
Noname manuscript No.
(will be inserted by the editor)

“VANILLA” malware: Vanishing ANtiviruses by Interleaving
Layers and Layers of Attacks

Marcus Botacin · Paulo Ĺıcio de Geus · André Grégio

Received: date / Accepted: date

Abstract Malware are persistent threats to any net-

worked systems. Recent years increase in multi-core,

distributed systems created new opportunities for mal-

ware authors to exploit such capabilities. In particu-

lar, the distributed execution of a malware in multi-

ple cores may be used to evade currently widespread

single-core-based detectors (e.g., antiviruses, or AVs)

and malware analysis solutions that are unable to cor-

relate data from multiple sources. In this paper, we pro-

pose a technique for distributing the malware functions

in several distinct “vanilla” processes to show that AVs

can be easily evaded. Therefore, our technique allows

malware to interleave of layers of attacks to remain un-

detected by current AVs. Our goal is to expose a real

menace and to discuss it so as to provide insights for

the development of better AVs. We discuss the role of
distributed and multicore-based malware in current and

future threat scenarios with practical examples that we

specially crafted for testing (e.g., a distributed sample

synchronized via cache side channels). We (i) review

multi-threaded/processed implementation issues (from

kernel and userland) and present a multi-core-based

monitoring solution; (ii) present strategies for code dis-

tribution, exemplified via DLL injectors, and discuss

their weak and strong points; and (iii) evaluate how real

security solutions perform when exposed to distributed

malware. We converted real, serial malware to parallel

code and showed that current AVs are not fully able to

detect multi-core malware.

Keywords Malware · Multi-Core · DLL Injection ·
Cache side-channel

Marcus Botacin & André Grégio - Federal Univer-
sity of Paraná E-mail: mfbotacin,gregio@inf.ufpr.br ·
Paulo Ĺıcio de Geus - University of Campinas E-mail:
paulo@lasca.ic.unicamp.br

1 Introduction

Malware are persistent threats to computer systems,

and their strategies are becoming increasingly sophisti-

cated. In recent years, computer systems have moved

from single-core CPUs to hyperthread [17], multi-

core [8], and GPU-based [15] systems. Since the change

from 32 to 64-bit systems malware was an inevitable

move [48], the same truth holds for IoT devices [42]

and, why not, for multi-processed systems.

Despite most current security tools and techniques

work in a linear, serial way, we are still not able to fully

handle (linear, serial) malware attacks. Therefore, it is

safe to think that we are not prepared to handle all

harm posed by distributed and/or paralellized attacks.

Vulnerabilities such as Dirty CoW [7] suggest we are not
prepared to this type of threat at all. In addition, han-

dling parallelism and distribution is a naturally hard

task, increasing the chance of errors. Parallelism can

be explored by attackers to distribute their malicious

payloads into multiple small processes which looks indi-

vidually unsuspicious for AV scanners but that are ma-

licious when acting in cooperation. We dubbed this set

of unsuspicious small processes that represent one big-

ger malicious program as “vanilla” pieces for the sake

of this work since AVs would view the distributed pay-

loads as ordinary pieces of code.

Linear and serial detectors operate by matching se-

quences of events (e.g., API calls) against known pat-

terns so as to detect malicious behaviors. Splitting ma-

licious actions into multiple processes allows bypassing

this kind of detector as they are not able to group, re-

sequence and reconstruct the serial-equivalent pattern.

In fact, this reconstruction may even be impossible in

most cases, given that the number of possible event-

ordering combinations exponentially grows as the num-



2 Marcus Botacin et al.

ber of distributed malicious processes increase. While

this strategy was mostly presented in theoretical stud-

ies [20,13], it starts to appear in actual malware [43].

Whereas previous work’s focus was on presenting

the “in-system distributed” malware concept. we here

study multiple, distinct techniques (e.g., locking, busy

waiting and cache side-channels) for implementing

distributed malware, highlighting the weak and strong

points of project’s decisions, and how they can be ex-

ploited by attackers and security solutions. More specif-

ically, we show multiple ways of distributing the DLL

injection procedure, a popular code injection technique

in Windows environments. We developed a multi-core,

branch-based framework to track processes’ actions in

multiple cores to evaluate distribute attacks and defen-

sive measures in a real system. Furthermore, we adapt

real Windows malware samples with the presented tech-

niques to transform them into “vanilla”. We then evalu-

ate the execution of vanilla malware to discover whether

current AV solutions are able to handle and detect this

kind of threat or not. Our results show that current AV

solutions are not able to detect in-system distributed

samples even when they were able to detect their se-

rial counterparts. In summary, our contributions are as

follows:

– A security-oriented review on structures and pro-

gramming practices for the development of multi-

core and multi-threaded applications.

– The introduction of a distributed DLL-injection

procedure that exemplifies our discussion on code

distribution practices.

– The introduction of a branch-monitor-based frame-

work for distributed code tracking, which exempli-

fies and supports our discussion on distributed mal-

ware detection techniques.

– An evaluation of actual AV solutions regarding their

(in)ability to detect distributed malware code.

This paper is organized as follows: Section 2 shows

the need of considering distributed samples in threat

models; Section 3 presents background information on

distributed and parallel code to support our presented

developments, as well as related work and how they

differ from our study; Section 4 introduces our assump-

tions and threat model; Section 5 presents the method-

ology we adopted to evaluated the developed codes;

Section 6 discusses the multiple forms of distributing

malicious code and possible security detection meth-

ods; Section 7 evaluated actual AV regarding their dis-

tributed code detection capabilities; Section 8 discusses

our findings and their impact; Section 9 presents our

conclusions;

2 Motivation

This paper’s main goal is to study the security impact

of multi-core-aware and/or distributed malware sam-

ples in current and future scenarios. In this section, we

first demonstrate that it is possible to exploit multi-core

systems facilities to bypass security solutions, motivat-

ing our work. Further, we evaluate the possible extent of

damage that this type of threat may cause, thus claim-

ing the need of enhancing existing solutions to broad

their future threat models to cover this work’s pointed

scenarios.

An immediate malware creators’ insight regarding

multi-core-based systems is to check whether a given

piece of code is running on a multi-processed system or

not. As multi-core processors become standard, attack-

ers may start to use this information to detect whether

their code is running in a sandbox solution or in a

real machine, as most security solutions, in a general

way, are still single-core-based [6]. The SecVisor solu-

tion [50], for instance, explicits in its threat model: “we

assume that the system has a single CPU”.

Code 1 exemplifies the processor fingerprinting be-

havior via the use of a standard Windows API, as sug-

gested by Microsoft [29]. It could be used by attackers

to evade security solutions if they have only a single

core.

1 #define MINIMUM_CORES 2

2 int main(){

3 int cores = GetMaximumProcessorCount (0);

4 if (cores <MINIMUM_CORES){

5 // printf ("%d\n"<cores);

6 evade();

Code 1 Evasion of execution in sandboxes based on the
number of presented cores.

To demonstrate its impact in actual scenarios, we

submitted the aforementioned code example to multiple

sandboxes. The output results are shown in Table 1.

Table 1 Sandboxes fingerprinting: all evaluated services
were single-core machines whereas most actual computers are
multi-core.

Service Cuckoo [22] Anubis [12] Falcon [11]
Cores 1 1 1

We discovered that all online sandboxes were run-

ning on single-core machines, which is fair due to the use

of virtualization for scalability of the analyses. Given

this result, an attacker could refuse to run on systems

which do not present a given minimum number of pro-

cessing cores.



VANILLA malware 3

Current sandboxes and monitoring solutions are

single-core-based mainly due to implementation efforts

and scalability/costs issues. The first refers to the fact

that Hardware Virtual Machines (HVM)-based sys-

tems, for instance, must be loaded on each core. Code

transitions from one core to another require more com-

plex algorithms to be handled than their single-core-

based versions. The last, as in the malwr’s case, hap-

pens due to scalability issues, since this kind of sys-

tem is VM-powered, which is configured in a single-

core profile to maximize computer resource usage. As

a countermeasure for both cases, systems could fake

CPU-related API responses, thus impersonating multi-

core-based systems. However, the complexity of such

decision is a critical point, because it would require fak-

ing all CPU-related APIs and not only those related to

information gathering. A request to attach to a non-

existing core, for instance, should be converted to a

valid request. Otherwise, the request would result on a

blue screen.

By checking the number of available cores for a

given execution, malware samples could evade not only

a malware analysis sandbox but also AntiVirus (AV)

emulators, thus bypassing detection. Fingerprinting an

AV emulator is a known technique [3] and its exten-

sion to cover the number of cores is straightforward. To

measure the impact of this kind of technique in prac-

tice, we crawled and inspected the 226,290 most recent1

samples uploaded to the malshare database [21], whose

AVClass [47] family distribution is shown in Table 2.

Table 2 Family distribution in the malshare dataset.

Family Prevalence Family Prevalence
Trojan 20% Generic 15%
Adware 20% Downloader 15%

PUA 20% Other 5%

We inspected their function imports for

thread/processor-related APIs that might indicate

that the application is processor-aware. While the

results shown in Table 3 can be considered only as

lower-bounds for the API calls prevalence due to

packing and/or runtime-generated API calls, their

identification is enough to reveal whether current

malware samples are already capable of exploiting

distributed processing possibilities or not.

We discovered that 969 (0.43%) of the samples ex-

hibited some thread and/or processor core-related func-

tion calls, thus suggesting that this kind of threat has a

currently non-negligible, but still unexplored potential.

As a side-effect of requiring and ensuring that anal-

1 December/2018

Table 3 Processor awareness: identified thread-related im-
ported functions in real samples.

Function Occurrences Samples
GetProcessAffinityMask 800 0.35%
SetThreadAffinityMask 301 0.13%
SetProcessAffinityMask 205 0.09%
GetLogicalProcessorInformation 105 0.05%
SetThreadIdealProcessor 9 0.00%

ysis systems work in a multi-core-based way, attackers

may complicate analysis tasks by leveraging distributed

infection procedures, which are harder to track than

their serial counterparts, as shown in the next sections.

Therefore, this work shed light to possible future at-

tackers’ movements, thus allowing anticipating and en-

hancing incident response.

3 Background and Related Work

We here present implementation details of multi-

core/threaded applications, a broad view on thread

support by the OS, their effects on monitoring systems

by both attacker’s and defender’s perspectives, and

how to attach processes and threads to specific physical

cores, as required for many payload distribution tasks.

We show implementations based on MS-Windows, the

target OS for this work. We also present the related

work and discuss how they differ from our study.

Processes and Threads Internals: The usual ap-

proach for system monitoring is to do so on a per-

process basis, so one can monitor each action/process

individually, using well established techniques. How-

ever, the usual way of splitting tasks into cores is by

using threads. This way, we here present the differences

of handling threads and processes.

Processes are identified by their unique Process

IDentifier (PID) [26], whereas threads have a unique

Thread IDentifier (TID) [40]. It allows enumerat-

ing and handling specific threads within processes.

The functions to handle threads and processes are dis-

tinct [35], so one should properly use them according to

the context. This implies, for instance, that when moni-

toring threaded code, one should call GetThreadId [31]

instead of GetProcessId [30]. When tracing actions,

one may want to map thread actions to their owner

processes to match known behaviors. This task can

be done by invoking GetCurrentProcessID [27] and

GetCurrentThreadID [28] functions. This approach is

valid from both kernel and userland. In the kernel, this

strategy is leveraged by sandbox solutions [5].



4 Marcus Botacin et al.

Unfortunately, one cannot get the “parent” TID

from the “child” TID, since there is no explicit relation-

ship between threads. As a side effect, an early-launched

thread can live even after its launcher thread exits. An

exception for this rule is when the main thread exits,

so all threads must be finished. It is important to no-

tice that: (i) each process has a WinMain thread and

possibly other endless workers associated by the com-

piler [45]; and (ii) the main thread does not necessarily

include the C main function, but might be any other

compiler-generated function including the program en-

try point [37].

An interesting implementation choice regards many

OS schedulers, such as Linux’s and the Windows’ one,

our focus in this work, is that tasks are scheduled by

threads, and not by processes, thus allowing one to re-

move processes from the task list but still get them

scheduled [10], an strategy often employed by rootk-

its. Whereas changing thread attributes is now limited

by the Kernel Patch Protection (KPP) mechanism [5],

it is still possible in some scenarios [9]. Whereas pro-

cesses and threads internal structures have already been

a target for malware attackers, we here show that the

attack surface for distributed malware also encompasses

exploiting thread code execution itself.

The general structure which keeps process data

is the Process Environment Block (PEB) [33]

and thread data is the Thread Environment Block

(TEB) [34]. To get more information from a given PEB

or TEB, such as command line arguments, debugger

information and so on, one should query the proper

structure. Threads are available both in userland, by

using the aforementioned APIs, and in the kernel [32],

which makes the approaches here presented portable

from userland malware to kernel rootkits.

Core Switching and Attachment: An important

step when developing multi-threaded threats and de-

fenses is to attach one’s code to a given core, thus al-

lowing proper handling. An attacker might want to pin

its threads to specific cores to bypass security solutions

mechanisms running in a given core whereas defend-

ers might want to pin its monitoring threads to specific

cores to prevent core-migration. In addition, hardware-

based monitoring features (e.g., performance counters)

must be enabled on a per-core basis, so that a configu-

ration thread must be loaded into each core [4]. There-

fore, the OS must provide mechanisms to attach threads

to specific cores, since the usual behavior is to schedule

threads using a load-balancing policy, often resulting in

core migration. Code 2 and 3 show, respectively, how

to perform such thread-to-core attachment in userland

and kernel spaces.

1 void attach_to_core(core_id) {

2 HANDLE p = GetCurrentProcess ();

3 DWORD mask = 1<<core_id;

4 SetProcessAffinityMask(p,mask);

Code 2 Attaching thread execution to a given core: userland
approach.

1 void thread_attach_to_core(core_id) {

2 KAFFINITY mask = 1<<core_id;

3 KeSetSystemAffinityThread(mask);

Code 3 Attaching thread execution to a given core: kernel
approach.

Related work. Some AV reports have already iden-

tified multi-threaded malware. As an example, a re-

port [23] presents a case in which the “malware is de-

signed as multi-threaded application that divides pro-

cess control, file infection and sending and receiving

messages to and from the C&C server into different

threads to share execution load”. In addition, another

report [25] presents a sample which launches a spe-

cific thread only to threat IoT devices. These cases,

although close to this work, are distinct from the ones

here tackled. We are interested in samples which launch

distinct threads to evade serial, linear detectors, and

not only just for performing independent, distinct tasks.

More specifically, we are interested in the scenario pre-

sented in [46], which reports that “code can be sepa-

rated into multiple threads of execution, which not only

transforms the code, but can greatly complicate auto-

matic analysis”. In this sense, this work extends the

Shadow Attacks concept [20], which distributes sys-

tem calls over multiple processes to avoid detection.

In our approach, we distribute code at API level using

both processes and threads. Whereas Shadow Attacks

demonstrated that the security solutions (sandboxes)

from that time were not able to handle this kind of

threat, we repeat their evaluation (as presented in Sec-

tion 7) to verify whether current security solutions

(AVs) evolved towards distributed malware detection.

In addition, whereas Shadow Attacks pointed some lo-

cal code distribution and detection mechanisms imple-

mentation possibilities, we dig into their details to show

their strong and weak points, as presented in Section 6.

Similarly, MalWasher [13] presents a solution to dis-

tribute a malicious application into multiple processes

coordinated by a central entity. In this paper, we show

how this coordination can be implemented (e.g., us-

ing locks, busy waiting and so on), thus demonstrating

strong and weak points which can be exploited by at-

tackers and security solutions.



VANILLA malware 5

4 Attack & Threat Model

In this work, we investigate how to bypass serial, linear

detectors by splitting actions into multiple processes,

threads or processor cores. Serial detectors identify ma-

licious behaviors by matching a given sequence of ac-

tions (e.g., API calls) to known malicious patterns. For

example, consider the DLL injection procedure, proba-

bly the most popular code injection technique used in

the Windows environment both by benign applications

as well as by malware samples, thus being detected by

many security solutions. The serial implementation of

the DLL injection procedure consists of invoking the

functions in a given sequence, as shown in Code 4. This

code’s execution leads to the API call sequence shown

in Figure 1, which can be used as a pattern for a DLL in-

jection detector. The distribution of the DLL injection

procedure will be used as example along this paper.

1 void inject(char *dll ,int pid)

2 HANDLE proc = OpenProcess(pid);

3 int size = (strlen(dll)+1)*sizeof(char);

4 LPVOID alloc = VirtualAlloc(proc ,size);

5 BOOL write = WriteProcessMemory(proc ,

alloc ,dll ,size);

6 HMODULE k32 = GetModuleHandle ();

7 PTHREAD_START_ROUTINE tStart =

GetThreadStart(k32);

8 HANDLE thread = CreateRemoteThread(proc ,

tStart ,alloc);

9 WaitForSingleObject(thread , INFINITE);

Code 4 API call pattern exhibited during the execution of
a serial DLL injection procedure.

Fig. 1 Serial DLL injector. API call sequence can be used
as a pattern for malicious behavior detection.

The main idea behind code splitting is that this

known DLL sequence will not appear during malware

execution, but multiple individual actions in distinct

processes instead, which makes detection harder as

grouping and re-sequencing actions in multiple pro-

cesses may be unfeasible due to the exponential number

of combinations, as illustrated in Figure 2.

In this paper, we investigate techniques to imple-

ment the code splitting approach. On the one hand, we

Fig. 2 Distributed pattern matching. The number of
possible combinations exponentially increases when more pro-
cesses are considered.

show that tracking processes interactions is an effective

way that security solutions can leverage to avoid han-

dling the exponential number of combinations present

when monitoring processes in the usual way. On the

other hand, we show that hiding explicit processes in-

teractions may allow detection evasion.

The presented code splitting techniques are in-

tended to thwart serial, linear detectors which per-

forms pattern matching in runtime, given the need

of re-sequencing. We consider our proposed scenarios

as realistic as many data-collection mechanisms oper-

ate in a per-core basis, such as approaches based in

performance-counters [4]. The presented detection tech-

niques should not be considered as the final Indicator of

Compromise (IoC) for flagging an execution as a mal-

ware, but as a trigger to launch specialized scanning

procedures. Finally, we do not claim that distributing

malware is the only way to bypass detection mecha-

nisms or that the hereby presented techniques are the

only way to detect malware samples, but these other ap-

proaches (e.g., obfuscation) are out of this work’s scope.

Our work is focused in the Windows environment, as

it is the most popular [41] targeted OS by malware cre-

ators [14]. However, the approaches here presented may

be applied to any OS supporting threads and multi-

processed systems. Similarly, we focus our study in user-

land cases, as they are prevalent. However, nothing pre-

vents the deployment of the here presented techniques

in kernel, since modern OS support kernel threads, as

presented in Section 3.

5 Methodology & Tools

To evaluate the feasibility of bypassing detection mech-

anisms by distributing code, we first developed samples

which operate in a non-serial way and further tracked



6 Marcus Botacin et al.

their execution using distinct techniques. All samples

were developed in C, using standard system libraries,

and with each thread attached to the same or to a dis-

tinct processor core, according the experiment. All eval-

uation and tests were performed in a 64-bit Windows 8

OS running on an Intel i7 quad-core processor.

To pinpoint the exact points which could theoreti-

cally lead to a detection, we leveraged the API Monitor

tool [44] to track threads and processes at API level,

thus identifying, for instance, when they enter and exit

critical regions. We also leveraged the Intel PIN [18]

solution to track processes and threads at instruction

level, thus identifying, for instance, memory writes in

foreign thread memory regions. In addition, to evaluate

samples detection and evasion feasibility in a real sce-

nario, we developed a branch-monitor-based, multi-core

sandbox solution, thus simulating a security solution

(e.g., AV) implemented upon a real hardware feature.

To monitor binaries which are distributed over dif-

ferent cores, we need to find a per-core monitoring

mechanism. One of these is the Intel’s Branch Trace

Store (BTS), which supplies branch instructions source

and target information, thus allowing binary moni-

toring. The use of BTS for malware monitoring was

discussed in [4], but their framework implementation

is single-core based. We extended their framework to

work on a multi-core basis by enumerating all processor

cores, launching a thread for each one, attaching them

to their respective cores, and enabling the BTS mech-

anism in each. In addition, we modified their interrupt

handling routines to operate in the fixed mode, as the

original framework handles interrupts by relying on a
Non-Maskable Interrupt (NMI) handler and these inter-

rupts must not overlap, which may happen when BTS

is enabled on multiple cores. Once an interrupt is han-

dled, we isolate processes in the same way as performed

in their implementation. In addition, we also recover in

which core the given interrupt is happening by calling

GetCurrentProcessorNumber [38]. From this modified

framework, it is straightforward to to track processes,

even during core switches, as both the executing core

and PID information are provided by the framework.

The algorithm to track core switches is shown in Code 5.

1 def callback(CURRENT_PID ,CURRENT_CORE):

2 if last_core[CURRENT_PID ]!= CURRENT_CORE:

3 detect_switch_from_to(last_core[

CURRENT_PID],CURRENT_CORE)

4 last_core[CURRENT_PID ]= CURRENT_CORE

Code 5 Monitoring process core switches.

6 Distributing Malware

In this section, we present distinct methods and strate-

gies for pattern matching bypass and code distribution

of malware. We discuss their effectiveness regarding sev-

eral detection techniques, and consider the distribution

of the DLL injection procedure to exemplify the im-

plementation of all proposed distribution methods and

strategies. We also show how a specially-crafted code

that distributes its operation among system cores can

bypass malware detection mechanisms.

The main idea of distributing the DLL injection pro-

cedure is to to split its internal functions in distinct

threads and/or processes. For the sake of simplicity, we

opted to implement a minimal 2-component model ex-

ample on which each one of these components execute

a single step and waits for the result from the other

thread, as shown in Figure 3.

Fig. 3 Splitting DLL injection code into 2 compo-
nents. Each component executes a distinct step and waits
for the other one to proceed.

We highlight that the steps can be distributed and

combined between the two components without pre-

senting a clear pattern (e.g., half actions each one, a

third and two third, interleaved steps etc.), which crash

serial pattern detectors and force security solutions to

consider all possible combinations when trying to group

and re-sequence the executed functions.

6.1 Lock-based, Distributed DLL Injection

A straightforward way to synchronize the steps

between two threads is to use locks (e.g., mutexes,

condition variables, and so on), as here presented.

Implementation: We opted to synchronize the two

threads using condition variables. We notice that, as



VANILLA malware 7

soon as the Thread 1 (Code 6) completes its task, it

wakes up Thread 2 (Code 7) and waits for its response.

1 DWORD WINAPI T1(...){

2 pcontext ctx = (pcontext)lpParam;

3 EnterCriticalSection (&ctx ->cs);

4 ctx ->proc = OpenProcess(ctx ->pid);

5 LeaveCriticalSection (&ctx ->cs);

6 WakeAllConditionVariable (&ctx ->cv2)

Code 6 Lock-based, Parallel DLL injection. Thread 1 code
excerpt.

Thread 2, in turn, starts waiting for Thread 1’s

first step, then computes its task when woken up.

1 DWORD WINAPI T2(...){

2 pcontext ctx = (pcontext)lpParam;

3 SleepConditionVariableCS (&ctx ->cv2 ,&ctx ->

cs,INFINITE);

4 EnterCriticalSection (&ctx ->cs);

5 ctx ->size= strlen(ctx ->dll)+1;

6 ctx ->alloc = VirtualAlloc(ctx ->proc ,ctx ->

size);

7 LeaveCriticalSection (&ctx ->cs);

8 WakeAllConditionVariable (&ctx ->cv1)

Code 7 Lock-based, Parallel DLL injection. Thread 2 code
excerpt.

Detection Evasion: Figures 4 and 5 show the behav-

ior patterns exhibited by both threads (T1 and T2)

during their execution. We notice this scheme is able

to evade linear, serial detectors because the original

DLL injector pattern is not exhibited.

OpenProc

WriteProc

GetThreadStart

Fig. 4 T1 behavior.

VirtualAlloc

GetModule

CreateThread

Fig. 5 T2 behavior.

Detection Alternative: Since the API calls can ap-

pear combined in exponential ways, an insightful ap-

proach to implement a detector able to reconstruct and

match patterns in a distributed manner is to try not to

model possible variations, but to follow the execution

flow. Since a given thread must wait another to com-

plete its task, we can observe lock patterns and transi-

tions between them. To demonstrate this possibility, we

followed critical region enters and exits using the API

Monitor tool, as shown in Code 8.

1 1726 <time > MSVCR110D.dll

EnterCriticalSection (0 x59cbb8)

2 1727 <time > MSVCR110D.dll

LeaveCriticalSection (0 x59cbb8)

3 1729 <time > MSVCR110D.dll

EnterCriticalSection (0 x59cb90)

4 1731 <time > MSVCR110D.dll

LeaveCriticalSection (0 x59cb90)

Code 8 Parallel DLL injection monitoring.

We notice that the sequence of threads entering and

leaving critical sections allows one to identify not only

that two threads interact but also the point in which

it occurs, thus enabling the correlation of the functions

appearing right before one thread leaving the critical

section and right after the another thread entering in

the critical region. Therefore, whereas effective to by-

pass linear detectors, attackers may want to avoid this

lock-based implementation because of this tracking pos-

sibility. In practice, however, we are not aware of sand-

box solutions effectively tracking synchronization APIs,

even among the mainstream ones.

6.2 Process-Based, Distributed DLL Injection

The aforementioned approach to distribute the DLL

injection procedure is not limited to a thread-based

implementation, but can also be implemented using

processes, as here presented.

Implementation: We used the same previous step-

based strategy with Inter-Process-Communication

(IPC) approach. For the sake of simplicity, we opted

to distribute only one task (VirtualAlloc), though

any distribution is possible. We highlight that the ab-

sence of a single function might be enough to bypass

a fixed-pattern matching detector. Notice that Process

1 (Code 9) performs all tasks but memory allocation,

which is outsourced to Process 2 (Code 10).

1 void inject(char *dll ,int pid)

2 printf("1. 1/6. OpenProc\n");

3 HANDLE proc = OpenProcess(pid);

4 LPVOID alloc = VirtualAlloc_IPC(proc ,

size);

5 HANDLE VirtualAlloc_IPC(HANDLE proc ,int

size)

6 IPC data;

7 HANDLE hMapFile;

8 LPVOID map;

9 hMapFile = CreateFileMappingA (...,

map_name);

10 map = MapViewOfFile(hMapFile ,...);

11 CopyMemory(map , &data , sizeof(data));

12 data.lib=PIPC(map)->lib;

Code 9 IPC-based, parallel DLL injector.



8 Marcus Botacin et al.

To allocate memory within the open process, Pro-

cess 2 has to duplicate the open handler received via

IPC, thus interacting with data from Process 1.

1 void VirtualAlloc_IPC ()

2 hMapFile = OpenFileMappingA (..., map_name

);

3 map = MapViewOfFile(hMapFile ,...);

4 data = (PIPC)map;

5 DuplicateHandle(hParent ,data ->proc ,

GetCurrentProcess () ,&dup ,0,TRUE ,

DUPLICATE_SAME_ACCESS);

6 data ->lib = VirtualAllocEx(dup , NULL ,

data ->size , MEM_COMMIT ,

PAGE_READWRITE);

Code 10 IPC-based, parallel DLL injector.

Code 11 shows the execution output for this sample

code. We notice that all steps except the second

(memory allocation) are performed by the first process.

1 1. 1/6. OpenProc

2 1. 3/6 WriteProc

3 1. 4/6 GetModule

4 1. 5/6 GetThreadStart

5 1. 6/6 CreateThread

6 ExitCode b5570000

7 2. 2/6 VirtualAlloc

Code 11 IPC-based, parallel DLL injection output.

Detection: The IPC-based approach presents the same

monitoring drawback as the threaded one, because the

call for the DuplicateHandle function can also be

tracked, thus revealing the interactions between the

two components. From an attacker’s perspective, the

smaller analysis surface the better, thus avoiding such

locks and handler duplication is desired.

6.3 Busy-waiting, Distributed DLL Injection

We previously presented how splitting functions into

threads can make detection harder. The lock-based im-

plementation, however, leaks flow information at API

level. To avoid the API calls related to thread synchro-

nization, we propose using busy waiting as synchroniza-

tion mechanism. This way, the threads get synchronized

by polling a global memory value which mimics the

API-based lock. This approach can be understood as

an spin-lock [39] implementation without relying in any

system API to avoid API tracking.

Whereas benign application implementations

usually prefer to wait on alertable locks and avoid

busy waiting due to performance issues [36], this is

a matter about malware samples do not care about.

Some samples may even intentionally cause perfor-

mance degradation to implement stalling behavior [16].

Therefore, implementing busy-waiting synchronization

procedures seems to be a viable and straightforward

strategy for malware samples.

Implementation: Replacement of the condition vari-

ables present in the lock-based approach by two boolean

variables to control threads’ steps. Thread 1 (Code 12)

starts its execution opening a handle to the target pro-

cess. It then sets its own variable as as busy (false)

and externally set Thread 2’s variable as ready to run

(true). It then waits in a loop for Thread 2 restoring

Thread 1’s variable as ready-to-run. This procedure is

repeated until all steps are completed.

1 DWORD WINAPI T1(...) {

2 pcontext ctx = (pcontext)lpParam;

3 ctx ->proc = OpenProcess(ctx ->pid);

4 ctx ->busy1=FALSE;

5 ctx ->busy2=TRUE;

6 while(ctx ->busy2 ==TRUE);

7 ctx ->busy1=TRUE;

Code 12 Busy waiting, parallel DLL injection (Thread 1)

Thread 2 (Code 13), in turn, starts waiting in

a loop for Thread 1 granting Thread 2 execution

permission. When allowed, it performs its memory

allocation task, sets itself as busy and allows Thread 1

to run, repeating the procedure.

1 DWORD WINAPI T2 (...) {

2 pcontext ctx = (pcontext)lpParam;

3 while(ctx ->busy1 ==TRUE);

4 ctx ->busy2=TRUE;

5 ctx ->size= (strlen(ctx ->dll)+1)*

sizeof(char);

6 ctx ->alloc = VirtualAlloc(ctx ->proc ,

ctx ->size);

7 ctx ->busy2=FALSE;

8 ctx ->busy1=TRUE;

9 while(ctx ->busy1 ==TRUE);

10 ctx ->busy2=TRUE;

Code 13 Busy waiting, parallel DLL injection (Thread 2)

Detection: The presented approach is able to bypass

linear detectors and is resistant to API-based flow mon-

itoring detection. This approach, however, can still be

tracked via shared read and writes in the same mem-

ory addresses relative to the variables which mimic the

lock and its API calls. To exemplify this possibility, we

implemented a multi-thread memory tracer using the

PIN tool and identified the following possible accesses

patterns among the two threads:

– Reading a Not-Written memory position

(RNW), thus indicating that a statically or non-

initialized variable is being read;



VANILLA malware 9

– Reading a memory position Written by Itself

(RWI), thus indicating that a previously written

value is being read;

– Reading a memory position written by a For-

eign thread Memory (RFM), thus indicating

that the current thread is using a value set by an-

other thread.

– Writing a memory region for the First Time

(WFT), thus indicating variable initialization;

– Writing its Own Memory (WOM), thus over-

writing a memory region previously set by the cur-

rent thread;

– Writing a Foreign thread Memory position

(WFM), thus overwriting a memory region previ-

ously set by a foreign thread.

When running the busy-waiting distributed DLL in-

jection on our developed monitor, it displays the out-

put presented in Code 14. We notice that as the sec-

ond thread (ID 1) is created, it reads the two foreign

addresses (RFM) corresponding to the two busy wait

variables, already released by thread 1 (RFT). Right

after the check, it overwrites one foreign value (WFM)

to set the variable to the busy state. From this point

on, it starts reading its own addresses (RNW and RWI)

to perform the local computations.

1 Created Thread 1

2 TID 1 reading foreign value at addr 0

x7f296deccff0 from TID 0

3 TID 1 reading foreign value at addr 0

x7f296deccff8 from TID 0

4 TID 1 overwriting addr 0x7f296deccff8

from TID 0

5 TID 1 reading its own value at addr 0

x7ffe8c41db28

Code 14 Tracking memory operations from the parallel DLL
injector example.

Therefore, a possible mechanism that a security so-

lution might implement to detect distributed malware

samples is to track their interactions via shared memory

accesses. From attacker’s perspective, a stealth malware

should avoid sharing resources among its components.

6.4 Time-based, Distributed DLL Injection

The previously presented approach is strong even

when considering the synchronization API monitoring,

but can be detected when memory is tracked. This

monitoring is rarely found on end-user machines, but is

common in analysis environments. If an attacker wants

to implement a synchronization-free code, resistant

even to memory tracking, a stealthier implementation

method is required. Therefore, we considered replacing

the busy wait variables with static timers so that the

threads would not have to wait on a shared variable,

but could sleep and then proceed when the timeout

wakes them up. Meanwhile, the other thread must

have completed its task. The sample must only assure

it will not wait for a time so long that the target

process could be terminated before being hijacked.

Implementation: We adapted the busy-waiting in-

jector to wait on a timer instead on a variable. After

started, Thread 1 (Code 15) opens a handle to the tar-

get process and sleeps for a predefined amount of time,

which should suffice for Thread 2’s next step.

1 DWORD WINAPI T1(...){

2 ctx ->proc = OpenProcess(ctx ->pid);

3 Sleep(SLEEP_TIME);

Code 15 Time-based synchronization for our parallel DLL
Injector example (Thread 1)

Similarly, Thread 2 (Code 16) sleeps while Thread

1 executes the first injection step, and wakes up to

execute the second step. This procedure is repeated

until the end of all steps.

1 DWORD WINAPI T2(...){

2 pcontext ctx = (pcontext)lpParam;

3 Sleep(SLEEP_TIME);

4 ctx ->size= (strlen(ctx ->dll)+1)*sizeof(

char);

5 ctx ->alloc = VirtualAlloc(ctx ->proc ,ctx

->size);

Code 16 Time-based synchronization for our parallel DLL
Injector example (Thread 2)

Detection: This injector implementation cannot be

detected through API or memory tracking, only by

pattern reconstruction approaches. For instance, when

tracking the injector execution using the branch-based

sandbox (Section 5), we identified the behaviors exhib-

ited for Threads 1 (Code 17) and 2 (Code 18).

1 [Core 1] Injector.exe called OpenProcess

2 [Core 1] Return <ommited >

3 [Core 1] Injector.exe called lib Sleep

4 [Core 1] Return <ommited >

5 [Core 1] Injector.exe called

WriteProcessMemory

6 (GetThreadStart)

Code 17 T1 distributed DLL injection detection pattern.

1 [Core 2] Injector.exe called Sleep

2 [Core 2] Return <ommited >

3 [Core 2] Injector.exe called VirtualAlloc

4 [Core 2] Return <ommited >

5 [Core 2] Injector.exe called Sleep

Code 18 T2 distributed DLL injection detection pattern.



10 Marcus Botacin et al.

We observe it is possible to detect the attack by as-

sociating the APIs exhibited by distinct threads. How-

ever, we benefited from knowledge about the attached

cores and code behaviors to implement this detector,

which is hard to be implemented in actual scenarios

given the exponential number of combinations. A draw-

back of this approach is that it may fail due to improper

thread synchronization, which can be observed in anal-

ysis environments that hook and replace timing-wise

functions, such as Sleep, which is a frequent counter-

measure to analyze time-based, evasive samples [16].

6.5 Side-Channel-Based, Distributed DLL Injector

While sleep-based synchronization allows malware

samples to bypass serial, linear detectors and is not

tracked by either tainting or API calls monitoring, it

can be defeated in sandboxes that hook timing APIs.

An alternative to synchronize the components without

leveraging timing APIs is to rely on side-channels, i.e.,

alternative channels that may leak information that

can be used to notify on system state. In particular,

we propose using a cache side-channel approach in a

way that a thread is notified when the other thread

finished its execution step. It can be implemented by

measuring cache access time and identifying variations

in case another thread has changed cache state. This

approach does not require any explicit inter-thread nor

inter-process communication.

Implementation: The implementation of the side-

channel based injector consists in replacing the busy

waiting variables by causing and identifying cache side-

channel effects. Thread 1 (Code 19) now presents a

lock variable which is private, i.e., not shared with

other threads. Upon initialization, the thread executes

the first injection step (opening a process handler) and

causes a cache effect (release), and then starts mea-

suring further cache effects.

1 DWORD WINAPI T1(...){

2 /* Lock variable */

3 int my_own_lock =0;

4 ctx ->proc = OpenProcess(ctx ->pid);

5 /* release the other thread */

6 release ();

7 /* wait in my lock until the other one

releases me */

8 while(test_cache (& my_own_lock));

9 ctx ->write = WriteProcessMemory (...);

Code 19 Side-Channel-based, Parallel DLL injection.
Thread 1 code excerpt.

Thread 2 (Code 20) also has its own private lock.

Upon initialization, it keeps checking for cache effects.

When Thread 1 purposely causes a cache measure vari-

ation, this is identified by Thread 2, which then pro-

ceeds executing. After performing the second injection

step (VirtualAlloc), the Thread 2 purposely causes a

cache variation (release) to notify Thread 1. This step

is repeated until the injection procedure is finished.

1 DWORD WINAPI T2(...){

2 /* lock for the second thread */

3 int my_own_lock = 0;

4 /* start locked and wait for unlock */

5 while(test_cache (& my_own_lock));

6 ctx ->alloc = VirtualAlloc (...);

7 release ();

Code 20 Side-Channel-based, Parallel DLL injection.
Thread 2 code excerpt.

The routine that checks for cache variations

(Code 21) is responsible for measuring the access time

of the lock variable, and identifying when it takes more

than expected to be accessed, which indicates that the

other thread finished its step. It is supported by the fact

that the lock variable was previously cached and thus it

will usually take few cycles to be accessed. If the vari-

able takes many cycles to be retrieved, it means that

the cache was somehow affected by the other thread,

thus causing the current thread’s lock to be evicted.

1 BOOL test_cache(int *addr) {

2 /* get number of ticks before */

3 UINT64 start = get_ticks ();

4 /* try to access the variable */

5 int tmp = *addr;

6 /* ensure instruction termination */

7 _mm_lfence ();

8 /* get ticks after */

9 UINT64 stop = get_ticks ();

10 /* say ok if this access was fast */

11 return (stop -start) < SLOW_ENOUGH; }

Code 21 Side-Channel-based, Parallel DLL injection.
Checking routine.

The code which notifies about step termination

(Code 22), in turn, is responsible for evicting the other

thread’s lock variable from the cache. We accomplished

that by flushing all caches lines.

1 VOID release () {

2 // for each position within this array

3 for(int idx =0; idx < L1_CACHE_SIZE/

sizeof(int); idx++) {

4 /* access the index , to ensure cache is

filled */

5 test_cache (&m[idx]);

6 /* then flush that line */

7 _mm_clflush (&m[idx]);

8 }

9 }

Code 22 Side-Channel-based, Parallel DLL injection.
Release.



VANILLA malware 11

Detection: This implementation has neither inter-

threads nor inter-processes communication flows, thus

its detection is not trivial. While cache eviction-based

side channels can be detected by some techniques, any

side-channel information may be used as alternative for

thread synchronization, requiring the adoption of very

comprehensive threat models by security solutions.

7 Evaluation

To evaluate the feasibility of our proposed distribu-

tion strategies in actual scenarios, we implemented dis-

tributed versions of malware found in the wild and

then scanned these new versions with updated versions

of commonly used AV solutions. Finally, we compared

the obtained detection rates from both serial and dis-

tributed malware samples.

7.1 Distributing Real Malware

Collecting source code of real malware samples is

a hard task, since most threats identified in the

wild are captured as binary files. To overcome this

limitation, we restricted our search to github repos-

itories [19], from which we gathered the final set of

samples considered for evaluation, i.e., those that

were able to compile and execute without errors, thus

ensuring their maliciousness. Below, we present the

distributed implementation of three distinct malware

samples. For each sample, we implemented multiple

parallel versions, each one leveraging one of the dis-
tinct synchronization techniques presented in Section 6.

Alina [49] is a Point-Of-Sale (POS) malware which

scraps system for credit card information. It is im-

plemented by many C++ classes, but their main

functionalities can be clustered in three groups, as

presented by Alina’s function-dependency graph

shown in Figure 6: (i) a scanner, which inspect all

processes’ memory; (ii) a HTTP client to exfiltrate

the collected credit card data; and (iii) a rootkit to

hide its steps. Since the sample naturally presents this

modular organization, we distributed it to operate

with three threads, only synchronizing their execution

through a barrier when each thread terminates its task.

Dexter [51] is also a POS malware and operates sim-

ilarly to Alina, scraping processes memory for credit

card numbers and exfiltrating them via Internet. Con-

trary to Alina, Dexter already has some of its tasks

distributed in independent threads. In addition, Dex-

WinMain

Base InitiateRootkit scan

ReadHardwareId

WriteRegistryValue

httpRequest

InstallDriver ProcScanner

procThread

Fig. 6 Alina malware. The sample is composed of three
independent components: a memory scanner, an HTTP ex-
filtrator and a rootkit. Our distributed version consists in
implement each one of these functions in a distinct module
or thread.

ter is aware of previous infections given the use of a

system-wide mutex, as shown in Figure 7.

(

(

(

)

)

)

Fig. 7 Dexter malware. Serial implementation.

To distribute Dexter, as shown in Figure 8, we cre-

ated mutexes for each component, so each individual

run can keep track of whether its infection step was pre-

viously finished or not. We also distributed the library

loading according to the requirements of each module.

As a consequence of distributing the code in mul-

tiple components, there is no explicit thread creation

during malware infection steps, because the malicious

procedures are inline implemented into each thread.

Trochilus [1] is a Remote Access Trojan (RAT) with

multiple malicious features, from remote file upload to

anti-sandbox techniques. Figure 9 shows Trochilus mal-



12 Marcus Botacin et al.

_entryPoint

CreateMutex(1) CreateMutex(2) CreateMutex(3)

LoadLibrary("user32") LoadLibrary("advapi32") LoadLibrary("shell32")

MonitorShutdown HttpInteract ScanMemoryLoop

Fig. 8 Dexter malware. Each module or thread is respon-
sible for keep track of its own infection through a private mu-
tex, loads only the required libs for that module operation,
and implements all functions in an inline way.

Fig. 9 Trochilus malware distribution. Interactions
were split into multiple components and synchronized.

ware distribution. Since it was originally implemented

as a single thread, we leverage our synchronization ap-

proaches to distribute each infection step in a new

threaded or processed component.

Our experience distributing malware samples shows

that, although malware constructions are diverse (e.g.,

synchronous vs. asynchronous constructions), all mal-

ware code could be distributed and/or parallelized.

While distributing any serial code despite its internal

characteristics is not often considered due to perfor-

mance constraints (e.g., serial-equivalent execution), it

is a feasible approach to make pattern-matching-based

malware detection harder.

7.2 Evaluating Real AVs

To evaluate whether real AVs are able to handle this

type of distributed malware or not, we submitted the

aforementioned distributed malware samples to static

and dynamic AV detection procedures. Static AV de-

tection was evaluated first by submitting the samples

to the VirusTotal service [52] and then checking their

detection rates. Dynamic AV detection was evaluated

by installing free versions of the five best-ranked AVs

from AV-Test [2] (AhnLab, Avast, AVG, Avira, Bit-

Defender) in a sandboxed environment, executing the

malware sample with the AV turned on, and checking

whether the AV detected the executed malware or not.

The detection results for the serial and distributed mal-

ware versions are respectively presented in Table 4 and

Table 5.

A challenge to perform a fair AV evaluation is

to ensure that the targeted AV engine (e.g., pattern

matching, real-time scanner, behavioral detector, etc)

is triggered during an AV scan request. According our

threat model, our proposed distributed malware should

be able to bypass dynamic monitors, however, when

an AV scan is requested, the first detection mecha-

nism triggered is static analysis, which performs, for

instance, pattern matching on the executable binary

bytes and/or heuristic analyses on the binary imported

libraries and functions. Table 4 shows that many AVs

detected the standard (plain) version of the compiled

code using static signature matching. Therefore, to en-

sure that our experiments triggered dynamic AV mon-

itoring engines, we developed obfuscated versions of

all malware samples by solving all symbols and strings

in runtime so as to bypass any static detection proce-

dure and force AVs to detect our samples in runtime,

which effectively happened, as shown in the Dynamic

column. As a side-effect of this experiment, we discov-

ered that the simple fact of the same set of malicious

actions being presented in distinct ways, i.e., in its serial

and threaded forms, make it able to evade the detec-

tion of many static detectors. It can be observed for

the Alina malware testing: Whereas 31 AVs statically

detected its serial version (Table 4), only 2 AVs de-

tected its threaded version (Table 5), despite the use

of no obfuscation. Although threaded-versions of mali-

cious code were also statically detected by few AVs,

multi-processed code distributed in multiple binaries

were not detected by any of them (Table 4). We hy-

pothesize that the distribution of the code into multiple

binaries makes AVs unable to detect samples by ana-

lyzing their imported libraries, which is still feasible for

threaded code in the same binary.



VANILLA malware 13

Table 4 Serial Malware Detection. Many AVs detected the samples via static signatures, which can be bypassed via
obfuscation. Alternatively, AVs are also able to detect the samples via dynamic pattern matching. Small variations in the total
number of AVs are due to AV availability issues in the VirusTotal service.

Detection Static Dynamic
Version Plain Obfuscated Plain Obfuscated
Malware Detection

Alina 31/57 (54%) 0/57 (0%) 5/5 (100%) 5/5 (100%)
Dexter 14/61 (23%) 0/61 (0%) 5/5 (100%) 5/5 (100%)

Trochilus 11/58 (19%) 0/67 (0%) 5/5 (100%) 5/5 (100%)

Table 5 Distributed Malware Detection. Some distributed malware samples were not detected by the same signatures
which detected their serial versions. No AV was able to detect the sample using dynamic approaches, although they dynamically
detected their serial counterparts.

Static Dynamic
Plain Obfuscated Plain Obfuscated

Threads Processes Threads Processes Threads Processes Threads Processes
Malware Detection

Alina 2/54 (4%) 0/61 (0%) 0/61 (0%) 0/61 (0%) 0/61 (0%) 0/61 (0%) 0/61 (0%) 0/61 (0%)
Dexter 3/61 (5%) 0/58 (0%) 0/58 (0%) 0/58 (0%) 0/58 (0%) 0/58 (0%) 0/58 (0%) 0/58 (0%)

Trochilus 0/57 (0%) 0/57 (0%) 0/57 (0%) 0/57 (0%) 0/57 (0%) 0/57 (0%) 0/57 (0%) 0/57 (0%)

Once a sample is not flagged as malicious by a static

detection method, current AV solutions allow the ap-

plication to run but keep monitoring its binary execu-

tion via runtime API invocation checks. We evaluated

how AVs behave when exposed to distributed malware

regarding this dynamic monitoring approach. We pro-

ceeded as follows: we (i) produced a pristine, virtualized

image of MS Windows 8 64 bits and generated a snap-

shot; (ii) installed one of the five selected best-ranked

AVs, as already mentioned above; (iii) copied the se-

rial version of one of the three malware used for test-

ing; (iv) made sure the AV was turned-on and double-

clicked the malwre sample; (v) verified if the AV de-

tected the running sample to finally restore the virtual

machine to its pristine state. This process was repeated

(steps ii to v) for each of the five AVs with each of the

three malware compiled in serial, threaded, and multi-

processed forms. This experiment shows that distribut-

ing malware in both Threads as well as in Processes is

an effective strategy to bypass dynamic AV monitoring

engines, thus demonstrating that distributed malware

might pose a significant threat in a near future, there-

fore requiring the development of more advanced event

correlation tools to mitigate the risk posed by their in-

fections.

8 Discussion

In this work, we investigated the threat of distributed

malware samples for linear, serial pattern matching-

based malware detection schemes (as is the case for the

widely used antiviruses, commercial or free). Although

actual malware samples are not widely leveraging this

kind of technique, we believe that investigating possible

evasion methods is essential to prepare ourselves for

attackers’ next movements, as well as to proactively

enhance security solutions.

Distributed malware samples were previously

described in the literature in theoretical ways. Here,

we advanced the discussion by presenting multiple

implementation alternatives for the theoretical con-

cepts proposed, therefore showing that in-system

distributed malware is a real menace for multi-core

computer systems, which are the prevalent type of

device used nowadays in desktops, notebooks and

mobile devices. All the development and discussion

provided by our work point to the fact that project

decisions taken by attackers can be used as detection

triggers when this kind of threat become mainstream.

Other challenges and/or observations regarding the im-

plementation of distributed malware is discussed below.

Distributed Infection Launch. A significant chal-

lenge to deploying a distributed infection is how to

launch multiple processes. A possible, but naive strat-

egy is to pack all components within a dropper binary

and extract them at runtime, which makes correlation

easier as the dropped objects can be tracked through a

monitoring solution. A more robust alternative would

be to launch the payloads from a browser, in the

form of independent processes originated by drive-

by-downloads, which makes the tracking procedure

harder because browsers interact with a large number

of distinct objects.



14 Marcus Botacin et al.

Side Channels Beyond Cryptography. In this

work, we presented a cache-based side-channel ap-

proach for thread synchronization. The exploitation

of side-channels for security interference is popular in

the cryptography context, causing keys and similar se-

crets leakage. Our approach extends the impact of side-

channel for the malware context, thus demonstrating

that its impact is broader than usually considered in

most threat models. In addition, we highlight that al-

though we demonstrated a synchronization approach

based on a L1 cache, cache-based side-channel attacks

can also occur at other cache levels, such as L3 [53]. In

this case, since the L3 cache is shared among all cores,

the attack can be leveraged from code running in dis-

tinct processor cores.

Alternative Synchronization Channels. In this

work, we tackled the stealth component synchroniza-

tion challenge via local system interactions. However,

external entities could also be leveraged for the same

task. Figure 10, for instance, shows how two threads

can be synchronized via external server communica-

tions. Notice that data correlation is avoided as each

thread communicates with a distinct server and they

are out of band-synchronized.

Fig. 10 External Synchronization. Data correlation is
avoided as each thread communicates with a distinct server
and they are out-of-band synchronized.

Limitations. Our work investigates the behavior of

distributed malware samples as a future attack vector,

thus our evaluation presents intrinsic limitations, since

current AVs are not expected to be fully able to handle

and detect this type of next-generation threat. More-

over, as AVs detection mechanisms and signatures are

mostly closed source, we cannot investigate in details

where they fail to detect distributed malware. Despite

these facts, we believe that our work contributes to

enhance incident response procedures by shedding light

on the need of investigating AV detection weaknesses

and pinpointing some directions on malware detection

enhancements to be investigated, such as tainting and

tracking data flows among multiple threads.

Future Work. We strongly believe that stressing AV

solutions is essential to develop more complete defen-

sive solutions. Therefore, we intend to develop an au-

tomated mechanism for malware distribution to allow

evaluating AVs with multiple samples. In this sense,

we can adapt a solution based on dependency graphs

as used in parallel programming algorithms. Contrary

to these, we are not limited to the parallelization of

do-all loops [24], but we can also distribute do-across

loops, although serially-synchronized, because our goal

is not to speed up performance, but evade pattern

matching procedures.

9 Conclusion

In this work, we introduced the threat of in-system

distributed malware samples. We presented their weak

and strong points and discussed their evolution from a

theoretical perspective to a real, menacing application.

We presented strategies for the implementation of dis-

tributed code at function level using distinct synchro-

nization techniques, such as locking, busy-waiting, and

leveraging cache side channels, as well as for the imple-

mentation of their detection counterparts. Finally, we

evaluated the impact of this type of threat in actual sce-

narios by converting real, serial malware code found in

the wild to parallel code, and then scanning these sam-

ples with widely used AV solutions. The results showed

that current AVs are not able to fully handle distributed

malware, thus reinforcing the need of enhancing dis-

tributed code handling support on security solutions.

Reproducibility. All code samples and mon-

itoring drivers here presented are available in

the github: https://github.com/marcusbotacin/

Malware.Multicore.

Acknowledgements This work was supported by the
Brazilian National Counsel of Technological and Scientific De-
velopment (CNPq, PhD Scholarship, process 164745/2017-3)
and the Coordination for the Improvement of Higher Educa-
tion Personnel (CAPES, Project FORTE, Forensics Sciences
Program 24/2014, process 23038.007604/2014-69).

References

1. Affairs, S.: Researchers spotted a new espi-
onage campaign relying on a number of rats

https://github.com/marcusbotacin/Malware.Multicore
https://github.com/marcusbotacin/Malware.Multicore


VANILLA malware 15

including the powerful trochilus threat. https:

//securityaffairs.co/wordpress/43889/cyber-crime/
new-rat-trochilus.html (2016)

2. AV-Test: The best antivirus software for windows home
user. https://www.av-test.org/en/antivirus/home-
windows (2018)

3. Blackthorne, J., Bulazel, A., Fasano, A., Biernat, P.,
Yener, B.: Avleak: Fingerprinting antivirus emula-
tors through black-box testing. In: 10th USENIX
Workshop on Offensive Technologies (WOOT 16).
USENIX Association, Austin, TX (2016). URL
https://www.usenix.org/conference/woot16/workshop-
program/presentation/blackthorne

4. Botacin, M., Geus, P.L.D., Grégio, A.: Enhancing branch
monitoring for security purposes: From control flow in-
tegrity to malware analysis and debugging. ACM Trans.
Priv. Secur. 21(1), 4:1–4:30 (2018). DOI 10.1145/
3152162. URL http://doi.acm.org/10.1145/3152162

5. Botacin, M.F., de Geus, P.L., Grégio, A.R.A.: The other
guys: automated analysis of marginalized malware. Jour-
nal of Computer Virology and Hacking Techniques 14(1),
87–98 (2018). DOI 10.1007/s11416-017-0292-8. URL
https://doi.org/10.1007/s11416-017-0292-8

6. Brengel, M., Backes, M., Rossow, C.: Detecting
hardware-assisted virtualization. In: Proceedings of the
13th International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment - Vol-
ume 9721, DIMVA 2016, pp. 207–227. Springer-Verlag
New York, Inc., New York, NY, USA (2016). DOI
10.1007/978-3-319-40667-1 11. URL http://dx.doi.org/
10.1007/978-3-319-40667-1 11

7. Dirtycow: Dirty cow (cve-2016-5195). https://

dirtycow.ninja/ (2016). Access Date: 2017
8. Gepner, P., Kowalik, M.F.: Multi-core processors: New

way to achieve high system performance. In: Interna-
tional Symposium on Parallel Computing in Electrical
Engineering (PARELEC’06), pp. 9–13 (2006). DOI
10.1109/PARELEC.2006.54

9. Graziano, M.: Make dkom attacks great again. http:

//www.mgraziano.info/docs/graziano hackinbo16.pdf
(2016)

10. Hoglund, G., Butler, J.: Rootkits: Subverting the Win-
dows Kernel. Addison-Wesley Professional (2005)

11. Hybrid-Analysis: Falcon sandbox. www.hybrid-
analysis.com (2018)

12. ISecLab: Anubis. anubis.iseclab.org (2016)
13. Ispoglou, K.K., Payer, M.: malwash: Washing mal-

ware to evade dynamic analysis. In: 10th USENIX
Workshop on Offensive Technologies (WOOT 16).
USENIX Association, Austin, TX (2016). URL
https://www.usenix.org/conference/woot16/workshop-
program/presentation/ispoglou

14. Kaspersky: Overall statistics for 2015.
https://securelist.com/files/2015/12/
KSB 2015 Statistics FINAL EN.pdf (2015). Access
in May 11, 2016

15. Kindratenko, V.V., Enos, J.J., Shi, G., Showerman,
M.T., Arnold, G.W., Stone, J.E., Phillips, J.C., m. Hwu,
W.: Gpu clusters for high-performance computing. In:
2009 IEEE International Conference on Cluster Com-
puting and Workshops, pp. 1–8 (2009). DOI 10.1109/
CLUSTR.2009.5289128

16. Kolbitsch, C., Kirda, E., Kruegel, C.: The power of
procrastination: Detection and mitigation of execution-
stalling malicious code. In: Proceedings of the 18th
ACM Conference on Computer and Communications Se-
curity, CCS ’11, pp. 285–296. ACM, New York, NY,

USA (2011). DOI 10.1145/2046707.2046740. URL http:

//doi.acm.org/10.1145/2046707.2046740
17. Koufaty, D., Marr, D.T.: Hyperthreading technology in

the netburst microarchitecture. IEEE Micro 23(2), 56–65
(2003). DOI 10.1109/MM.2003.1196115

18. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V.J., Hazelwood, K.:
Pin: Building customized program analysis tools with dy-
namic instrumentation. In: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pp. 190–200. ACM, New
York, NY, USA (2005). DOI 10.1145/1065010.1065034.
URL http://doi.acm.org/10.1145/1065010.1065034

19. m0n0ph1: malware=1. https://github.com/m0n0ph1/
malware-1 (2018)

20. Ma, W., Duan, P., Liu, S., Gu, G., Liu, J.C.: Shadow at-
tacks: Automatically evading system-call-behavior based
malware detection. J. Comput. Virol. 8(1-2), 1–13
(2012). DOI 10.1007/s11416-011-0157-5. URL http:

//dx.doi.org/10.1007/s11416-011-0157-5
21. malshare: malware database. http://malshare.com/

(2018)
22. malwr.com: Cuckoo-powered malware analysis sandbox.

malwr.com (2016)
23. Marschalek, M.: Analysis report. https:

//www.ikarussecurity.com/fileadmin/user upload/

Download/Report MarionMarschalek.pdf (2013)
24. Mattos, L.F., Divino, C., Salamanca, J., Carvalho, J.P.,

Pereira, M.M., Araujo, G.: Doacross parallelization based
on component annotation and loop-carried probability.
In: Proceedings of the 2018 SBAC-PAD, SBAC-PAD ’18
(2018)

25. Mcafee: Quarterly report. https://www.mcafee.com/
br/resources/reports/rp-quarterly-threats-mar-

2017.pdf (2017)
26. Microsoft: Finding the process id. https:

//msdn.microsoft.com/en-us/library/windows/
hardware/ff545415(v=vs.85).aspx

27. Microsoft: Getcurrentprocessid function. https:

//msdn.microsoft.com/pt-br/library/windows/
desktop/ms683180(v=vs.85).aspx

28. Microsoft: Getcurrentthreadid function. https:

//msdn.microsoft.com/pt-br/library/windows/
desktop/ms683183(v=vs.85).aspx

29. Microsoft: Getlogicalprocessorinformation func-
tion. https://msdn.microsoft.com/en-us/library/
ms683194(v=VS.85).aspx

30. Microsoft: Getprocessid function. https:

//msdn.microsoft.com/pt-br/library/windows/
desktop/ms683215(v=vs.85).aspx

31. Microsoft: Getthreadid function. https://

msdn.microsoft.com/en-us/library/windows/desktop/
ms683233(v=vs.85).aspx

32. Microsoft: Introduction to thread objects. https:

//msdn.microsoft.com/en-us/library/windows/
hardware/ff548146(v=vs.85).aspx

33. Microsoft: Peb structure. https://msdn.microsoft.com/
en-us/library/windows/desktop/aa813706(v=

vs.85).aspx
34. Microsoft: Teb structure. https://msdn.microsoft.com/

pt-br/library/windows/desktop/ms686708(v=

vs.85).aspx
35. Microsoft: What’s new in processes and threads.

https://msdn.microsoft.com/en-us/library/windows/
desktop/dd405527(v=vs.85).aspx

36. Microsoft: Locks, deadlocks, and synchronization.
http://download.microsoft.com/download/e/b/a/

https://securityaffairs.co/wordpress/43889/cyber-crime/new-rat-trochilus.html
https://securityaffairs.co/wordpress/43889/cyber-crime/new-rat-trochilus.html
https://securityaffairs.co/wordpress/43889/cyber-crime/new-rat-trochilus.html
https://www.av-test.org/en/antivirus/home-windows
https://www.av-test.org/en/antivirus/home-windows
https://www.usenix.org/conference/woot16/workshop-program/presentation/blackthorne
https://www.usenix.org/conference/woot16/workshop-program/presentation/blackthorne
http://doi.acm.org/10.1145/3152162
https://doi.org/10.1007/s11416-017-0292-8
http://dx.doi.org/10.1007/978-3-319-40667-1_11
http://dx.doi.org/10.1007/978-3-319-40667-1_11
https://dirtycow.ninja/
https://dirtycow.ninja/
http://www.mgraziano.info/docs/graziano_hackinbo16.pdf
http://www.mgraziano.info/docs/graziano_hackinbo16.pdf
www.hybrid-analysis.com
www.hybrid-analysis.com
anubis.iseclab.org
https://www.usenix.org/conference/woot16/workshop-program/presentation/ispoglou
https://www.usenix.org/conference/woot16/workshop-program/presentation/ispoglou
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
http://doi.acm.org/10.1145/2046707.2046740
http://doi.acm.org/10.1145/2046707.2046740
http://doi.acm.org/10.1145/1065010.1065034
https://github.com/m0n0ph1/malware-1
https://github.com/m0n0ph1/malware-1
http://dx.doi.org/10.1007/s11416-011-0157-5
http://dx.doi.org/10.1007/s11416-011-0157-5
http://malshare.com/
malwr.com
https://www.ikarussecurity.com/fileadmin/user_upload/Download/Report_MarionMarschalek.pdf
https://www.ikarussecurity.com/fileadmin/user_upload/Download/Report_MarionMarschalek.pdf
https://www.ikarussecurity.com/fileadmin/user_upload/Download/Report_MarionMarschalek.pdf
https://www.mcafee.com/br/resources/reports/rp-quarterly-threats-mar-2017.pdf
https://www.mcafee.com/br/resources/reports/rp-quarterly-threats-mar-2017.pdf
https://www.mcafee.com/br/resources/reports/rp-quarterly-threats-mar-2017.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545415(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545415(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545415(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683180(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683180(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683180(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683183(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683183(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683183(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms683194(v=VS.85).aspx
https://msdn.microsoft.com/en-us/library/ms683194(v=VS.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683215(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683215(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms683215(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548146(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548146(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548146(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms686708(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms686708(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms686708(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd405527(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd405527(v=vs.85).aspx
http://download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/locks.doc


16 Marcus Botacin et al.

eba1050f-a31d-436b-9281-92cdfeae4b45/locks.doc
(2006)

37. Microsoft: Winmain is just the conventional name
for the win32 process entry point. https://

devblogs.microsoft.com/oldnewthing/20110525-00/?p=
10573 (2011)

38. Microsoft: Getcurrentprocessornumber function.
https://msdn.microsoft.com/en-us/library/windows/
desktop/ms683181(v=vs.85).aspx (2016). Access Date:
2017

39. Microsoft: Introduction to spin locks. https:

//docs.microsoft.com/en-us/windows-hardware/
drivers/kernel/introduction-to-spin-locks (2018)

40. microsoft: Thread handles and identifiers. https:

//docs.microsoft.com/en-us/windows/desktop/
procthread/thread-handles-and-identifiers (2018)

41. Netmarketshare: Operating system market share.
https://www.netmarketshare.com/operating-system-
market-share.aspx (2018)

42. Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T.,
Kasama, T., Rossow, C.: Iotpot: Analysing the rise of
iot compromises. In: Proceedings of the 9th USENIX
Conference on Offensive Technologies, WOOT’15, pp. 9–
9. USENIX Association, Berkeley, CA, USA (2015). URL
http://dl.acm.org/citation.cfm?id=2831211.2831220

43. Prince, B.: Script fragmentation attack could allow hack-
ers to dodge anti-virus detection. http://www.eweek.com/
security/script-fragmentation-attack-could-

allow-hackers-to-dodge-anti-virus-detection

(2018)
44. rohitab.com: Api monitor. http://www.rohitab.com/

apimonitor
45. Russinovich, M., Solomon, D.A.: Windows Internals: In-

cluding Windows Server 2008 and Windows Vista, Fifth
Edition, 5th edn. Microsoft Press, Redmond, WA, USA
(2009)

46. Sanford, M.: Computer viruses and malware by john
aycock. SIGACT News 41(1), 44–47 (2010). DOI
10.1145/1753171.1753184. URL http://doi.acm.org/
10.1145/1753171.1753184

47. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: Av-
class: A tool for massive malware labeling. In: F. Mon-
rose, M. Dacier, G. Blanc, J. Garcia-Alfaro (eds.) Re-
search in Attacks, Intrusions, and Defenses, pp. 230–253.
Springer International Publishing, Cham (2016)

48. SecureList: The inevitable move - 64-bit zeus enhanced
with tor. https://securelist.com/the-inevitable-
move-64-bit-zeus-enhanced-with-tor/58184/ (2013)

49. Security, P.: Alina, the latest pos malware.
https://www.pandasecurity.com/mediacenter/
pandalabs/alina-pos-malware/ (2017)

50. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: A
tiny hypervisor to provide lifetime kernel code integrity
for commodity oses. In: Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Prin-
ciples, SOSP ’07, pp. 335–350. ACM, New York, NY,
USA (2007). DOI 10.1145/1294261.1294294. URL http:

//doi.acm.org/10.1145/1294261.1294294
51. TrustWave: The dexter malware: Getting your

hands dirty. https://www.trustwave.com/Resources/
SpiderLabs-Blog/The-Dexter-Malware--Getting-

Your-Hands-Dirty/ (2012)
52. VirusTotal: Virustotal. https://www.virustotal.com

(2018)
53. Yarom, Y., Falkner, K.: Flush+reload: A high

resolution, low noise, l3 cache side-channel at-
tack. In: 23rd USENIX Security Symposium

(USENIX Security 14), pp. 719–732. USENIX As-
sociation, San Diego, CA (2014). URL https:

//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom

http://download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/locks.doc
http://download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/locks.doc
https://devblogs.microsoft.com/oldnewthing/20110525-00/?p=10573
https://devblogs.microsoft.com/oldnewthing/20110525-00/?p=10573
https://devblogs.microsoft.com/oldnewthing/20110525-00/?p=10573
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683181(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683181(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-spin-locks
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-spin-locks
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-spin-locks
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-handles-and-identifiers
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-handles-and-identifiers
https://docs.microsoft.com/en-us/windows/desktop/procthread/thread-handles-and-identifiers
https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
http://dl.acm.org/citation.cfm?id=2831211.2831220
http://www.eweek.com/security/script-fragmentation-attack-could-allow-hackers-to-dodge-anti-virus-detection
http://www.eweek.com/security/script-fragmentation-attack-could-allow-hackers-to-dodge-anti-virus-detection
http://www.eweek.com/security/script-fragmentation-attack-could-allow-hackers-to-dodge-anti-virus-detection
http://www.rohitab.com/apimonitor
http://www.rohitab.com/apimonitor
http://doi.acm.org/10.1145/1753171.1753184
http://doi.acm.org/10.1145/1753171.1753184
https://securelist.com/the-inevitable-move-64-bit-zeus-enhanced-with-tor/58184/
https://securelist.com/the-inevitable-move-64-bit-zeus-enhanced-with-tor/58184/
https://www.pandasecurity.com/mediacenter/pandalabs/alina-pos-malware/
https://www.pandasecurity.com/mediacenter/pandalabs/alina-pos-malware/
http://doi.acm.org/10.1145/1294261.1294294
http://doi.acm.org/10.1145/1294261.1294294
https://www.trustwave.com/Resources/SpiderLabs-Blog/The-Dexter-Malware--Getting-Your-Hands-Dirty/
https://www.trustwave.com/Resources/SpiderLabs-Blog/The-Dexter-Malware--Getting-Your-Hands-Dirty/
https://www.trustwave.com/Resources/SpiderLabs-Blog/The-Dexter-Malware--Getting-Your-Hands-Dirty/
https://www.virustotal.com
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Introduction
	Motivation
	Background and Related Work
	Attack & Threat Model
	Methodology & Tools
	Distributing Malware
	Evaluation
	Discussion
	Conclusion

