    for (j = ini; j <= fim; j++)
5        printf("%c", texto[j]);
6    printf("\n");
7 }</pre>
```

Queremos uma função que imprima um trecho de um texto

• imprimiremos o pedaço correspondente ao padrão

```
1 void imprime_padrao(char texto[], int ini, int fim) {
2    int j;
3    printf("%d: ", ini);
4    for (j = ini; j <= fim; j++)
5        printf("%c", texto[j]);
6    printf("\n");
7 }</pre>
```

Um bug:

Queremos uma função que imprima um trecho de um texto

imprimiremos o pedaço correspondente ao padrão

```
1 void imprime_padrao(char texto[], int ini, int fim) {
2    int j;
3    printf("%d: ", ini);
4    for (j = ini; j <= fim; j++)
5        printf("%c", texto[j]);
6    printf("\n");
7 }</pre>
```

Um bug:

pode ser que fim esteja além do término da string

Queremos uma função que imprima um trecho de um texto

imprimiremos o pedaço correspondente ao padrão

```
1 void imprime_padrao(char texto[], int ini, int fim) {
2    int j;
3    printf("%d: ", ini);
4    for (j = ini; j <= fim; j++)
5        printf("%c", texto[j]);
6    printf("\n");
7 }</pre>
```

Um bug:

- pode ser que fim esteja além do término da string
- poderíamos parar antes se encontrarmos o '\0'

Queremos uma função que imprima um trecho de um texto

imprimiremos o pedaço correspondente ao padrão

```
1 void imprime_padrao(char texto[], int ini, int fim) {
2    int j;
3    printf("%d: ", ini);
4    for (j = ini; j <= fim; j++)
5        printf("%c", texto[j]);
6    printf("\n");
7 }</pre>
```

Um bug:

- pode ser que fim esteja além do término da string
- poderíamos parar antes se encontrarmos o '\0'

Podemos imprimir a string char a char

Queremos uma função que imprima um trecho de um texto

imprimiremos o pedaço correspondente ao padrão

```
1 void imprime_padrao(char texto[], int ini, int fim) {
2    int j;
3    printf("%d: ", ini);
4    for (j = ini; j <= fim; j++)
5        printf("%c", texto[j]);
6    printf("\n");
7 }</pre>
```

Um bug:

- pode ser que fim esteja além do término da string
- poderíamos parar antes se encontrarmos o '\0'

Podemos imprimir a string char a char

mas veremos uma forma mais fácil

Queremos ver se padrao ocorre na posição pos do texto

Queremos ver se padrao ocorre na posição pos do texto

• função devolve 0 se não ocorre

Queremos ver se padrao ocorre na posição pos do texto

- função devolve 0 se não ocorre
- função devolve diferente de 0 caso contrário

Queremos ver se padrao ocorre na posição pos do texto

- função devolve o se não ocorre
- função devolve diferente de 0 caso contrário

```
1 int ocorre(char texto[], int pos, char padrao[]) {
2   int j;
3   for (j = 0; padrao[j] != '\0'; j++)
4    if (texto[pos+j] == '\0' ||
5         (texto[pos+j] != padrao[j] && padrao[j] != '*'))
6    return 0;
7   return 1;
8 }
```

Queremos ver se padrao ocorre na posição pos do texto

- função devolve o se não ocorre
- função devolve diferente de 0 caso contrário

```
1 int ocorre(char texto[], int pos, char padrao[]) {
2   int j;
3   for (j = 0; padrao[j] != '\0'; j++)
4    if (texto[pos+j] == '\0' ||
5         (texto[pos+j] != padrao[j] && padrao[j] != '*'))
6    return 0;
7   return 1;
8 }
```

Note o uso de II e &&:

Queremos ver se padrao ocorre na posição pos do texto

- função devolve 0 se não ocorre
- função devolve diferente de 0 caso contrário

```
1 int ocorre(char texto[], int pos, char padrao[]) {
2   int j;
3   for (j = 0; padrao[j] != '\0'; j++)
4    if (texto[pos+j] == '\0' ||
5         (texto[pos+j] != padrao[j] && padrao[j] != '*'))
6    return 0;
7   return 1;
8 }
```

Note o uso de II e &&:

• && precede | |

Queremos ver se padrao ocorre na posição pos do texto

- função devolve 0 se não ocorre
- função devolve diferente de 0 caso contrário

```
1 int ocorre(char texto[], int pos, char padrao[]) {
2   int j;
3   for (j = 0; padrao[j] != '\0'; j++)
4    if (texto[pos+j] == '\0' ||
5         (texto[pos+j] != padrao[j] && padrao[j] != '*'))
6    return 0;
7   return 1;
8 }
```

Note o uso de 11 e &&:

- && precede | |
- mas os parênteses deixam clara a ordem de precedência

```
1 int main(){
2 int i;
3 char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
4
5
   fgets(texto, MAX, stdin);
   printf("Procurando por %s no texto: %s\n", padrao, texto);
6
7
    for (i = 0; texto[i] != '\0'; i++)
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

```
1 int main(){
2
  int i;
3 char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
5
   fgets(texto, MAX, stdin);
   printf("Procurando por %s no texto: %s\n", padrao, texto);
6
7
   for (i = 0; texto[i] != '\0'; i++)
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

Imprimimos strings usando %s

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8    if (ocorre(texto, i, padrao))
9     imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10  return 0;
11 }
```

Imprimimos strings usando %s

Lemos strings sem espaço usando %s:

```
1 int main(){
2 int i;
3 char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
5 fgets(texto, MAX, stdin);
   printf("Procurando por %s no texto: %s\n", padrao, texto);
6
7
   for (i = 0; texto[i] != '\0'; i++)
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

Imprimimos strings usando %s

Lemos strings sem espaço usando %s:

• isto é, lê até o primeiro espaço, '\n' ou '\t'

```
1 int main(){
  int i:
    char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
5
    fgets(texto, MAX, stdin);
    printf("Procurando por %s no texto: %s\n", padrao, texto);
6
    for (i = 0; texto[i] != '\0'; i++)
7
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

Imprimimos strings usando %s

Lemos strings sem espaço usando %s:

- isto é, lê até o primeiro espaço, '\n' ou '\t'
- não colocamos o & antes do nome da variável

```
1 int main(){
2 int i;
3 char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
4
    fgets(texto, MAX, stdin);
5
6
   printf("Procurando por %s no texto: %s\n", padrao, texto);
    for (i = 0; texto[i] != '\0'; i++)
7
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8   if (ocorre(texto, i, padrao))
9   imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10   return 0;
11 }
```

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8   if (ocorre(texto, i, padrao))
9   imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10   return 0;
11 }
```

Lemos strings com espaços usando a função fgets:

primeiro parâmetro: nome da variável

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8    if (ocorre(texto, i, padrao))
9    imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10  return 0;
11 }
```

- primeiro parâmetro: nome da variável
- segundo parâmetro: tamanho máximo da string

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8    if (ocorre(texto, i, padrao))
9    imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10   return 0;
11 }
```

- primeiro parâmetro: nome da variável
- segundo parâmetro: tamanho máximo da string
 - contando o '\0'

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8    if (ocorre(texto, i, padrao))
9     imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10   return 0;
11 }
```

- primeiro parâmetro: nome da variável
- segundo parâmetro: tamanho máximo da string
 contando o '\0'
- terceiro parâmetro: de qual arquivo devêmos ler

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8    if (ocorre(texto, i, padrao))
9     imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10   return 0;
11 }
```

- primeiro parâmetro: nome da variável
- segundo parâmetro: tamanho máximo da string
 - contando o '\0'
- terceiro parâmetro: de qual arquivo devêmos ler
 - estamos da entrada padrão, por isso passamos stdin

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8    if (ocorre(texto, i, padrao))
9    imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10   return 0;
11 }
```

Lemos strings com espaços usando a função fgets:

- primeiro parâmetro: nome da variável
- segundo parâmetro: tamanho máximo da string
 - contando o '\0'
- terceiro parâmetro: de qual arquivo devêmos ler
 - estamos da entrada padrão, por isso passamos stdin

O fgets lê apenas até o primeiro '\n'

```
1 int main(){
2   int i;
3   char texto[MAX], padrao[MAX];
4   scanf("%s ", padrao);
5   fgets(texto, MAX, stdin);
6   printf("Procurando por %s no texto: %s\n", padrao, texto);
7   for (i = 0; texto[i] != '\0'; i++)
8    if (ocorre(texto, i, padrao))
9    imprime_padrao(texto, i, i + tamanho(padrao) - 1);
10   return 0;
11 }
```

Lemos strings com espaços usando a função fgets:

- primeiro parâmetro: nome da variável
- segundo parâmetro: tamanho máximo da string
 - contando o '\0'
- terceiro parâmetro: de qual arquivo devêmos ler
 - estamos da entrada padrão, por isso passamos stdin

O fgets lê apenas até o primeiro '\n'

• e pode incluir o '\n' na string

```
1 int main(){
2
  int i;
    char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
4
5
    fgets(texto, MAX, stdin);
    printf("Procurando por %s no texto: %s\n", padrao, texto);
6
7
    for (i = 0; texto[i] != '\0'; i++)
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

```
1 int main(){
2 int i;
    char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
5 fgets(texto, MAX, stdin);
   printf("Procurando por %s no texto: %s\n", padrao, texto);
6
7
    for (i = 0; texto[i] != '\0'; i++)
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

Por que colocamos o espaço após o %s na linha 4?

```
1 int main(){
    int i;
    char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
5
    fgets(texto, MAX, stdin);
    printf("Procurando por %s no texto: %s\n", padrao, texto);
6
    for (i = 0; texto[i] != '\0'; i++)
7
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

Por que colocamos o espaço após o %s na linha 4?

para consumir os espaços em branco depois da string...

```
1 int main(){
2 int i;
    char texto[MAX], padrao[MAX];
    scanf("%s ", padrao);
5
    fgets(texto, MAX, stdin);
    printf("Procurando por %s no texto: %s\n", padrao, texto);
6
    for (i = 0; texto[i] != '\0'; i++)
7
      if (ocorre(texto, i, padrao))
8
        imprime_padrao(texto, i, i + tamanho(padrao) - 1);
9
    return 0;
10
11 }
```

Por que colocamos o espaço após o %s na linha 4?

para consumir os espaços em branco depois da string...

Caso contrário, o fgets poderia ler apenas o \n após o padrão

A biblioteca string.h tem várias funções úteis:

A biblioteca string.h tem várias funções úteis: strlen devolve o tamanho da string

A biblioteca string.h tem várias funções úteis:

A biblioteca string.h tem várias funções úteis:

A biblioteca string.h tem várias funções úteis:

strlen devolve o tamanho da string

strcmp compara duas strings já que não podemos usar

<, <=, >, >=, == e !=

strcpy copia uma string

strcat concatena duas strings

```
A biblioteca string.h tem várias funções úteis:

strlen devolve o tamanho da string

strcmp compara duas strings já que não podemos usar

<, <=, >, >=, == e !=

strcpy copia uma string

strcat concatena duas strings

entre outras...
```

A biblioteca string.h

```
A biblioteca string.h tem várias funções úteis:

strlen devolve o tamanho da string

strcmp compara duas strings já que não podemos usar

<, <=, >, >=, == e !=

strcpy copia uma string

strcat concatena duas strings

entre outras...
```

Veja o manual para a documentação

A biblioteca string.h

```
A biblioteca string.h tem várias funções úteis:

strlen devolve o tamanho da string

strcmp compara duas strings já que não podemos usar

<, <=, >, >=, == e !=

strcpy copia uma string

strcat concatena duas strings

entre outras...
```

Veja o manual para a documentação

• exemplo: man strlen

A biblioteca string.h

A biblioteca string.h tem várias funções úteis:

strlen devolve o tamanho da string

strcmp compara duas strings já que não podemos usar

<, <=, >, >=, == e !=

strcpy copia uma string

strcat concatena duas strings

entre outras...

Veja o manual para a documentação

• exemplo: man strlen

Não confunda com a biblioteca strings.h

Tipos mais comuns do C

dado	tipo	formato	ex. de constante
inteiros	int	%d	10
ponto flutuante	float	%f %g %e	10.0f 2e-3f
ponto flutuante (precisão dupla)	double	%lf %lg %le	10.0 2e-3
caracter	char	%с	'c'
string	char []	%s	"string"

Lembrando que %s lê strings sem espaço

Temos variações de tamanho para int:

• short OU short int - %hi

- short OU short int %hi
 - pelo menos 16 bits

- short Ou short int %hipelo menos 16 bits
- int %d ou %i

- short OU short int %hi
 - pelo menos 16 bits
- int %d ou %i
 - pelo menos 16 bits

- short Ou short int %hi
 - pelo menos 16 bits
- int %d OU %i
 - pelo menos 16 bits
- long Ou long int %li

- short OU short int %hi
 - pelo menos 16 bits
- int %d OU %i
 - pelo menos 16 bits
- long OU long int %li
 - pelo menos 32 bits

- short OU short int %hipelo menos 16 bits
- int %d ou %i
 - pelo menos 16 bits
- long OU long int %li
 - pelo menos 32 bits
- long long OU long long int %lli

- short OU short int %hi
 - pelo menos 16 bits
- int %d OU %i
 - pelo menos 16 bits
- long Ou long int %li
 - pelo menos 32 bits
- long long OU long long int %lli
 - pelo menos 64 bits

- short OU short int %hi
 - pelo menos 16 bits
- int %d Ou %i
 - pelo menos 16 bits
- long Ou long int %li
 - pelo menos 32 bits
- long long OU long long int %lli
 - pelo menos 64 bits
 - não suportado por C89

Temos variações de tamanho para int:

- short OU short int %hi
 - pelo menos 16 bits
- int %d OU %i
 - pelo menos 16 bits
- long OU long int %li
 - pelo menos 32 bits
- long long OU long long int %lli
 - pelo menos 64 bits
 - não suportado por C89

A quantidade de bits pode variar de acordo com a plataforma

Temos variações de tamanho para int:

- short OU short int %hi
 - pelo menos 16 bits
- int %d OU %i
 - pelo menos 16 bits
- long OU long int %li
 - pelo menos 32 bits
- long long OU long long int %lli
 - pelo menos 64 bits
 - não suportado por C89

A quantidade de bits pode variar de acordo com a plataforma

por exemplo, int em geral tem 32 bits

Temos variações de tamanho para int:

- short OU short int %hi
 - pelo menos 16 bits
- int %d OU %i
 - pelo menos 16 bits
- long OU long int %li
 - pelo menos 32 bits
- long long OU long long int %lli
 - pelo menos 64 bits
 - não suportado por C89

A quantidade de bits pode variar de acordo com a plataforma

- por exemplo, int em geral tem 32 bits
- mas a especificação diz pelo menos 16 bits

Temos variações de tamanho para int:

- short OU short int %hi
 - pelo menos 16 bits
- int %d OU %i
 - pelo menos 16 bits
- long OU long int %li
 - pelo menos 32 bits
- long long OU long long int %lli
 - pelo menos 64 bits
 - não suportado por C89

A quantidade de bits pode variar de acordo com a plataforma

- por exemplo, int em geral tem 32 bits
- mas a especificação diz pelo menos 16 bits

A vantagem é poder escolher entre economizar memória ou representar mais números

Temos também as versões sem sinal (unsigned):

• unsigned char - (%c)

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)
- unsigned long OU unsigned long int (%lu)

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)
- unsigned long OU unsigned long int (%lu)
- unsigned long long OU unsigned long long int-(%llu)

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)
- unsigned long OU unsigned long int (%lu)
- unsigned long long OU unsigned long long int-(%llu)
 - não suportado por C89

Temos também as versões sem sinal (unsigned):

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)
- unsigned long OU unsigned long int (%lu)
- unsigned long long OU unsigned long long int-(%llu)
 - não suportado por C89

A vantagem do unsigned:

Temos também as versões sem sinal (unsigned):

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)
- unsigned long OU unsigned long int (%lu)
- unsigned long long OU unsigned long long int-(%llu)
 - não suportado por C89

A vantagem do unsigned:

 se você for trabalhar apenas com números não-negativos, você consegue representar mais números...

Temos também as versões sem sinal (unsigned):

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)
- unsigned long OU unsigned long int (%lu)
- unsigned long long OU unsigned long long int-(%llu)
 - não suportado por C89

A vantagem do unsigned:

 se você for trabalhar apenas com números não-negativos, você consegue representar mais números...

Em geral, trabalhamos apenas com os tipos básicos

Temos também as versões sem sinal (unsigned):

- unsigned char (%c)
- unsigned short OU unsigned short int (%hu)
- unsigned OU unsigned int (%u)
- unsigned long OU unsigned long int (%lu)
- unsigned long long OU unsigned long long int-(%llu)
 - não suportado por C89

A vantagem do unsigned:

 se você for trabalhar apenas com números não-negativos, você consegue representar mais números...

Em geral, trabalhamos apenas com os tipos básicos

• int, double e char

Exercício

Faça uma função void copia(char str1[], char str2[]) que copia o conteúdo de str1 para str2.

Exercício

Faça uma função void reverte(char str[]) que reverte o conteúdo de str.

Exemplo: Se a string era "MC202-2s", a string deve passar a ser "s2-202CM".

Exercício

Faça uma função int compara(char str1[], char str2[]) que

- devolve 0 se as strings são iguais
- devolve um número menor do que zero se str1 é lexograficamente menor do que str2
- devolve um número maior do que zero caso contrário