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ABSTRACT
In recent years, malware developers have introduced new and ad-
vanced protection techniques against conventional signature-based
and heuristic-based malware analysis techniques to avoid detec-
tion and removal by conventional antivirus. With the progress of
deep learning, techniques such as Convolutional Neural Networks
(CNN) are useful to detect the global structure of the code and to
be able to decipher the patterns in the binary code datasets con-
verted to RGB or grayscale images. This article takes advantage
of the spatial structure of imaged malware, using a series of pre-
trained Imagenet convolutions to generate feature maps that learn
how to recognize and group malicious code into malware fami-
lies. This research added a customized neural network on top of
eight pre-trained networks (Xception, VGG16, VVG19, ResNet50, In-
ceptionV3, MobileNet, MobileNetV2, and DenseNet169) to classify
10868 malware samples from the Microsoft Malware Classification
Challenge dataset, achieving results close to 99% through the use
of parameter adjustments and increasing the size of the dataset in
order to generalize the model and reduce the risk of overfitting for
malware that uses evasion techniques against classification.
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1 INTRODUCTION
In the history of computing, the emergence and evolution of mal-
ware have been topics of great interest and study. From the first
incidents of malware [6], [24] to the development of techniques to
combat it [22], the termmalware has been used to describe any type
of software designed to harm or compromise computer systems
without the consent of the user.

The term "malware" is a combination of the words "malicious"
and "software" (malicious software). It was coined by Yisrael Radai
on July 4, 1990, in a public posting in which he wrote[16]: "Trojans
constitute only a very small percentage of malware (a word I just
coined for trojans, viruses, worms, etc.)". Since then, the term has
become widespread and is widely used to refer to all types of mali-
cious software, such as viruses, worms, Trojan horses, ransomware,
spyware, botnets, adware, and others.

The exponential growth of malware [1] has posed significant
challenges for researchers. As attackers use obfuscation techniques,
polymorphism, metamorphism, and encrypted communication to
modify and camouflage the structure of these malicious codes, con-
ventional techniques such as signature-based and heuristic-based
analysis become less effective. Given this situation, there is a need
for more sophisticated analysis methods that can decipher the pat-
terns and characteristics of the malware.

With the progress of deep learning, techniques such as Convo-
lutional Neural Networks [14] (CNN) have proven to be powerful
tools for deciphering complex patterns in large image data sets. A
CNN is a type of neural network that is characterized by its ability
to perform convolutional operations, i.e., mathematical operations
applied to images, with the main objective of learning filters that
detect specific patterns in images. As the Convolutional Neural
Network processes an image, it generates a set of feature maps that
indicate where the feature sought by each filter has been detected.

The advancement of deep learning has made it possible to use
CNN to classify malware using binary code converted to RGB or
grayscale images. This research uses the capacity of CNN networks
to learn the global structure of the code and decipher the patterns
present in the datasets generated from these images.

We also used pre-trained network architectures (Xception, VGG16,
VVG19, ResNet50, InceptionV3, MobileNet, MobileNetV2, and
DenseNet169) that participated in the ImageNet Large Scale Visual
Recognition Challenge [21] to train modified models for malware
classification. The transfer learning technique allowed us to take ad-
vantage of the knowledge learned by the models previously trained
in Imagenet and adjust these models to the task of classifying mal-
ware families, improving efficiency and accuracy even against the
evasion techniques used by attackers and significant imbalances in
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the classes of malware families, i.e., improve the classification of
minority classes through transfer learning.

To analyze our approach, we used the Microsoft malware classifi-
cation challenge [20] dataset, consisting of 10868 binaries/samples.
After conversion from byte files to PNG files representative of the
malware samples, a set of pre-trained CNN network models were
selected to classify the dataset into nine malware families. The
results show that the use of the MobileNet network architecture
has an accuracy of 98.41% with a log loss of 0.08078.

The rest of the article continues: Section 2 describes the state of
the art in malware classification through convolutional networks;
Section 3 describes the Convolutional Neural Networks, the transfer
learnings technique and the pre-trained CNN network architectures
used. The methodology used and results of the research are exposed
in Section 4. The main contributions and future work are described
in Section 5.

2 RELATEDWORK
Malware classification is a critical task in computer security since it
allows the identification and mitigation of potential cybersecurity
threats. Convolutional Neural Networks (CNN) have proven to be
an effective tool in malware detection, especially when combined
with the transfer learning technique. Gibert et. al. [7] , [8] propose
a deep learning approach for malware classification into families
based on a set of patterns extracted from their visualization as im-
ages using the benchmark Microsoft Malware Classification Chal-
lenge dataset (BIG 2015). The results obtained in both approaches,
98.28% and 97.50% respectively, under validation by 5-fold cross-
validation and 10-fold cross-validation respectively, demonstrate
the effectiveness of CNNs in malware classification and offer in-
teresting prospects for improvement of detection techniques and
classification of computer threats.

A new approach was proposed by Hemalatha et. al. [10] through
the use of a reweighted class-balanced loss function in the final
classification layer in a model based on the DenseNet architecture
to achieve performance improvements in classifying malware by
handling imbalanced data issues. The approach achieved 98.46% for
the Microsoft BIG 2015 dataset. A similar approach was used by
Wang et. al. [28], using a set of layers as the Depthwise Efficient
Attention Module (DEAM) combined with a DenseNet architecture
with grayscale images transformed from malware, achieving 98.5%
in the Microsoft BIG 2015 dataset.

The authors in [12] convert malware binary into grayscale im-
ages and use two datasets to validate their proposal: Maling and
Microsoft Big 2015. The experiments were run on two architec-
tures. The implementation of a GIST feature extractor with an SVM
classifier and the implementation of an M-CNN neural network.
The authors hardly described the training results, obtaining 93.23%
(GIST+SVM), 98.52% (M-CNN) for the Maling dataset, and 98.99%
in M-CNN. All results were not tested on a test dataset.

The authors in [13] used CNN-BiLSTM (CNN+RNN) with the
class balance sampling technique in order to classify malware from
the Microsoft Big 2015 dataset. This combination of techniques
allowed them to address the classification problem without the
need for an extensive feature engineering process, getting 98.20%.

In [28], the authors propose the use of the DenseNet architecture
with the DEAM service module. The DEAM module manages to
reduce the number of parameters and improve the robustness of
the model. The results obtained in Microsoft Big 2015 was 97.30%.

In recent years, research has focused on the use of data-based aug-
mentation methods such as CycleGan. Tekerek et. al. [27] proposed
a process for transforming binary files into RGB and grayscale
images called B2IMG. In order to reduce the class imbalance in
malware classification, the authors used CycloGan on top of the
DenseNet architecture and achieved 99.86% for RGB images and
99.76% for grayscale images on the Microsoft BIG 2015 dataset.

In [4] the authors implement a model on the DenseNet archi-
tecture with the bicubic interpolation algorithm to reconstruct the
generated malware images to solve the problem of image size imbal-
ance and use the CycleGANmodel for data augmentation to balance
the number of samples among malware families and build. Exper-
imental results show that the system reached 99.76% and 99.62%
accuracy for RGB and grayscale, respectively, for the Microsoft BIG
2015 dataset.

Class imbalance in malware classification is a common challenge,
where some malware families may be underrepresented compared
to others. The use of imaging techniques in the context of malware
classification does not accurately represent malicious code trans-
formed into RGB or grayscale images. In addition, synthetic images
are introduced that may not capture the essential characteristics of
the malware and could even add noise or irrelevant information,
thus generating overfitting. Additionally, it is perceived that some
research does not use test datasets and presents its results based
on the training dataset, leading to the implementation of invalid
experiments.

The contributions of this research are the following:

(1) The PNG (Portable Network Graphics) format was used in-
stead of JPG (Joint Photographic Experts Group) because
it uses lossless compression, i.e., preserving as much visual
information as possible to capture features relevant to clas-
sification problems.

(2) To capture richer and more complex visual characteristics,
our approach used the three-channel RGB (Red, green, and
blue) format.

(3) In order to identify the best architecture for malware classi-
fication, we implemented a set of models based on the Keras
architecture library with pre-trained weights from ImageNet,
and we got accuracy, precision, recall, and F1-score for each
model.

(4) Additional custom layers were used after the pretrained base
layer to allow the model to be trained on the visual malware
classification task for nine families.

(5) The number of epochs is limited to 50 to reduce overfitting.
Mantener el número de epochs en un val The number of
epochs was kept at 50 in order to achieve a more gener-
alizable model (avoid overfitting), efficient (due to limited
computational resources), and effective when reaching val-
ues close to 99% through the MobileNet model.

(6) None of the present models make use of data augmentation
methods (CycloGAN) to avoid introducing synthetic images
that can add noise to the classification.
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(7) Also, the code of this research can be accessed at https:
//github.com/ecram/malware_classification_cnn

The results show that the lightest architectures, such as Mo-
bileNet (98.41%), allow obtaining equal or acceptable results to
heavy architectures such as DenseNet, which allows its use in en-
vironments with limited computational resources.

3 BACKGROUND
3.1 Convolutional Neural Networks
Convolutional Neural Networks [15] (CNN) are a type of deep
learning architecture originally designed to process image data
and have proven to be very effective in object recognition, feature
detection, segmentation, and image classification tasks, among
others.

These networks use convolutional layers to apply input filters
to the images and thus detect local features such as edges, textures,
and visual patterns, allowing spatially relevant information to be
captured in the images. They are also used with pooling layers to
reduce the dimensionality of the extracted features while preserv-
ing the most representative information in the image. Pooling, like
max pooling, reduces the size of features by selecting the maxi-
mum value in a neighborhood of the image. In addition, one or
more fully connected (dense) layers are often added to perform
the final classification or regression. These layers are made up of
neurons fully connected to each other and allow the network to
learn more abstract representations and make predictions based on
these representations [14].

These Convolutional Neural Networks are used in the area of cy-
bersecurity for facial recognition identification, malware detection
and classification, behavior analysis, and network traffic, among
others.

3.2 Transfer Learning in Malware
Classification

Transfer learning [14] is a technique that consists of using the
knowledge acquired in one task to improve performance in an-
other related task. In the context of Convolutional Neural Networks
(CNNs), transfer learning involves taking a network pre-trained on
a large data set and applying it to a different task using previously
learned weights and features.

Pre-trained CNN networks, such as VGG, ResNet, Inception,
and MobileNet, among others, have been trained on massive data
sets, such as ImageNet [21], which contains millions of images of
different classes. These networks have learned to extract relevant
visual features from images, allowing them to capture complex and
subtle patterns.

The use of transfer learning with CNN for malware classification
is beneficial due to the insufficiency of data that exists in certain
families, as shown in Fig. 1, where class 5 or the Simda family
represents only 0.4% of the dataset or 42 malware samples. On the
other hand, class 3 or Kelihos_ver3 family represents 27.1% or 2942
samples of the total.

Other benefits of using transfer learning are the ability to gen-
eralize features, the reduction of training time, the prevention of
overfitting, and the best performance and accuracy in classification.

Figure 1: Microsoft malware families samples.

3.3 CNN Architectures for Malware
Classification

Below, we describe the main architectures used in this research to
classify malware:

3.3.1 VGG-16 & VGG-19. Both architectures [23] use small size
filters (3x3) on all layers, followed by layer pooling. The VGG-19
version adds three additional convolutional layers to the end of the
VGG-16 architecture, allowing a deeper representation of image
features.

3.3.2 ResNet50. Developed by Kaiming et. al. [9], this 50-layer
architecture uses residual connections that allow for jumping be-
tween layers and help mitigate the problem of gradient fading
during training.

3.3.3 InceptionV3. This architecture [25] is an improvement on
its predecessor, GoogLeNet. It makes use of convolutional blocks
designed to capture features at multiple scales and levels of abstrac-
tion. It also uses dropout regularization and uses auxiliary layers
to help train and propagate gradients.

3.3.4 MobileNet & MobileNetv2. It is an architecture [11] designed
for mobile devices and applications with limited computing re-
sources. It uses a technique called separable depthwise convolution
to reduce the number of computational operations and the number
of model parameters. MobileNetv2 uses a combination of linear
and nonlinear convolution blocks and uses a spreading layer fol-
lowed by a projection layer to capture features at different scales,
achieving better results.

3.3.5 Xception. CNN relies on depth-separable convolutions and
residual connections to extract features efficiently and improve
the performance of the Convolutional Neural Network. Its innova-
tive design has proven effective in image classification and object
detection tasks [5].

3.3.6 EfficientNet. It is a family of CNN architectures proposed by
Tan et al. [26] in 2019. These architectures are designed with the

https://github.com/ecram/malware_classification_cnn
https://github.com/ecram/malware_classification_cnn
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goal of achieving an optimal balance between performance and com-
putational efficiency. EfficientNet uses an automatic search strategy
to find the optimal set of hyperparameters that improves model
performance without greatly increasing computational complexity.

4 THE PROPOSED METHOD
4.1 Experiment settings
The runtime environment of the experiment includes (1) ASUS
nv580vd with an Intel® Core™ i7 7700HQ 2,8GHz processor, 16 GB
SDRAM, NVIDIA GeForce GTX 1050, 4GB GDDR5 VRAM, Ubuntu
20.04 LTS (64bit). (2) i440fx-xenial. Intel Core i7 9xx (Nehalem
Core i7, IBRS update), 8GB, Ubuntu 22.04 LTS. The PIL 9.4.0 library
was used for the conversion of binary files to the PNG format.
TensorFlow and Keras 2.12.0 libraries over Python 3.8.10, Pandas
1.5.3, and Numpy 1.23.5 were used to implement the convolutional
network models.

4.2 Dataset Description
For the experiment we used the well-known Microsoft Malware
Classification Challenge dataset [20] or BIG 2015. The dataset is
almost 200GB, consisting of a set of 10868 known malware bytes
files representing a mix of 9 different families, as shown in Table 1.
Each malicious file has a 20 character hash value uniquely identify,
and a class label (1 to 9) representing 1 of the 9 family names.

Table 1: Malware Samples in the Dataset

Family Name # Train Samples Type
Ramnit 1541 Worm
Lollipop 2478 Adware
Kelihos_ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownloader
Kelihos_ver1 398 Backdoor
Obfuscator.ACY 1228 Obfuscated malware
Gatak 1013 Backdoor

The malicious fileset (10868) is made up of raw data with a
hexadecimal representation of the file’s binary content, without the
header, i.e., to ensure sterility.

The data set can be downloaded from the competition website 1.

4.3 Evaluation Metrics
The evaluation metrics used in the CNN malware classification
allowed us to provide a quantitative measure of the performance
and quality of the models developed in this task. Below, we present
the metrics used in this research.

4.3.1 Accuracy. This basic metric measures the proportion of mal-
ware classified correctly by the model out of the total number of
examples. It is calculated using the following equation (1):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

1https://www.kaggle.com/competitions/malware-classification/

Where𝑇𝑃 is the number of malware samples correctly classified
into their respective families and 𝐹𝑃 is the number of malware
samples that were incorrectly classified into an incorrect family.

4.3.2 Logloss. Or log loss is a metric that measures the quality of
the classification probabilities generated by a model. It is calculated
using the following equation (2):

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = − 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 log(𝑝𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 )) (2)

Where 𝑁 is the total number of examples. (𝑦𝑖 ) is the actual label
of the example (𝑖) (0 or 1) and (𝑝𝑖 ) is the predicted probability of
the example (𝑖) of belonging to the positive class.

4.3.3 Precision, Recall and F1. The precision is calculated as the
proportion of samples correctly classified in a given family with
respect to the total number of samples classified in that family. In
the context of malware classification, it is calculated as follows in
equation (3):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

Where 𝑇𝑃 represents the number of samples correctly classified
in their respective families and 𝐹𝑃 represents the number of samples
that were incorrectly classified.

Recall, also known as sensitivity, is calculated as the proportion
of correctly classified samples in a certain family with respect to
the total number of real samples in that family. In this context, it is
calculated as follows in equation (4):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

Where 𝑇𝑃 represents the number of samples correctly classified
in its respective family and 𝐹𝑁 represents the number of samples
that were incorrectly classified as belonging to other families.

F1-score provides a balanced measure of model performance
by taking both precision and recall into account. Its formula is as
follows in equation (5).

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5)

4.4 Visualizing Malware as an Image
This area was introduced by Nataraj et. al. [17] who performed the
conversion from a byte file to an image, interpreting each byte as a
pixel. In this research, the PIL (Python Imaging Library) library 2

was used to convert byte files into an image in PNG format, as
shown in Fig. 3, which scales the values of an image to a matrix
from 0 to 255, converting to the ’uint8’ type. This conversion allows
creating images in RGB format.

Once each byte has been assigned an RGB value, the resulting
set of values is organized into a three-dimensional array. Each
array represents the image in one set color and has dimensions that
depend on the size and structure of the original byte file. One of the

One of the benefits of using RGB was that it allowed more in-
formation to be captured over three channels (red, green, and blue)

2https://pillow.readthedocs.io/en/stable/
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Figure 2: Implementation of transfer learning models for malware classification.

Figure 3: Malware bytes conversion to a PNG image. The
family name (upper) and the file name (lower) are described.

and made it easier to use pre-trained ImageNet architectures such
as VGG16, ResNet, and MobileNet.

From the transformation process of 10868 malware bytes, the
same number of images was obtained to avoid compression loss,
improving the quality and contrast of the images in PNG format.
By using the train_test_split Scikit-learn library 3, we split the
samples into three sets, 70% (7607) for model training, 15% (1630) for
validation of the model, and 15% (1631) for tests as well as obtaining
evaluation measures. Each set was classified into nine malware
families. Next, the samples were moved into their corresponding
directory through an algorithm developed in order to facilitate the
training, validation, and testing of the models.

3https://scikit-learn.org/stable/

4.5 Proposed Models
In the development of the models, the transfer learning technique
was used (see Section 3.2) through the Keras library 4. For the se-
lection of the architectures, we have considered aspects 5 such as
the size and complexity of the data set, the size of the data sample,
the computational requirements, performance and evaluation met-
rics, as well as the research and literature on malware analysis and
classification described in Section 3.3.

The selection of the Microsoft BIG 2015 [20] dataset benchmark,
split into three parts: 70% training, 15% validation, and 15% testing,
allows the model to be correctly evaluated through the use of the
data set test, avoiding hyperparameter overfitting or "information
leaking". This error was noticed by the team inmany of the reviewed
research papers. In our research, the test data was not used during
the training phase. All the experiments used a total of 50 epochs
because it was found that the models stabilized at 30 epochs and
we wanted to avoid the problem of overtraining.

The development and implementation of the supervised models
do not allow the use of data augmentation due to one-to-one corre-
spondence problems [2]. Thus, we do not use any method of data
augmentation.

Next, we describe the development process of the models based
on the transfer learning technique, as shown in Fig. 2:

• Initially, the pre-trained models were loaded with the Ima-
geNet model weights, excluding the top classification layer
of the model to add a new classification layer specific to the
Microsoft BIG 2025 malware classification problem.

• The convolutional layers of the pretrainedmodel were frozen.
• The output of the pretrained model is taken, and a series
of custom layers are applied to it to perform the specific
malware classification. Layers used include:

4https://www.tensorflow.org/api_docs/python library /tf/keras
5https://keras.io/api/applications/
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(a) Accuracy of the models in the training in 50 epochs. (b) Logloss of the models in the training in 50 epochs.

Figure 4: Accuracy and Logloss resultas. ResNet50 is not graphed because it has a value below the results average.

– Flatten
– Dense(512, ReLU activation)
– BatchNormalization
– Dropout
– Dense(9, softmax)

• For the compilation we use the Adam optimizer with a low
learning rate and a loss function in "categorical_crossentropy".

• For the training of the model, 50 epochs are specified per
stage of train and validation.

• Finally, the model was tested through the evaluation metrics
in the test dataset.

The general scheme used to generate the models can be observed
in Fig. 2. In this figure, we use the MobileNet architecture to imple-
ment our model, which achieved 98.41% in the test dataset with the
training parameters described in Table 2. Also, the code can be
accessed at https://github.com/ecram/malware_classification_cnn.

Table 2: Training parameters for Malware Classifications
models.

Parameter Value

Learning Rate 0.001
Epochs 50
Optimizer Adam
Loss Function Sparse categorical cross entropy

4.6 Experimental result and analysis
The results are described in Table 3 for the classification of mal-
ware into nine families using eight models based on architectures
described in Section 3.3 for the Microsoft BIG 2015 benchmark.
Each model is evaluated in terms of precision, logarithmic loss,
or Logloss, precision, recall, and F1-Score. We describe the main
results below:

• Xception: This model reached an accuracy of 98.22% with
a Logloss of 0.08117, which indicates that it has a correct
prediction and a good data fit. The precision (98%) and recall

Table 3: Results of the prediction on the test set for the clas-
sification of malware

Models Accuracy Logloss Precision Recall F1-Score

Xception 98.22% 0.08117 98% 96% 97%
VGG16 97.79% 0.08509 96% 94% 95%
VGG19 98.10% 0.07824 96% 95% 95%
ResNet50 96.01% 0.15323 96% 92% 94%
InceptionV3 97.11% 0.15323 94% 95% 94%
MobileNet 98.41% 0.08078 94% 98% 96%
MobileNetV2 98.22% 0.09172 95% 94% 94%
DenseNet169 97.98% 0.09244 96% 96% 96%

(96%) indicate that the model can correctly identify most
instances.

• VGG19: The VGG19model has an accuracy of 98.10%, slightly
higher than the VGG16 model. The Logloss value is 0.07824,
indicating a good fit. The accuracy and recall are 96% and
95% respectively, and the F1 score is 95%.

• MobileNet: This model has the best performance in terms of
accuracy, with an impressive 98.41%. The Logloss value is
0.08078, indicating a good fit. Although the accuracy is 94%,
the recall is high at 98%, which suggests that the model is
very good at identifying positive instances. The F1 score is
96%.

• MobileNetV2: This model has an accuracy of 98.22%, similar
to Xception. The Logloss value is 0.09172. The accuracy is
95% and the recall is 94%, with an F1 score of 94%.

• In general, the models present a solid performance in the
classification of malware in the 9 families evaluated. Most
of them have an accuracy above 97%, with the exception of
ResNet50 (96.01%), which indicates that they are capable of
correctly classifying the vast majority of malware samples.

In Fig. 4 we can see the accuracy and Logloss curves during
training, with a rapid progression from the first epoch, and a smooth
progression from epoch 10. In the case of Fig. 4a for accuracy, both
InceptionV3 and MobilNet require only 5 epochs to learn how to

https://github.com/ecram/malware_classification_cnn
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Table 4: Comparison of the proposed model in the literature using the Microsoft BIG 2015 dataset

Authors Models Dataset Validation Accuracy Precision Recall F1-Score

Gibert et. al. [7] CNN Bytes 5-fold cross-validation 98.28% - - 96.36%
Gibert et. al. [8] CNN Bytes (Gray) 10-fold cross-validation 97.50% - - 94.00%
Kalash et. al. [12] CNN (25 epochs) Bytes (Gray) train:90%-test:10% 98.99% - - -
Le et. al. [13] CNN (100 epochs) Bytes 5-fold cross-validation 98.20% - - 96.05
Hemalatha et. al. [10] DenseNet (100 ep.) Bytes (Gray) train:70%-test:30% 98.46% 98.58% 97.84% 98.21%
Wang et. al. [28] DenseNet+DEAM Bytes (Gray) train:60%-test:20%-test:20% 97.3% 95.3% 95/4% 95.4%
Proposed model MobileNet Bytes (RGB) train:70%-valid:15%-test:15% 98.41% 94.44% 98.25% 95.96%
Tekerek et. al. [27] DenseNet+Cycle-Gan Bytes (Gray) train:80%-test:20% 99.76% 95.00% 96.00% 96.00%
Tekerek et. al. [27] DenseNet+Cycle-Gan Bytes (RGB) train:80%-test:20% 99.86% 98.00% 97.00% 97.00%
Chen et al. [4] DenseNet+Cycle-Gan Bytes (Gray) train:80%-test:20% 99.62% 97.62% 97.72% 97.47%
Chen et al. [4] DenseNet+Cycle-Gan Bytes (RGB) train:80%-test:20% 99.76% 98.90% 97.92% 98.39%

classify malware. All the models, with the exception of ResNet50,
converge to values close to 98% precision. Regarding Logloss, as
shown in Fig. 4b, as the epochs increase, the models fit the data
better and the results begin to be similar, highlighting InceptionV3
and MobileNet for starting with a Logloos minor.

Based on the results presented and considering the combination
of high accuracy (98.41%), low Logloss (0.08078), high recall (98%)
and computational efficiency, i.e., it stands out for its efficient design
in terms of the use of computational resources. and size of the
model, MobileNet stands out as a strong and promising option for
malware classification in all nine families tested. As we can see in
Fig. 5 of the Confusion Matrix of the MobileNet model, the model
manages to correctly classify all families with the exception of
family 4 Objuscartor.ACY, which are confused in classifying on
some samples.

Figure 5: Confusion matrix of the MobileNet.

In Fig. 6 we perform the prediction of the classification of mal-
ware examples in a random way, obtaining very good results.

4.7 Limitations
The results described in Table 4 show that the proposal to use the
transfer learning technique in the MobileNet model has satisfactory

Figure 6: Malware prediction through the MobileNet model.

results regarding accuracy (98.41%), recall (98.25%) and F1- Score
(95.96%). In addition, it was shown that the analysis methodology
of the eight known CNN architectures allowed for the selection
of MobileNet as a lightweight architecture for environments with
limited computational resources, obtaining very promising results.

Our research differs from other studies that obtained similar re-
sults by employing the CycloGAN technique for data augmentation
in image-to-image translation tasks. Unlike these studies, which
relied on synthetic data to address unsupervised problems with
no direct correspondence between input and output images, our
approach did not involve any form of artificial data augmentation.

By limiting it to 50 epochs, we avoid overfitting compared to
other research [18], [19], that got excellent results but, when ap-
plied to many epochs, had a tendency to overfit. Furthermore, [3]
concluded that texture analysis presents many challenges, such as
scalability and class imbalance, especially in real conditions with
larger datasets than the experiment presented. Also, some naive
premises associated with the selection of samples in the datasets
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caused the introduction of biases that, in the end, produced non-
reproducible results.

In our research, the use of a training set division scheme (70%-
15%-15%) with the problem of class imbalance reduces the efficiency
of classifying families based on the model. However, given the re-
sults, they show that MobileNet can be an effective and efficient
model for malware classification with high computational perfor-
mance.

5 CONCLUSIONS AND FUTUREWORK
Based on the comparative analysis of the results of the proposed
model, under the approach of using transfer learning in eight ar-
chitectures (Xception, VGG16, VVG19, ResNet50, InceptionV3, Mo-
bileNet, MobileNetV2, and DenseNet169) in the Microsoft BIG 2015
benchmark for the classification of malware, we can conclude that:

The performance of the proposed MobileNet model was satis-
factory in terms of precision (98.41%), recall (98.25%), and F1-Score
(95.96%), indicating a remarkable ability to classify malware sam-
ples correctly. Furthermore, the F1-Score shows a good balance
between precision and recovery.

Compared with the results of previous studies, the proposed
model has achieved competitive and, in some cases, remarkable
results without the use of data augmentation (CycloGAN), which
is not inherent in supervised problems. With a correct division of
the data set to avoid hyperparameter overfitting or "information
filtering" and limiting epochs to 50 to avoid overfitting.

As an additional contribution to the research on the classification
of malware families, we share the code: https://github.com/ecram/
malware_classification_cnn.

Based on these conclusions, we can propose the following future
work with the aim of improving the results of CNNs in the classi-
fication of malware in the wild through their generalization and
avoiding overfitting:

• Use new ways of extracting information from bytes in image
files in order to obtain a better representation, reduce false
positives, and improve the accuracy of the model under the
malware detection and classification approach.

• Use techniques to expand the number of corresponding mal-
ware samples, avoiding hyperparameter overfitting and im-
proving performance estimation.

• Evaluate different malware datasets in order to generalize
and improve the performance of the classification system by
adding malware in the wild.
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