Malicious Software Classification using Transfer
Learning of ResNet-50 Deep Neural Network

Edmar Rezende*!, Guilherme Ruppert!, Tiago Carvalho?, Fabio Ramos® and Paulo de Geus*
*University of Campinas, Campinas, SP, Brazil - Email: {edmar,paulo}@]lasca.ic.unicamp.br
fCenter for Information Technology Renato Archer, Campinas, SP, Brazil - Email: guilherme.ruppert@cti.gov.br
tPederal Institute of Sdo Paulo, Campinas, SP, Brazil - Email: tiagojc@gmail.com
§University of Sydney, Sydney, NSW, Australia - Email: fabio.ramos@sydney.edu.au

Abstract—Malicious software (malware) has been extensively
used for illegal activity and new malware variants are discovered
at an alarmingly high rate. The ability to group malware variants
into families with similar characteristics makes possible to create
mitigation strategies that work for a whole class of programs. In
this paper, we present a malware family classification approach
using a deep neural network based on the ResNet-50 architecture.
Malware samples are represented as byteplot grayscale images
and a deep neural network is trained freezing the convolutional
layers of ResNet-50 pre-trained on the ImageNet dataset and
adapting the last layer to malware family classification. The
experimental results on a dataset comprising 9,339 samples from
25 different families showed that our approach can effectively be
used to classify malware families with an accuracy of 98.62%.

I. INTRODUCTION

Malicious software (malware) is one of major security
threats facing the Internet today. The ability to automatically
detect malware and group them into families with similar
characteristics is beneficial because it becomes significantly
easier to create new mitigation strategies that work for a whole
class of programs.

Machine learning methods have been employed to auto-
mate the malware detection and classification task. In these
methods, classifiers are applied to learn patterns in a set of
features extracted from static and dynamic malware analysis.
However, designing a feature extractor that would transform
raw data into a suitable feature vector requires careful engi-
neering and considerable domain expertise.

Whereas many researchers have relied on hand-crafted mal-
ware representations, there are machine learning algorithms
that can be used to come up with good malware representa-
tions. Deep learning [1] are representation learning methods
with multiple levels of representation. Deep learning’s key
aspect is that these feature layers are not designed by human
engineers, rather they are learned from data using a general
purpose learning procedure.

Deep Convolutional Neural Networks (DCNN) have be-
come the standard approach for classification tasks within the
last years. This transition from traditional approaches based
on hand-crafted feature extractors combined with shallow
classifiers to DCNNs is due to the overwhelming performance
of DCNNSs on classification challenges such as the ILSVRC—
ImageNet Large Scale Visual Recognition Challenge [2].

Over the years, there has been a trend where the deeper
the model is, the better performance the model can achieve
on the ImageNet challenge. In 2012, the AlexNet architecture
with 8 layers resulted in a top-5 classification error of 16.4%
on the ImageNet challenge. In 2014, the VGG16 model with
16 layers and VGG19 model with 19 layers resulted in a top-5
classification error of 7.3%, and the GoogLeNet model with
22 layers resulted in a top-5 classification error of 6.7%. And
finally in 2015, the ResNet model with 152 layers resulted in
a top-5 classification error of 3.57%.

In this paper we present an approach for malware family
classification using a DCNN model based on the Residual
Network architecture with 50 layers (ResNet-50) [3]. We rep-
resent malware samples as byteplot images and using a transfer
learning approach we transfer the convolutional layers’ pa-
rameters of ResNet-50 pre-trained on ImageNet dataset to our
model, adapting the last softmax layer to our problem. The
experimental results on a dataset comprising 9,339 samples
from 25 different malware families showed that our approach
can effectively be used to classify malware families with an
accuracy of 98.62%, outperforming the reference work on this
dataset.

The remaining of the paper is organized as follows: Sec-
tion II presents malware classification related work. Section III
describes the method proposed in this work in details. Sec-
tion IV presents our experimental results. The conclusions
follow in Section V.

II. RELATED WORK

The use of machine learning for automatically classifying
malware families has been extensively studied in the literature.
Some approaches based on the use of visualization techniques
have been proposed to support malware analysis with respect
to feature extraction and pattern recognition of malware sam-
ples.

Conti et al. [4] proposed a method called byteplot for
visualizing binary data objects as grayscale images, arguing
that visual analysis of binary data helps distinguish structurally
different regions of data. Nataraj et al. [S] proposed a method
for classifying malware represented as byteplot grayscale
images using image processing techniques. Using Gabor filters
to extract texture features and then using a k-nearest neighbors
(kKNN) classifier with k& = 3, they obtained an accuracy

of 97.18% in a dataset consisting of 25 malware families.
Kancherla and Mukkamala [6] presented a malware detection
approach using intensity and texture features extracted from
byteplot grayscale images. Using Support Vector Machines
(SVMs), they obtained an accuracy of 95% on a dataset
containing 36 thousand samples.

In the last few years, researchers have applied deep learning
techniques to learn patterns in a set of features extracted from
static and dynamic malware analysis in order to classify new
samples.

Kolosnjaji et al. [7] used a neural network that combines
convolutional and recurrent layers for malware classification
using system call n-grams obtained from dynamic analysis.
Their evaluation results achieved an average of 89.4% on
accuracy in a dataset containing 4,753 malware samples from
10 different families. Saxe and Berlin [8] deployed a malware
detector using static features: byte/entropy/string histograms,
PE imports and PE metadata. Training a feedforward neural
network consisting of four layers, they achieved a 95% detec-
tion rate in a dataset containing 431,926 binaries.

Unlike previous work, our approach does not require any
feature engineering, using raw pixel values of byteplot images
as our underlying malware representation. Additionally, we
explore knowledge transfer from a deep neural network trained
for object detection task on a different dataset to discover good
malware representations, improving the classification results.

III. PROPOSED METHOD

The proposed method consists of the following basic steps:

1) Given a dataset of labeled malware executables, convert
each sample to its respective byteplot grayscale image;

2) Convert each byteplot to an RGB image, rescaling it to
224 x 224 dimension and subtracting the mean RGB
value computed on the ImageNet dataset from each
pixel, as proposed by Krizhevsky et al. [9], to feed it
to the deep neural network;

3) Build a deep convolutional neural network (DCNN)
based on the ResNet architecture with 50 layers
(ResNet-50), replacing the last 1000 fully-connected
softmax layer by a 25 fully-connected softmax layer and
transferring the parameters of ResNet-50 convolutional
layers to the convolutional layers of the DCNN model;

4) Freeze the transferred convolutional layer’s parameters
and train the DCNN model to classify each sample into
its malware family.

An overview of the entire method’s pipeline is given in
Figure 1.

A. Byteplot Visualization

The byteplot visualization method was initially proposed
by Conti et al. [4] to represent binary data objects as images
where each byte corresponds to one pixel color rendered as a
grayscale. As can be seen in Fig. 2(a), visual analysis of binary
data in fact helps distinguish structurally different regions of
data, facilitating a wide range of analytic tasks.

Nataraj et al. [5] proposed a method for classifying malware
represented as byteplot images using image processing tech-
niques. They observed significant visual similarities in image
texture for malware belonging to the same family, as shown
in Fig. 2(b), possibly explained by the common practice of
reusing code to create new malware variants.

To transform malware samples into byteplot images, a given
malware binary is read as a vector of 8-bit unsigned integers
and then organized into a 2D array, where the width is
defined by the file size, based on empirical observations made
by Nataraj et al. [5]. The height is allowed to vary depending
on the width and the file size.

B. Transfer Learning of ResNet-50

Residual Networks (ResNets) [3] are deep convolutional
networks where the basic idea is to skip blocks of convolu-
tional layers by using shortcut connections. The basic blocks
named “bottleneck” blocks follow two simple design rules:
(1) for the same output feature map size, the layers have the
same number of filters; and (ii) if the feature map size is
halved, the number of filters is doubled. The down-sampling
is performed directly by convolutional layers that have a stride
of 2 and batch normalization is performed right after each
convolution and before ReL.U activation. When the input and
output are of the same dimensions, the identity shortcut is
used. When the dimensions increase, the projection shortcut
is used to match dimensions through 1 x 1 convolutions. In
both cases, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2. The network ends
with a 1,000 fully-connected (fc) layer with softmax activation.
The total number of weighted layers is 50, with 23,534,592
trainable parameters. The architecture of the original ResNet-
50 is illustrated in Fig. 1.

In our method, we use ResNet-50 as the base model, pre-
trained for object detection task on the ImageNet dataset [10].
Our hypothesis is that despite the disparity between natural
images and malware byteplot images, ResNet-50 comprehen-
sively trained on the ImageNet may still be transferred to
make malware image recognition tasks more effective, since
collecting and annotating large numbers of malware samples
still poses significant challenges.

Using transfer learning techniques [11], we transferred the
first 49 layers of ResNet-50, which are left frozen on the
malware classification task. These layers can be seen as
learned feature extraction layers. The activation maps gener-
ated by those learned features extraction layers are usually
called bottleneck features. Using the bottleneck features of
our malware byteplot images as input, we train a 25 fully-
connected softmax, since we have 25 classes, and then replace
the 1,000 fully-connected softmax by our trained 25 fully-
connected softmax, as illustrated in Fig. 1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
DCNN model using a public dataset and compare it with
approaches proposed in the literature.

ResNet-50
(pre-trained on
ImageNet dataset)

|

224x 224 RGB image
3x3 max pool, 12

3x3 conv, 128
1x1 conv, 512

1000 fc, softmax

D —

image
7x7 conv, 64 2
3x3 max pool, 22

xd conv, 64
3x3 conv, 64
1x1 conv, 256
xd conv, 64
3x3 conv, 64
1x1 conv, 256

Malware Byteplot

X7 conv, 128
3x3 cony, 128
1x1 conv, 512

Samples Images.

Fig. 1.

Overview of proposed method. ResNet-50 layers pre-trained on ImageNet dataset are transferred to our DCNN model, replacing the last 1000

fully-connected (fc) softmax layer by a 25 fully-connected softmax layer and freezing the parameters of the convolutional layers during the training process.

agentn agenten

(@) (b)

Fig. 2. (a) Byteplot and PE Structure comparison. (b) Byteplot visualization
of malware samples from different families.

A. Dataset

The DCNN method has been evaluated with the Malimg
dataset! proposed by Nataraj et al. [S]. The dataset comprises
9,339 byteplot images from 25 different malware families. As
reported by the authors, all byteplot images were generated
from malware executables submitted to the Anubis analysis
system? and labels provided by Microsoft Security Essentials
were used to obtain the ground truth for the dataset.

B. Validation Protocol

To evaluate the proposed model performance we used a
stratified 10-fold cross-validation, randomly partitioning the
samples into ten disjoint sets of equal size containing roughly
the same proportions of the class labels in each fold, selecting
one as a testing set and combining the remaining nine to form a
training set. We conducted ten such runs using each partition as
the testing set and reported the average classification accuracy,
the accuracy and the execution time for each fold.

C. Malware Classification Results

To train our DCNN model on the malware classification
task, we first use the ResNet-50 transferred convolutional
layers to extract the bottleneck features of our byteplot images,
which are then used as input to train a custom 25 fully-
connected softmax layer using a categorical cross-entropy
cost function and the Adam optimizer for 2,000 epochs.
The weights have been initialized using the Glorot uniform
approach and the bias terms were initialized to zero.

! Available at http://old.vision.ece.ucsb.edu/spam/malimg.shtml
2 Available at http://anubis.iseclab.org

The trained softmax layer is stacked on top of the layers
transferred from ResNet-50 to build our DCNN model, which
is used to classify the test set. The train/test loss and accuracy
of our DCNN model for each fold is presented in Figures 3(a)
and 3(b), respectively. Solid lines represent the performance
in the training set while dashed lines represent performance
in the test set.

(@) (b)

Fig. 3. DCNN 10-fold cross-validation train/test (a) loss and (b) accuracy.

It is possible to observe in those figures that after 750
epochs both loss and accuracy tend to stabilize for all folds
and the accuracy presents very small improvements for both
train and test sets, converging to an average accuracy of 0.9862
(£0.0025).

D. Comparative Analysis

To perform a comparative analysis of our DCNN model
with similar work proposed in the literature, we reproduced
the approach proposed by Nataraj et al. [5] using GIST
filters to extract texture features from the byteplot grayscale
images combined with a kNN (k = 1-10) classifier using the
Euclidean distance for malware classification, using the code
provided by the authors®.

To perform a qualitative analysis, we generated data visual-
ization using the t-Distributed Stochastic Neighbor Embedding
(t-SNE) algorithm [12]. Fig. 4 provides a 2-dimensional t-SNE
visualization of the Malimg dataset using four different input
features. Each node corresponds to one malware sample and
each color represents one malware family.

The figure illustrates that samples of the same malware
family are most clustered together in the bottleneck features

3 Available at http://sarvamblog.blogspot.com.br/2014/08/
supervised-classification- with-k-fold.html

&> | boowe boomes |
. m “ ! @ ﬁﬁ e Ba
. 4 | | eS| 'Z‘-' |
~ P *ié g .
I I I : I

() (b) (© (d)

Fig. 4. t-SNE visualization of the Malimg dataset using four different input
features: (a) the grayscale image pixels, (b) RGB image pixels, (c) GIST
features and (d) bottleneck features.

space, demonstrating that the DCNN activation features indeed
provide good representations of malware. Furthermore, it is
possible to observe that the operations performed by ResNet-
50 transferred layers projected the raw pixels into a better sep-
arable feature space, with a degree of separability comparable
to the GIST features space.

To perform a quantitative analysis, we implemented mal-
ware classification with a kNN classifier using the bottleneck
features instead of the GIST features. Using GIST features,
the best average accuracy of 0.9748 (4-0.0039) was obtained
for £ = 4, while using bottleneck features we obtained an
average accuracy of 0.9800 (£0.0032) for the same k.

The higher accuracy obtained when using bottleneck fea-
tures attests that the ResNet-50 layers transferred to our DCNN
model generate a meaningful representation for the malware,
outperforming the GIST features representation and resulting
in successful detection of a high percentage of the malware
variants.

To conclude our quantitative analysis, we compare the best
results obtained using GIST features and kNN (k = 4)
classifier with our DCNN results for malware classification.
Fig. 5 presents the test accuracy comparison for each method
by fold.

Fig. 5. Accuracy of GIST with kNN (k=4) and DCNN.

In the picture, it is possible to see that the DCNN method
outperforms the GIST method in all folds, achieving an
average accuracy of 0.9862 (£0.0025) against an average
accuracy of 0.9748 (£0.0039) achieved by the GIST approach.

V. CONCLUSION

In this work we propose a malware classification mechanism
using byteplot malware images and deep learning techniques.
Our results confirm that visual malware similarities can be
used for accurate malware classification. We evaluated our
approach on a dataset consisting of 9,339 samples from 25
malware families, obtaining an average accuracy of 98.62%.

Whereas many solutions have relied on hand-crafted feature
extractors, our approach does not require any feature engi-

neering, using raw pixel values of byteplot images as our
underlying malware representation.

Moreover, we demonstrated that the knowledge obtained in
the ImageNet classification task can be successfully transferred
to malware classification tasks. In our experiments, the feature
extractor learned by ResNet-50 performed better than the
hand-crafted GIST feature extractor proposed in the literature.

REFERENCES

[1] Y. Bengio et al., “Learning deep architectures for ai,”
Foundations and trends® in Machine Learning, vol. 2,
no. 1, pp. 1-127, 2009.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein
et al., “Imagenet large scale visual recognition chal-
lenge,” arXiv preprint arXiv:1409.0575, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770-778.

[4] G. Conti, E. Dean, M. Sinda, and B. Sangster, “Visual re-
verse engineering of binary and data files,” Visualization
for Computer Security, pp. 1-17, 2008.

[5] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath,
“Malware images: visualization and automatic classifica-
tion,” in Proceedings of the Sth international symposium
on visualization for cyber security. ACM, 2011, p. 4.

[6] K. Kancherla and S. Mukkamala, “Image visualization
based malware detection,” in Computational Intelligence
in Cyber Security (CICS), 2013 IEEE Symposium on.
IEEE, 2013, pp. 40-44.

[7] B. Kolosnjaji, A. Zarras, G. D. Webster, and C. Eckert,
“Deep learning for classification of malware system
call sequences.” in Australasian Conference on Artificial
Intelligence, 2016, pp. 137-149.

[8] J. Saxe and K. Berlin, “Deep neural network based
malware detection using two dimensional binary program
features,” in Malicious and Unwanted Software (MAL-
WARE), 2015 10th International Conference on. 1EEE,
2015, pp. 11-20.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

in Advances in neural information processing systems,

2012, pp. 1097-1105.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein

et al., “Imagenet large scale visual recognition chal-

lenge,” Springer 1JCV, vol. 115, no. 3, pp. 211-252,

2015.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How

transferable are features in deep neural networks?” in Ad-

vances in neural information processing systems, 2014,

pp. 3320-3328.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-

sne,” Journal of Machine Learning Research, vol. 9, no.

Nov, pp. 2579-2605, 2008.

(10]

(11]

(12]

