On the Security of Application Installers & Online
Software Repositories

Marcus Botacin!, Giovanni Bertdo?, Paulo de Geus?, André Grégiol, Christopher
Kruegel?, and Giovanni Vigna®

Federal University of Parand (UFPR), Brazil — {mfbotacin, gregio}@inf.ufpr.br
University of Campinas (UNICAMP), Brazil — {bertao, paulo}@lasca.ic.unicamp.br
University of California Santa Barbara (UCSB), USA — {chris,vigna}@ucsb.edu

Abstract. The security of application installers is often overlooked, but the se-
curity risks associated to these pieces of code are not negligible. Online public
repositories have been one of the most popular ways for end users to obtain
software, but there is a lack of systematic security evaluation of popular public
repositories. In this paper, we bridge this gap by analyzing five popular software
repositories. We focus on their software updating dynamics, as well as the pres-
ence of traces of vulnerable and/or trojanized applications among the top-100
most downloaded Windows programs on each of the evaluated repositories. We
analyzed 2,935 unique programs collected in a period of 144 consecutive days.
Our results show that: (i) the repositories frequently exhibit rank changes due
to applications fast climbing toward the first positions; (ii) the repositories often
update their payloads, which may cause the distribution of distinct binaries for the
same intended application (binaries for the same applications may also be different
in each repository); (iii) the installers are composed by multiple components and
often download payloads from the Internet to complete their installation steps,
posing new risks for users (we demonstrate that some installers are vulnerable
to content tampering through man-in-the-middle attacks); (iv) the ever-changing
nature of repositories and installers makes them prone to abuse, as we observed
that 30% of all applications were reported malicious by at least one AV.

Keywords: Installer - Downloader - Trojan

1 Introduction

Modern operating systems (OS) have been providing more resources to meet users
requirements over time. However, the unique needs of an heterogeneous user population
can only be fulfilled by third-party software. Whereas Linux-based systems model for
obtaining new applications often depends from official distribution repositories [24], MS-
Windows based systems do not present any centralized software repository, outsourcing
to the users the responsibility for downloading additional programs.

In this scenario, online software repositories have become the de-facto standard
repository for most users. On the one hand, these repositories are a very practical service,
as they group multiple applications in a single place with ranking and searching features.
On the other hand, these repositories hardly check binaries’ security, neither regarding
vulnerabilities nor maliciousness, and their providers often do not take full responsibility
for the distributed software. Therefore, the users themselves are responsible for the
implications of installing software downloaded from these repositories.

2 Botacin et al.

Actually, most users blindly trust the repositories, which makes them vulnerable to
exploitable code constructions (e.g., buffer overflows and/or man-in-the-middle attacks)
and/or Trojanization attacks, i.e., when malicious code is added to legitimate applications.
Trojanization is a common practice among attackers to deceive users into installing their
malicious payloads inconspicuously and, when deployed on popular repositories, it might
have a large-scale impact if we consider the potential target population of trojanized
downloads. Repository Trojanization examples include the cases of the Arch Linux
repository [9], the Asus update system [38], and the Android platform [20].

This scenario becomes even worse if we consider that most software repositories are
known for appending other components to their distributed applications (e.g., adware),
in a process named “bundling” [17]. Software bundling might end up adding vulnerable
components to previously safe applications. It might also add tracking capabilities to
initially privacy-respecting applications. It also opens to attackers the opportunity of
embedding malicious payloads in programs distributed through repositories. Recent cases
include Sourceforge [34]—accused of distributing malware via bundled binaries [18]—
and malicious samples distribution via application installers [28]. Despite all occurrences
of trojanized software in popular online software repositories, the academic literature
dedicated to investigate this phenomenon is limited, and the few existing work mostly
target the Android OS [1,4,37], rather than MS-Windows, whose few existing work are
still limited in coverage [13]. Therefore, to bridge this gap, we propose to investigate
the five more popular online software repositories (according to Alexa [2]), aiming at
shedding light on the occurrence of vulnerable constructions and Trojanized applications
that actually may infect end users. To do so, we obtained the 100 most-downloaded
Windows programs on each of the five chosen repositories for a period of consecutive 144
days (from Feb/2019 until May/2019). We submitted the resulting 2,935 distinct binaries
to static and dynamic analysis systems. We also developed a tool to automatically install
those programs during their run in the sandbox, which allowed us to observe interactions
between the monitored program and the OS.

Our results show that (i) the repositories are very dynamic, presenting frequent rank
changes, thus allowing applications to fast climb to the first rank positions; (ii) the
repositories often update their payloads, with distinct binaries being distributed over
time even for the same applications. We also observed differences in the installers for the
same applications distributed by distinct repositories; (iii) the installers are very dynamic,
presenting modular constructions and often downloading payloads from the Internet to
complement their installation steps. Whereas enabling flexibility, relying on the Internet
also poses new risks if security measures are not taken. In this sense, we demonstrate
that some installers are vulnerable to content tampering via man-in-the-middle attacks;
and finally (iv) all this dynamic characteristic of installers and repositories open space
for abuse, with 30% of all applications being reported as malicious by at least one AV.

In summary, our contributions are as follows: (i) We characterize the way in which
online software repositories update their application’s rankings and binary sharing among
distinct installers regarding their interaction with OS components to understand their
implementation decisions, scope, and impact on users’ devices; (ii) We present statistics
about multiple aspects of the installers distributed by popular repositories aiming to
support further research work and investigations; (iii) We investigate the interaction

On the Security of Application Installers 3

between application installers and the OS and evaluate installer’s implementation choices;
and (iv) We pinpoint behaviors found in installers that are compatible with malicious
actions deployed by malware samples, and discuss best practices that could be adopted
for the next-generation of non-intrusive application installers.

This paper is organized as follows: In Section 2, we present the main characteristics
of online software repositories; In Section 3, we present the methodology adopted to
conduct the performed experiments; In Section 4, we present evaluation results regarding
the files distributed in online software repositories; In Section 5, we discuss our findings,
their implications, and open research questions; In Section 6, we present related work to
better position our developments; we draw our conclusion in Section 7.

2 Online Software Repositories

Online software repositories are popular websites: Softpedia ranks first in the Alexa’s
Shareware website list [2], with million accesses and downloads everyday. Google
Chrome ranks third in this repository and accounts for 6M downloads. Microsoft Skype,
the 28", was downloaded 3M times. Other repositories present same magnitude data:
Ubit ranks first in the CNET repository and was downloaded 24M times. Therefore,
every action in these repositories has potential to affect million users. In this scenario,
every small percentage matters in the long-tail.

Table 1: Repository Summary. Repositories are diverse in multiple aspects.
Repository Uploaded By Curated By Sponsored Ranking Servers Security Checks

FileHorse Users Site v Internal/External v
Cnet Users Site v External* v
FileHippo Site Site v Internal v
SourceForge Users X X Internal v
Softpedia Users Site X Internal/External v

Table 1 summarizes the diverse operation of the software repositories. For most
repositories, the process for adding a new software is started by the user filling some
form. This will be further reviewed by the website managers. All repositories advertise
they assure the software quality, but no guideline is specified. In Sourceforge’s case, a
project can be directly imported from Github. Once a software is included, its download
page mentions the software creator, but they do not report who requested the software
to be included. Most repositories allow the software to become popular by themselves.
CNET is a noticeable exception, allowing developers to sponsor their applications and
climb ranking positions.

Most payloads are stored on internal repository servers and some repositories also
allow users to directly get files from external sources (as an alternative link option). In
most cases, the links point to the software creator’s page. In CNET’s case, they point to
a CDN. Requests are performed along with tokens which allow identifying the request
origin. In our tests, on the one hand, direct links always resulted in the download of the
same updated binaries available in the software creator’s page. On the other hand, internal
links always served distinct files than the official release (mostly outdated versions). All
repositories claim the provided files are security checked. Some of them are backed by
popular solutions, such as Avast (FileHippo) and Bitdefender (SourceForge). Despite
that, it is not clear to what extent analyses are performed.

4 Botacin et al.

3 Methodology

In this section, we describe our methodology for our experiments in collecting and
analyzing programs distributed via online software repositories.

Repository Selection and Programs Collection We selected the five most popular
online software repositories according to Alexa score [2]: Softpedia [32], Source
Forge [34], CNet [10], File Hippo [11], and File Horse [12]. Our intention was to
ensure a broad range of samples and, at the same time, to be able to process all collected
data on a daily basis. We developed an automated crawler (using Python’s Scrapy [29])
to collect programs distributed by the aforementioned repositories. Our crawler operates
as follows: (i) it first traverses all application ranking pages enumerating the available
software and pages; (ii) it selects the top 100 most downloaded apps in the ranking;
(iii) it accesses each selected application page and retrieves the download links; (iv) it
downloads the file to our storage. This process was repeated daily for the five selected
repositories, for a consecutive period of 144 days (from Feb/2019 until May/2019).
Metadata from downloaded files were stored on a sqlite database, allowing further
queries, such as: (i) what binary hashes were associated to which repositories; (ii) the
binary’s ranking position on a given day; (iii) the amount of distinct hashes collected
under the same program’s name in a given repository, among other information presented
in Section 4.

Automated Application Installation and Analysis Although some installers enable
unattended software installs, most of them requires users to interact with GUIs to proceed
with installing steps (Figure 1). Therefore, to scale analysis of thousand samples, we
developed a “clicker”, i.e., an installing automation script that simulates user interaction
with application installers. More specifically, we developed an Autoit [5] script to click
the Next and Finish buttons displayed within graphical windows, allowing installers
to proceed without human interaction.

Fig. 1: Automated Installation Example. AutolT scripts click on the next button until
the installation is complete.

We leverage static and dynamic analyses procedures [31] to identify whether an
installer was Trojanized with malicious payloads and/or was implemented following bad
development practices. To do so, we propose to match behaviors identified in installers to
those knowingly exhibited by malware and suspicious software [16]. Our hypothesis is
that benign software will exhibit none or few suspicious behaviors. We conducted static
analysis procedures based on basic binary inspection—format and library identification,
and samples submission to VirusTotal [35], to verify if those binaries would be
detected by some AV installed on users’ devices. The dynamic analysis consisted of
running the samples in a virtualized sandbox machine with a malware monitoring
system [7] to observe processes creation, filesystem operations, registry key changes,
and network traffic. All valid Windows binaries were uploaded to that sandbox, in which
each one was installed using our clicker.

On the Security of Application Installers 5

Assumptions The experimental setup described in this section is supported by the
following assumptions: (i) Our goal is not to provide an exhaustive analysis of all
existing application installers, but a view on the most downloaded (and supposedly most
installed) applications; (ii) Since not all websites will be reachable and not all binaries
will be available every day, our goal is to provide a long-term view of the evaluated
repositories dynamics, instead of a snapshot of a certain day; and (iii) We understand
that some installers’ operation might be unsuccessful due to the sandbox execution and
the clicker stimulation. Thus, our goal is to provide an overview of common practices
implemented by the applications installers, avoiding focusing on particular cases.

4 Repositories Evaluation Results

In this section, we present the results obtained from the evaluation of the programs
distributed by the five selected online software repositories. Our experiment consisted
of the following steps: (i) description of the collected dataset; (ii) evaluation of the
content distribution dynamics within the repositories; (iii) drawing a landscape associat-
ing installers interaction with operating system internals; (iv) comparing the behavior
exhibited by installers of the same software, but distributed by different repositories; (v)
investigation for evidences of software trojanization.

4.1 Dataset Description

During the 144 days of collection, we successfully downloaded 46,018 files from the
five online software repositories and built a dataset with 2,935 unique files, related to
1,633 distinct programs (Table 2). From those programs, 13 were software intended to
remove other applications (uninstallers) and, due to that, they were evaluated separately
from the remainder of the dataset samples (considered as “installers”).

Table 2: Dataset overview. The number of Table 3: File sharing among
unique files differs due to changes in distri-repositories. They usually do not

bution over time. share files for the same programs.

Repository Programs (#) Unique Files (#) Repositories Sharing Rate (%)
FileHorse]2 314 (Cnet, FileHorse) 48.04
(FileHippo, FileHorse) 17.65
Cnet 118 295 " (Cnet, FileHippo) 15.69
FileHippO 433 906 (FileHippo, Source Forge) 07.84
SourceForge 99 631 (Cnet, Softpedia) 04.90
. (Cnet, Source Forge) 03.92
Softpedla 901 897 (FileHorse, Softpedia) 00.98
Total 1,633 2,935 (FileHippo, Softpedia) 00.98

The number of unique files is greater than that of unique applications because the
distributed files vary over time (among distinct repositories as well as within the same
repository), and the total number of downloaded files does not correspond to the expected
sum of each repository downloads. The reason is that 105 (3.6%) files were shared by
two (95% of all shared files) or three (5% of all shared files) repositories. In Table 3,
we show that most repositories do not share files among themselves even for the same
programs, implying that they distribute distinct program versions or installers.

Programs distributed by the repositories are packaged in multiple formats (Table 4).
Although Trojanization can be implemented via any packaging type, we focused on
binaries with Windows PE file format [25], since they are the prevalent file format in

6 Botacin et al.

our dataset, and are also self-contained installers, which makes Trojanization easier for
attackers. Most PE files present in our dataset are 32-bits, still reflecting the long-term
trend of developers that delay the adoption of new programming techniques to native
support 64-bit applications, as reported in [36]. Interestingly, some installers are packed
with UPX (2.6%) and/or Armadillo (0.6%) so as to compress their payloads. Only 19.3%
of the PE installers were crypto-signed.

Table 4: File types distribution.Table 5: Binary file’s size distribution.
Self-contained PE files are the preva-Small binaries are associated to down-

lent type of program installers. loaders and large ones to droppers.
Type Format Prevalence (%) Interval (MB) Frequency Binaries(%)
Java 0.67 [0.000, 0.400) 93 542
ISO 1.04 [0.400, 1.400) 128 7.46
Compressed 7-zip 0.37 RAR 0.30 [1.400, 5.000) 242 14.11
File XZ70.37 ZIP 2047 [5.000, 70.000) 619 36.08
Formats bzip2 0.37 gzip 1.34 [70.000, 150.400) 145 8.45
Windows DOS 0.45 PE 65.63 [150.400, 600.400) 105 6.12
Binaries .Net 0.67 PE+0.45 [600.400, 888.000) 16 0.93
Other 7.87

il

The variety of formats distributed by the software repositories affects the installers
file sizes, shown in Table 5. The differences in files sizes is important due to storage
issues and because they may reveal implementation strategies behind the installer:
smaller binaries usually only implement a client that downloads the actual payload from
the Internet (Type I installer); larger binaries embed the payload themselves, dropping
them at installation time (Type II installer). Although the first approach enables content
creators to keep distributing up-to-date versions of their software, it makes security
checking harder, as the distributed content changes very often. In terms of Trojanization,
an attacker who controls a Type-I installer might implement a downloader [27], whereas
an attacker who controls a Type-II installer might implement a dropper [16].

4.2 Repositories Dynamics

The chances that a malicious actor trojanizes a given repository and the impact that it
can cause are strongly tied to the repository’s operation dynamics, since more frequent
repository updates make it harder to track newly added code. In addition, if it is easier for
newly added software to climb the top ranking positions, their infection might become
even more impacting. To delve into those dynamics, we evaluated the samples crawled
daily from the repositories.

In Figure 2, we show the number of downloads from each repository along the
experiment’s period. Overall, all datasets grew almost linearly due to our daily queries
to the top-100 ranking positions. Variations were caused due to unreachable servers on a
given day, or broken links/Web pages.

In Figure 3, it is possible to observe that the download of more than 80 unique
files (from the top-100) was only accomplished within FileHippo and CNET. The daily
number of collected programs was mostly constant, if we consider each repository, with
few days presenting peaks or valleys in the crawling process. The observed variations
were related to Website updates or unavailability.

Each repository distinguishes itself regarding the samples successfully downloaded,
as in the addition of new samples. Figure 4 shows the number of new unique samples

On the Security of Application Installers 7

Total Hashes per Repository Daily Hashes per Repository
1000 120
900
800 — 100 fnph Y
. M
700 oo L W\ | WA vAwMMh \ /Mv A
£ 600 /) H
8 500 / 8 60 H ‘
] [G |
£ 400 f g ‘
o] .
200 20 ‘
—
100 g
0 L L L 0 M\MW AW\J/\,\,\
0 30 60 90 120 150 0 30 60 90 120 150
. . Days X _ Days
Softpedia FileHorse Cnet Softpedia FileHorse Cnet
FileHippo SourceForge FileHippo SourceForge

Fig.2: Accumulative downloads for each Fig. 3: Daily Downloads. FileHippo’s
software repository. servers were unreachable in the last week.

(based on the binaries” MDS5 hash) added to the repositories daily. We notice that
FileHippo has many more new additions each day than the other repositories (except
for particular peaks in Softpedia, Sourceforge, and CNET). This is caused by the frequent
update of the distributed payloads, which indicates that FileHippo is more volatile about
the content of its distributed installers (therefore may be riskier for users).

New Daily Hashes per Repository Softpedia FileHippo
120 100 T . T ‘ 100
80 80 i
100 © W T wlt-Lr MM
© ITARAL © f
_ow w L == 2 Ji
H | | LU T T T
£ 60 0 30 6 9% 120 150 0 3 6 9% 120 150
Pl (RILN
100 100
o INLY RN : o
60 | 60 -
o barsduisr AR Ay Aol et ﬂf\ o !wv‘“ ' 1 AM il ol
0 30 60 90 120 150 [A I LW
!) DayS 20 20
Softpedia FileHorse Cnet 0 0
FileHippo SourceForge 0 30 60 9 120 150 0 30 60 9 120 150

Fig. 4: Download of new (unique) files.Fig. 5: Ranking position changes of the

FileHippo’s repository exhibits periodical top-100 downloaded programs in each

peaks of newly added hashes. repository, but FileHorse. Observation days
vs. applications (#) whose rank changed.

The observed strategy of payload replacement led us to hypothesize that the top-
100 programs may also change their ranking positions frequently. To investigate this
hypothesis, we measured the fraction of programs whose ranks changed each day.
Figure 5 shows the change ratio per repository (we did not show FileHorse’s results due
to its incipient rank changes of less than 1% in most days), which confirms that almost
all programs changed their position on some days. Similar to the aformentioned new
hashes’ case, we noticed that each repository has distinct ranking dynamics.

The ever-changing operation of software repositories is highlighted when we limit
our analyses to the most downloaded programs. Initially, we believed that their ranking
positions would hardly change, given their popularity. In practice, we observed that
ranking changes affect even the most downloaded programs, occurring more frequently

8 Botacin et al.

among the top-5 in all repositories. Understanding the phenomenon of frequent rank
changes is important because it shows how quick a new (potentially malicious) software
can reach the top of the ranking after its release. It also allows us to evaluate the extent
of potential damages according to the number of affected users based on the popularity
of programs. To explore this possibility, we measured how many programs change their
ranking position at least once within a given repository, and how many positions on
average they scale up the rank. Figure 6 shows that most programs change their position
at least once (on average, only 12% finished the observed period in the same ranking
position). We observed in all repositories’ rankings that most programs scaled up few
positions. We also observed that more programs increased their ranking instead of having
it decreased. It happens due to the repository removing some programs from the top lists
to add newer software, thus creating a gap in the former individual ranks while naturally
allowing the latter to scale up some positions.

Application Ranks Evolution Distribution Distributed Binaries Updates
30% 60
25% it 50 |
= il \
& 20% it & 40
s Il e \
= I] |
.-5 15% [i ks 30 |
= al [l <3 \
2 10% i S 20
a (Al
5% i 10 —
{ N WAL S
N A 500 T A ATANY o e = o N ~—
-35-30-25-20-15-10-5 0 5 10 15 20 25 30 35 40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Positions (#& Applications (#)
Average —— ileHorse SourceForge ——— Cnet
SourceForge Cnet FileHippo Softpedia
FileHippo Softpedia FileHorse

Fig. 6: Distribution of Programs in Rank-Fig.7: Distributed Binaries Updates.
ing Positions. Most programs increase Most programs were updated few times,
their ranking position (at least once). whereas some others, every week.

Although most programs does not reach the top of rankings, some of them scaled
from the last pages to the first positions. We also observed that this growth occurred in a
short period of time (only 4 days for Google Chrome and a month for other programs).
The popularity of these programs raise concerns about the potential harm that might be
caused if one of them is Trojanized. Highly popular programs, such as Google Chrome,
were not expected to be low in the rankings any time. However, in times of Google
Chrome version releases, (72.0.3626 in the period [14]), the ranks have to be updated with
a new entry for this program. The possibility of changes in the binaries distributed for
the same application over time also raises security concerns, since Trojanized versions of
them could serve as a replacement to the legitimate ones. To evaluate this hypothesis, we
measured how many repositories implement this practice and how frequent it is deployed
by them. The rate of the software in each repository which had their binaries changed
at least once in the observed period indicates that there is Trojanization opportunities
for malicious actors: FileHorse (42.74%); FileHippo (30.36%), Sourceforge (29.58%);
CNET (11.41%); Softpedia (9.43%). We consider these rates significant as they show
that the repositories evolve not only by adding new software entries over time but also
by modifying existing ones.

The update of the distributed binaries is not homogeneous for all programs. Figure 7
shows the frequency in which each one of the applications have their distributed binaries

On the Security of Application Installers 9

updated during the observation period. We notice that while most programs are updated
only few times—probably due to software updates—the remainder programs are updated
very often. Some programs were updated more than 50 times (considering distinct
repositories), an update rate greater than one time per week during the observation
period. This constant updating routine opens a significant attack opportunity window,
since at the time of the security analysis of previously distributed binaries is complete,
the repository is already distributing a novel, not-yet-analyzed software version.

Among the programs whose binaries were updated more frequently, we highlight
once again the importance of paying attention to the popular applications. For instance,
Skype changed six times in FileHippo and seven times in FileHorse from February 13,
2019 to May 15, 2019. Those changes referred to updates either in the software version
or in its distributed installer (discussed next in Section 4.3).

4.3 Installers’ Dynamics

Repositories usually provide program installers, which perform numerous interactions
with the underlying OS. For instance, they are responsible for copying contents to the
correct directories, setting environment paths, adjusting Registry keys, loading drivers,
installing additional services, and so on. The implementation strategies to accomplish
those tasks is varied: installers may download payloads and related configuration files
from remote servers, or directly extract them from embedded resources; their system
configuration changes may affect a single user or the whole system; they may rely on
system libraries or install their own ones; they may require privilege escalation or not.
All of these actions affect system security, thus we present an overview of which of them
were found in the evaluated installers, so as to draw a landscape of installers operations
and the associated security risks. From the 1,633 collected programs, we limited our
evaluation to the 993 unique binary samples packed as Windows executables (PE file
format) that were successfully installed in our sandbox (the unsuccessful ones failed
mostly due to corrupted files and/or missing environment variables).

Installers Modularity. We observed that installers present highly modular constructions.
52.62% of them created at least one child process during the installation process (98%
of these created only a single process, but we identified one installer that created up to
15 child processes during its operation). Installers rely on child processes for multiple
tasks: (i) 13.4% of the installers create new processes to relaunch the program installer
with properly defined parameters, with the main installer executable being responsible
only for displaying the Graphical User Interface (GUI), which allows users to specify
what components will be installed; (ii) 1% of the installers create new processes to
launch external tools to extract compressed objects (e.g., unzip); (iii) another 1% of
installers rely on child processes to launch downloaders; (iv) 1% use children to launch
post-installation procedures, such as opening a browser to display installation messages;
and (v) 1% make child processes execute cmd or powershell scripts for them. The
remaining modules invoked by installers were system processes intended to perform
generic tasks. A major motivation for installers launching child process is to execute
payloads extracted from the main installation binary. This “dropping” strategy was
identified in 25.3% of samples. Code 1.1 shows two installers writing their payloads in
executable files on disk. Their goal is to distribute multiple components as a single file.

10 Botacin et al.

1 |C:\installer.exe|Write|C:\Users\Win7\AppData\Local\Temp
\{907A1104-E812-4b5c-959B-E4DAB37A96AB}\vsdrinst64.exe

C:\installer.exe|Write|C:\Users\Win7\AppData\Local\Temp
\{907A1104-E812-4b5¢c-959B-E4DAB37A96AB}\Install. exe

©

Code 1.1: Dropper Installer. Some Installers drop embedded payloads to disk and
launch them as new processes.

Installers might also retrieve payloads from the Internet—10.8% of the evaluated
ones exhibited this behavior. On the one hand, downloading payloads from Internet
allows installers to retrieve them according to the installation environment (e.g., distinct
OS versions), and to install updated versions of all software components. On the other
hand, it requires a machine connected to the Internet at the moment of the intended
program’s install, which makes the installer less self-contained. Code 1.2 illustrates an
installer requesting to download a payload from the Internet. This request was encoded
to not reveal much information about its content.

1 |GET 200.143.247.9:80 (etl.zonealarm.com/V1?
> | TWOkdWx1PW1luc3RhbGx1lch98U2Vzc21lvbjOwYzNjNDA10OD)

Code 1.2: Downloader Installer. Some Installers perform (encoded) network requests
to retrieve payloads from Internet.

The exhibited behaviors of modularity (many child processes), downloader, and
dropper are also reflected in the installers’ written files (Table 6). The prevalent file types
are libraries, which allow code reuse. Executables are the second most popular ones, since
they represent the programs being installed. Temporary files are the third most popular
extensions, mostly due to the objects dropped during installation procedures: installers
usually drop small pieces of data to files to reconstruct global, complex structures, and
the temporary files are used to store binary blobs, raw text, and proprietary structures.
We also identified that VPX files—closed source files used by Avast and AVG antiviruses
to store malware definitions—are very popular within installers, being used to deploy
signature updates. Finally, we observed that some installers write SYS files, which allow
them to load kernel drivers and affect the system as a whole.

Table 6: Top-5 file extensions most written by installers.
Extension DLL EXE TMP VPX SYS
Files (#) 6,949 1,309 1,302 811 790

Network Usage. Payload downloading enables updated software versions install (e.g.,
AVs with up-to-date signatures). However, download mechanisms proper deployment
may be challenging, resulting in security issues. For instance, flawed cryptography (or
the lack of support for encrypted connections) may expose users to payload tampering via
Man-In-The-Middle (MITM) attacks [26]. We identified 39 applications that download
binaries via HTTP-only connections, as shown in Code 1.3. The list of installers that
retrieve payloads via HTTP includes popular programs, such as Avast, BitDefender,
AVG, and Kaspersky AVs. The AV’s choice for HTTP-only downloads has already been
reported in the past [22], but it seems to keep its standard practice status over time.

On the Security of Application Installers 11

1 |GET iavs9x.u.avast.com/iavs9x/
avast_free_antivirus_setup_online_x64.exe

2 |GET download.bitdefender.com/windows/bp/all/avfree_64b.exe
3 |GET iavs9x.avg.u.avcdn.net/avg/iavs9x/
avg_antivirus_free_setup_x64.exe

4+ |GET dm.kaspersky-labs.com/en/KAV/19.0.0.1088/startup.exe

s | GET download.bullguard.com/BullGuardeOAV_x64_190411.exe

Code 1.3: Unencrypted Download by Installers. The use of HTTP-only connections
may make users vulnerable.

To test whether the installers were actually vulnerable to payload tampering, we

performed a MITM against them. Despite the unencrypted payload downloads, all
popular installers, including AVs, were not vulnerable to payload tampering, since they
are able to realize payload changes through certificates and checksum verification. Other
programs, such as the Bul1Guard backup solution, are vulnerable to this type of attack':
its installer downloaded our supplied payload and executed it without any checks. This
opens a significant infection vector for the execution of any attacker-supplied code if the
installer is executed in a hostile network.
Installation Tracking. Installers also rely on Internet support to track programs’ installs.
4% of all installers sent clear tracking data back to their servers during the installation
step (Code 1.4). Additional tracking data might be sent after the program runs for the
first time (e.g., software that require users registration).

I |GET /vl/offer/campaignFilter/?bundleId=UT006&campaignId=5
b6352b3ce72513ae0abbeef

2 |GET sos.adaware.com|/vl/offer/campaignFilter/?bundleld=
UT006&campaignId=5b6352b3ce72513ae0abbeef

3 |GET flow.lavasoft.com|/vl/event-stat?ProductID=IS&Type=
StubBundleStart

Code 1.4: Installation Tracking. Some installers sent back tracking information to
notify providers about the installation.

Application installers collect tracking data for many reasons, such as identifying
software popularity by keeping track of the number of installations, and displaying tar-
geted ads campaigns. Unfortunately, most installers do not make this user data collection
explicit. For instance, the privacy terms for Code 1.4’s program installer state that: “We
collect some limited information that your device and browser routinely make available
whenever you visit a website or interact with any online service.”, “We collect this data
to improve the overall quality of the online experience, including product monitoring,
product improvement, and targeted advertising.”, and that “We may also include offers
from third parties as part of the installation process for our Software.”. Besides the
claims that the program collects a wide range of data, it is not clear what kind of data is
collected during website visits, software execution, and software installation. Moreover,
the installation step deserved a single line in the whole privacy term, showing that the
impact of software installation is often understated.

! We contacted the vendor and disclosed all vulnerability’s details so the company could fix it.

12 Botacin et al.

Installer’s Proxies. To access the Internet, some installers end up performing intrusive
system changes. We identified that 5% of all installers changed proxy settings of the
whole system. Code 1.5 shows an installer that enabled a proxy by writing to a system’s
Registry key. While some installers define new proxies, others only remove previously
defined proxy settings. Although it may happen with the solely purpose to ensure that the
payloads are downloaded from a proper source, it affects all further network requests.

1 [C:\Users\Win7\AppData\Local\Temp\BullGuard Backup Setup.exe
| SetValueKey | HKU\<userid >\ Software\Microsoft\Windows\
CurrentVersion\Internet Settings|ProxyEnablell

Code 1.5: Proxy Definition. Some installers change system-wide proxy settings.

Installers Persistence. Installers may change Registry keys to allow binaries to be
invoked upon a system reboot. We identified that 1% of them exhibit this behavior. One
reason for installers implement persistence is to set the installed program as a background
daemon. This task is often performed by security applications’ installers, such as AVs
(Code 1.6). Another reason for the persistence behavior is because it allows splitting
the installation process in multiple steps. This is required when the installation of some
components requires rebooting (e.g., to load kernel drivers). Whereas daemons are often
set by writing to the AutoRun Registry keys, multi-step installers often implement their
own counters, as exemplified in Code 1.7.

1 |C:\Users\Win7\AppData\Local\Temp\7zS4DEAD364\Stub.exe|
SetValueKey | HKU\<userid>\Software\Microsoft\Windows\
CurrentVersion\RunOnce | PandaRunOnce |

Code 1.6: Persistence. Some installers set executable paths in the Registry to be executed
after a system reboot.

1 [C:\Users\Win7\AppData\Local\Temp\ajAELlE.exe|SetValueKey |
HKLM\ SOFTWARE\Wow6432Node\AVAST Software\Browser |
installer_run_count |1

Code 1.7: Multi-Step Installers. They control how many times they will run.

Affected System Scope. Installers may modify several other Registry keys. In many
cases, these modified keys affect the whole system instead of the single user running the
installer process. We identified that 56% of all installers affected only the single user
who is installing the program (HKCU keys), whereas the remaining 44% also affected
machine-wide Registry keys (HKLM).

Application Removal. Most installers do not implement proper cleanup routines after
finishing the installation process. Only 33% of all installers dependent on temporary
files deleted them before ending their process.

Allowing software to be properly removed is as important as to properly install the
application. Unfortunately, not all installers provide adequate mechanisms to remove
their installed objects: only 1% of them created an uninstaller object able to be invoked
in a standalone fashion, as shown in Code 1.8.

On the Security of Application Installers 13

1 |C:\Users\Win7\AppDatal\Local\Temp\{907A1104-E812-4b5c-959B-
E4DAB37A96AB}\Install.exe|Create|C:\Users\Win7\AppData\
Local\Temp\{907A1104-E812-4b5c-959B-E4DAB37A96AB}\
Uninst . exe

Code 1.8: Uninstaller Definition. Some Installers set uninstallers for the applications.

Identifying whether installers defined an uninstalling routine or not has proven to
be a hard task: 1% of the tested programs define uninstalling routines based on specific
parameters, as illustrated in Code 1.9.

1 |C:\Program Files (x86)\GUM5D5C. tmp\fmanUpdate.exel
SetValueKey | | HKU\<userid>\Software\fman\Update |
UninstallCmdLine|"C:\Users\Win7\AppDatal\Local\fman\
Update\fmanUpdate.exe" /uninstall

Code 1.9: Parameter-Based Uninstallers. They define command line parameters for
software removal (difficult for users), instead of providing a self-contained uninstaller.

4.4 Comparison of Installers Versions

We identified that distinct binaries have been distributed for the same application over
time and across repositories. Understanding the modifications that these binaries under-
went might provide important insights to improve installers development and security.
Differences in installers within the same repository. We first evaluated how the bina-
ries available for the same program and distributed by the same repositories change over
time. We initially hypothesized that these binaries could be subject to significant modifi-
cations. However, we discovered that the modifications overall are more structural than
behavioral, thus suggesting that the differences occur more due to installers evolution
than due to other code insertion mechanisms.

In the cases when the installers were effectively modified to embed additional
applications, their most prevalent payloads referred to toolbars and browsers add-ons.
1% of all binaries were versions of previous installers modified to include the Google
Toolbar, which is often embedded as part of third party extensions within the main
application (Code 1.10).

1 |C:\installer\3rdPartyApp\GoogleToolBar\
GoogleToolbarInstaller_zh-TW. exe

Code 1.10: Google Toolbar. It is embedded as third-party extensions of the main
application.

In cases where the installers do not directly perform a toolbar installation, they
managed to change the native Internet Explorer configurations to display customized
settings, which includes adding new bookmarks and cookies (Code 1.11).

1 | HKCU\Software\Microsoft\Internet Explorer\LinksBar\
ItemCache\ToolBar | Add

Code 1.11: IE Settings Modification. New bookmarks, cookies, and configurations set
in the browser.

14 Botacin et al.

Another 1% of all binaries were embedded with advertisement applications instead
of toolbars. These applications, known as adware (advertisement software), often run
in background and keep collecting users information to feed targeted ads campaigns.
Code 1.12 shows an adware running from a temporary file dropped by the main installer.

1 |C:\Users\Win7\AppData\Local\Temp\is-3ACQL.tmp\
Advertising_english.exe

Code 1.12: Adware. The advertisement software is dropped from a file created by the
main installer.

Differences in installers among the repositories. The tracking capabilities present in
the installers are clearly revealed when we compare installers for the same applications
downloaded from distinct repositories. While we were unable to identify any significant
difference in the behaviors exhibited by the binaries, we easily noticed their tracking
capabilities. Code 1.13 illustrates an excerpt of the installation trace for the same program,
but using binaries downloaded from three distinct repositories. We notice that the UserId
values considered in each installation is different for each binary. We executed many
installation attempts and discovered that this number is not randomly generated, but
seems to be tied to each binary. We considered this an indication that the installers are
able to identify the origin of their installation.

1 [C:\Setup.exe|SetValueKey|HKCU\Software\Microsoft\Client |
UserId|{C2CFEOD4-A3A2-4458-A73F-F16F10E4COD7}
2 [C:\Setup.exe|SetValueKey | HKCU\Software\Microsoft\Client |
UserId|{EAOCB74D-DB5D-40EE-A402-47A97F23904E}
3 |C:\Setup.exel|SetValueKey |HKCU\Software\Microsoft\Client |
UserId|{E81A6607 -9EB3-49BA-B354-FA42817594BA}

Code 1.13: Tracking IDs of installers of distinct repositories. Each installer presents
a distinct tracking ID according the repository from which they were downloaded.

4.5 Trojanization Evidences

The major problem associated with downloading software from third-party repositories
is that the downloaded binary may be a Trojanized version of the original software.
This type of attack has been becoming popular to the point of some installers explicitly
warning users about this possibility, as shown in Figure 8.

To verify if Trojanization cases occur in practice, we performed AV scans on all
downloaded binaries. We submitted all binaries to VirusTotal [35] and normalized the
retrieved labels using AVClass [30]. We discovered that 31% of all binaries were detected
by at least one AV. We further investigated the nature of these detection occurrences by
inspecting the assigned AV labels, whose distribution is shown in Figure 9.

The most prevalent detection label is “Trojan”, which means that malicious code
was inserted into application’s native code. This finding shows that, as hypothesized,
there is a real risk of application Trojanization in online software repositories. Among
the Trojanized programs, we were able to identify 20 distinct families of the Artemis
malware [33], thus showing that the attackers have been embedding real, harmful
malware to the online repositories’ distributed programs. Some AVs also detected the
adware software embedded in part of the programs as malicious. This type of detection

On the Security of Application Installers 15

AV Detection Labels Distribution
25.0%

"Label £xxxm

20.0%

(& WTorment nstall Wizard (=50)

Warning

From BitTorrent, Inc. - the publishers of uTorrent AV

15.0% [

Beware of online scams! A number of websites have taken our free iTorrent client and attempt to charge
money for it through some sort of “fee” or *subscription’ or else they install it for free but nfect your
computer with malicious code in the process. To protect yoursel, be sure to only download our software
from torrent.com. You should NEVER under any circumstances pay for free uTorrent software.

Prevalence (%)

10.0%

5.0%

0.0% £
Trojan PUA Win32/* Unsafe malw Adw Pack
Families

Fig.8: Security Warning. Trojanization Fig.9: AV Labels Distribution. Many
has become popular to the point of some in-samples were considered either as mali-
stallers warning users about this possibility. cious or as Trojanized.

happens because the AV understands that the embodiment of advertising software to
the original application implies on privacy leak risks to the user. A smaller part of
the samples was detected as malicious due to their innate nature—12 installers were
detected as downloaders and two as droppers, since the AVs were unable to distinguish
their “legitimate” operation from the same behavior exhibited by malware classified as
downloaders or droppers.

Detected Trojans per AV Detected Trojan Distribution
70 T
50%
60
£ 50 40%
@
2
g w g
s % 30%
D =
8 =
§ 2 20%
10 10%
_
’ BB B
0 5 10 15 20 25 30 35 0%
AV ID (#) Cnet FHorse FHippo SForge Spedia

Fig. 10: Trojanized Apps Detection per Fig. 11: Trojanized Apps Detection per
AV. Distinct AVs present very distinct crite- Repository. Distinct repositories present
ria and thus detection rates. very distinct rates.

The detection of Trojanized apps is not uniform among the AVs, as shown in Fig-
ure 10. Whereas some AVs detected only 3% of all samples reported as Trojanozed
by at least one AV, other AVs detected more than 60% of all reported samples. This
shows that the AVs employ very distinct criteria for detecting Trojanization (e.g., adware
inclusion is considered malicious for some but not for others). This highlights the need
of checking multiple AVs in addition to the ones considered in the repository pages, as
this AV might have a very lax detection criteria. The detection is also not uniform among
the repositories, as shown in Figure 11. Whereas some repositories accounted for less
than 10% of all detected malicious files in the period, CNET accounted for 50% of all
samples. Despite that, we cannot claim that the CNET repository is more insecure than

16 Botacin et al.

the others, as most detection occurrences are due to the repeated upload of the same
flagged file. This shows that the evaluation of software repositories should also consider
the frequency of upload of malicious files in addition to their occurrence.

5 Discussion

In this section, we revisit and discuss our findings to pinpoint existing gaps in the security
of online software repositories and some possible and concrete improvement actions.
Paying Attention to Popular Applications. Although the software repositories may
contain thousands of distinct applications, some of them gather more attention than others.
Popular applications may be downloaded million times each month, thus presenting a
huge potential of damage if they have been Trojanized. Our study showed that some
programs are really popular, being present in the top download application rankings of
multiple repositories simultaneously. In addition, in some cases, popular applications
might quickly achieve the top ranking positions after a short period of time, which shows
that the hypothesized popularity and usage broadness occurs in practice. In this scenario,
it is essential for the repository administrators (and all security-related players) to pay
attention to these programs to prevent trojanization cases, and counter them when they
happen. In this sense, we consider that the recent decision of Google of extending its bug
bounty program from its own applications to all other ones present in Google Play that
have more than 100M installs [6] as a correct and very necessary move. Moreover, we
consider that all other good security practices, such as fuzzy testing and audits, should be
extended as well. Unfortunately, we are not aware of any kind of similar action regarding
the samples provided by popular online Windows application repositories.
Reproducibility of Studies Leveraging Software Repositories. Many studies rely on
software repositories as a source of binaries for their evaluation, either to measure bug
prevalence in the software engineering context [15,40], or as a direct source of goodware
for balancing malware analysis datasets and/or machine learning training. These studies
may be strongly impacted by our findings, since we showed that software repositories
are very dynamic. In this scenario, a study conducted with the top applications of
one repository might result in completely different conclusions when applied to other
repositories. The same effect may happen even within the same repository if the software
is collected on different days, as ranks and binary versions change over time. Therefore,
reproducibility should be a concern for all researchers whose works rely on software
repositories. Researchers need to find ways to make samples and other information
available and reproducible, as only stating that the most popular samples from a given
repositories were used in their study is not enough information to reproduce their
experiments and obtained results in this ever-changing context.

Repositories as Source of Goodware. Binaries downloaded from software repositories
are often used for malware classification and/or ground-truth [39]. Our findings also
present strong implications to these cases. We showed that Trojanization might affect
all repositories, thus even programs downloaded from “official” or popular reposito-
ries must be checked by antivirus solutions before being considered clean. Otherwise,
the researcher could wrongly consider existing malicious behaviors embedded in the
Trojanized application as ground-truth for benign applications. Even worse, one could
mistakenly make a machine learning algorithm to learn a set of malicious behaviors as
legitimate. Therefore, researchers should not blindly trust software repositories.

On the Security of Application Installers 17

Other Repositories Issues. This work investigated the overall impact of using software
repositories. Our results can be applied to both end-users downloading applications from
these repositories as well as for researchers leveraging these applications as ground-truth
for their experiments. However, software repositories present a myriad of applications
that deserve special attention. Our goal in this work was not to exhaust the subject, but
to give a first step towards a better understanding of characteristics of online repositories.
We pinpoint that other repositories aspects might be addressed as future work. In particu-
lar, we understand that uninstallers might also be studied, in addition to the installers,
since traces of previous applications can also significantly affect systems operations,
either regarding continuous privacy leaks or performance degradation.

Limitations & Future Work. Software Repositories are very diverse and popular.
Therefore, other repositories than the ones presented here should be studied to present
a broader overview of security issues. This additional investigation might raise new
hypothesis, such as if less popular repositories are more prone to be Trojanized than the
ones here presented. The data collected in our experiments was not enough to cluster
the tools used to trojanize the apps in classes. We expect that this task could be done via
larger-scale experiments using multiple repositories.

6 Related Work

We here present related work to better position our contributions.

Trojanization is an effective and efficient approach to deliver malicious payloads, and its
occurrence in practice presents large-scale implications. Code Trojanization has already
been reported in practice in the repository of the Arch Linux distribution [9], in the
Asus update platform [38], and even in the Android platform [20]. In the context of this
research, we investigate occurrences similar to ones reported for SourceForge, accused
of distributing malware among other applications [18]. We believe that Trojanization
might become a prevalent problem in future years. Currently, Trojanization occurrence
has been already reported even for hardware devices [8].

Software Repositories are very popular among many users as they allow gathering
new software pieces in an easy way. Thus, they were studied by many researchers in
the software engineering literature [15,40]. These work, however, are more focused
on source-code analysis rather than on the binaries distributed to end-users. This type
of research was only made popular in recent years due the emergence of application
stores for mobile devices, as observed in the rise of many studies targeting the Android
platform [1,4,37]. These research work identified phenomena such as the same app
being distributed in different packages according the repository [3]. In this work, we
extend this type of phenomenon observation to the scenario of online repositories for
Windows binaries, whose few existing research work are still limited in coverage (e.g.,
evaluating less than thousand samples collected on a single day [13]).

Installers & Uninstallers are critical pieces of software for system operation as they
perform extensive changes on the system’s state. For instance, remaining registry entries
after a software removal may cause systems to slowdown [19]. Unfortunately, there are
currently a limited number of research work in the literature dedicated to investigate
their impact, with most developments focusing on how to perform remote apps instal-
lation [41]. The closest work to ours are related to the investigation of the application
installation logs on the Android platform [23] and the detection of piracy signs on

18 Botacin et al.

application installers [21]. We extend these initiatives to investigate the occurrence of
Trojanization on application installers.

7 Conclusions

In this paper, we investigated the occurrence of application Trojanization in the binaries
distributed by popular Internet software repositories. We crawled the top-100 most
downloaded Windows applications of five repositories for 144 days, which allowed
us to characterize the dynamic of these repositories’ operations. We also investigated
the characteristics of the downloaded installers by running them in a sandbox solution
instrumented with a clicker for automatic application installation, which allowed us to
characterize installer’s interactions with the operating systems. Our results show that:
(i) the repositories are very dynamic, presenting frequent rank changes, thus allowing
applications to fast climb to the first rank positions; (ii) the repositories often update
their payloads, with distinct binaries being distributed for the same applications. There
are also differences in the binaries for the same applications distributed by distinct
repositories; (iii) the installers are very dynamic, presenting modular constructions and
often downloading payloads from the Internet to complement their installation steps.
Whereas enabling flexibility, this also poses new risks if security measures are not taken.
We demonstrate that some installers are vulnerable to content tampering via man-in-
the-middle attacks; and (iv) all this dynamic characteristic of installers and repositories
open space for abuse, with 30% of all applications being reported as compromised by at
least one AV solution. Our results shed light on some drawbacks of relying on software
repositories, both by end-users installing these programs in their computers, as well for
researchers leveraging these software repositories as ground-truth for their experiments.
We also hope that our analysis could motivate other researchers to investigate other
software repositories issues and help the community to understand their impact.
Reproducibility. all code developed to support this research work is available at https:
//github.com/marcusbotacin/Application.Installers.0Overview
Acknowledgments. This project was funded by the Brazilian National Counsel of Tech-
nological and Scientific Development (CNPq, PhD Scholarship, process 164745/2017-3)
and the Coordination for the Improvement of Higher Education Personnel (CAPES,
Project FORTE, Forensics Sciences Program 24/2014, process 23038.007604/2014-69).

References

1. Al-Subaihin, A., Finkelstein, A., Harman, M., Jia, Y., Martin, W., Sarro, F., Zhang, Y.: App
store mining and analysis. DeMobile, ACM (2015)

2. Alexa: Top sites. https://www.alexa.com/topsites (2019)

3. Ali, M., Joorabchi, M.E., Mesbah, A.: Same app, different app stores: A comparative study.
MOBILESoft, IEEE (2017)

4. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: Collecting millions of android
apps for the research community. MSR, ACM (2016)

5. Auto-it: Auto-it. https://www.autoitscript.com (2019)

6. Bacchus, A., Porst, S., , Mutchler, P.: Expanding bug bounties on google play.
https://security.googleblog.com/2019/08/expanding-bug-bounties-on-
google-play.html (2019)

7. Botacin, M.F,, de Geus, P.L., Grégio, A.R.A.: The other guys: automated analysis of marginal-
ized malware. Journal of Computer Virology and Hacking Techniques (2017)

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

22.
23.

24.

25.

26.
217.

28.

29.
30.

31.

32.
33.

34.
35.

On the Security of Application Installers 19

. Bronchain, O., Dassy, L., Faust, S., Standaert, F.X.: Implementing trojan-resilient hardware

from (mostly) untrusted components designed by colluding manufacturers. ASHES, ACM
(2018)

. Cimpanu, C.: Malware found in arch linux aur package repository. https:

//www.bleepingcomputer.com/news/security/malware-found-in-arch-linux-
aur-package-repository/ (2018)

Cnet: Cnet. https://www.cnet.com/ (2019)

FileHippo: Filehippo. https://www.filehippo.com (2019)

FileHorse: Filehorse. https://www.filehorse.com (2019)

Geniola, A., Antikainen, M., Aura, T.: Automated analysis of freeware installers promoted by
download portals. Computers & Security (2018)

Google: Release updates from the chrome team. https://chromereleases.googleblog.
com/ (2019)

Gousios, G., Kalliamvakou, E., Spinellis, D.: Measuring developer contribution from software
repository data. MSR, ACM (2008)

Grégio, A.R.A., Afonso, V.M., Filho, D.S.F,, d. Geus, PL., Jino, M.: Toward a taxonomy of
malware behaviors. The Computer Journal (2015)

Han, J., Chung, T., Kim, S., Kwon, T.T., Kim, H.c., Choi, Y.: How prevalent is content
bundling in bittorrent. SIGMETRICS, ACM (2011)

Hoffman, C.: Warning: Don’t download software from sourceforge if you can help it [up-
dated]. https://www.howtogeek.com/218764/warning-don%E2%80%99t-download-
software-from-sourceforge-if-you-can-help-it/ (2018)

Kahvedzi¢, D., Kechadi, T.: On the persistence of deleted windows registry data structures.
SAC, ACM (2009)

Khandelwal, S.: New malware replaced legit android apps with fake ones on 25m devices.
https://thehackernews.com/2019/07/whatsapp-android-malware.html (2019)
Kim, D., Kim, Y., Moon, J., Cho, S.J., Woo, J., You, L.: Identifying windows installer package
files for detection of pirated software. In: ICIMISUComp. (2014)

Koret, J., Bachaalany, E.: The Antivirus Hacker’s Handbook. Wiley, 1st edn. (2015)

Lee, J,, Lee, Y., Jin, M., Kim, J., Hong, J.: Analysis of application installation logs on android
systems. SAC 19, ACM (2019)

McNab, N., Bryan, A.: An implementation of the linux software repository model for other
operating systems. HotSWUp *09, ACM (2009)

Pietrek, M.: Peering inside the pe: A tour of the win32 portable executable file format.
https://msdn.microsoft.com/en-us/library/ms809762.aspx (1994)

Potter, B., Fleck, B.: 802.11 Security. O’Reilly (2002)

Rossow, C., Dietrich, C., Bos, H.: Large-Scale Analysis of Malware Downloaders. Springer
(2013)

Sans: Malware delivered via windows installer files. https://isc.sans.edu/forums/
diary/Malware+Delivered+via+Windows+Installer+Files/23349/ (2018)

Scrapy: Scrapy. https://www.scrapy.org (2019)

Sebastian, M., Rivera, R., Kotzias, P., Caballero, J.: Avclass: A tool for massive malware
labeling. In: RAID. Springer (2016)

Sikorski, M., Honig, A.: Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software. No Starch Press, San Francisco, CA, USA, 1st edn. (2012)

Softpedia: Softpedia. https://www.softpedia.com/ (2019)

Software, E.: Artemis trojan. https://www.enigmasoftware.com/artemistrojan-
removal/ (2013)

SourceForge: Sourceforge. https://www.sourceforge.net (2019)

Total, V.: Virus total. https://www.virustotal.com (2019)

20

36.

37.

38.

39.

40.

41.

Botacin et al.

Vaughan-Nichols, S.J.: Why software development is lagging hardware improve-
ments. https://www.cio.com/article/2431061/from-32-bit-to-64-bit--why-
software-development-is-lagging-hardware-improvements.html (2009)

Wang, H., Li, H,, Li, L., Guo, Y., Xu, G.: Why are android apps removed from google play?:
A large-scale empirical study. MSR, ACM (2018)

Whitwam, R.: Asus live update pushed malware to 1 million pcs. https:
//www.extremetech.com/internet/288283-asus-update-servers-pushed-
malware-to-hundreds-of-thousands-of-pcs (2019)

Willems, C., Freiling, F.C., Holz, T.: Using memory management to detect and extract
illegitimate code for malware analysis. ACSAC, ACM (2012)

Williams, C.C., Hollingsworth, J.K.: Automatic mining of source code repositories to improve
bug finding techniques. IEEE Transactions on Software Engineering (2005)

Zope, M.: Unattended installation and uninstallation of softwares remotely. ICWET, ACM
(2010)

