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Abstract Kernel monitoring is often a hard task, re-

quiring external debuggers and/or modules to be suc-

cessfully performed. These requirements make analy-

sis procedures more complicated because multiple ma-

chines, although virtualized ones, are required. This re-

quirements also make analysis procedures more expen-

sive. In this paper, we present the Lightweight Kernel

Tracer (LKT), an alternative solution for tracing ker-

nel from within by leveraging branch monitors for data

collection and an address-based introspection procedure

for context reconstruction. We evaluated LKT by trac-

ing distinct machines powered by x64 Windows kernels

and show that LKT may be used for understanding ker-

nel’s internals (e.g., graphics and USB subsystems) and

for system profiling. We also show how to use LKT to

trace other tracing and monitoring mechanisms running
in kernel, such as Antiviruses and Sandboxes.

1 Introduction

Kernel tracing is an essential task in many scenar-

ios, such as in security, but it may become costly be-

cause it requires multiple machines and/or an exter-

nal debugger to be performed with all integrity and

consistency guarantees (e.g., atomic memory dumps,

pausable tasks, and exception chain inspection). How-

ever, tasks like profiling do not require all guarantees

provided by external debuggers to achieve their goals.

Therefore, the implementation of these analysis pro-

cedures would benefit from a lightweight kernel trac-

ing approach. A lightweight approach could allow uses
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ranging from analyses in resource-constrained scenar-

ios as well as in online, in-place kernel evaluations, thus

being a significant improvement regarding current ap-

proaches.

We believe that branch monitors can be used as an

alternative for kernel tracing since they are processor

features (thus not imposing huge overheads) and can

be accessed from within the inspection environments

(through Model Specific Registers—MSRs), thus not

requiring external components. Therefore, we here pro-

pose the Lightweight Kernel Tracer (LKT), a branch-

based framework for kernel tracing.

Current solutions for kernel tracing often rely on

full, complex analysis environments, such as develop-

ing instrumented virtual machines able to trace kernel

instructions, as in the case of Drakvuf [17] and Hy-

perDbg [9]. Branch monitors were used as additional

source of data on such VM-based systems, as in CXPIn-

spector [48], but no solution relies entirely on branch-

collected data. In this sense, branch data was already

used for kernel crash analysis, using the processor tracer

feature [51], but no tracing solution was developed. This

way, as far as we know, LKT is the first solution for ker-

nel tracing entirely based on branch monitor data.

As LKT does not rely on additional sources of ker-

nel data, it allows tracing kernel from within the moni-

tored system, a significant improvement over VM-based

solutions. By introspecting into the collected addresses,

context reconstruction is made possible, thus allowing

us to perform many trace-related tasks, such as profil-

ing and monitoring.

We leveraged LKT’s capabilities to perform reverse

engineering procedures in the x64 Windows kernel and

its subsystems, thus showing how a lightweight ker-

nel tracer can be used to enrich the knowledge about

system’s working in a general manner. More specifi-
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cally, LKT allowed us to dig into and understand the

call chains performed when multiple graphic cards were

used, when a USB device was hot-plugged, and when

the native firewall was filtering packets. In addition, we

show that LKT is able to inspect all system modules,

including the ones responsible for handling its own in-

terrupt routines (self-tracing).

Moreover, our evaluation shows that LKT allows

profiling systems in many ways, such as checking

kernel code core migration—by instantiating LKT

on distinct cores—and profiling the number of exe-

cuted drivers and modules—by checking instruction-to-

module-image mappings. It is also possible to detect

and monitor other kernel monitoring solutions, such as

callback-based drivers, since the callback addresses are

known. We illustrate this LKT capability by revers-

ing some antivirus (AVs) drivers to identify to which

subsystems they attach their monitoring modules (e.g.,

USB, filesystem, or network monitoring drivers).

In summary, our main contribution are the follow-

ing:

1. We propose a branch monitor-based solution for ker-

nel tracing from within, with no need for external

components, and present its development, including

implementation decisions and the developed intro-

spection procedure.

2. We evaluate LKT to show how it can be used for

distinct tracing tasks, such as reverse engineer and

profiling.

3. We dig into many Windows subsystems to provide

a deeper understanding of how they work and how

analysts can use LKT for kernel reverse engineering.

This paper is organized as follows: in Section 2, we

present background information regarding kernel orga-

nization and monitoring, thus establishing the basis for

this work’s development; in Section 3, we present re-

lated work, which allows us to better position our de-

veloped solution; in Section 4, we introduce LKT and

its present its development; in Section 5, we present

LKT’s evaluation and demonstrate how it can be used

for many tracing-related tasks; finally, we draw our con-

clusions in Section 7.

2 Background

In this section, we present background concepts regard-

ing the Windows kernel organization and its debugging

procedures.

2.1 Windows Organization: Userland and Kernel

Most modern computer systems are organized into

two distinct rings: userland and kernel. These two

modes present distinct memory addressing—through

segments—and memory protection, e.g. SMEP [20], to

prevent privilege escalation attacks.

Despite these differences, the two modes work in a

very similar way, having binary executables loaded and

mapped into addresses within their protected address

ranges.

To protect against fixed-offset payloads, modern

systems randomize binary placement through the Ad-

dress Space Layout Randomization (ASLR) mecha-

nism. As the kernel and userland modes present distinct

addressing spaces, the ASLR mechanisms are also dis-

tinct in each of them. However, module base addresses

may be enumerated in both cases, which allows for the

development of introspection procedures.

Modules loaded in memory can be device drivers or

even the kernel itself, because the Windows kernel is

compiled on the ntoskernel binary. As a regular PE

file, kernel exports can be dumped, thus also helping on

introspection procedures.

2.2 Kernel Debugging

Kernel analysis procedures are mostly performed by us-

ing debuggers, because they are able to step and stop

execution at distinct inspection points. In this sense,

Windbg [49] is probably the most used tool for such

purpose.

Stopping and changing values of a running kernel is

a delicate task because consistency must be kept, thus

requiring inspection solutions to have a whole-system

view to not generate deadlocks or setting the system in

an unrecoverable state. Therefore, this task is mainly

performed from outside by externally debugging a ker-

nel running within a VM/emulator [41].

The usual way of performing kernel inspection is

by using a serial port [11], but other connection facil-

ities may be leveraged, such as USB [34] or via NIC

adapters [35]. These approaches present a significant

drawback regarding infrastructure since two machines

are required: the external monitor and the monitored

machine, though modern systems may be virtualized to

perform both tasks in the same physical machine. Al-

though the use of VMs makes analysis easier, the task

still cannot be performed from within. Also, enabling

debug mode may require a reboot and the use of spe-

cific boot parameters [25], which also makes the task

more time-consuming.
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As an alternative to external debuggers, internal, lo-

cal debuggers have been deployed [30]. Despite not pro-

viding all the same resources that an external one does

due to consistency issues—breakpoints are disabled, for

instance, because the kernel cannot be stopped—, these

solutions are very useful, since many tasks, such as trac-

ing, do not require all the features provided by an ex-

ternal debugger. As an advantage, in-place analysis can

be performed in a shorter time and with no additional

hardware resources.

In-place kernel analysis gave its first steps when al-

lowing crash dumps to be analyzed using the same ma-

chine [23]. Currently, local debugging solutions can per-

form online routines traces and memory/register values

can be read on-demand, which indicates a trend to-

wards the development of more powerful local kernel

debuggers and tracers. In this context, we propose an

alternative for local kernel tracing based on the branch

monitor existing in modern Intel processors.

2.3 Branch Monitoring

Modern processors present a series of ways of collect-

ing execution metadata. Most of these ways are based

on hardware sensors and counters, which can be pro-

grammed to monitor given events and then read for

data collection. Intel’s processors, for instance, present

two kinds of monitors [13]; the Precise Event Based

Sampling (PEBS), an event-driven counter; and the

branch monitors, branch address-based data collectors.

Intel’s branch monitors are presented in two forms:

Last Branch Record (LBR), which store data on a cir-

cular, register-based buffer; and the Branch Trace Store

(BTS), which store data on O.S. memory pages. While

LBR requires polling for data collection, BTS presents

an interrupt-based mechanism to notify the buffer is

full. Filters are available for both LBR and BTS, so

one may choose to monitor only userland or kernel

branches and/or even specific branch types (e.g., CALLs

or RETs). Moreover, when BTS is enabled, one can filter

out branches associated to the interruption handler and

collect only the monitored branches that originated the

interruption. According to Intel’s manual [13]: “freezing

LBRs on PMI (bit 11) allows the PMI service routine to

ensure the content in the LBR stack are associated with

the target workload and not polluted by the branch

flows of handling the PMI”.

The initial application for branch monitors was pro-

filing, since they allow the identification of hot code

regions [38] and performance bottlenecks. Over time,

these were turned into security features, being used for

the detection of ROP attacks [39,7].

However, most branch monitor-based applications

are userland-focused, thus not covering the kernel. In

this paper, we propose filling such gap by leveraging

BTS capabilities for kernel monitoring, which allows us

to trace kernel from within.

3 Related Work

Kernel tracing may be performed for many purposes,

from malware analysis and detection [19] to profil-

ing [42]. In all cases, many event features can be em-

ployed [47]. As a general drawback, however, data col-

lection is often performed using solutions that impose

significant performance penalties. As an example, entire

virtual machines were proposed to trace kernel, both on

the x86 [15,14,17], as well as on the ARM platform [12].

Despite effective, many analysis tasks require only a

subset of those solutions’ monitoring capabilities, thus

they could be replaced by lightweight ones with signif-

icant performance gains.

The HyperDBG framework [9], for instance, lever-

ages hardware VM extensions to create a complete de-

bugger which is able to trace the running kernel. The

solution is able to perform all kinds of analysis, includ-

ing online value changes. However, if we are interested

only in function tracing, the solution is too complex, be-

cause an entire hypervisor needs to be deployed. Simi-

larly, CXPInspector [48] is a hardware-assisted VM able

to perform system profile. Such task, however, could be

performed using a lightweight solution, since runtime

value changes are not required.

In this scenario, we looked for alternative solutions

able to help us to trace kernels. A noticeable class of

hardware feature that could be leveraged for such pur-

pose are processor event monitors, such as branch mon-

itors. Previous work have demonstrated the processor

trace feature could be used for kernel crash analysis [51],

but, as far as we know, no online kernel tracing solu-

tion was developed based on such feature. The work

of Botacin et al. [4] presented a framework for binary

analysis using the branch monitor, which can be con-

sidered the closest work to ours. Their framework. how-

ever, does not cover kernel data capture or multi-core

support, extensions presented by us in this work.

4 LKT: A Lightweight Kernel Tracer

In this work, we propose the Lightweight Kernel Tracer

(LKT). It uses the BTS branch monitor as a way of

tracing the kernel from within. LKT relies on BTS in-

terrupts to enrich the collected data, thus allowing flow

reconstruction. LKT targets x64 Windows Operating
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Systems since the analysis of a closed-source, modern

kernel is a suitable task for LKT’s evaluation.

Previously, a BTS-based framework—named

Branch Monitor (BM)—was proposed for the userland

scenario [4]. Our work can be seen as an extension of

the BM framework to handle kernel data. In most part

of this work, we describe the differences from BM to

LKT. Implementation details on how to read the BTS

monitor are omitted in this paper but can be found

online [3].

Similarly to the BM, LKT is also structured in a

client-server architecture: the kernel driver is the server-

analogous and the userland application is the client-

analogous. Raw data is collected in the kernel and en-

riched in userland. As the major distinction between

the LKT and the BM framework, BTS flags were set to

capture only kernel data and to skip userland branches.

As a consequence, the general overhead is reduced, be-

cause kernel branches are much less frequent than user-

land ones.

Figure 1 presents an overview of the LKT architec-

ture. Userland branches (in red) are ignored. The green

arrows indicates the captured flows. When a module

running inside the kernel takes a branch, the BTS pro-

cessor feature stores it in an OS page. After reaching

a given storage threshold, an interrupt is raised and is

handled by the LKT driver, also inside the kernel. The

captured branches are stored in a queue and further dis-

patched to userland. The userland collector will enrich

such data based on an introspection procedure (further

described).

Fig. 1: LKT Framework. Only kernel branches are

captured by the branch monitor. Branch Monitor in-

terrupts are handled by the LKT module in the kernel.

I/O calls provide userland with kernel taken branches.

As we are only aiming to trace the kernel, without

modifying it, LKT is allowed to perform delayed data

collection—storing data in OS pages when the interrupt

happens and only copying the data to userland when

possible—, thus not overloading the I/O mechanism.

To do so, LKT implements a multi page-based data

collector, which works as a straightforward extension

of existing double buffer approaches [40,44].

Figure 2 shows a temporal view of data handling

procedures by LKT. When enabled, the BTS feature

starts to store taken branches in an OS page. The LKT

driver does not have data to handle until an inter-

rupt has occurred; consequently, no data is passed to

the userland collector. When the storage threshold is

reached and an interrupt is raised for the first time, the

LKT module changes the page BTS that is storing data

to the next one. At the same time, LKT starts copy-

ing data from the previously used page to its internal

queue. As the first page was not completely handled by

LKT at this time, the collector still does not have data

to handle yet. When a new interrupt is raised, LKT pro-

ceeds regularly, setting BTS to store on a new page and

collecting data from the previously written one. As now

at least one page was entirely copied, the userland col-

lector may start collecting data from the LKT driver.

In the next interrupt, BTS is supplied with the first

page, as it was handled both by LKT and the userland

collector. This procedure is repeated until monitoring

is finished.

As the branch monitor is a per-core feature and the

kernel—and its subsystems—can be scheduled in dis-

tinct cores at each context switch, LKT has to be en-

abled in all cores. When an interrupt is raised, the core

is identified through the GetCurrentProcessorNumber

routine [27], thus allowing associating branches to the

core in which they were executed.

LKT sets its interrupt routine via the

HalpSetSystemInformation() API, whereas the

original BM framework works by redirecting interrupts

to a Non-Maskable Interrupt (NMI) handler. Although

both approaches are native and do not require patch-

ing kernel structures, we considered the first one as

more advantageous when considering a multi-core

implementation: LKT is aimed to operate on multiple

cores and BM’s NMI interrupts must not overlap,

which limits the original BM’s threat model to a single

core operation whereas LKT can natively operate in a

multi-core fashion because it has independent interrupt

routines for each processor core.

To keep the delayed data collection working in the

multi-core scenario, LKT extends the multi-page ap-

proach to work in a circular way via a centralized mem-

ory pages repository for all processor cores. This repos-

itory is managed by mutexes and in the distinct times

in which each core raises an interrupt routine, the LKT

interrupt handler re-enables BTS to store data in the

next available page. The stored page is labeled with the

core number so as to allow one to associate branches

with the core in which they were executed. The LKT
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Fig. 2: LKT Multiple Buffers. When BTS is writing in a given memory page, LKT is handling a previous

written page. Similarly, the Collector is retrieving a page previously handled by LKT.

collector works by continuously polling the LKT driver

for more data until a termination signal is sent. Upon

a termination signal, LKT flushes all buffered data so

as to avoid losing branch information related to termi-

nation events.

4.1 Introspection

LKT may implement distinct data handling policies

during its operation. Each one of them is more suit-

able for a distinct kernel monitoring task (as presented

in Section 5). To implement such policies, the branch

data must be enriched so as to provide human-readable

information, which is performed through an introspec-

tion procedure, as following described.

The branch data collected by BTS, as shown in

Code 1, is composed only by raw data, i.e. instruction

addresses with no meaning for human readers. To ex-

tract high-level semantic information from branch data,

it has to be enriched by an introspection procedure.

An introspection procedure for userland branches was

proposed in the original BM framework. We present

here an extension of such proposal to cover kernel

space branches. Whereas introspecting into kernel space

branches, the introspection procedure is implemented

in userspace, as for the original BM framework.

Code 1: BTS-collected data. BTS provides the source

and target addresses of taken branches, with no high-

level information.

1 SOURCE|TARGET

2 0xe717814 |0 xe6b128

3 0xe717a20 |0 xeaf3fb

The first data enrichment step implemented by LKT

consists of identifying which module a given branch

refers. To do so, LKT’s client enumerates all loaded

modules and retrieve their base address using the

DriverView [36] tool. We opted for relying on this

third-party tool so as to keep the LKT operation com-

patible with the original BM solution, which relies on

a third-party tool at userland for its introspection rou-

tine. However, LKT could operate with any other in-

formation retrieval tool.

Despite being called driver, the tool is able to enu-

merate all kinds of loaded modules, which include the

kernel image (ntoskrnl) and all its subsystems (e.g.

acpi), as shown in Code 2. This enumeration step

should be repeated at each system run due to ASLR

effects over the loaded modules.

Code 2: Module Introspection. Kernel Image enu-

meration is used to associate branch addresses to mod-

ules.

1 <driver_name >ACPI.sys </ driver_name >

2 <address >0116 A000 </address >

3 <end_address >011 D7000 </ end_address >

4 ----

5 <driver_name >ntoskrnl.exe </

driver_name >

6 <address >97A83000 </address >

7 <end_address >981 CB000 </ end_address >

Once the image module was identified, LKT needs

to identify the called routine within the given mod-

ule, which is done by looking to the offset between

the target of a branch and the module base addresses

(branch target = module base+offset). LKT can match

the identified branch offsets to a list of routine exports

to identify routine names.

To retrieve the exported routine offsets of a given

module, LKT uses the DLLView [37] tool. Despite being

called DLL, the tool is able to retrieve exports from

any Windows executable file, including kernel image
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(ntoskrnl) and its subsystems, as shown in Code 3.

Unlike the previous case, there is no ASLR effect on

routine offsets, so these can be enumerated once and

stored in a database.

Code 3: routine Introspection. Binary Exports are

matched against branch addresses to identify called rou-

tines within modules.

1 C:\ Windows\System32\drivers\ACPI.

sys

2 > DeRegisterOpRegionHandler 0

x6b6f0

3 > RegisterOpRegionHandler 0

x6b684

4 ----

5 C:\ Windows\system32\ntoskrnl.exe

6 > CmRegisterCallback 0

x014050b150

7 > CmSetCallbackObjectContext 0

x014052cd2c

8 > CmUnRegisterCallback 0

x014050a9a4

A summary of the whole introspection procedure

is presented in Figure 3. For a given branch (0xBA3F),

LKT first identifies the value 0xBA00 as the base module

address of ntoskrnl. The table holds a pointer to a list

of routines exported by this model. The offset 0x3F is

used to index this list, allowing LKT to identify the

called routine as being the IoFreeIrp.

Fig. 3: LKT Introspection Procedure. Branch Ad-

dresses are mapped to loaded modules to bridge the

semantic gap. Branch base addresses are used to iden-

tify modules base addresses. The respective offsets are

used to map the exported routines.

By repeating this procedure for each taken branch,

the whole kernel execution path can be reconstructed.

We highlight that this introspection procedure is able

to retrieve names and entry points only for the routines

exported by the modules, and not for module’s internal

routine calls. In the traces, the latter are reported as

belonging to an Unknown location.

5 Experiments & Results

In this section, we present many applications enabled

by LKT to showcase the broadness of its impact.

5.1 Understanding Windows Kernel Internals

A straightforward application for the developed moni-

toring solution is to monitor the kernel itself. Tracing

the kernel allows for a better understanding of its work-

ing mechanisms and internals. We follow by demon-

strating such possibilities.

5.1.1 The Video/Graphics Subsystem

Modern notebooks often present multiple graphics

cards: an internal one, used for lighter tasks, and an

external card, used for the heavier ones. It allows for

battery saving while performing ordinary user activi-

ties and good performance under high-load situations.

Code 4 presents an excerpt of a kernel trace obtained

from a notebook having an integrated Intel graphics

card and an external ATI one. It allows us to under-

stand how graphics card switching is performed.

Code 4: Video Subsystem. During card switches, re-

quests are routed from the Intel driver to ATI one.

1 0x20078 <intelppm.sys+Unknown >

2 0x60000 <atikmdag.sys+Unknown >

3 0x20043 <atikmdag.sys+Unknown >

4 0x77365 <vdrvroot.sys+Unknown >

We observe that the kernel first asks the Intel driver

(intelppm) to provide a given resource or to take

a given action. The execution proceeds to the ATI

driver (atikmdag), which indicates that the Intel driver

skipped from answering the request, thus forcing the

kernel to reroute it to another driver. We can infer

that the kernel operates on a call chain model, ask-

ing the next driver in the call chain when the first does

not handle a given request. Finally, after the request is

handled, the execution returns to the video subsystem

(vdrvroot), which keeps performing requests.

5.1.2 Interrupt Handling

Given the system-view capability of BTS, LKT is able

to inspect all control flow changes, which includes in-

terruption handling. Code 5 shows an excerpt of an In-

terrupt Service Routine (ISR) of a device driver. In this

case, branch target addresses are collected even during

the interrupt handling and further interpreted as being

part of the ISR routine.
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Code 5: Interrupt Handling. Hardware events are

handled by the HAL subsystem.

1 43fb <Monitor.sys+Unknown >

2 b4da <hal.dll+Unknown >

3 6703 <ntoskrnl.exe+Unknown >

4 adf0 <hal.dll+

HalPerformEndOfInterrupt

>

We notice that the cleanup operation of the de-

vice driver (Monitor.sys) returns to the Hardware Ab-

straction Layer (HAL) subsystem, implemented by the

hal.sys module. The HAL subsystem abstracts hard-

ware differences and provides a uniform interface for

driver programming, making development easier. This

trace excerpt shows that the HAL subsystem is respon-

sible for notifying the kernel (ntoskrnl.exe) about the

ISR finish event and performing all ISR cleanup actions

(HalPerformEndOfInterrupt).

5.1.3 Encrypted Volumes

Modern filesystems provide built-in encryption capabil-

ities. Our monitoring solution allows us to infer some

details about such implementations. Code 6 presents a

trace excerpt related to the filesystem subsystem.

Code 6: Encrypted Volumes. The New Crypto API is

used to perform crypto-related tasks in the filesystem.

1 0063 <volmgrx.sys+Unknown >

2 0043 <cng.sys+BCryptUnregisterProvider >

We notice that the volume manager directly calls

the crypto subsystem when a volume is unmounted

since the running context must be cleaned. We also

observe the encryption is performed using the Cryp-

tography Next Generation (CNG) [24] subsystem, im-

plemented by the cng.sys module.

5.1.4 Network Subsystem

A constant system monitoring may also allow us to

better understand how the network subsystem works.

Code 7 presents a trace excerpt related to network ac-

tivities.

Code 7: Network Subsystem. Network requests are

filtered by the firewall, which calls specific modules to

parse the payload (HTTP, in this case).

1 0x004e <ndis.sys+NdisRegisterProtocol >

2 0x0dc8 <wfplwfs.sys+Unknown >

3 0x04f0 <HTTP.sys+Unknown >

We notice that the execution flow in the net-

work subsystem starts in the Network Driver Inter-

face Specification (NDIS) driver, which is a driver

wrapper for network protocols [32]. In particular,

NdisRegisterProtocol [31] is responsible for register-

ing requests to be handled at the transport level. The

execution flow allows us to identify the Windows Fire-

wall (wfplwfs.sys) as the requester. We can also iden-

tify the carried protocol as being HTTP, given the call

to the HTTP.sys driver. From this point on, the NDIS

subsystem will intercept network traffic and redirect it

to be filtered by the native system firewall.

Understanding the workings of this mechanism is

important from both the attackers’ and defenders’ per-

spectives: as the kernel has an embedded protocol

parser, a bug in it may lead to remote exploitation

through the incoming packets.

5.1.5 External Device Handling

A frequent task on modern computer systems is to plug

and unplug external devices. Code 8 shows a trace ex-

cerpt from the execution flow during a USB device con-

nection.

Code 8: Handling External Devices. The Plug aNd

Play (PNP) subsystem in action during the connection

of an external USB device.

1 00ba <CLASSPNP.SYS+Unknown >

2 48a0 <usbehci.sys+Unknown >

3 6260 <UsbHub3.sys+Unknown >

4 9e50 <bthport.sys+DllInitialize >

The connection of new devices is handled by the

Plug aNd Play (PNP) subsystem (classpnp.sys).

When the device is plugged in, the subsystem asks

for specific information, retrieved by the USB drivers

(usbehci.sys and usbhub3); After identifying the spe-

cific device—a Bluetooth adapter, in this case—the

Bluetooth profile subsystem [21] (bthport) is called.

5.2 Understanding Drivers and Modules

Besides understanding the behavior of whole kernel

subsystems, our solution can also be leveraged to un-

derstand individual modules. The trace excerpts shown

in Code 9 and Code 10, respectively, allow us to observe

that the module win32k.sys performs memory alloca-

tion (ExAllocatePoolWithTag) and operates on a per-

thread basis (PsGetCurrentThreadWin32Thread), thus

requiring thread identification to succeed.
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Code 9: Module Tracing. We were able to identify the

win32k module performing memory allocation during

its execution.

1 0x3660 <win32k.sys+Unknown >

2 0x4000 <ntoskrnl.exe+

ExAllocatePoolWithTag >

Code 10: Module Tracing. The win32k module re-

quires knowledge of the calling thread to run properly.

1 0x7e9f <win32k.sys+Unknown >

2 0xb120 <ntoskrnl.exe+

PsGetCurrentThreadWin32Thread >

Code 11: Module Tracing. The traced module

(Monitor) makes use of Kernel lists during its execu-

tion.

1 0x5471 <Monitor.sys+Unknown >

2 0xc05c <ntoskrnl.exe+ExAllocatePool

>

3 0x4000 <ntoskrnl.exe+

ExAllocatePoolWithTag >

4 0x5483 <Monitor.sys+Unknown >

5 0x7d10 <ntoskrnl.exe+

ExpInterlockedPopEntrySList >

6 0x3280 <ntoskrnl.exe+

KeReleaseInStackQueuedSpinLock >

By observing a larger trace excerpt, such as

the one presented in Code 11, we can infer even

more complex behaviors. For instance, we discov-

ered that the Monitor.sys module allocates memory

(ExAllocatePool) and then pops a value from the list

(PopEntrySList), which suggests the popped value is

copied to the allocated memory space, which acts as

a buffer. As the kernel (ntoskrnl.exe) handles lists in

an atomic way (Interlocked), it has to release the lock

(ReleaseSpinLock) after accessing the list.

5.2.1 Multi-Core Modules

As our solution is multi-core–based, we can trace the

cores independently and identify the code portions run-

ning on each one. Our first finding is that many routines

from the ntoskrnl can be called independently on each

core, as shown in Code 12.

Code 12: Multi-core Monitoring. We notice routines

being independently invoked on distinct cores.

1 Time|Core|Addr|Module

2 5.42|0|0 x0a40|<peauth.sys+Unknown >

3 5.42|0|0 x1e20|<ntoskrnl.exe+

ExFreePoolWithTag >

4 5.44|1|0 x9000|<win32k.sys+Unknown >

5 5.44|1|0 x1e20|<ntoskrnl.exe+

ExFreePoolWithTag >

We observe that at almost the same times-

tamp (5.4), two distinct modules (peauth.sys and

win32k.sys) branch from their internal routines (iden-

tified by the Unknown location) to the entry point of

the same routine (ExFreePoolWithTag) from the kernel

image (ntoskrnl). As no thread or process information

is retrieved and they were running concurrently on dis-

tinct cores (0 and 1), we infer that the routine is imple-

mented in a way each execution context is independent

from the other one.

In addition, LKT may also be used to identify multi-

threaded modules. We identified two multi core-related

cases: (i) core migration; and (ii) threaded code execu-

tion. A core migration happens when the OS schedules

a thread on a distinct core than the one in which it has

been scheduled before. Although it might be triggered

by many reasons, it often happens due to performance

reasons. When the OS identifies that a given core is

overloaded with processing tasks, it might schedule the

thread in a less used core to speed up processing. In the

threaded code execution case, a given code is not mi-

grated from one core to another. Instead, two or more

instances of the same code are executed in distinct cores

in parallel to speed up processing.

When a core-migration event is monitored by LKT,

one can observe that the same branches of the same
thread are taken on two distinct cores in subsequent

moments. When a threaded code execution is moni-

tored by LKT, one can observe that the same branches

are taken on distinct cores at nearly the same time, as

exemplified by Code 13.

Code 13: Multi-core Monitoring. The subsequent

execution of the same code region on distinct cores may

indicate the use of threads.

1 Time|Core|Addr|Module

2 3.20|0|0 x5471|<Monitor.sys+Unknown >

3 3.20|0|0 x43fb|<Monitor.sys+Unknown >

4 3.24|1|0 x5471|<Monitor.sys+Unknown >

5 3.24|1|0 x43fb|<Monitor.sys+Unknown >

We observe that at almost the same timestamp

( 3.2), the same addresses (0x5471 and 0x43fb) from

the same module (Monitor) were in execution on dis-

tinct cores (0 and 1). We highlight that the executed

instructions belong to its internal code and not to an
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exported routine entry point, given the Unknown identi-

fier. It suggests the executed region is part of a threaded

code, fact which was further manually confirmed.

LKT currently cannot differentiate between mul-

tiple threads running on the same core, because its

introspection procedure does not provide context in-

formation, such as the thread identifier, for individual

branches within a memory page of collected branches.

Whereas thread identifier information can be retrieved

by using additional introspection procedures, such as

using the GetThreadId routine [28], one must ensure

that distinct threads were not scheduled during the

same branch collection window. It might be achieved

by limiting the number of collected branches during a

window, as performed by the original BM framework.

5.3 Monitoring the monitor

More than understanding the kernel and its modules,

the system-wide view capability of BTS also enables

tracing monitoring drivers themselves, as shown in

Code 14. This is a significant advantage over other trac-

ing mechanisms, such as callbacks, which allow tracing

external events but not their own ones.

Code 14: Self Monitoring. BTS is able to trace

branches from the BTS driver.

1 0x5471 <BranchMonitor.sys+Unknown >

Given such capability, we leveraged LKT to inspect

the monitoring driver of our sandbox solution for mal-

ware analysis [6]. Code 15 shows the identified routine

calls.

Code 15: Monitoring a sandbox. LKT allows us to

identify the usage of callback routines by the sandbox

driver.

1 0x4f09|<Monitor.sys+Unknown >

2 0xa354|<ntoskrnl.exe+

PsSetCreateProcessNotifyRoutine >

3 0x4ec7|<Monitor.sys+Unknown >

4 0x0b40|<ntoskrnl.exe+

CmRegisterCallbackEx >

We identified calls to

PsSetCreateProcessNotifyRoutine [33], a pro-

cess callback, and to CmRegisterCallbackEx [22], a

registry callback. As described by the solution paper [6],

both callbacks are used for activity monitoring.

In addition, when looking to the number of times

that each code region was executed during the sand-

box run, as shown in Figure 4, we identified multiple

calls to the addresses 0x4a30|<Monitor.sys+Unknown

and 0x4b48|<Monitor.sys+Unknown, which were sup-

posedly the callback handler routines.
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Fig. 4: Executed Regions. The most frequently exe-

cuted regions of the sandbox drivers allow us to identify

the callback routine handlers.

In practice, many modules and system components

rely on callbacks for their monitoring operations, thus

they can be identified by LKT. Code 16 shows that

the volume management subsystem (volmgrx.sys) re-

lies on a filesystem (fltmgr.sys) callback (setup via

FltIsCallbackDataDirty [26]) for its operations. It

may rely on the registered callback, for instance, to

identify whether there is a pending operation on a re-

movable device.

Code 16: Callback Monitoring. The filesystem uses

callback to identify pending operations in a given de-

vice.

1 0x0047 <volmgrx.sys+Unknown >

2 0x0069 <fltmgr.sys+

FltIsCallbackDataDirty >

Code 17 shows that the crypto subsystem

(cng.sys) relies on a callback (registered via

EntropyRegisterCallback) to get entropy. It might

allow, for instance, a non-blocking operation while

enough data is not available to generate random num-

bers.

Code 17: Callback Monitoring. The crypto subsys-

tem uses a callback to retrieve entropy for random num-

ber generation.

1 0x341f <cng.sys+EntropyRegisterCallback >

Callbacks are often used in the security context to

allow solutions to enforce security policies on modifying
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data. Therefore, we leverage LKT to identify callback

usage in a particular class of security applications: Anti-

Viruses (AVs).

We have installed and traced the Avast and Avira

solutions, as they were the most downloaded AVs by

the time we queried Softonic’s security applications

Top10 [46]. The identified number of callbacks and

modules are presented in Table 1. More details are pre-

sented in Appendix A.

Table 1: AV Callbacks. Number of AV modules which

invoked at least one system callback routine and the

number of distinct invoked callback routines.

AV Modules Callbacks
Avast 12/13 (92%) 8
Avira 2/6 (33%) 1

We notice that both solutions perform their mon-

itoring activities by using callbacks. Such discovery is

important to understand how modern AVs work be-

cause the so-far used kernel hooking-based monitoring

techniques [8] are now prevented by the Kernel Patch

Protection (KPP) mechanism [6]. Therefore, AVs had

to find new ways of implementing system monitoring

mechanisms.

5.4 Kernel Profiling

Application profiling is a frequent development task, as

programmers are always required to extract the best re-

sults of their implementations and available hardware

resources. Kernel profiling is a particular class of such

approach, aimed to assure that the kernel is not wast-

ing time which could be better employed on performing

users’ tasks. An example of an important kernel profil-

ing task is the TCP/IP stack verification [50].

To give some insight on how LKT could be used for

kernel profiling, we monitored the kernel while running

the same version of the Chrome web browser and open-

ing the same home page on two distinct computers—

running Windows 8 x64 on a 4GB, i5 and i7 processors,

respectively.

Tables 2, 3 and 4 show, respectively, statistics for

the number of distinct modules which executed at least

one branch during monitoring, the number of times the

ACPI module was invoked, and the number of times

an interrupt handling routine was executed. For these

cases, we considered a sequence of consecutive branches

from the same module as a single entry. The results are

based on the average values for 5 executions.

Table 2: Kernel Profiling. Number of executed mod-

ules during a run. We observe PC I executes more mod-

ules than PC II. We also observe modules are core-

scheduled in an unbalanced way.

XXXXXXXXPC
Core

I II III IV

I 70 44 31 49
II 63 9 53 31

Table 3: Kernel Profiling. Number of times that the

ACPI module was called within the execution window.

We notice that the PC I performs more calls than the

PC II, thus presenting a higher performance penalty.

XXXXXXXXPC
Core

I II III IV

I 215 1 1 2
II 58 2 0 6

Table 4: Kernel Profiling. Number of times an inter-

rupt routine was executed. As PC I handles more in-

terrupts than PC II, its performance is more affected.

XXXXXXXXPC
Core

I II III IV

I 100 0 98 96
II 65 0 15 98

Distinct kernel performances are expected in the

two machines as they present distinct drivers setups.

We observed that the first machine actually executed

more code pieces (more drivers/modules were sched-

uled) than the second. Running more kernel modules

implied on handling more interrupts and ACPI events.

The higher number of interrupts and ACPI-handling

routines observed in the machine I in comparison to

the machine II suggests a higher performance impact

on the first because the system spent more time run-

ning kernel code instead of actual userland tasks.

In both cases, however, we notice a poor workload

balancing by the OS scheduler. Most kernel code is exe-

cuted in the first system core (core I) and only few tasks

are performed on the other cores. On the one hand,

this result can be explained by the intrinsic complexity

of scheduling on multi-core systems [45]. On the other

hand, it highlights a significant opportunity improve-

ment, as enforcing third party drivers to run on cores

other than the first one may increase their performance.

Whereas this enforcement policy depends on multiple

aspects (e.g., cache management, data sharing, so on),

a tool such as LKT might help to identify when this

strategy was successful.
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5.4.1 Identifying Hot Code Regions

A typical profiling task is to identify hot code regions—

regions frequently executed, thus significantly affecting

performance when optimized. Performing hot code re-

gion identification using LKT is straightforward since

the same instruction addresses will appear multiple

times in the trace, as shown in Code 18.

Code 18: Hot Code Region Identification. Spin

Lock acquisition is responsible for the repeated execu-

tion of the same instructions.

1 0x7814 <ntoskrnl.exe+Unknown >

2 0x2580 <ntoskrnl.exe+

KeAcquireInStackQueuedSpinLock >

3 0x7814 <ntoskrnl.exe+Unknown >

4 0x2580 <ntoskrnl.exe+

KeAcquireInStackQueuedSpinLock >

5 0x7814 <ntoskrnl.exe+Unknown >

6 0x2580 <ntoskrnl.exe+

KeAcquireInStackQueuedSpinLock >

7 0x7814 <ntoskrnl.exe+Unknown >

One can easily identify the 0x7814 offset of

ntoskrnl.exe as a hot code region, since it is fre-

quently executed. Such behavior, however, is expected,

since this code region refers to a lock implementation,

used for synchronization. More specifically, it refers to

the SpinLock [29] acquisition, which is performed on

a busy-waiting way, to avoid significant performance

penalties inside the kernel, which would be the case of

alertable locks.

5.5 LKT Performance penalty

As LKT is intended to be a lightweight alternative for

kernel tracing, we evaluated its performance impact

when tracing a real system. We measured the imposed

overhead on userland applications while performing or-

dinary tasks. We considered the overhead as the relative

difference between the number of CPU clock ticks spent

to run the benchmark application on the same system

with and without LKT enabled. The number of ticks

were collected in the creation and termination of the

benchmark processes. The experiments were repeated

for a distinct number of iterations (routine calls). It

makes the kernel to be interrupted at distinct frequen-

cies, thus avoiding the impact of system calls on per-

formance to be masked among other routine’s invoca-

tion. All experiments were conducted in the same I7-

powered system previously described. Table 5 and 6

show, respectively, the impact imposed on applications

that print a random value to the screen and write a

random value to a disk file. The values are presented

as multiples of millions tick counts and were retrieved

from an average of one hundred executions.

Table 5: LKT Overhead. Performance penalty while

printing on the screen.

Iterations Base Monitored
100 3 9 (200%)
1000 32 49 (53%)
10000 300 426 (42%)

Table 6: LKT Overhead. Performance penalty while

writing to a disk file.

Iterations Base Monitored
100 42 76 (80%)
1000 425 503 (18%)
10000 4268 4834 (13%)

We first observe that both the base execution time

and the overhead measures are application-dependent.

It was expected, as each routine is internally imple-

mented in a distinct way. Handling files, for instance,

is more expensive than printing to the screen as more

routines are internally called—aiming to, respectively,

open the handle, position the file pointer, write the data

and close the handle. In both cases, however, the ex-

ecution time grows linearly with the number of calls
(iterations). In spite of that, the relative overhead is

greater on smaller loads than on larger loads. This hap-

pens because the performance penalty imposed to the

system calls in the conditions of high system activi-

ties is partially masked by the throughput of continu-

ously handling the higher loads. It might happen, for

instance: (i) when system calls are enqueued by the OS

and processed together; and (ii) when cache-resident

data is reused in subsequent calls. In turn, when a small

load is traced, the whole performance penalty of kernel-

userland transitions is observed in every single kernel

invocation.

LKT’s worst observed result was a 2x slowdown—on

a unique instance—, which is reasonable for a micro-

benchmark. In comparison, a recent survey on Linux

tracers [10] have shown that the fastest kernel tracer

solution imposes a 5x slowdown whereas the slowest one

may impose up to an 8x slowdown. It shows that LKT

is a suitable candidate for lightweight tracing tasks.
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6 Discussion

In this section, we discuss our contributions, the current

implementation drawbacks, theoretical limitations and

pinpoint future research directions.

6.1 Solution advances and development opportunities

The most noticeable advance enabled by LKT is to

trace kernel from within, eliminating the need for ker-

nel extensions, external debugging modules and/or ad-

ditional hardware resources. LKT does not require spe-

cial configurations to be loaded nor impose significant

overhead, as it is based on a processor feature.

LKT’s analysis capabilities allow for a variety of ap-

plications, such as profiling and tracing. In particular,

it allows for tracing other monitoring solutions, which

is a desired feature when tracing shielded applications

that prevent direct inspections, such as AV engines. In

some cases, LKT may be used even for bug finding,

as one observing the flow of driver’s execution and/or

userland-kernel calls might be able to understand which

routine path was traversed by the flawed execution and

therefore identify the root cause of a bug.

An application that could benefit from LKT ap-

proach is kernel self-tracing. LKT could allow, for in-

stance, a kernel to profile itself and detect performance

bottlenecks. On the one hand, it seems straightfor-

ward for kernels to instrument themselves via either

source-code routines or runtime callbacks to enable self-

monitoring capabilities. On the other hand, one should

notice that third-party modules, such as drivers, are

often distributed as binary blobs and do not provide

many metadata collection resources, such as crash re-

port routines. Therefore, branch data could be lever-

aged to collect metadata from modules originally not

providing these capabilities. This type of data could be

used, for instance, to whether a given one is misbehav-

ing and the root cause of it. For instance, one could

leverage LKT to trace a buggy driver execution and

identify which is the root-cause branch that leads to the

flawed path. Similarly, one could identify which was the

last executed kernel routine before a driver crash.

6.2 Limitations

The major limitation of tracing kernel from within

without suspending kernel execution, as performed by

the passive collection implemented via BTS, is that

stepping execution and value changes are not allowed,

under the risk of corrupting system state. We believe

that this drawback is acceptable because not all trace-

enabled applications require such capabilities.

An alternative to providing such capabilities would

be to rely on multiple kernels, so one is able to control

the other. Such approach is leveraged by Barebox [16],

thus eliminating the need for reboots. Such approach

is also employed in other contexts, like in double ter-

minal support [18]. However, we consider this approach

as expensive as launching a VM or using an external

monitor.

LKT’s introspection procedure may also present

limitations in some scenarios. Due to Windows Kernel

Patch Protection, some symbols are not exported any-

more, such as SSDT addresses [6]. If these addresses are

required for some use case, an additional introspection

procedure must be developed. In fact, this problem is

common to distinct systems: the Linux kernel is also

reported to not have a well-defined kernel interface, so

introspection approaches must be developed [2]. LKT’s

introspection procedure is also limited to the symbols

exported by the deployment versions of the considered

modules. The use of debugging symbols (e.g., PDB files)

would allow LKT to present more high-level informa-

tion to the analysts. The implementation of this feature

is currently left as future work.

6.2.1 Rootkits and kernel security

In this work, we restricted our evaluation to benign

cases, as we have to trust kernel integrity for data collec-

tion and symbol introspection. Therefore, rootkit anal-

ysis is out of the scope of this work. Whereas LKT

could be leveraged to trace any kernel modules, includ-

ing kernel rootkits, we could not assure kernel integrity

without relying on a more privileged ring [43]. When

running on the same privilege level, a rootkit could,

for instance, tamper with LKT routines and even dis-

able the BTS monitor. To provide full rootkit analysis

capabilities, BTS interrupts could be redirected to be

delivered as SMIs, and so being handled by the SMM

mode at a more privileged ring (BIOS), as proposed

and discussed in more details in related work [5].

Previous work leveraged LBR to identify kernel

taken branches in the presence of a rootkit [1]. Com-

pared to LKT, using LBR is more cost-intensive, since

LBR requires polling for data collection and LKT is

interrupt-based. In addition, whereas previous work’s

introspection procedure hook kernel data structures,

ours is solely based on branch addresses.
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6.3 Future Work

As for future work, on the one hand, we aim to ex-

tend LKT to provide more analysis facilities without

losing the lightweight characteristic. On the other hand,

branch facilities could also be used to enrich external

monitors. A straightforward approach would be to redi-

rect Performance Monitoring Interrupts (PMIs) to be

delivered as SMIs, so that they are handled by the

SMM mode, for instance. An efficient implementation

for this monitoring feature should be investigated as

the use of the SMM mode also presents performance

drawbacks [5].

7 Conclusion

In this paper, we introduced the use of branch mon-

itors to trace kernels from within, thus presenting a

lightweight alternative to ordinary, external kernel de-

buggers. We developed an address-based introspection

routine that allows us to enrich branch-collected data

and perform context reconstruction. Our developed

framework, the Lightweight Kernel Tracer (LKT), al-

lowed us to reverse engineer the Windows kernel to

gather more knowledge about its internal working—

understanding the call chains performed when multi-

ple graphics cards were used, when a USB device was

hot-plugged, and when the native firewall was filtering

packets—and perform kernel profiling—identifying ker-

nel core migration, interrupt frequency, number of ex-

ecuted drivers along the stack—through their executed

routines. We also demonstrated how LKT can be used
to detect and inspect other tracing mechanisms, such

as AntiViruses, by identifying when and/or in which

context callback routines are called by the kernel.

Reproducibility. We believe that LKT can be a prac-

tical alternative on many scenarios, thus we released the

LKT framework as an open-source solution. The code

is available at https://github.com/marcusbotacin/

BranchMonitoringProject.
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A Appendix

In this appendix, we present more detailed information about
the identified modules and callback routines for Avast (Ta-
ble 7) and Avira (Table 8) solutions.
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Table 7: Avast. Modules and Callbacks.

Name Description System Callbacks Other Callbacks

PsSetLoadImageNotifyRoutine ExRegisterCallback
aswArPot Anti Rootkit PsSetCreateThreadNotifyRoutine ExCreateCallback

PsSetCreateProcessNotifyRoutine
PsSetLoadImageNotifyRoutine CmRegisterCallback

aswbidsdriver Activity Monitor PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine

aswbidsh Monitor Helper PsSetCreateProcessNotifyRoutine
aswblog Logging None None

aswbuniv Universal PsSetLoadImageNotifyRoutine
PsSetCreateProcessNotifyRoutine

aswHdsKe Network NotifyIpInterfaceChange ExRegisterCallback
ZwNotifyChangeKey ExCreateCallback

PsSetLoadImageNotifyRoutine ExRegisterCallback
aswMonFlt Filesystem PsSetCreateProcessNotifyRoutine ExCreateCallback

PsSetCreateThreadNotifyRoutine
PsSetLoadImageNotifyRoutine ExRegisterCallback

aswRdr Network Redirect PsSetCreateProcessNotifyRoutine ExCreateCallback
PsSetCreateThreadNotifyRoutine

NtNotifyChangeMultipleKeys ExRegisterCallback
aswSnx Virtualization NtNotifyChangeKey ExCreateCallback

PsSetLoadImageNotifyRoutine FltSetCallbackDataDirty
PsSetCreateThreadNotifyRoutine
PsSetCreateProcessNotifyRoutine
PsSetLoadImageNotifyRoutine, ExRegisterCallback

aswSP Self Protection PsSetCreateThreadNotifyRoutine ExCreateCallback
PsSetCreateProcessNotifyRoutine
PsSetLoadImageNotifyRoutine, ExRegisterCallback

aswStm Stream Filter PsSetCreateThreadNotifyRoutine ExCreateCallback
PsSetCreateProcessNotifyRoutine
PsSetLoadImageNotifyRoutine, ExRegisterCallback

aswVmm VM Monitor PsSetCreateThreadNotifyRoutine ExCreateCallback
PsSetCreateProcessNotifyRoutine

KeRegisterBugCheckReasonCallback

Table 8: Avira. Modules and Callbacks

Name Description Other Callbacks

avdevprot USB PsSetCreateProcessNotifyRoutine
avgntflt Filesystem PsSetCreateProcessNotifyRoutine
avipbb General None
avkmgr Manager None
avnetflt Network None
avusbflt USB None
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