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Abstract
–Malicious programs have been the main actors in complex, sophisti-

cated attacks against nations, governments, diplomatic agencies, private
institutions and people. Knowledge about malicious program behavior
forms the basis for constructing more secure information systems. In this
article, we introduce MBO, a Malicious Behavior Ontology that repre-
sents complex behaviors of suspicious executions, and through inference
rules calculates their associated threat level for analytical proposals. We
evaluate MBO using over two thousand unique known malware and 385
unique known benign software. Results highlight the representativeness
of the MBO for expressing typical malicious activities.

Security ontologyMalware behaviorThreat analysis

1 Introduction
In today’s Internet ecosystem—populated with a broad range of devices and sys-
tems, including physical plants—information security is increasingly required.
Currently, Internet embraces a variety of complex and interconnected infor-
mation systems including desktops, workstations, servers, smartphones, home
appliances and, more alarming, platforms able to control critical infrastructure.
The plethora of Internet-connected devices turn users into easy targets of com-
puter device and network-related attacks. The main threat faced by information
systems and their users today is malicious software (malware). Malware samples
became very complex pieces of code that leverage a broad range of techniques
to attack computer systems. These attacks aim to compromise systems in a
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way that the malware can install itself, establish remote access by its controller,
bypass the security mechanisms, and finally, accomplish its objective. Cyber
criminals have many motivations to write malware, e.g., stealing credentials,
information, and other sensitive data, making profit, compromising third party
systems etc. Since a malicious software is actually a program that will exe-
cute on a victim’s system just like any other program, the intentions of a cyber
criminal—from capturing credentials through functions that intercept the key-
board to political motivation—are translated into instructions, which will then
be used to accomplish the infection. Each instruction can be seen as an action
performed over a specific resource of the infected system and the resulting set of
actions corresponds to the “behavior” of a malicious program. Knowledge about
malware behavior is key to planning more secure systems and preventing future
attacks.

Obtaining and analyzing behavior associated to malware is one effective
way to understand infection procedures, measure the potential damage extent
and assess defensive or protective measures. Therefore, malware behavioral
analysis not only allows us to discover suspicious actions performed during an
attack, but also to develop metrics to identify whether a program is behaving
maliciously or not. However, the process of obtaining models that represent
malware behavior is very delicate: it relies on constant monitoring of the victims
resources, requiring a method to intercept all interactions among the process
launched by a malicious program (and its child-processes) and subsystems of the
target operating system. Furthermore, there is a need to screen out unsuspicious
actions so as to focus on exhibited suspicious behavior. To do so, we need to
previously know which actions are relevant to characterize a suspicious behavior,
and how to decide if a given execution, among the many associated to processes
running on a target system, is suspicious enough to raise an alert to a potential
victim.

A path that may lead to a solution consists of a well defined scope of sus-
picious behavior, a core model and platform to share knowledge, metrics to
calculate how suspicious the execution of a program is, and a specialized system
that applies all these resources. By using such a system, users and specialists
may interact—either by creating new rules or by refining existing ones—to make
a collaborative system whose aim is to identify suspicious behaviors in poten-
tially infected machines in an effective way, providing efficient update of the
knowledge database. This way, it would be possible to address unknown ma-
licious programs and maintain systems secure, even in cases where traditional
security mechanisms (such as antivirus) are not able to detect threats.

Although preliminary malware ontologies do exist in the literature, they do
not properly deal with current malicious programs. This happens due to i) mali-
cious programs being traditionally classified into well-known, but too restrictive,
categories (virus, worm, Trojan, bot), according to a predominant behavior—
infects a file, spreads autonomously, disguises itself as a legitimate program and
so on—and ii) existing malware ontologies leading to a hierarchy of classes (or
categories, such as the ones mentioned above) that are far from adequate to
address the issue of modern malware. This is especially true given that they are
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multipurpose, complex and may be split among several components. Moreover,
as stated by [13], those class-based malware ontologies may “not be useful for
malware instances that exhibit either behaviors from multiple classes or novel
behaviors not associated with any recognized class”.

Hence, there is a lack of a specialized ontology based on expert, collaborative
knowledge that can handle suspicious behavior and, consequently, malware. In
addition, there is the need for automatic inference of suspicious executions in
monitored target systems. In this article, we introduce a novel malware ontol-
ogy based on a set of commonly suspicious behaviors observed during years of
malicious program analysis, as well as propose rules for inferring suspicious ex-
ecutions and to define the risk associated to a program for analytical purposes.
Our main contributions are three-fold:

1. We present the conception of the core components of a Malware Behavior
Ontology (MBO), which models our knowledge of malware behavior and
establishes the foundations for further reasoning procedures.

2. We define rules with risk values for each suspicious activity contained in
the hierarchy of main behaviors exhibited by malicious programs (intro-
duced by [5]). The goal is to analyze program execution and attempt to
characterize unknown malware processes based on the computed execution
threat level.

3. We evaluate the proposed ontology using over 2 thousand malicious sam-
ples and almost 400 benign programs, testing the rules for suspicious ex-
ecutions and computing the associated risk. We also discuss the obtained
results in terms of representativeness of the MBO, limitations of the ap-
proach and future directions.

The remainder of this article is organized as follows. In Section 2, we present
related work on security-based and/or malware-inspired ontologies, as well as
how they related to the work proposed in this article. In Section 3, we intro-
duce the concepts behind the Malware Behavior Ontology (MBO), define the
risks associated with each suspicious behavior, and present the inference rules
created to evaluate monitored executions. In Section 4, we show a practical
implementation of the proposed architecture and prototypes of modules that
make use of MBO. We also show the results of applying MBO over a dataset
of 2,245 malicious programs and 385 benign ones. In Section 5, we discuss the
MBO application’s obtained results, MBO limitations, future work and ongo-
ing developments of this article’s proposal. Finally, we conclude the article in
Section 6.

2 Related Work
The difficulties related to malware analysis lie on discovering whether a chain
of actions leads to a successful infection or not. Traditionally, the security com-
munity assigns “labels” to distinct types of malware according to their expected
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behavior. However, malware evolved significantly over the last 10–15 years,
making those labels practically useless: current malware exhibit several of the
classical behaviors at the same time. Moreover, antivirus vendors are migrating
to heuristics that detect “generic” behavior, thus not assigning specific labels.
Hence, an ontology for malicious programs is a demand to be supplied. While
there are related ontologies, none of them addresses malware samples that ex-
hibit multiple “suspicious” behaviors, which correspond to most of the current
known threats. Below, we present ontologies closely related to malware found
in the literature.

[6], for example, propose TWMAN (Taiwan Malware Analysis Net), a plat-
form that aims to provide a knowledge and rule base, an ontology language,
and analysis reports about malware samples. The TWMAN platform is com-
posed of three layers—knowledge, communication, and application—to accom-
plish their proposal. In order to analyze malware for reporting, TWMAN uses
a dynamic analysis component based on Truman Sandnet *truman. This com-
ponent runs each sample and monitors some activities that may provide evi-
dences of an infection, such as changes on special Windows Registry keys (Run
and Service), network traffic generation, and modifications in the file system.
IP addresses related to the malware execution, application-layer protocols and
other associated data are gathered from network traffic analysis. The AIDE
tool *AIDE is used to identify new files added to the victim’s file system, as well
as the modified or deleted ones. TWMAN’s ontology structure is composed of
a main object named “Thing” with four elements—“Malware_Impact_Target”,
“Malware_Type”, “Malware_Behavioral”, and “Malware_Sample”. While “Mal-
ware_Impact_Target” and “Malware_Type” are limited to “Network”, “Reg-
istry”, or “File”, and “Trojan”, “Worm”, or “Backdoor”, respectively, the other
elements are not described. However, TWMAN is limited by addressing only
three malware types, which are not enough to describe the plethora of malicious
behaviors. Furthermore, the ontology is not discussed in details in their work,
which also affects the example choice (very simple) and the ontological structure
(lack of precision).

Later, [7] proposed TWMAN+, which is based on Interval Type-2 Fuzzy
Set instead of the Type-1 Fuzzy Set used in the previous version of the plat-
form. Although the authors extended the model to embrace other malware types
(“Botnet”, “Viruses”, “Rootkits”), the ontology domain is still limited, since their
article does not present tests to validate the yield rates (and show how mal-
ware with multiple exhibited behaviors would fit within the fuzzy model). Also,
some malware samples apply anti-analysis techniques in order to prevent dy-
namic analysis systems from monitoring their exhibited behaviors. [12] address
malicious programs that make use of dormant behaviors, i.e., hidden malware
behavior triggered only on special occasions (e.g., remote command, presence
of specific applications installed in the target system, detection of analysis en-
vironment or security mechanism etc.). They propose to build these semantic
models based on the observation of dynamic analysis traces and inference about
the exhibition or not of a dormant functionality. However, the authors neither
provide details about an actual semantic model, nor present any tests, results
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and their discussion.
Ontologies have also been used for detecting malware and Spam (unsolicited

e-mail). [10] introduce an architectural model based on an intrusion ontology for
this proposal (uCLAVS). Their approach consists of submitting files to multiple
antivirus engines through a Web interface and, based on the returned outputs,
detecting the file as malicious or not. These antivirus results are then used
to create prevention rules that are the core of the proposed ontology, together
with other results from attacks created by testing tools. Therefore, this ontology
may be seen as a set of signatures to detect specific network attacks and mal-
ware samples that are already known by antivirus engines. While the authors
define some inference rules based on the ontology’s attributes (e.g., “Malware-
Behavior”, which serves as a flag to indicate whether a file is detected through
submission to the antivirus engines or not), they do not give details about their
ontology. A limitation in the employed detection mechanism is that the au-
thors employ a committee of six standalone engines to decide whether a file is
malicious or not, whereas they could use a publicly available service such as
VirusTotal (http://www.virustotal.com), which allows remote users to test
submitted files against ≈70 antivirus engines.

[15] discuss the problem of correctly classifying Spam and Ham (legitimate
messages) due to high false alarm rates. To deal with this, the authors propose
USpam, a Spam detection system based on an ontology that models users’ in-
terests regarding e-mail messages. USpam is composed of several modules to
decompose messages, extract features, build the ontological model, and define
required actions based on whether a message is detected as Spam or not. The
major classes of USpam are “UserType”, “SpamType”, “UserInterests”, “Mes-
sageType”, and “MessageClasses”. The class “SpamType” is composed of three
subclasses that represent messages as “Abusive”, “Malware”, or “OutOfContext”;
the class “UserInterests” allows more control to the user: if a message is not
Spam for her, then the system will not apply the detection rules. The authors
used machine learning algorithms (J48 decision tree and Naive Bayes) to gen-
erate an e-mail classifier, which obtained a false alarm rate of ≈10-30%.

The notion of suspicious behavior was explored by the PhishTester tool *Shahriar20121258.
While this notion is close to that used in our work, their focus is on Web sites.
PhishTester uses behavioral heuristics to decide whether a certain Web site is
suspicious of being a phishing1 or a legitimate one. To do so, they define rules
that test the behavior of a Web site, i.e., compare the observed responses with
a knowledge base of phishing and legitimate behaviors. Their set of behaviors is
represented as finite state machines, which can result in legitimate or phishing
states (e.g., a response such as “the site repeats the submission of the same form
N times” can lead to phishing). The authors evaluate their proposal using 33
unique phishing URLs and 19 supposedly benign Web sites, correctly detecting
all analyzed Web sites. More complex representation models are needed to deal
with malware analysis, though.

[16] present an ontology based on fuzzy logic to address some known types
1An attempt to acquire sensitive information by disguising as a known, trustworthy entity.
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of malware and their features. The ontology’s superclass is named “Malact”,
which may be classified as “artifact”—virus, worm, botnet, spyware, backdoor,
Trojan horse, rootkit and exploit—or “non-artifact”. The ontology contains the
description of four characteristics and their respective values: malware objec-
tives; behavioral and technical features (from operational perspective); malware
architecture and target’s placement, which can be centralized, distributed, local,
or remote; malware communication and management. For each of the artifact
types, the ontology’s application associates the values of the four available char-
acteristics, thus producing a scheme that defines them. The relation among the
chosen artifact types is used as an example application of the proposed ontology.
An advantage of this ontology is to take the behavioral aspects of malware sam-
ples in more consideration than other approaches. However, the authors define a
limited, general set of behaviors that does not address complex, multi-behavior
malware.

Ontologies and detection rules were also explored by [8] in a method to
identify malware activities. To discover malware, the authors developed a tool
named PRONTO, whose aim is to filter system events (registry, process, file,
network) and correlate them using predefined malware activities modeled us-
ing Colored Petri networks. Although the authors use an approach to collect
execution data that is close to ours and a model for their “event” just like our
“execution” class, there are no other similarities. The main difference is that
they executed three malware samples from distinct families and, based on the
monitoring results, used these malware event logs as a knowledge base for further
detection rules, whereas we define dozens of suspicious behaviors that are inde-
pendent of families. PRONTO seems to be an ongoing effort, since the authors
introduced their architecture and ontology without an extensive evaluation.

[13] present the seed of a broader ontology focused on the cyber security
domain. Their goal is to integrate data from different security-related sources
and to reuse existing ontologies of the field, such as those describing attacks,
vulnerabilities and malware. This ontology is based on the diamond model of
malicious activities, which considers each corner as a threat dimension—victim,
infrastructure, capability, actor. They emphasize the limitation of ontologies
based on traditional malware classes to handle current, complex malware, which
we intend to address in our proposal. [11] are working on an ontology for
malware analysis whose goal is to provide a more scientific basis for exchanging
incident information, training staff, creating related courses etc. To accomplish
that, the authors built a malware analysis dictionary and taxonomy, defining a
vocabulary to be used in the ontology. Since the malware analysis ontology is a
preliminary work, the authors gathered some terms and sources to develop their
work using OWL and Protégé, but did not provide details about the proposed
hierarchy and classes.

Another related approach is presented by [2], who propose an ontology for
mobile malware behavioral analysis. In their ontology the malware behavior is
classified according to the damage, type of threat, infection routes and spread-
ing mechanisms. However, the article does not provide enough details about
how to model the complex sequence of malware actions; only the most ab-
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stract concepts are presented. What is more, their proposed model is applied
in an end-user checklist for prevention purposes. Recently, [17] explored how
ontologies can be used for analyzing threats and developing defensive strate-
gies for mobile security. The authors justified the use of ontologies in face of
the unidentified behavior exhibited by new mobile viruses. A set of viruses
was analyzed in terms of the following virus behavior: “Sent SMS”, “Informa-
tion leaks”, “Authority override”, “Circumvented permissions”, “Started service”,
“Broadcast receiver”, “Operation links”, “Outbound traffic”, “Inbound traffic”,
“Encrypted API”, “File read” and “File write”. However, the article does not
present a detailed declarative model, which can be collaboratively explored by
users and experts. Two cyber-attack examples were used to demonstrate the
approach, which were analyzed in terms of effectiveness in determining proper
countermeasures.

Other related approaches include MAEC (http://maec.mitre.org) and
MAL *mal, respectively a language to share detailed information about mal-
ware samples in a structured way and a malware-related dictionary of terms.

3 MBO - Malware Behavior Ontology
MBO was conceived as an attempt to represent a possible set of suspicious be-
haviors exhibited by malicious software. Before building the ontology’s classes
and their relationships, we had to identify traces of malware among benign pro-
grams running on the potential victim’s operating system. From these traces, we
extracted the existing behaviors according to those defined by [4]. The process
of identifying malware traces was applied upon scenarios—not only competency
questions—describing an attack over the Microsoft Windows system. For in-
stance, a possible attack scenario would be a process that downloads known
malware from the Internet and writes it over a legitimate system file. The
creation of these scenarios allows us to identify the main attributes of a repre-
sentative knowledge base of actions, behaviors, target systems, source systems
and the possible sequence of occurrence of this behavior.

Ontologies can turn this task into a loosely coupled procedure, keeping the
suspicious instance in a suspended state and relating the behavior to several
suspicious processes at the same time, even if it is only a partial malicious
behavior. Once a possibly-infected process is identified due to its suspicious
behavior, a security agent can keep it as an instance of a distinct process and
continue the analysis, instead of discarding it because it does not really fit any
previously described behavior. Therefore, it would be possible to identify a
malware sample that is unknown to antivirus or other defensive mechanisms.

3.1 Ontology-based cyber security model
The Malware Behavior Ontology—MBO—is based on the conceptual aspects
introduced by [5]. Figure 1 presents an overview of MBO: its core classes, their
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relationships and data properties. The main concepts and relationships are
described below, with the class names represented in italic.

Figure 1: General view of the Malware Behavior Ontology (MBO).

SuspiciousExecution is the main class of the MBO. The relationships among
classes are as follows:

• Each SuspiciousExecution should be associated with a SuspiciousSoftware;

• All SuspiciousSoftware instances are executed on a System;

• A SuspiciousExecution contains a set of ProcessActions;

• A ProcessAction instance is associated with a timestamp, a process (with a
unique name/identifier), a SourceObject (e.g., an ApplicationProcess that
executes it), and a TargetObject (e.g., Mutex, Network, Registry, System-
File, another ApplicationProcess);

• A ProcessAction instance may be linked to a SuspiciousBehaviour one,
which can be one or more events (AttackLaunchingEvent, EvasionEvent,
RemoteControlEvent, SelfDefenceEvent, StealingEvent, SubversionEvent)

Figure 2 illustrates the expanded SuspiciousBehaviour hierarchy of classes,
containing all subclasses (events) and the behaviors pertaining to one or more
of these events. These behaviors may then be specialized in suspicious activi-
ties, which provide more details about potentially dangerous actions performed
during the infection life cycle.

To illustrate MBO, lets suppose a malware sample (its process was named
after mw.exe) that performed the following activities observed during dynamic
analysis, where bold-faced ones represent identified suspicious behaviors:

1. mw.exe; create; mutex; xyz123
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Figure 2: Expanded view of defined suspicious events, their associated behaviors
and suspicious activities.

2. mw.exe; read; registry; ...\activecomputername\computername

3. mw.exe; write; file; c:\windows\...\javaservice.exe

4. mw.exe; write; registry; ...\run\javaservice.exe

5. mw.exe; delete; file; c:\mw.exe

6. mw.exe; terminate; process; c:\mw.exe

Mapping these logs to our ontology yields:

• mw.exe is an ApplicationProcess from the SourceObject class;

• create, read, write, delete and terminate are instances of ProcessAc-
tion;

• mutex, process, file and registry are instances of TargetObject ;

• the action targets xyz123, ...\activecomputername\computername,
c:\windows\...\javaservice.exe, ...\run\javaservice.exe and c:\mw.exe
are values of TargetObject ;

• Item 1 from the previous list exhibited a suspicious behavior belonging to
the Self-Defence Event (Maintenance⇒Create Synchronization Object);

• Item 2 exhibited the first step of what may incur in a Stealing Event, since
the malware process read the hostname, which is a system information. If
this information is then sent through the network by mw.exe, then stealing
materializes;

• Item 3 exhibited a suspicious behavior of Remote Control Event (Download
Code⇒Other Code Execution);

• Item 4 exhibited a Self-Defence Event through a Maintenance behavior
named Persistence;
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• Item 5 exhibited an Evasion Event through an Anti-Analysis behavior
named Removal of Evidence. This is also a Self-Defence Event. Notice
that the target of item 5 is also an ApplicationProcess;

Figure 3 illustrates how the process action of Item 3 is instantiated by MBO:
ellipses represent instances created due to the aforementioned process action;
the names of the classes are identified above the ellipses; dashed lines identify
the object properties; dashed boxes represent data property values. In the ex-
ample from Item 3, a given suspicious execution has the process action Beh1ac1
(unique identifier). As specified by the same Item, the action name is write.
This process action has one source identified by mw.exe and has also a tar-
get object (a SystemFile) named c:\windows\...\javaservice.exe. This process
action is also a RemoteControlEvent, since it exhibits this suspicious behavior.

Figure 3: Example of a “ProcessAction” Instance.

A set of process actions with suspicious behaviors is the basis for model-
ing inference rules to determine whether an instance of SuspiciousExecution is
linked to a malware sample or not. This work does not provide an off-the-shelf,
ready-to-use solution, since it is an extensible model that defines rules and other
parameters to automatically analyze potential malware with high level of pre-
cision. We expect to contribute with an ontological framework that is able to
categorize and represent suspicious behavior in a precise way, which is a fun-
damental step for further developments on reasoning and detection procedures.
In the next section, we present an initial set of rules for analyzing the risks
associated to each execution.

3.2 Risks and Inference Rules
We based our inference rules and risk values on already defined behaviors ex-
tracted from malware captured in the wild. Most of these behaviors (and the
associated rules derived from them) were described by [3], where the authors
evaluated over 10 thousand malware samples to pinpoint malicious activities.
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In order to evaluate how suspicious an execution is, we have to count the num-
ber of exhibited behaviors during each specific execution and how risky these
behaviors are. To do so, we define a risk value for each of the behaviors rang-
ing from 0 (absence of risky behavior) to 4 (critical behavior). The risk value
assignment intends to produce a metric that helps us to identify potentially
suspicious executions and, consequently, potentially malicious processes.

It is worth mentioning that it is out of this article’s scope to produce a
complete risk framework (e.g., NIST’s Risk Management Framework2), and that
the numeric values assigned to the behaviors are sufficient to our intent, since
we consider the following risk values based on the activity’s “impact” over the
monitored system’s security: 0 - no risk; 1 - low risk; 2 - medium risk; 3 - high
risk; 4 - critical. This way, if an activity alone may be performed by a legitimate
software or it is a behavior that usually occurs on “benign” executions, such as
reading a Registry key containing information about the system, a low risk
(value 1) is assigned to it. However, an activity that interferes with or deeply
modifies the operating system kernel (e.g., loading a driver) or deliberately
tampers with its security mechanisms (e.g., terminating the native firewall) is a
critical one (risk value 4). The addition of browser add-ons/plugins, substitution
of files and programs and removal of important registries are high risk behaviors
(value 3), whereas other behaviors exhibited by benign and malicious software,
such as those that involve communication with other systems, are considered
of medium risk (value 2). The remaining possible behaviors, which are mostly
ordinary actions not defined in our ontology, receive a risk value of 0, indicating
that they are unsuspicious.

In Table 1, we present some of the behaviors defined in our ontology and
their associated risks according to the above-mentioned rules.

Figure 4 presents an example with four SWRL rules that identify the “Shut-
downSystemFirewall” suspicious behavior. At the top, there is a rule and an
example of process action from an execution log that exhibits this behavior.
This figure highlights how each part of the rule is related to the log file as fol-
lows: the ProcessAction(?x) predicate is the entire line; processActionName(?x,
“WRITE”) is the third sentence element; Registry(?y) is the fourth one; and
hasTarget(?x, ?y), targetName(?y, ?z), contains(?z, “firewalldisablenotify”) is
the fifth one. The rule head ShutdownSystemFirewall(?x), riskLevel(?x, “4”)
categorizes the process action as an instance of “ShutdownSystemFirewall” and
attributes the riskLevel of 4 to this action (according to Table 1). RiskLevel
is a DataProperty literal of a suspicious behavior. The subsequent rules are
presented in the dashed box on the bottom. These rules express two typical ac-
tions that write on specific Registers and the creation of an application process
to disable the firewall, respectively.

As a proof of concept, we created an initial set of 42 rules based on the subset
of 18 suspicious behaviors with defined risks presented in Table 1, complying
with the format presented in Figure 4. Our goal was to specify a rule set for
identifying the most frequent behaviors, so as to enable initial experiments for

2http://csrc.nist.gov/groups/SMA/fisma/framework.html
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Table 1: MBO subset of suspicious behaviors and their associated risks.
Suspicious Behavior Risk
Evasion Event ⇒ Anti-Defense ⇒ Shutdown of Defense Mechanisms ⇒ Antivirus 4
Evasion Event ⇒ Anti-Defense ⇒ Shutdown of Defense Mechanisms ⇒ Firewall 4
Evasion Event ⇒ Anti-Defense ⇒ Shutdown of Defense Mechanisms ⇒ Updates 4
Subversion Event ⇒ Operating System and Browser ⇒ Hosts File Changing 4
Subversion Event ⇒ Browser ⇒ Proxy Auto Configuration File Loading 4
Subversion Event ⇒ Operating System ⇒ Driver Loading 4
Subversion Event ⇒ Operating System ⇒ Overwrite System File 3
Evasion Event ⇒ Anti-Defense ⇒ Removal of Registries 3
Subversion Event ⇒ Browser ⇒ Browser Helper Object Injection 3
Subversion Event ⇒ Memory Writing 2
Evasion and Self-Defense Event ⇒ Anti-Analysis ⇒ Removal of Evidence 2
Self-Defense Event ⇒ Maintenance ⇒ Persistence 2
Remote Control Event ⇒ Download Code 2
Remote Control Event ⇒ Get Command ⇒ [Drop] Binary File 2
Attack Launching Event ⇒ Exploit Sending 2
Remote Control Event ⇒ Get Command ⇒ IRC/IM Connection 2
Stealing Event ⇒ System Information Stealing ⇒ Hostname 1
Self-Defense Event ⇒ Maintenance ⇒ Language Checking 1
Self-Defense Event ⇒ Maintenance ⇒ Create Synchronization Object 1

Figure 4: Rules to identify the “ShutdownSystemFirewall” suspicious behavior.

analyzing the consistence of the MBO regarding malicious and benign processes’
log files (presented in the next section). This initial set can be expanded and
refined in the future in a collaborative way to be broader and more precise.
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4 Applying MBO
In this section, we describe the design and implementation of an architecture, a
set of tools, and an experiment using an extensive set of malware execution logs,
as well as a set of logs regarding non-malicious software to serve as a control set
for the performed experiment. We also discuss some limitations of the deployed
approach for analyzing threat levels to distinguish executions.

4.1 Architecture and Prototype
We defined a software architecture and set of tools to evaluate the use of the
MBO and visualize the implications of using semantic technologies for malware
analysis.

Figure 5 illustrates the overview of the implemented architecture, which
consists of the following components (from bottom to top):

Figure 5: MBO Architectural Overview
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• Execution Log Collection Layer. This component includes the tools, in-
frastructure and deployed procedures to collect data about malware and
non-malware executions, which are presented in the next section.

• Log Loader Tool (LLT). This component reads the collected logs, performs
consistency checking and includes all individuals and their respective prop-
erties into the ontology. The LLT uses the OWL API version 3 (for OWL
2.0) to manipulate the ontology. This tool works in a deterministic way,
i.e., no complex classification algorithms were used: the LLT reads logs in
a predefined format, indicating the content of each field in the log file as
presented in Figure 3.

• Rule Specification. This component provides interfaces to specify SWRL.
From a conceptual point of view, multiple interfaces can implement a
collaborative infrastructure for crowd-sourcing rule specification. In the
implemented experiment, the rules were specified directly on the Protégé
interface.

• Analysis Tools Layer. This abstract component provides a set of tools
that enables the inclusion of multiple tools for malware analysis using the
“populated” ontology. For this experiment, we implemented two tools as
follows:

– Behavior Extraction Tool (BET). This tool focuses on the genera-
tion of statistics related to the modeled behavior occurrences. The
user can setup the behavior to be analyzed on multiple hierarchical
levels, according to the ontology structure. BET reads a set of ex-
ecution logs that has already been instantiated on the ontology by
LLT, the set of SWRL rules, the class axioms that determine the
possible behaviors and performs inferences using the Pellet 2.2 API
to determine the occurrence of each behavior from the set. This is a
rule-based analysis performed by executing SWRL code that deter-
mines conditions for associating suspicious behavior to each action
(see Figure 4). Section 4.6 presents results of this analysis.

– Risk Analysis Tool (RAT). This tool focuses on the analysis of the
set of logs and presents statistics about the observed execution be-
haviors, as well as the risk levels in an individual fashion. RAT
reads a set of executions already instantiated on the ontology by
LLT, the set of SWRL rules (e.g., those presented in Figure 4) and
class axioms—including those that determine the execution behavior
and risk levels—and performs inferences using the Pellet 2.2 API. It
is possible, using RAT, to visualize statistics about risk levels asso-
ciated to malware executions. Section 4.7 shows a use of RAT to
analyze the potential of our ontology to represent threat levels of
malware and non-malware executions.
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4.2 Experiment Goals
This experiment was conducted with the following goals:

• to evaluate the representativeness of the modeled behaviors regarding the
available dataset of malware samples;

• to analyze each malware exhibited behavior, including multiple incidences
of suspicious behavior on each malware execution, and compare them with
non-malware observed behavior;

• to present evidences about the potential of the proposed ontology to de-
scribe threat levels of program executions;

• to investigate practical implementation issues on an Internet-distributed
solution.

4.3 Experiment procedure
Our experiment begins with the collection of representative samples of malicious
software and the observation of how they interact with the victim’s operating
system and network, in order to obtain their execution traces. To do so, we
collected 2,245 malware samples from the following sources: honeypots3, phish-
ing e-mails4 and research collaborations5. Since there is no ground truth (gold
standard) to represent the diversity of all existing malware samples, our col-
lection may be considered representative enough of current (as of 2014/2015)
malicious software seen in the wild, therefore attacking real victims. Regard-
ing non-malicious software, we used 385 executable files inherently present on
a pristine version of the Windows operating system, since they are supposed
to be benign despite some of them being able to perform privileged and/or
administrative operations on the system. Literature on malware classification
is broad, but most of them consider a dataset of only malicious samples *bai-
ley2007,Rieck2008,bayer09,Park2010,dimva2012, which may raise concern about
the quality of the results. Other problems in reproducing results from related
works include the use of private datasets and innate classification problems,
such as biased datasets, easy-to-detect malware samples, bad frequency distri-
bution of malware families etc. *Li:2010:CEM:1894166.1894183. [14] evaluate
the importance of following rigorous procedures to prevent these issues.

After collected, we submitted these samples to a dynamic analysis system
to have their execution traces extracted. We ran our obtained malware samples
at the same time we monitored the target operating system and network activ-
ities using the techniques proposed by [1], which resulted in logs containing the

3Security sensors whose purpose is to be probed, attacked and compromised so that they
are able to collect logs, malicious code and attack data to provide useful information for
researchers.

4E-mail with links to infected Web pages that download malware when accessed or that
contain malicious attachments.

5Malware samples donated by other researchers or institutions.
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activities performed by the malware under analysis during the infection step.
This dynamic analysis system consists of a QEMU’s *qemu emulated operating
system (Windows XP SP3) with a kernel driver that hooks native system calls,
monitoring the actions launched by the analyzed malicious process and all its
spawned child processes. Hence, if a malicious process tries to subvert a system
process, this action will be logged, as well as every single action the newly-
compromised process performs. From outside of the emulated environment, we
capture all the network traffic produced by the malicious execution, thus pro-
viding additional information that allows us to identify potentially suspicious
behaviors.

Finally, the analysis tools were executed with multiple parameters to provide
the experiment results. The executions were performed in 10 blocks of samples
due to memory consumption. The final results were summarized after the exe-
cution. After the traces have been extracted due to the execution of samples in
the dynamic analysis system, we launch BET to identify the occurrence of each
behavior on malware samples. We then execute RAT to calculate the threat
level associated with the monitored execution.

4.4 Environment and Limitations
All of the aforementioned tools were built using the JEE 8 platform and exe-
cuted under Windows 7 installed on a desktop computer having an Intel Core
i7 processor and 16 GB of RAM. After the rule specification, the LLT was
executed, thus producing a populated ontology. The implementation of the
architecture used in this experiment was limited to detect the 18 suspicious
behavior classes presented in Table 2. Some classes were represented by their
superclasses, since additional studies are required to determine a complete rule
detection set. In this sense, the results presented in the next sections are limited
by the implementation of the architecture.

4.5 Analysis Procedure
The first step of the analysis was based on BET results and was aimed at testing
the following hypothesis: the modeled behaviors are typical malware execution
actions. Consequently, we focused on the occurrence of each behavior on mal-
ware samples. This is especially important when we need to determine if the
behavior categories modeled in the ontology are actually exhibited during mal-
ware executions. The occurrence of the defined behaviors on malware executions
was then compared with their occurrence on non-malware execution, so that we
can verify if the modeled behavior would be “typical” of malware executions
(and not “typical” of non-malware executions). The relative frequency of each
behavior also indicates the most frequent ones, and in some cases may indicate
the need for modeling specialized classes.

The second step of the analysis was based on RAT results and was focused on
the following hypothesis: the modeled behaviors and rules are able to characterize
the threat level of malware executions. First, we analyzed the distribution of the
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executions according to the calculated threat levels. As previously presented
(Table 1 in Section 3.2), a weighted value was attributed to each rule to represent
its associated risk level. In this experiment, we summed the values of each rule
triggered on execution to calculate an execution threat level t. We classified each
execution based on four threat levels: “No Threat”, for executions that had t = 0;
“Low Threat”, for executions where 1 ≤ t < 5; “Medium Threat”, for executions
where 5 ≤ t < 20; and “High Threat”, for executions that have t ≥ 20. We also
calculated the “Mean Threat Level” for malware and non-malware executions
and the standard deviation of the samples executions.

Although it is not our intention to deal with malware binary classification
issues, additionally, we also calculated the precision (positive predictive value),
sensitivity (recall), specificity, accuracy and Matthews correlation coefficient
measure (MatthewsCC)6 using the following equations:

Precision = TrueP
TrueP+FalseP

Sensitivity = TrueP
TrueP+FalseN

Specificity = TrueN
TrueN+FalseP

Accuracy = TrueP+TrueN
TotalPopulation

MatthewsCC = (TrueP∗TrueN)−(FalseP∗FalseN)√
(TrueP+FalseP )∗(TrueP+FalseN)∗(TrueN+FalseP )∗(TrueN+FalseN)

where:

TrueP is the number of malware samples with t ≥ 1,

FalseP is the number of non-malware samples with t ≥ 1,

TrueN is the number of non-malware samples with t < 1,

FalseN is the number of malware samples with t < 1,

TotalPopulation is the sum of malware and non-malware samples.

4.6 Malware Behavior Occurrence Analysis
Table 2 intends to synthesize the results obtained using BET. Its columns
presents (from left to right):

• a list of the tested suspicious behaviors;

• the absolute number of occurrences of each behavior, this behavior’s per-
centage over the total detected behaviors (13,906) and the number of oc-

6Aims to consider malware and non-malware different samples’ sizes.
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currences divided by the number of analyzed executions (2,245) for all
malware executions;

• the absolute number of occurrences of a behavior, the percentage of this
behavior from the total of detected behaviors (429) and the number of
occurrences divided by the number of analyzed executions (285) for all
non-malware/benign software;

• finally, the last column shows the ratio between occurrences per malware
execution and occurrences per non-malware execution.

Table 2: Behavior analysis using BET, ordered by ratio. This may already tell
which behaviors would allow a better classification.

Suspicious Behavior Malware Non-Malware Ratio# occur. % occur. Occ./Exec. # occur. % occur. Occ./Exec.
ShutdownSystemFirewall 73 0.52 0.03 0 0.00 0.00 ∞
ShutdownUpdates 50 0.36 0.02 0 0.00 0.00 ∞
ShutdownAntiVirus 48 0.35 0.02 0 0.00 0.00 ∞
ProxyAutoConfigurationFileLoad 42 0.30 0.02 0 0.00 0.00 ∞
LanguageChecking 10 0.07 0.00 0 0.00 0.00 ∞
BrowserHelperObjectInjection 5 0.04 0.00 0 0.00 0.00 ∞
ExploitSending 3 0.02 0.00 0 0.00 0.00 ∞
DriverLoading 2 0.01 0.00 0 0.00 0.00 ∞
HostsFileChanging 2 0.01 0.00 0 0.00 0.00 ∞
IRC/IMConnection 2 0.01 0.00 0 0.00 0.00 ∞
Persistence 574 4.13 0.26 1 0.23 0.00 72.87
DownloadCode/DropBinaryFile 1768 12.71 0.79 15 3.50 0.05 14.96
MemoryWriting 1646 11.84 0.73 26 6.06 0.09 8.04
OverwriteSystemFile 1943 13.97 0.87 35 8.16 0.12 7.05
RemovalOfEvidence 2591 18.63 1.15 54 12.59 0.19 6.09
CreateSynchronizationObject 3231 23.23 1.44 179 41.72 0.63 2.29
HostNameStealing 1916 13.78 0.85 119 27.74 0.42 2.04

Figure 6 illustrates the frequency of suspicious behaviors detected by BET
in the malware samples set. A small set of seven behaviors presented on the left
side of Figure 6 corresponds to 98.29% of all the identified behaviors exhibited
on malware samples executions, whereas the remainder behaviors correspond
to 1.71%. These most frequent behaviors also correspond to 100% of the ones
found on non-malware samples.

“CreateSynchronizationObject” is the most frequent behavior found, corre-
sponding to 23.23% (3,231) of occurrences. This means 1.44 occurrence per exe-
cution (Table 2), considering all available malware executions. “CreateSynchro-
nizationObject” is also the most frequent behavior found on non-malware execu-
tions, with 41.72% of the occurrences. However, this represents 0.63 occurrences
per execution, which indicates that this type of behavior is 2.26 times more fre-
quent on malware (rightmost column of Table 2). The “HostNameStealing” is
the behavior with the smaller difference on both (malware and non-malware)
occurrences, since it is 2.04 times more frequent on malware executions than on
benign ones. The small difference occurs due to the fact that both behaviors
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Figure 6: The most frequent suspicious behaviors detected on malware sample
execution logs.

may appear frequently either in benign programs or in malicious ones: a syn-
chronization object (a.k.a. mutex or semaphore) may serve as an indication that
a program is already running, so another instance of the same program is not
launched; before “stealing” the hostname data, i.e., sending it to a remote com-
puter, an application needs to read it from the corresponding Registry, which
triggers our pattern for this behavioral matching.

Other differences seen at the Table 2 rightmost column show that even when
applying simple patterns, we are able to separate between malware and non-
malware. Behaviors whose difference is small (in addition to the aforementioned
“CreateSynchronizationObject” and “HostNameStealing”) may be explained due
to the reason behind their exhibition among non-malware programs. “Removal-
OfEvidence” (6.09) happens when an application deletes itself or another pro-
gram created during its execution. This behavior is also exhibited by legitimate
installers, which creates some temporary files to extract the program the user
intends to install and then deletes itself and the temporary files. “OverwriteSys-
temFile” (7.05) is a behavior common to the updating/patching process, since
a library or the updated program may be substituted by a newer, fixed ver-
sion. “MemoryWriting” behavior (8.04) is exhibited if a monitored program
calls another program or process in order to execute it with some parameter
(or in background). It is not unusual that legitimate programs need to call
cmd.exe or a browser due to some required functionality. Installers may also
explain the non-malware occurrence of “DownloadCode” and “DropBinaryFile”
suspicious behaviors (difference = 14.96), but all program installations must be
thoroughly observed by users or security mechanisms. “Persistence” is a behav-
ior highly frequent on malware (for maintaining the infectious process running
and/or a remote point of access to the attacker), but uncommon in non-malware
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(except for agents or instant messaging-like programs). In this case, there is a
huge difference (72.87) between both types of software.

The obtained results suggest that we need to study these specific behaviors
in detail in order to find out for which circumstances such behaviors occur on
malware and non-malware. The study may lead to a more complex ontology
and rule set that will allow us to extend the MBO, as opposed to contradict it.
The evidences also suggest that there is a considerable number of behaviors that
appear only on malware executions, however these behaviors are not enough to
characterize a program as malicious due to the low frequency of occurrences.
The remaining behaviors (for which the difference could not be calculated due
to their absence in the non-malware analyzed) are not commonly observed in
“benign” programs, unless in very specific cases. Just to name a few: the auto-
mated shutdown of protective mechanisms (antivirus, firewall, updates) should
never be exhibited by non-malware7; loading a proxy auto configuration file may
be performed by a network administrator in a company, but is a very unusual
activity to be performed by an ordinary user or a standalone program (malware
abuses this to redirect users’ browsing to cloned sites); injecting a browser helper
object is the equivalent of installing a browser’s extension or plugin, which is
also an uncommon behavior for a benign software. In general, the identified
behaviors were 4.17 times more frequent on malware samples, with 6.19 occur-
rences per malware execution. These results indicate that an ontology-based
approach has the potential to improve malware behavioral analysis.

4.7 Malware Threat Level Computation and Limitations
In this section, we show how we conducted an experiment using RAT. From
the total of 2,245 malware executions, we considered 1,672 executions that pre-
sented successful attacks. The remaining 573 executions did not present any
behavior other than to terminate their own process. On the one hand, this
means the associated 573 malware samples may have realized that they were
under analysis, thus either simply quitting or exhibiting a split, unsuspicious
behavior *split. On the other hand, these samples could be easily detected as
suspicious by applying a simple pattern matching approach to search for embed-
ded anti-analysis techniques *chen2008towards*rubirabranco, influencing (posi-
tively) our results. Therefore, we removed these specific executions. The entire
group of non-malware executions (385 samples) was considered for our tests.

Table 3 shows the distribution of Malware and Non-Malware executions ac-
cording to the calculated threat level. In 95.51% of the cases, the analyzed
malware execution presented some threat level. However, in 4.49% (75) of the
cases, RAT was not able to identify any threat. On the one hand, this number
could be reduced by an implementation that considered a broader range of be-
haviors (we specified rules for 18 suspicious behaviors in this experiment). On
the other hand, RAT identified high threat levels for non-malware execution in

7Even if a legitimate software requires a temporary disabling in order to be installed, it is
up to the user perform the task manually.
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six cases (2.11%). More complex rules should be deployed to characterize the
context of these exhibited suspicious behavior, minimizing the misleading high
threat levels. However, it is entirely possible that benign software presents real
suspicious behaviors, which could be evaluated by any user of MBO.

Table 3: Threat level calculation using RAT

Threat Level
Malware Non-Malware

# exec. % exec. # exec. % exec.
No Threat (t = 0) 75 4.49 177 62.11
Low Threat (1 ≤ t < 5) 585 34.99 76 26.66
Medium Threat (5 ≤ t < 20) 560 33.49 26 9.12
High Threat (t ≥ 20) 452 27.03 6 2.11
Mean Threat Level 16.37 1.81
Std. Deviation 31.75 4.58
Precision 0.94
Sensitivity 0.96
Specificity 0.62
Accuracy 0.91
MatthewsCC 0.61 (-1 to 1)

In addition, Table 3 presents the average threat level of Malware executions
(16.37) and the standard deviation of the obtained results (31.75), as well as the
average threat level of Non-Malware executions (1.81) and their related stan-
dard deviation results (4.58). It is worth noting that the threat level for Malware
executions is 9 times higher than for Non-Malware executions. In general, RAT
is able to significantly distinguish between the two types of execution (see Fig-
ure 4.7), but our results also point to limitations that need to be addressed in
future work, as discussed in the next section. Finally, Table 3 also presents
some typical binary classification measures. The results show good precision
(0.94), sensitivity/recall (0.96) and accuracy (0.91) values, while the specificity
is 0.62 and MatthewsCC value is 0.61. Binary classification is not the objective
of this paper, and the application was not tuned to increase the classification
performance. For example, it is possible to increase the MatthewsCC value to
0.73 (with a sensitivity of 0.94 and a specificity of 0.84) if we just remove the
“HostNameStealing” behavior. In the context of this paper, “HostNameStealing”
is a “StealingEvent” that can be important for malware behavior analysis and
to identify the threat level of an execution (despite the penalty in the classifica-
tion performance), since malicious software may use this information for several
attacks (e.g., identity spoofing/impersonation and assets enumeration). How-
ever, legitimate software, such as operating system updating mechanisms, may
also make use of this action. This may indicate that more specialized concepts
and rules could be modeled in our ontology to increase the distinction between
malware and non-malware executions.
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Figure 7: Comparison between the threat level of malware and non-malware
based on frequency (left) and percentage (right) of executions using RAT.

5 Discussion about MBO
The experiments shown in the previous section suggest promising results on
identifying programs behaving suspiciously through analyzing software execu-
tions. The analysis intends to find suspicious behaviors and calculate the execu-
tion’s threat level based on the risk associated to each behavior defined on MBO.
In this section, we discuss advantages, future works, challenges and limitations
of the proposed Malware Behavior Ontology8.

One of the main advantages of the MBO is the fact that it is extensible, i.e.,
we can expand the ontology to deal with additional or novel malware-related
behaviors. Due to this extensibility, it is possible to be up-to-date with new
malware features observed in the wild. In addition, we can deploy MBO as a
collaborative system, which may also be modified to act as a distributed, real
time evaluation tool on client machines. Since the ontology uses a URI-based
structure, it can be deployed on the Web and, when there are any changes (e.g.,
new behavior inserted, inference rule modified etc.), all “agent tools” installed
on clients will be automatically updated without the need for file downloading.

Furthermore, the rule specification procedure is very flexible: the rules that
determine the behaviors, as well as the risk and threat levels, can be collab-
oratively built and maintained. It is also possible to build complex rules and
inference chains so as to model more sophisticated suspicious behaviors. SWRL
allows the construction of these complex rules and inference chains, which may
be used to classify programs based on their malicious behavior or even to detect
malware. A MBO user can learn if an initially “benign” software has been pre-
senting suspicious behaviors, being able to analyze it to identify how malicious
the evaluated software actually is.

The current limitations of our approach include performance issues: dur-
ing the performed tests, the memory heap size increased 1GB when BET was
running, and 800MB when RAT was running, for each set of around 80–100
(depending on the average size) execution logs under analysis. We solved this
issue by dividing the 2,245 logs into small subsets and combining the calculated

8Sample OWL file available at http://bit.ly/1VnzTyx.
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results at the end of the analysis procedures. Although this is a viable solution,
we need a more sophisticated architecture to deploy it in the real world, such
as grid-based solutions and database support *DBLP:journals/fgcs/SyedSB13.
Although Ontologies and rules are extensible from a modeling perspective (i.e.,
new classes, axioms and rules can be created to extend the model), the scalabil-
ity is limited by inference engines. The Semantic Web community has produced
tools to analyze the performance of rule-based engines *Liang2009 and also
strategies to optimize rules, which should be considered when ontologies have
a large number of instances. The MBO’s extension also hints on the adoption
of safe rules9 to prevent situations in which OWL DL and SWRL are undecid-
able. We leave these and other scalability and extension issues (distributing the
engines to run/monitor programs and produce execution logs) as future work.

MBO, its architecture, and related tools were not built to detect malware
in real time. Due to this fact, we observed some false positives that were not
addressed in this article. Although our observed results were promising to use
in malware detection systems, many aspects should be considered for its adop-
tion as a real-time tool, such as how to deal with false-positives (handling non-
malicious software regarding their suspicious behaviors) and false-negatives, how
to detect those situations, and, consequently, how to establish the threat level.
Steps toward a solution include i) the creation of white lists of common targets,
resources and behaviors, ii) taking into account users’ comments and collabora-
tive feedback, and iii) relying on some sort of crowd-sourcing solution to rank
executions, attributing weights to more frequent labels (suspicious, benign or
malicious).

It is worth mentioning that we do not attempt to classify an execution as
“virulent” or malicious. Instead, we provide a threat level and behavioral infor-
mation that may be useful to help in a decision taking process. To improve our
approach, we could enhance behavior rules by adding self-adaptiveness. More-
over, machine learning techniques could be applied to adapt the active ruleset
when new threats arise. However, such a solution demands efforts on multiple
fields and technologies.

Finally, MBO can be extended to include more specific security aspects, for
instance, behaviors that point to execution sequences threatening users’ pri-
vacy, among others. The possible extensions include how to model the relations
of program’s instructions to attacker’s intentions, and how the intentions are
actually translated into instructions. This demands further research on mul-
tidisciplinary fields including cognitive sciences, cyber security and ontology
engineering. Studies of human cognition are also a promising strategy to im-
prove human decision on secure environments *Endsley2012,Gonzalez2014, by
presenting alternatives, for example, to represent the cognitive process, organize
information and reduce the information workload.

9https://km.aifb.kit.edu/ws/prowl2006/prowl06_4on1.pdf
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6 Conclusion
In this article, we proposed MBO, an ontology built upon the knowledge about
suspicious behaviors commonly exhibited by malicious programs. We defined a
hierarchy of classes comprising suspicious events and their associated behaviors,
described each of them and attributed a risk level that serves as a weight to
calculate the threat level of a monitored execution. We designed an architec-
ture for the proposed ontology, developed tools to collect execution logs, parse
those logs, extract behavioral information, apply the inference rules we build to
identify suspicious executions and, finally, calculate the threat level of each an-
alyzed execution. To validate our proposal, we tested MBO using 2,245 unique
malware executions collected from actual samples and 385 benign executions
from legitimate operating system programs. The obtained results showed that
our approach is promising and can be potentially used in real-time malware de-
tection on client hosts. As for future work, we intend to develop a collaborative
framework to receive/refine rules and to update the ontology, benefiting from
expert knowledge or crowd-sourcing feedback, and sharing malware detection
related information.
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