Ontology for Malware Behavior: a Core Model Proposal

André Grégio*T, Rodrigo Bonacin*i, Olga Nabuco*, Vitor Monte AfonsoT, Paulo Licio de Geus! and Mario Jino®
*Center for Information Technology Renato Archer (CTI) — Campinas, Sdo Paulo, Brazil
Email: {andre.gregio, rodrigo.bonacin, olga.nabuco}@cti.gov.br
TUniversity of Campinas (Unicamp) — Campinas, Sdo Paulo, Brazil
Email: {vitor, paulo}@lasca.ic.unicamp.br, jino@dca.fee.unicamp.br
iFaculty of Campo Limpo Paulista (FACCAMP)
R. Guatemala, 167, 13231-230, Campo Limpo Paulista, Sdo Paulo, Brazil

Abstract—The ubiquity of Internet-connected devices mo-
tivates attackers to create malicious programs (malware) to
exploit users and their systems. Malware detection requires
a deep understanding of their possible behaviors, one that is
detailed enough to tell apart suspicious programs from benign,
legitimate ones. A step to effectively address the malware
problem leans toward the development of an ontology. Current
efforts are based on an obsolete hierarchy of malware classes
that defines a malware family by one single prevalent behavior
(e.g., viruses infect other files, worms spread and exploit remote
systems autonomously, Trojan horses disguise themselves as
benign programs, and so on). In order to address the detection
of modern, complex malware families whose infections involve
sets of multiple exploit methods, we need an ontology broader
enough to deal with these suspicious activities performed on
the victim’s system. In this paper, we propose a core model
for a novel malware ontology that is based on their exhibited
behavior, filling a gap in the field.

Keywords-Malware; Ontology; Computer Security

INTRODUCTION

Internet-connected devices are now ubiquitous, turning
their users into targets of all sorts of attacks. The main
threat faced by information systems and their users today is
malicious software (malware). Current malware samples are
very complex pieces of software that leverage a broad range
of techniques to attack computer systems. These attacks aim
to compromise systems in a way that the malware can install
itself, keep its access, bypass the security mechanisms, and
finally, accomplish its objective. Cyber criminals write mal-
ware with several purposes, such as of stealing information,
making money, attacking other systems etc. Since a malware
sample is a program to be executed in a victim’s system,
the cyber criminal purposes are translated into instructions
performed during the infection process. These instructions,
or actions, define the “behavior” of a malicious program and
may serve to measure the extent of the caused damage.

Malware behavior analysis is an important step to help
in the process of discovering suspicious patterns, which
can then be used in detection procedures. Behavior-based
malware detection is a delicate task, since it depends on the
monitoring of a victim’s system during the infection. Moni-
toring requires to capture interactions between the malware

process (or processes) and, more importantly, to filter those
that are relevant for security. This involves an “a priori”
knowledge about what can be considered as suspicious
behavior, as well as how the interactivity occurs among the
objects of a malware infection. Since a target system runs
several processes that may be legitimate or not, we need to
gain knowledge about these processes’ behavior to decide
whether they are suspicious or not, thus requiring further,
deeper analysis. Hence, there is a need to define the scope of
suspicious behaviors, and how collected information about
the interactions among processes and a target system can
help in the identification of malware infections.

One step toward a solution involves the proposition of an
ontology to handle suspicious behavior and, consequently,
malware. Malicious programs are traditionally classified into
well-known categories according to a predominant behavior
(infects a file, spreads autonomously, disguise itself as
a legitimate program), such as virus, worm, and Trojan.
Moreover, existing malware ontologies lead to an hierarchy
of classes (or categories, such as virus, worm, Trojan etc.)
that are far from adequate to address the issue of modern
malware, which are multipurpose, complex, and may be
split among several components. In addition, Obrst et al. [1]
mention that those class-based malware ontologies may ‘“not
be useful for malware instances that exhibit either behaviors
from multiple classes or novel behaviors not associated with
any recognized class”.

Therefore, there is an urgent need for an ontology that
addresses behavioral aspects and activities performed by
malicious programs. In this paper, we propose a novel
malware ontology based on a set of commonly observed
suspicious behaviors. Our main contributions are two-fold:

1) We define a hierarchy of main behaviors, each one
consisting of a set of suspicious activities. The goal is
to identify unknown malware according to its exhib-
ited behavior.

2) We propose an ontology that models our knowledge on
malware behavior, which can serve as a basis for future
developments on reasoning and detection procedures.

I. BACKGROUND

Ontologies are flexible structures, both human and ma-
chine interpretable, which can be populated by instances
creating a knowledge base, or can describe a process, or
even can be a common language for a community or
enterprise, and also several others possibilities. In our case,
it can be a software structure that identifies and interpret an
unusual behavior performed by some known process. It is
possible, due to ontologies inherent inference capabilities,
to categorize if a behavior is suspicious even if we dont
have a pattern describing it. Ontologies have languages
with specific expressivity to describe hierarchies, relation-
ship between classes, multiple inheritance, and describe
characteristics through the use of axioms. Another richness
of ontology languages can also be given by joining rule
languages and/or query languages to the main ontology,
for instance, providing the link between the open world
provided by ontologies and the closed world provided by
rule languages, thus making the ontology less undecidable.

A. Developing the ontology: methodology

There are several methodologies to develop an ontology.
Generally speaking, most of them recommends using sce-
narios, making competency questions, reusing others” work,
applying divide and conquer methods, etc. For the best,
divide the ontology into subdomains would help to discover
related works and patterns, easing the work to be done.
Scenarios describe possible applications of the ontology that
lead to the construction of competency questions, which
are questions (very related to the subject and recursive)
that the user wants the ontology to answer. Hence, there
is no real sequence in building an ontology, since the
process involves a back and forth approach, which is not
only possible, but even desirable to understand the domain
and its representation. Also, prototyping and making short
evaluations use to work for most of them.

In this development, OWL 2 (Ontology Web Language)
was used to express the actions performed by a malicious
software. In our model we used four attributes to express
behaviors: the source object, which is an application process;
the action performed by this application process (e.g., write,
delete, create, and others); the object that is the target of
the software (e.g., a registry, a file, a process); and the
identification of the application that is suspect to be the
victim of the attack. Figure 1 illustrates our model.

SourceObject TargetObject

File, Registry, Process FileName.ext

| ProcessAction I

Targetldentifier
[ApplicationProcess lWr[te,deleIE, Create, ..

Ex: Malware.exe | write I file | InternetExplorer.exe

Figure 1. Attributes used to express behaviors

B. Related work

One of the main motivations for ontologies regarding
malware detection is the need of mechanisms that are able
to address unknown threats and whose operation do not rely
solely on signatures (which need to be manually crafted as
new malware samples arise). However, most of the related
works lack details about their proposed ontologies and are
based on obsolete malware classes (virus, worm, Trojan)
that are not well suited to address the current, complex and
multi-behavior malware samples seen in the wild.

TWMAN (Taiwan Malware Analysis Net) is a plat-
form composed of three layers—knowledge, communica-
tion, application—that are designed to provide a knowl-
edge and rule base, an ontology language, and reports
about analyzed malware samples [2]. TWMAN dynamic
analysis component runs malware samples and monitors
their activities during the infection. The monitored activ-
ities are those related to changes in the value of some
Windows Registry keys (Run and Service), network traffic
and its associated information (IP addresses, application
layer protocols), and files added, modified or deleted in
the victim’s system (accomplished with the use of the
AIDE tool [3]). The authors present the structure of their
malware-related ontology without discussing it any further.
The structure is composed of the object “Thing”, which has
four elements: “Malware_Impact_Target”, “Malware_Type”,
“Malware_Behavioral”, and “Malware_Sample”. The de-
scription of each element is not provided, whereas “Mal-
ware_Impact_Target” can be “Network”, “Registry” or
“File”, and “Malware_Type” is limited to “Trojan”, “Worm”
or “Backdoor”. Their example is very simple and the pro-
posed structure lacks precision to deal with the complexity
of malware samples found in the wild. In addition, TWMAN
assumption on malware types may not provide useful results
considering the myriad of malware classes (not addressed)
and their behavioral combinations.

Martnez et al. propose uCLAVS, a an architectural model
for malware detection that is based on a malware intrusion
ontology [4]. Their purpose is to detect malicious contents
in a file by submitting it to multiple antivirus engines for
analysis in a Web service fashion. The detection results pro-
duced by the antivirus are used as prevention rules in their
proposed ontology, whereas other attacks were created using
testing tools. Thus, this ontology represents signatures for
some modelled network attacks and for malware detected by
antivirus. The authors defined inference rules to handle the
ontology’s attributes, such as ‘“Malware-Behavior”, which
only shows whether a file is detected as malware or not by
some of the antivirus engines present in uCLAVS. However,
any more details about their ontology are not provided and
their detection approach is not new, since publicly available
services (e.g., VirusTotal - http://www.virustotal.com) allow
any user to scan a file using more than 40 antivirus.

Tafazzoli and Sadjadi propose a malware ontology based
on fuzzy logic [5]. The superclass of their ontology is called
“Malact”, classified as “artifact” or “non-artifact”. The group
of “artifacts” includes the following malware types: virus,
worm, botnet, spyware, backdoor, Trojan horse, rootkit and
exploit. The authors describe four types of characteristics
and their values, regarding malware objectives, behavioral
and technical features from an operational perspective, mal-
ware architecture and placement on the target (central-
ized, distributed, local, remote), and malware communica-
tion/management. Each type of malware is associated with
the values of the four described characteristics, producing
a scheme that define those types. The authors mention the
relation among their chosen malware types as an example
of use of their ontology. Although their proposed ontology
goes one step further in behavioral aspects of malware in
comparison to the other related works, it defines a smaller,
more general set of behaviors (e.g, unauthorized access and
use, disclosure, etc.), which is based on malware classes that
comprise a single predominant behavior.

Obrst et al. propose the development of an ontology for
the cyber security domain to integrate data from different
sources [1]. Their purpose is to reuse existing ontologies
related to the information security domain (attacks, vulner-
abilities, malware) and is based on the diamond model of
malicious activity. This model considers each of the four
corners as a dimension of a threat (victim, infrastructure,
capability and actor). To address malware, they rely on the
work of Swimmer [6], which describes a malware class
hierarchy based on known and traditional malware classes.
As we stated before, Obrst et al. also noticed that this type
of classification is problematic to address complex malware:
modern samples cannot be tied to standard classes since
they exhibit multiple and distinct behaviors. Other related
approaches include MAEC (http://maec.mitre.org) and the
MAL [7], a language to describe malware in details and a
malware-related dictionary of terms, respectively.

II. THE CONCEPTION OF THE ONTOLOGY

The ontology conception followed the reasoning of rep-
resenting the behavior of malicious software. We had to
identify the traces of malware in order to build classes
and their relationships. It was made upon scenarios, not
only competency questions, describing a possible attack
over the Microsoft Windows system. The creation of these
scenarios make it possible to identify the main attributes
of a representative knowledge base of actions, behaviors,
target systems, source systems and the possible sequence
of occurrence of this behavior. Ontologies can turn this
task into a loosely coupled process, keeping the suspected
instance in halt and relating the behavior to several suspected
process at same time, even if it is only partial. It means that
it can be captured even if it is not completely similar to
the process previously described. Once identified a possible

infected process due to its suspicious behavior, one can
keep it as an instance of a distinct process and resume the
analyses, instead of discard it because it doesnt really fit any
previously described behavior.

A. Suspicious behavior

The behavior of any program can be considered as the set
of actions it performs during execution; in case of malware,
the entire behavior is suspicious, since each of the performed
actions may be a step of an infection procedure [8]. Thus,
we propose that a given program behaves suspiciously if it
presents one or more of the six “events” described below.
Each one of them consists of several activities that can be
observed during the analyzed program’s execution.

1) Attack Launching: Malware samples may use the
infected computers to launch attacks against other systems.
The attack launching event includes:

Denial of Service (DoS). Violates the availability of
a victim’s system by draining its resources (e.g., network
bandwidth, memory, processing power).

E-mail Sending. E-mail content can be a massive amount
of unsolicited messages (spam) or specially crafted ones
to spread malware by luring users into following links or
executing attachments (phishing).

Scanning. The victim’s recognition by the mapping of
systems and services through the network.

Exploit Sending. The main method for worms spreading.
If a system is found vulnerable (through scanning), an
attacker or malware sample sends a piece of code specially
crafted to get access into this system, exploiting it.

2) Evasion: Occurs when a malware sample wants to pre-
vent from being inspected by an analysis tool (or forensics
expert) or tries to bypass the system’s security mechanisms.

Anti-Analysis. Dynamic malware analysis tools are usu-
ally deployed in virtual or emulated environments in order
to be scalable. This happens due to the large amount of new
malware variants that are discovered daily and the need to
analyze as many of them as possible, since they are available.
Thus, malware authors often embed anti-analysis techniques
within their samples before distributing them, so as to avoid
that such analysis tools monitor the actual malware behavior.
Common anti-analysis techniques are described as follows.

« Debugger Checking: a debugger tool may be used to
discover, step by step, the instructions performed by a
malicious program. Malware can then inspect whether
some flag is set or not, such as “IsDebuggerPresent”,
to finish their own execution.

« Environment Detection: virtual and emulated envi-
ronments have innate fingerprints (e.g., the inability
to perform certain instructions, a specific name for a
device, the way to handle the network interface settings)
that can be used by a malware to detect if it is running
inside an analysis environment. If the sample detects
an analysis environment, it usually quits.

« Removal of Evidence: after executing (or applying
some anti-analysis) technique, malware may remove its
own binary file from the infected system to avoid being
caught by a forensic analyst. Before deletion, however,
malware may infect other files or disguise itself to
remain active in the victim’s system.

Anti-Defence. Modern operating systems deploy basic se-
curity mechanisms by default, such as safe-mode execution,
firewall and automatic updates. In addition, users of these
systems may have additional security mechanisms, e.g., an
antivirus. Some malware samples apply anti-defence tech-
niques to bypass those security mechanisms and accomplish
the intended infection. Anti-defence techniques include:

« Removal of Registries: specific registry entries are set
when a system needs to reboot in safe-mode. This mode
is commonly used in administrative repairs, as well as
to check for security issues in a possibly compromised
system. There are malware samples that remove these
registry keys in order to avoid that the system enters
in safe-mode, which could hinder the malware sample
correct functioning.

o Shutdown of Defence Mechanisms: protection mea-
sures (system firewall, automatic updates, antivirus) can
be turned off by certain malware as a first execution
action. This can be done by either editing registry
keys related to these services or terminating the service
running process. Thus, malware samples are able to
freely communicate through the network, to be active
since no further update would crash them, and to remain
undetected by the installed antivirus.

3) Remote Control: There are malware types whose acts
rely on sending and receiving orders through the network.
These communication allows them to be remote controlled
by an attacker, to receive other pieces of malicious code,
and even to be updated.

Download Code. Some attacks rely on multistage infec-
tions: first, a program is inserted and executed in the victim’s
system to serve as a “downloader”, i.e., it obtains the actual
malware. Usually, downloaders prepare the environment and
fetch the piece of code that will pursue the attackers objec-
tive. It may be a standalone, known malware, or another
code that may, for instance, substitute a system’s library.

« Known Malware Execution: (almost) harmless mal-
ware may download and execute an already known
malware with specific features (e.g., backdoor, virus,
rootkit, worm) required to complete the infection.

o Other Code Execution: besides known malware, other
types of codes may be downloaded and executed in
a compromised system: 0-day malware, i.e., a sample
that has no detection procedure, system libraries, data
files to be used by the running malware, Trojanized
applications, and so on.

Get Command. The difference between the previous
behavior, download code, to this one is that the download
action is active, whereas get command involves that a sample
waits for receiving an external order. Types of passive
interactions include the following.

« Binary File: a remote command may be issued so that
the infected system get a binary file (that can be a
picture, for example) that contains embedded orders.
Other examples of binary files include Web pages
(HTML files), torrents and executables.

o Configuration File: malware can receive orders to
get a new configuration file, which can point them to
another command and control center or to change a
potential denial of service target. Configuration files
serve to the purpose of updating the malware sample
once it is already in place.

« IRC/IM Connection: the most common method to get
commands from an attacker is to connect to an Instant
Relay Chat (IRC) or Instant Messaging (IM) server. In
general, commands (often encrypted) are issued in the
conversation topic or chat’s subject.

4) Self-Defence: A self-defence event occurs when mal-
ware samples try to protect themselves against analysis and
detection, as well as from other external interactions, such
as other malware samples, incompatible operating system,
reboots and power shortages, etc. Two types of behavior
are described as Self-Defence events, anti-analysis, which is
also an evasion technique, and maintenance.

Anti-Analysis. This behavior is the same previously de-
scribed as part of the “Evasion” event and contains the same
set of suspicious activities (see Section 1I-A2).

Maintenance. This event consists of procedures to assure
that a sample will effectively infects the target system and
survive potential adversities.

« Component Checking: Some malware samples require
additional components to run or to compromise the
machine. For instance, a sample may require a version
of the FlashPlayer application, or the Java Virtual Ma-
chine, or that an application is installed and configured
(Outlook Express with the contacts list). Checking for
the presence of a required component is then necessary
to prevent malware crashes.

o Create Synchronization Object: a synchronization
object, often called a mutex, is usually created to
“announce” the presence of a program, or to “lock”
some resource. Malware samples use to create specific
mutexes to prevent that the same malware instance
(from another attack) reinfects the machine and crashes
the victim’s system.

« Language Checking: lazy malware developers write
their programs with hard-coded paths, demanding ver-
ification on the compromised system’s language. In
other situation, malware whose targets are well defined

(directed attacks) should check the victim’s language
to avoid running in systems outside of the infection’s
scope.

« Persistence: this activity intends to assure that a mal-
ware sample will remain active after a reboot or a
shutdown without requiring exploiting the target again.
The persistence is accomplished through changes in the
system settings that force the malware to run when the
system initiates.

5) Stealing: Depending on the malware’s motivation, it
will need to steal system and/or user data to accomplish its
goal (fraud, identity theft, impersonation of a system or a
user). We divided this behavior into two events according to
the type of stolen data, system or user information.

System Information Stealing. This type of stealing may
be used to impersonate a machine or to gather knowledge
about a system that can lead to further attacks. Pieces of
system information that can be stolen include hostname,
operating system and resources in general.

o Hostname: the name associated with the machine is
also its network name and may reveal, for example,
the local group in which it belongs.

« OS information: attacks usually relies on the type and
current version of the operating system. This informa-
tion allows an attacker or a malware sample to know
if a certain patch/update is installed.

o Resources information: processing power, memory
capacity, and hard disk space are important informa-
tion to run specific types of malware. For instance, a
sample whose target is a smartphone needs this kind of
information to decide if it is able to run, whereas more
complex malware (for firmware) may need specific
information about the serial number of the targeted
device to complete the infection.

User Information Stealing.

Attackers capture user information for diverse activities,
commonly the credentials, which allow for the access in
remote devices and services, as well as Internet Banking
account data, which may lead the user to financial losses.

o Credential: monitors such as keyloggers capture cre-
dential data, i.e., usernames and passwords that allow
for further access to e-mail/e-commerce accounts, re-
mote login on other systems, and so on.

o Internet Banking Data: the capture of Internet Bank-
ing data is broader than credentials, it also involves
stealing the values present in additional authentication
factors, such as password tables and hardware tokens.
With this data in hands, an attacker can transfer money
from the victim’s account, do online shopping, etc.

6) Subversion: It is common for malicious software to
subvert the operating system and its applications in order
to change the victim’s standard behavior and to remain
unaware. Those changes affect the system operation in an

overall manner, as we can notice in the described activities.

Browser. Subverting the browser is usually accomplished
through the install of a plug-in, add-on or extension. Thus,
the browser can be reconfigured to inadvertently point the
user to a malicious location. Another browser subversion
technique is to load a proxy auto configuration file (PAC) to
resolve target domains into compromised IP addresses.

Memory Writing. This is a technique widely used to
subvert system programs and user applications. A malware
sample injects itself (or other malicious code) into a target
application by writing in the target’s memory space. Thus,
malware can control those compromised processes and prop-
agate without the need of its original process. This technique
is also known as process hijacking.

Operating System. Subverting the operating system is
an effective way to dominate the system. One of the most
dangerous subversion technique is to load a kernel driver
that modifies the operating system behavior in a way that it
can prevent it (or additional protection mechanisms) to find
malware files, processes and even network communication.
A simpler way to subvert the operating system is to change
its “hosts” file. Hence, when a user’s application looks up to
resolving network names (e.g., Internet Banking domains),
it is inadvertently redirected to a malicious site.

ITI. ONTOLOGY-BASED CYBER SECURITY MODEL

The proposed ontology is based on the conceptual aspects
presented in the last section. Figure 2 presents an overview
of the Malware Ontology, i.e., the core classes, which we
expanded to specialized ones, the relationships and data
properties. In the following paragraphs, we describe the main
concepts and relationships (the class names are in italics).

The SuspiciousExecution is a central class of the Mal-
wareOntology. It is associated with a SuspiciousSoftware
that is executed on a System. Each SuspiciousExecution
has a set of ProcessActions. Each ProcessAction instance
is related to a SourceObject, such as an AplicationProcess
that executes it. A ProcessAction is also related to a Targe-
tObject that can be Mutex, Network, Registry, SystemFile
or another AplicationProcess. A process’ ProcessAction is
identified with a unique name/identifier. The process actions
are also associated with timestamps. Finally, when appli-
cable, a process can be linked to a SuspiciousBehaviour
instance, which can be one or more of the following events:
AttackLaunchingEvent, EvasionEvent, RemoteControlEvent,
SelfDefenceEvent, StealingEvent, or SubversionEvent.

Figure 3 illustrates the expanded subclass EvasionEvent of
the SuspiciousBehaviour classes hierarchy, according to the
conceptual framework described in the last section (II-A2).
This event consists of two main behaviors, AntiAnalysis
and AntiDefence, which are then specialized in suspicious
activities. These activities can provide more details about
the actions performed, as is the case of ShutdownDefence-
Mechanisms. Axioms and properties complement this model.

(. SuspiciousExecution b}

.»'/ T —
T T Registry
(_SuspiciousSoftware) d W
S o is3~ TN
5 o / D)
- | em | e
e e yd isa—" -
" P s i I —I.S ernFiIel. J
Hea———{ TargetObject - \1'31
i T : “Network
"é:f [ProcessAction S -
\ ey — e T
“jsa -\._& — - — —
il f _ cationProcess
Y [SourceObject Jp——1=3— P -
-_:RemoteControIIE\renf}
\‘\ [—
\\ - AﬂackLaunchingE\rent_}
h P _i_s_—g---""--h' e
-_.'SuspiciousElehaviour. e StealingEventl;‘
e
., k“».__ —
.‘“"w.l_s—a (_ EvasionEvent i'
\\'5-1 T —
“\‘\ (_SubVersianEvent E
-::-SelfDefenceE\rent.?}
Figure 2. Overview of the Malware Ontology
___ ot 7_;'_:Debuiggelcherc;ing._.:.
_‘AntlAnaIlsys 3

T EnvirmentDetestion
_RemovalOfEvidence)
(AntiDefence ;5‘:: ‘R 101 ShutdownSystemFirewall
R iRt g

Updates

— _isa_

 ShutdownAntivirus)

Figure 3. Expanded view of “EvasionEvent”.

To illustrate our ontology, we analyzed a malware sample
(mw.exe) that, among other “legitimate” activities, per-
formed the three actions below:

1) mw.exe; write; file; c:\windows)...\javaservice.exe
2) mw.exe; setvaluekey; registry; ...\run\javaservice.exe
3) mw.exe; delete; file; c:\mw.exe

Mapping these logs to our ontology leverages
that: mw.exe is an ApplicationProcess from the
SourceObject class; write, setvaluekey, delete

are instances of ProcessAction, file and registry

are instances of TargetObject whose values are the
action targets c:\windows\...\javaservice.exe,
...\run\javaservice.exe, and c:\mw.exe.
Notice that the target of item 3 1is also an
ApplicationProcess. ~ Moreover, item 1 exhibited
a suspicious behavior of RemoteControlEvent

(DownloadCode=>OtherCodeExecution), item 2 exhibited a
SelfDefenceEvent through a Maintenance behavior named
Persistence, and item 3 exhibited an EvasionEvent through
an AntiAnalysis behavior named RemovalOfEvidence.

A set of process actions with suspicious behaviors is the
basis for modelling inference rules to determine if an in-
stance of SuspiciousExecution is linked to a malware sample.
This work is limited as it does not provide a ready to use
solution, once an extensive empirical work must be done to
define the rules and other parameters to automatically detect
potential malware with high level of precision. However,
we expected to contribute with an ontological framework
that is able to categorize and represent suspicious behavior
in a precise way, which is a fundamental step for further
developments on reasoning and detection procedures.

IV. CONCLUSION

In this paper, we presented an ontology based on a set
of suspicious behaviors observed during malware infections
on victim’s systems. The differences among our proposed
ontology and existing ones is that it is not tied to traditional
malware classes, but to potentially dangerous behaviors.
Therefore, we are able to identify unknown programs as
malware. As a future work, we will define inference rules
to apply our ontology on malware detection procedures.

REFERENCES

[1] L. Obrst, P. Chase, and R. Markeloff, “Developing an ontology
of the cyber security domain.” in STIDS, ser. CEUR Workshop
Proceedings, P. C. G. da Costa and K. B. Laskey, Eds., vol.
966. CEUR-WS.org, 2012, pp. 49-56.

[2] H.-D. Huang, T.-Y. Chuang, Y.-L. Tsai, and C.-S. Lee,
“Ontology-based intelligent system for malware behavioral
analysis.” in FUZZ-IEEE. IEEE, 2010, pp. 1-6.

[3] R. Lehti, P. Virolainen, R. van den Berg, and H. von
Haugwitz, “Advanced intrusion detection environment,’
http://aide.sourceforge.net.

[4] C. A. Martinez, G. 1. Echeverri, and A. G. C. Sanz, “Malware
detection based on cloud computing integrating intrusion on-
tology representation,” in Communications (LATINCOM), 2010
IEEE Latin-American Conference on, September 2010.

[5] T. Tafazzoli and S. H. Sadjadi, “Malware fuzzy ontology for
semantic web,” International Journal of Computer Science and
Network Security, vol. 8, pp. 153-161, 2008.

[6] M. Swimmer, “Towards an ontology of malware classes,”
http://www.scribd.com/doc/24058261/Towards-an-Ontology-
of-Malware-Classes, 2008.

[71 D. A. Mundie and D. M. Mcintire, “The mal: A malware
analysis lexicon,” http://www.sei.cmu.edu/reports/13tn010.pdf.

[8] A. R. A. Grégio, V. M. Afonso, D. S. F. Filho, P. L. Geus,
M. Jino, and R. D. C. Santos, “Pinpointing malicious activities
through network and system-level malware execution behav-
ior,” in Computational Science and Its Applications ICCSA
2012, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7336, pp. 274-285.

