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Abstract—Virtual machines are versatile systems that can
support innovative solutions to many problems. These systems
usually rely on emulation techniques, such as interpretation and
dynamic binary translation, to execute guest application code.
Usually, in order to select the best emulation technique for
each code segment, the system must predict whether the code is
worth compiling (frequently executed) or not, known as hotness
prediction.

In this paper we show that the threshold-based hot code
predictor, frequently mispredicts the code hotness and as a
result the VM emulation performance become dominated by
miscompilations. To do so, we developed a mathematical model
to simulate the behavior of such predictor and using it we
quantify and characterize the impact of mispredictions in several
benchmarks. We also show how the threshold choice can affect
the predictor, what are the major overhead components and how
using SPEC to analyze a VM performance can lead to misleading
results.

I. INTRODUCTION

One of the main goal of a Virtual Machine (VM) [1] is
to enable a given guest software to execute on a platform,
the host environment, other than that which it was originally
meant to run on, the guest environment. This is accom-
plished by supporting the guest environment interface using
the host environment. There are plenty of virtual execution
environments [2]-[14], some targeted at emulating a sole
application (process VMs) and others at emulating a whole
system (system VMs). Besides portability [5], [14], [15], VMs
can be used for several others purposes like: to support legacy
code execution [7], [12], dynamic program optimization [4],
[6], [8], program shepherding [9], [10] and dynamic program
instrumentation [11].

Virtual machines are very versatile, but they come with
an inherent price: the emulation cost. Following the VM tax-
onomy proposed by Smith and Nair [1], regarding emulation
technique, there are two main classes of VMs: those that use
interpretation and those that use translation.

Interpretation is the simplest and most direct approach. In
this kind of emulation, the VM has routines to emulate the
behavior of each instruction in the guest instruction set archi-
tecture (ISA). Since every instruction of the guest software
triggers an emulation routine, this method is typically slow.

Translation is a more sophisticated approach. In this tech-
nique, the source representation of the guest software is
dynamically translated into code that runs natively on the host
ISA. The performance of the translated code is comparable
to native execution and is much faster than interpretation.
However, the cost to perform the translation is high and thus
it is only profitable on code regions that have an execution

frequency high enough to benefit from the execution of the
optimized/translated code.

In order to maximize performance, it is important to
prevent translation of infrequently executed code (cold code)
and to translate frequently executed code (hot code) as soon
as possible. To do so, state-of-the-art VMs [4], [12], [14]
rely on hot code prediction. In this case the VM is typically
uses a hot code predictor that employs some kind of heuristic
to predict whether a given code region will be frequently
executed or not. Until the moment that the predictor flags
a region as hot, the VM uses an emulation technique with
low startup overheads, generally interpretation or a quick form
of translation, and postpones any code optimization. When a
code region is flagged as hot, the VM switches to a second
stage. In this stage, the VM constructs a new code region
(e.g. a trace [4], [5], [8], [14]) containing the hot code and
optimize this region by doing an optimizing translation or
further optimizing previously translated code. After optimized
the code is stored in a code cache for future re-execution.

A widely used approach to predict hot code is based on
execution frequency thresholds [2], [4]-[8], [14], [16]. This
predictor is very simple: it flags a region as hot if and only
if it reaches a fixed execution frequency threshold, which we
refer to as T'p. The rationale behind it is: infrequently executed
code regions do not reach the threshold. However there are
occasions that a region have an actual accumulated execution
count sufficiently high to reach the prediction threshold but
its final execution count is not high enough to compensate for
the compilation overhead. We call such regions warm code
and when the predictor flags a warm code region as hot we
say that a hot code misprediction occurred. From now on
we will call this predictor the threshold-based predictor (or
simply TBP), and its behavior and how mispredictions affect
the performance of its corresponding VM are subject of study
in this work. The focus of this study is cross-ISA VMs (a
cross-ISA VM is one where the guest and host interfaces are
different), since on same-ISA VMs the translation cost may be
negligible because in general only a copy of the guest code is
done to “emulate” it.

Besides being used on several Cross-ISA VMs, such as
Transmeta CMS [12], HP Dynamo [4], Mojo [6], [A32-
EL [5], StarDBT [8], Aries [7] and others, we show that
the TBP’s hypothesis is not sufficiently strong to be used in
VMs that have a workload composed of large code footprint
applications. Specifically, we show that for a wide range of VM
configurations the maximum overhead due to mispredictions is
no greater than 10% when the VM is executing workloads from
SPEC CPU 2006 [17], however when the VM is executing
applications from Sysmark 2012 [18], our experiments indicate



a minimum overhead of 27%.

The contributions of this work are as follows:

e  An analytical model to estimate and characterize the
misprediction overhead of threshold-based hot code
predictors (Section III).

e A characterization of the emulation overhead due
to hot code misprediction in a VM executing three
different workloads (Figures 5 and 6).

e We show that as the VM employs more cycles to
translate/optimize regions the misprediction overhead
sharply increases (Figures 3 and 4).

e We show that for large code footprint applications,
using TBP may lead to many mispredictions and,
in many cases, the optimized code execution is not
capable of amortizing the overhead caused by mispre-
dictions (Figure 3).

This text is organized as follows. In Section II we present
a motivation for this work. Section III presents an analytical
model to quantify and characterize hot code misprediction
overhead. Section IV presents the methodology we used in our
experiments. In Section V we present our results for hot code
misprediction overhead for a VM emulating SPEC CPU 2006,
Sysmark 2012 and three operating system boots. In Section VI
we present related works. Finally, in Section VII we present
our conclusions.

II. MOTIVATION

Performing translation or heavy optimizations on
cold/warm code may add a significant overhead to the
emulation process as their execution frequency may not be
sufficiently high to amortize the translation/optimization cost.
This is typically the case when the hot code predictor misses
the prediction.

In the following example, we assume a two-staged VM
that employs interpretation to emulate cold code and Dynamic
Binary Translation (DBT) to emulate hot code. The translator
produces faster emulation code than the interpreter, however
it employs an expensive process. Therefore, without lack of
generality, assume that the VM translator takes 1,000 cycles
to translate and one cycle to execute each instruction, while
the interpreter takes 50 cycles to emulate each instruction. As
shown in Table I, the interpreter of this virtual machine (second
column) would take 250 cycles to emulate an instruction that
executes 5 times (first row) and 10,000 cycles to emulate an
instruction that executes 200 times (second row), a total of
10250 cycles. Meanwhile the translator (third column) would
take 1005 cycles to emulate an instruction that executes 5 times
and 1200 cycles to emulate an instruction that executes 200
times, a total of 2205 cycles and, 4.65 times faster than the
interpreter.

Freq. In. Cost Tr. Cost Cb. Cost Pr. Cost, Tp =6

5 5x 50 | 1000 + 5 5 x 50 5 x 50
200 200 x 50 1000 + 200 | 1000 + 200 300 4 1194
Total 10250 2205 1450 1744

Table I: Example of emulation and misprediction overhead.

An even faster approach would be to interpret the instruc-
tion that executes 5 times and to translate the instruction that
executes 200 times (fourth column). This combination would
take a total of 1450 cycles and would be 7.07 times faster than
to use only interpretation and 1.5 times faster than to translate
both instructions. According to this example the best emulation
technique for each code segment depends on the number of
times the region executes, and combining different techniques
may allow us to reduce the emulation cost. However, since the
execution frequency of instructions is not known beforehand, it
is important to predict whether the code will be hot or cold in
order to select the best emulation technique for each instruction
(or code segment).

If we apply the TBP with threshold 7> = 6 to the previous
example (fifth column), the VM would spend 250 (5 x 50)
cycles interpreting the instruction that executes 5 times and 300
(6 x 50) cycles interpreting plus, 1194 cycles translating and
executing the translated code for the instruction that executes
200 times. The total emulation time, 1744 cycles, is 20%
higher than the combined case, in which the cold instruction
is interpreted and the hot instruction is translated beforehand.
This extra overhead occurs because, in this approach, hot
code is emulated as if it was cold code (using interpretation)
until it is predicted as hot. This way from the VM designer
perspective it is important to use a prediction threshold (7)
as smaller as possible (to predict hot code sooner), however
the TBP is an heuristic and this way decreasing Tp will
increase the possibility of mispredictions happen. Nevertheless,
independent of which threshold value is used there is always
the possibility that the execution count for some code region
be only slightly larger than Tp and in such cases the predictor
will mispredicts the code as hot, causing extra overhead due
to translation or optimizations of cold code. As an example
consider that the VM designer sets Tp = 5. The total
emulation time for the previous example would be 2695: 1250
(5 x 50 + 1000 + 0) cycles for the instruction that executes 5
times and 1445 (5 x 50+ 1000+ 195) cycles for the instruction
that executes 200 times. This is 1.86 times slower than the
combined case. Notice that the predictor mispredicted the first
instruction as hot, however the time spent interpreting the hot
instruction (second one) has decreased. One contribution of
this work is that independent of the T used the misprediction
overhead can considerably high (see Figure 5).

III. THRESHOLD-BASED HOT CODE MISPREDICTION
OVERHEAD

In this section we formalize several aspects related to hot
code prediction. Initially, we present functions to characterize
the interpretation and translation costs associated with the
emulation of an arbitrary instruction in an abstract VM.
Subsequently, we introduce the concept of an oracle hot code
predictor and present a formalization of a TBP. Finally, we
show all possible scenarios that may happen when using a
TBP and propose a mathematical model to estimate the hot
code misprediction overhead when using such predictor.

A. The Emulation Cost

We can estimate the cost to interpret an instruction [ that
executes n times using the following linear equation on n:



Cr(n) = ar+ pin (D

where o is the cost of any necessary preprocessing (e.g.
pre-decoding) required to execute I. Once preprocessed, the
interpreter takes [; cycles to emulate the instruction every
time it is executed. If no pre-decoding techniques are used, o
is equal to zero.

Similarly, we can estimate the cost to emulate an instruc-
tion I with dynamic binary translation using the following
equation.

Cr(n) = ar + Brn ()

where constant ar represents the non-recurrent cost to
translate (compile), optimize and cache instruction I, and
constant [Bp is the cost paid each time the translated code
is executed to emulate the instruction I.

As we will see in Section IV, the parameters «y, Oy,
ar and B are not constants along all benchmarks. However
through the rest of this text, except otherwise noted, we will
use average values for them.

One of the goals of a VM designer is to apply the most
cost-effective emulation technique for each code region. A
common approach to achieve this is to use a two-phase
strategy. In the first phase, the system uses a low-overhead
startup technique (interpretation) but as soon as the code is
predicted as hot it switches to a low-overhead steady-state
technique, i.e. binary translation. Inequality 3 defines the point
where translation have a lower cost than interpretation:

C’T(n) < C[(TL)
ar + frn < ar + B
Brn — Bin < ay — ar

(=1)

Brn — prn > ar — ar (3
n(Br — Br) > ar — ar
n > ar — a1
Br — Br

When the total execution frequency of the instruction is
greater than %IT:E‘TI, it is better to emulate it with DBT, rather
than using interpretation. Instructions whose final execution
frequency does not reach this point should be instead inter-
preted. We use Ty as an equivalent for “f__/g“ + 1, that is,

. . . . . T
the minimum number of times an instruction should execute
to amortize its compilation cost.

Note that Inequality 3 requires that we know in advance
how many times each instruction will be executed in order to
determine the best technique to emulate them. Therefore, it
cannot be used by a VM monitor to choose one particular
method prior to emulation, but only to assess performance
losses after emulation. In order to choose which technique
to use for emulation, as pointed out earlier, a mechanism that
predicts whether a given instruction will be frequently executed
is used. We discuss such predictors in the next section.

B. Hot Code Prediction

In order to define a baseline and exemplify what would
be a perfect predictor, we define an oracle predictor, i.e. a
predictor that, before any execution of an instruction I, knows
whether it is better to translate or to always interpret I. The
behavior of such predictor can be formalized as:

interpret
translate

Predoga(I) = { i ﬁ S ?Z

where I, represents the instruction final execution fre-
quency, and T}y, as stated before, is the execution frequency
for which translation is cheaper than interpretation. As the
oracle predictor knows a priori the instruction final execution
frequency, the cost of emulating the instruction using this
predictor will be the cost of always interpreting the instruction
or the cost to translate and always execute the translated code.
Thus the cost of emulating an instruction I using this predictor
can be formulated as:

Costora(I) = { g’;((ljjz))

We can express the behavior of the TBP formally in terms
of the following formula:

if I, < Ty
if I, > Ty

interpret
translate

if I, <T,

Predri:(I) = { it 1> Ty

where T'p is the prediction threshold and I, is the current
execution frequency of I. When using the TBP, we do not
know anything about the instruction final execution frequency,
thus every time the instruction is executed we must consult the
predictor. When the code is flagged hot, we pay the cost to
translate it, but until that happens (if it indeed happens) we are
paying the interpretation cost. Thus the threshold-predictor cost
to emulate an instruction [ that have final execution frequency
I, is given by:

OI(In)

- if I, <Tp
Costrp,(I) = { Ci(Tp)+ Cr(I, —Tp)

if I, >Tp

In the next section we discuss all possible scenarios that
can happen when using the TBP and how the cost of such
predictor compares to the oracle cost.

C. Hot Code Misprediction Overhead

Figure 1 shows all six possible cases based on the range
of values the final instruction frequency n can assume (the
horizontal black bar), when using the TBP. We model the
misprediction overhead for each one of these cases below when
compared to a perfect oracle predictor.

Notice that, depending on the values assigned to a7, Br,
and «j, B, the value computed for Ty (from Equation 3)
may become greater or smaller than T’p. Cases 1(a-c) cover
the scenarios for which T’y is greater or equal than 7'p, and
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Figure 1: Prediction scenarios for the TBP. Black bar shows
final instruction frequency.

cases 2(a-c) cover the scenarios for which Ty is smaller than
Tp.

Case 1a: No misprediction happens. The code is not
flagged as hot and it is indeed cold.

Case 1b: Code is mispredicted as hot. Code is marked
as frequently executed (n > T'p), but the frequency of
the instruction is smaller than Ty (thus it is cold). The
overhead is calculated as follows:

Overheady, = (Cr(Tp) + Cr(n —Tp)) — Cr(n)

Case 1c: The prediction is correct, but during runtime,
until the instruction frequency reaches 7T'p it will be
mistakenly flagged as cold. Therefore, there is a cost
incurred due to the delay for the correct prediction, as
follows:

Overheady. = (C1(Tp) + Cr(n—Tp)) — Cr(n)

Case 2a: No misprediction happens. The code is not
flagged as hot and it is indeed cold.

Case 2b: Code is mispredicted as cold. The mispre-
diction overhead is calculated as follows:

Overheady, = Cr(n) — Cr(n)

Case 2c: The prediction is correct, but during runtime,
it was incorrectly predicted as cold for all values n <
Tp before reaching the correct prediction. Therefore,
there is a penalty calculated as follows:

Overheads. = (C1(Tp) + Cr(n —Tp)) — Cr(n)

There are four scenarios in which the TBP may incur a
misprediction cost. Notice that these equations are just another
way to formulate the misprediction cost of the TBP in relation
to an oracle predictor. If we group the costs of all scenarios we
can obtain the same result using Costrp,(I) — Costora(I).

For a given benchmark B, we can sum the cost per instruc-
tion when using the TBP and calculate the total overhead in
relation to the oracle-predictor using the following formula:

EIEB COStThT(I)
> rep Costora(l)

We have used this model to characterize the overhead
of several SPEC2006 [17], Sysmark 2012 [18] benchmarks

“)

Overheadioiq =

and operating systems boot processes. In the next section we
describe the methodology we used to estimate the parameters
(ay, Br, ar and Br) based on this model.

D. Model Extensions

Although it is known that some VM employ a multi gear
and/or multi threaded compilation strategy, the overhead model
just presented consider only one optimization gear and com-
pilation thread. However note that such multi-geared/threaded
virtual machines are more common for high level languages
(e.g: Java [19]) and are an exception for ISA level VMs,
which are the focus of this work. Nevertheless the model could
be extended to consider multiple levels of optimization and
multiple compilation threads, however we let this extension as
a future work.

Another subtlety in our model is the choice of the gran-
ularity of the selected code region. We chose the instruction
level granularity as a mean to abstract away the details of the
region formation technique employed by the VM. But again,
the model could be modified to consider a specific code region.

IV. METHODOLOGY

The input data of our analytical model is the execution
frequency n for each instruction executed in the benchmark
together with a set of parameters to specify the emulation costs.

To determine reasonable values for the model parameters,
ay, Br, ar, and B (Equations 1 and 2), we used the Bochs
emulator (version 2.5.1) [15] and the Low Level Virtual
Machine (LLVM) (version 3.0) [20]. The Bochs x86 system
emulator was used to collect the execution frequencies of in-
structions of the benchmarks and to estimate the parameters o
and fB;. LLVM was used to perform the compilation of several
code fragments from which we estimated the translation cost of
an instruction, avr. Finally, the translated instruction emulation
performance, Sp, was estimated by running compiled code
generated by LLVM.

Notice that we are not uniques in using a combination
of tools to start up our VM environment. HQEMU [21]
and Harmonia [22] are examples or modern VMs that use
QEMU [23] together with LLVM [20] to build up a VM
infrastructure. Therefore, we expect the values we measure
for translation to be very close to those of such systems,
although the overhead model does not apply to them directly -
as they employ multi threaded/geared compilation and do not
use interpretation.

A. The Model Input: Instructions Execution Frequency

We used the Bochs infrastructure to profile the execution
frequency for instructions of the SPEC CPU2006 [17], Sys-
mark 2012 [18], and the boot process of Windows 7, Windows
XP, and Debian 5 Linux. Our instrumentation routines uses a
hash table indexed with a combination of an instruction linear
address plus first byte of its opcode to keep track of instruction
frequency.

Notice that Sysmark frequently restarts the computer in
order to ensure the system is in a known and stable state.
Therefore, if we collect the instruction execution frequency
during the execution of the entire scenario, we also collect



unwanted profile information from the operating system boot
and idle periods within the execution of the scenarios. To
address this problem, we collect profile information for each
interval of 100 million executed instructions and attach to each
profile a screenshot from the Bochs virtual screen. After the
session is finished, we visually inspect the screenshots and
group all intervals that actually belong to a Sysmark scenario.

Reproducibility: It is tricky to repeat the execution profile
of an entire system. For the experiments that employed Bochs,
we configured it to execute in a deterministic way. This was
accomplished by using a volatile hard disk configuration, in
which all changes to the disk are discharged as soon as Bochs
quits executing, and by carefully configuring the clock system,
to prevent synchronization with the host system and to enforce
the guest system to always boot with the same time and date.
The emulated VMs were configured with 2GB of RAM and a
virtual hard disk of 15GB. Sysmark benchmarks used Windows
7 and SPEC CPU2006 used Debian Linux.

B. Model’s Parameters: Interpretation Cost

Estimating interpretation start-up cost a; and steady-
state cost (5;: Bochs is known for its high portability and
mature code base, an ideal candidate for characterization of a
VM that uses interpretation as its emulation technique.

To measure the cost of instruction pre-decoding and in-
terpretation, «; and (7, we changed Bochs to report the
number of pre-decoded instructions, the number of instructions
interpreted and the total amount of cycles spent in the pre-
decoder and interpreter routines. The number of host machine
cycles spent in emulation was obtained with the help of
Intel Core2 hardware performance counters via the RDTSC
instruction [24]. The ratio of the number of x86 cycles spent
in pre-decoder routines over the number of pre-decoded in-
structions gives «g. The ratio of the number of x86 cycles
spent in the interpreter routines over the number of interpreted
instructions gives [;. Each benchmark yields a different o
and (7, providing a range of reasonable «; and ; values for
our model.

C. Parameters of the Model: Translation Cost

LLVM was chosen to estimate the translation cost param-
eters because it can be seem as a powerful VM that translates
LLVM bitcodes into host binaries. LLVM bitcode is a low-level
program representation that is close to machine instructions
and has its own ISA, the LLVM virtual ISA [20]. Therefore,
it is a good candidate to estimate dynamic translation and
optimization costs between different ISAs.

All SPEC CPU2006 benchmarks, with exception of bench-
marks written in Fortran, were compiled to LLVM bitcode.
Fortran is still not supported by the LLVM frontend. Two
programs had its execution time measured. The first one was
LLVM opt, responsible for reading an input LLVM bitcode,
transforming the code using target independent optimizations
and outputting optimized bitcode. The latter was the LLVM
llc, the LLVM compiler backend, that converts LLVM bitcode
to x86 assembly language. This is usually the process a VM
needs to perform to translate code using the source ISA to
the target ISA. In this scenario, the source ISA is the LLVM
bitcode and the target ISA is x86.

We do not perform these experiments for Sysmark 2012
and Boot processes since we do not have the source code for
the benchmarks or because LLVM does not have support to
compile the source.

Estimating translation start-up cost ar: We collected
data for simulating two scenarios. First we measure the number
of cycles needed to perform a crude compilation without apply-
ing any kind of optimization, as in a basic binary translation
process between two different ISAs. Second, we show data
representing another scenario of a VM capable of applying
several expensive optimizations, as an estimate of the overhead
incurred in time-consuming JIT engines.

We use an auxiliary program also available in the LLVM
suite, the LLVM extract, to separate a single function from
the rest of a LLVM bitcode file. After generating a LLVM
bitcode file for each one of the 71261 functions of all the
selected SPEC CPU2006 benchmarks, we run all llc passes
that are activated by using the “-O0” flag in opt command
line, to collect data for the first scenario. To collect data for
the second scenario we run all opt passes that are activated by
the “-02” flag.

The translation cost aip is then estimated by the ratio of the
number of x86 cycles required to compile a function over the
number of LLVM instructions in this function. Each function
has a different ap, providing a range of reasonable a values
for our model.

Estimating translation steady-state cost S7:

To estimate [Jpr (the number of host cycles spent per
guest instruction to emulate the source program after binary
translation), we measured the number of LLVM instructions
executed by the selected SPEC programs using the SPEC
reference input and also the number of x86 cycles needed to
run SPEC x86 native programs using the same inputs. The S
parameter is then estimated by the ratio of x86 cycles over
the number of LLVM instructions. Each benchmark yields a
different Sp, providing a range of reasonable S values for
our model.

Variability: 5 can change depending on the optimizations
used to generate the LLVM bitcode guest executable and the
x86 native executable.

The more optimized is the guest program, the higher is
B (lower performance gain with translation). This simulates
the scenario in which a VM translates guest binaries that are
already optimized. In this case, there is little performance
gain by applying dynamic binary optimization, since most
optimization opportunities were already explored.

The higher is the level of optimization used to generate
the x86 native version, the lower is S (better performance
gain with translation). This simulates the scenario in which
a powerful DBT and optimization engine is used to translate
guest into native code.

We measured S using an optimized LLVM bitcode (“-
02”) as guest binary because, in general, programs are already
optimized to a certain degree, illustrating a common situation
for VMs. To generate the native binary, we used no optimiza-
tions. This simulates the scenario of VMs that are unable to
apply optimizations when performing just-in-time compilation.



Integer Benchmarks Floating Point Benchmarks
Bench. Br ar Br Bench. Br ar Br
perlben. 48 91952 | 1.02 Ibm 85 41315 | 2.11
bzip2 40 94429 | 1.40 sphinx3 117 60468 | 1.31
gee 48 72546 | 1.58 milc 141 | 102610 | 3.50
mcf 42 26652 | 3.18 namd 144 96285 | 1.51
gobmk 48 66671 | 1.83 dealll 64 | 177565 -
hmmer 95 53780 | 1.47 soplex 65 | 148678 | 2.80
sjeng 40 89039 | 1.56 povray 92 73341 | 2.25
libquan. 31 | 115724 | 1.64 zeusmp 122 - -
h264ref 40 56832 | 1.29 gromacs | 173 - -
omnetpp | 59 | 175220 | 5.28 cactus 209 - -
astar 44 | 110029 | 2.48 leslie3d 213 - -
xalan 38 | 173994 | 4.38 calculix 128 - -
- - - - gems 133 - -
- - - - tonto 94 - -
- - - - wrf 108 - -
- - - - bwaves 103 - -
- - - - gamess 106 - -

Table II: Measured cost for () interpretation, (cvy) compila-
tion and (1) native execution. Dashes mark Fortran bench-
marks for which we do not have ar and SBr values, with
exception of dealll for which profiling failed to produce correct
output and thus to extract Sp. All costs are in cycles per
instruction.

V. RESULTS

In this section we present several results we gathered
from applying the aforementioned overhead model to three
sets of benchmarks: SPEC CPU 2006, Sysmark 2012 and
Linux/Windows boot processes.

During the experiments three Sysmark 2012 scenarios did
not complete their execution and we chose to omit their partial
results. Also, for all experiments in this section we used a zero
pre-decoding cost given that in our results, it showed negligible
impact on the misprediction overhead.

Although we used Bochs and LLVM to measure interpre-
tation and translation costs, we only use these values to deter-
mine a range of values to be considered in our experiments,
see Table III, and not to model a VM built on bases of Bochs
and LLVM. Therefore the results we show in this section were
not specifically designed to model a specific VM, but rather to
provide insights on how the misprediction overhead can affect
the performance of an arbitrary VM. The range of values we
use to gather these results totalize over 125000 configurations,
so we do expect that these configurations cover a large extent
of all DBT design space. Please note that, even if the DBT
costs (ar and [r) are out of this range, it is reasonable to
expect that the trends shown in the graphs will not change.

A. Estimation of the Model Parameters B, ar and Bt
Steady-state interpretation cost 3;:

Column g of Table II shows the average cost, in cycles, for
interpreting instructions of the SPEC CPU 2006 benchmarks.
For example, when running the benchmark 400.perlbench,
Bochs took, on average, 48 host cycles to interpret each
guest instruction. The average number of cycles to interpret
instructions of floating point benchmarks is higher due to
the elevated cost of emulating floating point instructions via
software. In order to accommodate for these discrepancies, our
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Figure 2: Histogram showing the percentage of total SPEC
CPU2006 functions sharing a given cost range (ar), in cycles.
The Abscissa represent the cost to translate the function.

overhead model assumes that the interpretation cost 3; varies
from 30 to 220 host cycles.

Start-up translation cost ap:

Column ap of Table II shows the average cost, in cycles,
to translate each LLVM bitcode instruction from C and C++
SPEC CPU2006 benchmark programs to x86 code. For exam-
ple, LLVM took, on average, 91952 host cycles to translate
(compile) each guest LLVM instruction of the 400.perlbench
program to x86 instructions.

Our goal in measuring o is to determine the minimum
number of cycles per instruction, using an LLVM-based VM,
to translate the program fragment. Since with greater ar, as we
will see, the overhead is even greater, thus we are estimating
a lower bound. Nevertheless, we also provide information on
a VM geared at optimizing code.

For each one of the 71261 C and C++ SPEC CPU2006
functions compiled, we calculated o using the ratio of the
number of cycles to compile the function over the number
of LLVM instructions in the function. Figure 2 presents a
histogram where each bin shows the percentage of functions
in a given range for o, considering a first scenario where
no optimizations are enabled. That is, the Abscissa represents
different costs to translate a function while the Ordinate rep-
resents the percentage of functions which had the translation
cost between two adjacent (to the left) ticks of the x-axis.

The histogram confirms that ap varies significantly, de-
pending on several parameters of the compiled function.
For instance, the LLVM instruction selection pass, which
dominates the compilation time in this scenario for several
functions, was very fast in a perlbench function composed
entirely of 35 stores. This function had one of the lowest ar.
On the other hand, functions with a single instruction often
have the highest o because it pays a high price to prepare
data structures for compiling a single LLVM instruction.

In this first scenario (compiling with no optimizations),
90% of all functions have a greater or equal to 36,000 cycles.
The average ar was 154,000 cycles. Therefore, if code regions
are assumed to include entire functions, we expect that a VM
that translates a guest ISA to a different host ISA will pay at
least 36,000 host cycles per translated instruction to translate
the majority of the hot regions. The third column of Table II
shows the averages for this first scenario, for each benchmark.

The second scenario enables all “-O2” optimizations. In
this case, LLVM takes at least 145,000 cycles for 90% of all
functions. The average ar was 1,073,000 cycles. In the next



Parameter Start End
Prediction Threshold (7'p) 25 3000
Interpretation (8r) 30 220
Compilation (ar) 30,000 850,000
Execution (871) 0.5 3.0

Table III: Range of interpretation, compilation and execution
cost experimented. All costs are in cycles per instruction.

section, we present a study using o in the range of 30,000
cycles up to 850,000 cycles because we focus on the fastest
cases with respect to both scenarios. For greater values, the
misprediction overhead is even bigger.

Steady-state translation cost Gr: Column Sr of Table
I shows the average cost, in cycles, for emulating each
LLVM bitcode instruction using C and C++ SPEC CPU2006
benchmark programs after translating them to native code. For
example, the host machine took, on average, 1.02 cycles to
emulate each guest LLVM instruction in the 400.perlbench
program. In contrast, the cost of emulating the same bench-
mark with interpretation in Bochs was 48 host cycles, on
average, showing the benefits of paying a high start-up cost
for translation.

As explained in Section IV, there are two scenarios for
measuring Sp, but Table II shows only the first and more
important one, namely the one for a VM that does not apply
optimizations. In this case, the generated code quality is poorer
and the average S measured among selected SPEC CPU2006
benchmarks is 2.25 host cycles per target instruction. The
second scenario illustrates a VM that generates good quality
native code by optimizing it, and the average Sr measured
in this situation is 1.11 host cycles per target instruction. The
code is, on average, slightly more than twice faster.

Based on the aforementioned results, we selected three
ranges of for the B;, ar and [Br parameters, which are
summarized on Table III.

B. Misprediction Overhead

Figures 3a-3c show the minimum misprediction overhead
for the Windows 7 boot, Sysmark 2012 (Office Productivity
scenario) and SPEC CPU 2006 403.gcc (with reference input),
respectively. These figures show how the overhead changes
with the translation start-up cost (), and the translation
steady-state cost (). For all points in these graphs, the
parameters 3; and T’p, are unconstrained inside their respective
ranges (Table III). Thus these figures reveal the minimum
misprediction overhead regardless of the specific values of
these parameters. For example, consider a VM emulating the
Windows 7 boot process enabled with a TBP, moreover assume
that the translation start-up cost () is 300,000 host cycles
(per translated instruction) and the steady-state cost (87) is 1.5
host cycles (per emulated guest instruction). In this scenario,
even using the best threshold value and Interpretation cost, the
execution would still suffer from 40% misprediction overhead.

Notice that the three figures have the same pattern, and,
in fact, all benchmarks we experimented present this same
behavior. As it can be seen, if the compilation cost ar
increases, the misprediction overhead also increases. This is
an intuitive trend, since the main source of overhead of the

TBP in relation to the oracle predictor is due to warm code
translation; once the translation cost increases, the overhead
also increases. Also notice that the misprediction overhead
decreases as the steady-state execution cost () increases.
This happens because the greater is the steady-state execution
cost, the longer is the execution time, causing the misprediction
overhead to become a smaller fraction of the total emulation
time.

Figures 3d-3f show surfaces representing the minimum
emulation cost, in host cycles, for a VM emulating the
aforementioned benchmarks and parameter values. Here notice
that, as expected, for the three benchmarks, the emulation
cost is minimal when the translation and execution costs
are minimum. These surfaces are shown to illustrate how
the emulation cost contrasts with the misprediction overhead.
Notice that although smallest values of ap and [ gives the
minimum emulation cost, this is not a common case scenario
for a VM. In the next paragraph we present two scenarios to
illustrate how the misprediction overhead can severely affect
the VM performance.

Figure 4 shows an example of how the development of a
VM can be severely affected by the misprediction overhead.
We use our measured values for Sr and ap to build two
scenarios where the VM is improved by adding more so-
phisticated optimizations. The first scenario considers the best
cases, in other words, the lowest values for 87 and ar of our
experiments. The second case considers the average measured
values, as described in Section IV. The figure shows the
trajectory on the overhead surface when the VM progressively
supports more sophisticated optimizations and better code
quality is generated. We presented a range of ar values in
this work, but here, two trend lines are presented. The first
uses our measured average values and the second uses ar
values for which 90% of all measurements are guaranteed to
be greater than. The latter is a conservative estimate, since
there is a high probability the VM will have higher overheads
than those delimited by this curve. These curves explain how
a good predictor increases in importance as the VM quality
improves. In the second scenario, our results suggest that in a
VM that uses time-consuming optimizations to produce faster
code the misprediction overhead is more relevant, since the
mistranslation cost becomes more expressive in relation to the
faster translated code.

C. Misprediction Overhead Characterization

Figure 5 shows the misprediction overhead of all three
sets of benchmarks if we consider a system that can produce
a reasonable fast code in a moderate amount of time. The
parameters used to draw these results were: oy = 0, 57 = 70,
ar = 150,000, and S = 1.5 and two prediction thresholds
Tp =25 and Tp = 1,000. Tp = 1000 was the value of the
threshold that resulted in the smallest misprediction overhead
given this configuration. There is a noticeable discrepancy
between the results of SPEC and the other benchmarks. Con-
sidering a prediction threshold of 25 the maximum overhead
measured in SPEC was achieved by 403.gcc with nearly 10%
of misprediction overhead, with the same threshold the mini-
mum overhead among the OS boots and Sysmark benchmark
was 270% and 27%, respectively.
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Figure 5: Maximum misprediction overhead for SPEC CPU2006 and minimum misprediction overhead for several OS boots and

Sysmark 2012 benchmark.

The boot processes and interactive applications (such as
those of Sysmark 2012) exercise a larger code footprint when
compared to SPEC CPU2006 scenarios. This characteristic
leads to an increase in the number of warm code regions
and, consequently an increase in the hot code misprediction
overhead.

One could argue that this overhead can be reduced if a
greater value for the prediction threshold is used. Figure 5
also shows the maximum (for SPEC) and minimum (for OS
boot and Sysmark 2012) misprediction overhead if we use a
prediction threshold of 1000. The overhead is reduced for all
benchmarks, notably for OS boots and Sysmark. This result
support the argument that the overhead seen when T» = 100 is
due to a large amount of warm code. However, more important
is to note that even with a Tp = 1000 the average minimum

overhead for OS boots and Sysmark 2012 is 36% and 8%,
respectively!

This huge difference among the results illustrates that
using only SPEC CPU2006 benchmarks when measuring the
performance of a VM that employs the TBP may lead to
misleading results.

To support our previous arguments, we show in Figure 6
the misprediction overheads quantified in Figure 5, in terms of
two components: the Warm Code and Hot Code overhead,
which refers to cases 1b and lc of Figure 1, respectively. We
notice that due to the parameters we used, the cases 2(a)-(c)
of Figure 1 do not occur.

For Tp = 25 the overhead is predominantly due to warm
code translation (over 99%) and the delay caused by late hot
code detection is minimum. However, when T = 1000 is
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Figure 4: Trend lines for the evolution of VM in terms of
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overhead.

used, the increase in the number of interpreted regions together
with a decrease in the number of warm code translation makes
the interpretation cost the major component of the overhead
- for all benchmarks the warm code translation cost is below
50% of the overhead.

VI. RELATED WORK

Bala et. al [4] describe Dynamo, a software dynamic opti-
mization system that is capable of improving the performance
of a HP PA-800 instruction stream as it executes. To attain
this, Dynamo interprets the guest code until a start-of-trace
criteria is met, at which point it employs a technique called
MRET [16] to form and optimize a trace. The MRET is a
classic example of an implementation of the concepts of the
TBP. They evaluate the system using Spec-Int-95.

The TA-32 EL [5] is a dynamic binary translator that
enables the execution of IA-32 applications on Intel Itanium
processors. Initially, the application code is translated on
a basic-block basis using minimal set of optimization and
instrumentation code is used to detect hotspots. When the

instrumentation counter of a basic block reaches a prefixed
threshold it is marked as a candidate hotspot. After many
basic blocks are marked candidates the system form a su-
perblock that will be further optimized and cached. They used
SPEC CPU 2000 to measure the system performance.

StarDBT [8] is a multi-platform research binary translator
capable of translating x86 32/64 bits applications to IA 32 bits
binaries. StarDBT uses a simple/fast translator for cold code
translation and once a workload hotspot is detected, it forms
a trace optimize and cache the trace. The system is evaluated
using SPEC CPU 2000 and Sysmark 2004 suites. Results show
that the system runs comparatively well with other state-of-the-
art binary translator, however for large interactive Windows
applications the overhead can be considerably high. They argue
that optimizing infrequently executed code regions causes the
overhead.

The FX!32 [14] is a VM that enables transparent execution
of x86 32 bits Windows NT applications on an Alpha host run-
ning Windows NT. FX!32 first interprets the guest application
code regions at the same time that inserts code to gather profile
information. The next time the code is invoked the system uses
the profile information to generate an equivalent Alpha binary
code. Since the translation is performed offline the system does
not suffer from hotness misprediction overhead.

Despite the wide spectrum of dynamic binary translators,
just a few papers [25]-[28] are focused on characterizing the
overhead of such systems in a production environment.

Borin and Wu [26] study the overhead of the Intel research
dynamic binary translator StarDBT when emulating the SPEC
CPU 2000 benchmarks [29]. They found that branch handling
and code duplication represent more than 64% of the StarDBT
overhead and cold code translation and hot trace building
together account for 34% of the DBT overhead.

Hu and Smith [27] use a Co-Designed VM to study the
overhead of an adaptive DBT system. They uses a two-
phase DBT that performs simple basic block translation to
initial emulation, and a superblock optimizer for emulating
hotspot code - detected when the execution frequency reaches
a prefixed threshold. Their results show that emulation of cold



code contributes to a major part of the VM overhead and they
propose two hardware mechanisms to minimize the first phase
interpretation cost.

Following the same direction as Hu and Smith research
is the work of Chen et al. [25]. They use a binary translation
simulator to characterize the overhead of the SPEC2000 integer
benchmark suite and show that interpretation is responsible for
over 42% of the overhead of the two-phase DBT simulated. To
mitigate the problem they propose the utilization of a Decoded
Instruction Cache (DICache).

Wau et al. [28] use IA-32 EL to investigate the accuracy of
the initial profiling in two-phase dynamic binary translators.
Their results for the SPEC 2000 benchmark indicate that
a retranslation threshold on the range of 500 to 2000 can
have prediction accuracy comparable to the traditional profile-
guided optimizations using training input. However several
benchmarks show phased behavior and a single profiling phase
does not capture the average program behavior accurately for
these benchmarks continuous profiling or multiple profiling
phases are required.

VII. CONCLUSIONS

In this work, we used several workloads to measure the
effectiveness and quantify the overhead of the threshold based
predictor (TBP), a widely used hot code predictor on virtual
machines. We first developed an analytical model to esti-
mate the TBP misprediction overhead. Then, we performed
a comprehensive evaluation of the TBP using SPEC CPU
2006, Sysmark 2012 and the boot process of three different
operating systems. Our results indicate that, even though the
TBP can accurately predict hot code on SPEC CPU 2006
benchmarks, it does not perform well on applications with
large code footprint and cause at least 27% of overhead on
Sysmark 2012 applications. This result suggests that using
“only” SPEC SPU 2006 to analyze virtual machines perfor-
mance may lead to incorrect conclusions. We also explored
several VM design points and showed that, as the VM spends
more cycles optimizing the translated code, the overhead due
to hot code mispredictions becomes more relevant. Finally,
we decomposed the misprediction overhead and showed that
its major component is due to translation of warm code and
that this overhead can be exacerbated in applications with large
code footprint, such as those found in interactive environments.
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