
Interactive, Visual-Aided Tools to Analyze
Malware Behavior

André Ricardo Abed Grégio1,2, Alexandre Or Cansian Baruque2, Vitor Monte
Afonso2, Dario Simões Fernandes Filho2, Paulo Ĺıcio de Geus2, Mario Jino2,

and Rafael Duarte Coelho dos Santos3

1 Renato Archer IT Research Center (CTI/MCT), Campinas, SP, Brazil
argregio@cti.gov.br

2 University of Campinas (Unicamp), Campinas, SP, Brazil
{vitor, dario, paulo}@las.ic.unicamp.br, jino@dca.fee.unicamp.br,

orcansian@gmail.com
3 Brazilian Institute for Space Research (INPE/MCT), S. J. dos Campos, SP, Brazil

rafael.santos@lac.inpe.br

Abstract. Malicious software attacks can disrupt information systems,
violating security principles of availability, confidentiality and integrity.
Attackers use malware to gain control, steal data, keep access and cover
traces left on the compromised systems. The dynamic analysis of mal-
ware is useful to obtain an execution trace that can be used to assess
the extent of an attack, to do incident response and to point to adequate
counter-measures. An analysis of the captured malware can provide an-
alysts with information about its behavior, allowing them to review the
malicious actions performed during its execution on the target. The be-
havioral data gathered during the analysis consists of filesystem and net-
work activity traces; a security analyst would have a hard time sieving
through a maze of textual event data in search of relevant information.
We present a behavioral event visualization framework that allows for an
easier realization of the malicious chain of events and for quickly spot-
ting interesting actions performed during a security compromise. Also,
we analyzed more than 400 malware samples from different families and
showed that they can be classified based on their visual signature. Fi-
nally, we distribute one of our tools to be freely used by the community.

Keywords: Security data visualization, malware analysis

1 Introduction

Malicious software— malware—is the main current threat to information sys-
tems security. It is usually spread through the Internet and can cause incidents
with severe damage to confidentiality, integrity or availability of systems and
data. Most malware are targetless, attacking as many systems as they can, so
that an attacker can gain control and use of the victim’s resources or steal sen-
sitive data. However, there are cases in which malware have specific targets and
are thoroughly designed to delude the victim, talking the unsuspecting user into



2

supplying confidential information, as it happens in attacks directed to a gov-
ernment infrastructure. In both situations, severe incidents caused by malware
can disrupt an entire network of systems by disseminating through headquarters
and then to branch offices or can also cause irreparable damage by exposing
confidential information.

When attacks succeed in breaking into a computer system, forensic proce-
dures can be followed in order to find out:

– How the attack was perpetrated;
– Where the points of collection of information are (downloading of tools and

sending of data);
– What happened during the attack to the system.

In the case of malware attacks, it is important to collect the binary that
infected the system or was downloaded after the target system was compromised.
This binary may then provide some clues leading to a deeper understanding of
the techniques used by the attacker and the purpose of the attack. This can be
done by running this malware in a controlled environment and monitoring all
the filesystem and network activities to compose a specific behavioral trace.

Malicious behavioral traces are in essence a log of the events performed by
a malware on a compromised system, but this amounts to large chunks of data.
Such logs are difficult to analyze as we have to stress out interesting segments
of behavior (main malicious actions) while simultaneously having to obtain a
general overview of the extension of the damage. However, the information ob-
tained from this analysis is paramount to provide adequate incident response
and mitigation procedures. In those cases of massive amounts of textual data
to analyze, we can apply visualization techniques that can greatly enhance the
analysis of logs and allow us to quickly spot important actions performed by a
specific malware and to better understand the chain of malicious events that led
to the compromise of the target system.

The main contributions of this article are:

– We developed two visualization tools—the behavioral spiral and the mali-
cious timeline—to aid security analysts to observe the behavior that a mali-
cious software presents during an attack. Those tools are interactive and they
allow a user to walk through the behavior while performing zoom, rotate,
and gathering of detailed information for each malware action.

– We discuss visual classification of malware families and show that our tool
can be used to visually identify an unknown malware sample based on its
comparison to previously known malware, and that is a step towards a visual
dictionary of malicious code.

– We distribute online a beta version of our prototype, so that the community
can benefit from it and use it freely.

2 Related Work

There are several research works that use visualization tools to overcome the
plenty of data provided by textual logs related to security. Some of them are not



3

open to the public, others are neither intuitive to use nor interactive, and there
are those whose results are more difficult to be visually interpreted by security
analysts than if they search manually through the log files.

Quist and Liebrock [12] applied visualization techniques to understand the
behavior of compiled executables. Their VERA (Visualization of Executables for
Reversing and Analysis) framework helps the analysts to have a better under-
standing of the execution flow of the executable, making the reverse engineering
process faster.

Conti et al. [3] developed a system that helps the context-independent anal-
ysis of binary and data files, providing a quick view of the big picture context
and internal structure of files through visualization. In a forensic context it is es-
pecially helpful when analyzing files with undocumented formats and searching
for hidden text messages in binary files.

Trinius et al. [15] used visualization to enhance the comprehension of mali-
cious software behavior. They used treemaps and thread graphs to display the
actions of the executable and to help the analyst identify and classify malicious
behavior. While their thread graphs can confuse a human analyst with lots of
overlapped information and lack of interactivity, our timeline (Section 4.1) al-
lows a walk-through over the chain of events performed by different processes
created and related to the execution of a certain malware sample, as well as
the magnification of interesting regions, information gathering about selected
actions and annotation. Furthermore, our behavioral spiral represents temporal
action, whereas their proposed treemaps consist of the actions’ distribution fre-
quency. Again, there is a lack of interactivity and excessive data, as we handle
only actions that can cause changes on the target system. However, similarly to
our work, it is not possible to visually classify every malware family, as variant
samples can pertain to a class while presenting completely different behavior
regarding the order or nature of the performed actions.

Finally, reviewing logs from intrusion detection systems is an important task
to identify network attacks and understand these attacks after they happened.
There are several tools that use visualization for this purpose; each one has its
own approach and is better than others at specific situations. To take advantage
of those tools the DEViSE (Data Exchange for Visualizing Security Events)
framework [13] provides the analysts a way to pass data through different tools,
obtaining a better understanding of the data by aggregating more extracted
information.

3 Data Gathering

To visualize malware behavioral data, we first need to collect malware samples
that have been currently seen in the wild and then analyze them to extract
the actions they would perform in an attack to a target system. In the sections
below, we discuss our approaches to malware collection and behavior extraction.



4

3.1 Malware Collection

To collect malware samples that spread through the Internet, we use the ar-
chitecture described in [5], which uses mixed honeypots technology (low and
medium interaction) [10] to capture malicious binaries for MS Windows sys-
tems. Honeypots are systems that are deployed to be compromised so as to lure
attackers to reveal their methods and tools by the compromise of a highly con-
trolled environment. The collection architecture consists of a Honeyd [11] node to
forward attacks against certain vulnerable ports to a Dionaea [7] system, which
emulates vulnerable MS Windows services in those forwarded ports and actually
downloads the malware sample. During 2010 we captured more than 400 unique
samples, which are used as our test dataset in this article.

3.2 Behavior Extraction

To extract the behavior of a malicious software, we run it in a controlled envi-
ronment and monitor the actions it performs during the execution in the target
system. Those actions are based on the system calls executed that are relevant
to security, i.e. if they modify the status of the system or access sensitive in-
formation, such as file writing, process creation, changes in registry values or
keys, network connections, mutex creation and so on. The dynamic analysis en-
vironment used for behavior extraction is BehEMOT [6], a system that produces
logs in which each line means one action performed by the monitored malware
sample or a child process and is in the form “timestamp, source, operation, type,
target”. For instance, lets suppose that a malware sample “mw.exe” created a
process entitled “downloader.exe”, which connects to port 80 of an Internet IP
address X.Y.W.Z to download a file a.jpg to a temporary location TEMP. The
log file produced by BehEMOT would have the following three lines:

ts1, mw.exe, CREATE, PROCESS, downloader.exe

ts2, downloader.exe, CONNECT, NET, X.Y.Z.W:80

ts3, downloader.exe, WRITE, FILE, TEMP/a.jpg

Therefore, we use the BehEMOT behavior format to input the textual data
to our visualization tools, which are described in the next section. It is worth
noting that logs produced from malware sample execution can be thousands of
lines long, motivating the use of visual tools to aid the process of human analysis.

4 Interactive Visualization Tools for Behavioral Analysis

The behavior of a malicious program can be interpreted as a chain of sequential
actions performed on a system (as seen in the previous section), which involves
operating system interactions and network connections. The analysis of those
operations can provide the steps that were performed in an attack to understand
the incident as a whole, as well as detailed information about what was changed



5

in a system, such as libraries that were overwritten, infected files, downloaded
data and even evaded information.

Usually, antivirus developers analyze unknown malware samples to create
signatures or heuristics for detection. This is an overwhelming process and in-
volves plenty of manual work, as a human analyst has to search for pieces of
data that characterize the sample as part of an already known malware class or
create a new identifier to it. Actually, this process is worse due to the increas-
ing amount of new malware made from ‘do-it-yourself’ kits and variants of older
ones. Sometimes, a malware is assigned to a family (and detected by an antivirus
engine) based on the value of a mutex it creates, or on a specific process that it
launches with a particular name, or on the kind of information it sends to the
network.

Our motivation to develop visual tools is to make it easy to process and pin-
point very specialized information and then to help a human analyst to focus
in the interesting actions performed by a malware sample. This way, it is pos-
sible to quickly analyze new malware by visualizing their overall behavior and
expanding only those actions that an experienced analyst considers suspicious
or important. Also, public available dynamic analysis systems (e.g. [8], [14], [1])
provide textual reports full of information that would be easier to be interpreted
if an analyst could visually manipulate it. To fill this gap, we developed two
tools that transform a textual report from a dynamic analysis system into an
interactive and visual behavior, which are explained below.

4.1 Timeline and Magnifier

Malware time series events can also be visualized in simple x-y plots, where the
x axis represents the time and the y axis some information about the event.
The time information on the x axis can be any of the following: i) the absolute
time of occurrence of an event; ii) the relative time of occurrence (counted from
a particular initial value); or iii) a simple sequence that implies the order of
occurrence of the events.

The event information can be plotted using several different methods, often
specifically tailored to a particular purpose. The height on the y axis can be used
to represent the frequency of occurrence, severity or intensity of a given event,
if such information is known, or a discrete representation of event types. Dec-
orations such as different marks for additional event characteristics can also be
used to allow representation of more data dimensions than just two. Additional
graphical elements may also be used, but one should always take care not to
overload the plot with too much graphical content, which may confuse the user
and hinder his/her ability to draw quick conclusions from the plot.

An example x-y plot used to represent malware time series events is given
in Figures 1 and 2. They show the corresponding tool in action, as it parses a
malicious behavior file with malware events ordered by action timestamp and
plots the result using a simple, interactive interface. The tool draws the whole
time series in two panels: on the top panel all points on the series are plotted,
with the x axis representing the order in which events occurred and the y axis



6

representing the action associated with an event (which are not in any particular
order and can be rearranged). Also, events are plotted as dots of different colors,
according to the process id that performed such actions. For example, if the
malware associated process created two child processes and also required service
from an already running process, we would have four different colors in the
graphic: malware, first child, second child and the running process). Not all
possible monitored actions have to be performed by a malware, so the y axis
varies accordingly to what was present in the captured behavioral trace.

Fig. 1. Timeline and Magnifier tool representing malicious events.

Fig. 2. Sequence of events selected by the user as a pattern to be searched (light red)
and automatically matched events (dark red).



7

Plots created by this tool are also interactive. Since there are many events
on the top section of the plot, it is hard to see exactly which one follows which
one, so a region of interest (highlighted under a translucent yellow region on the
plot) can be selected by the user. Selection is done by dragging the region with
the mouse, which also causes the region of interest to be shown enlarged on the
bottom panel of the plot. The x and y axes and plot colors follows the ones in
the top section. The bottom part of the plot also conveys information about
the diversity and variability of operation types in its gray background: darker
backgrounds suggest a higher diversity, whereas lighter backgrounds point to
higher similarity.

4.2 Malicious Spiral

The goal of this tool is to present an ordered sequence of all malicious actions of
an attack in a spiral format, using an iconic representation. The spiral represen-
tation is useful to show the big picture of a malware sample behavior and also
to allow quick visual comparisons among different malware samples even in the
presence of variants. Instead of using a straight line broken in columns (as seen
in [4]), the spiral format is less prone to confusion as small variances present
in the behavior of malware from the same class usually keep the general visual
appearance that models a family.

By exploiting the viewing abilities available, an investigator can zoom in and
out, turn, tilt, select behavior slices, view the logged action in textual form and
compare it with other behavioral data, if available.Thus, we provide not only an
overview of the attack, but also the possibility of identifying certain behavioral
patterns that could help in the classification of malware samples (Section 5).

The operations and types that are monitored and used to produce a behavior
log are shown in Table 1, as well as all icons that are used to represent them.
We divided the table lines in four groups of operations with similar purpose on
each subsystem type, e.g., a CONNECT operation in a NET type has the same
effect as that of a CREATE REGISTRY, i.e they prepare the environment for an
active operation that will represent a registry value being written or a network
connection being opened that later might send data. In the same way, a READ
FILE or REGISTRY, a RECEIVE NET and a QUERY MUTEX are all passive
operations, and so on.

5 Tests and Analysis of Results

Although we have developed the timeline and the spiral tools based on the same
kind of log format, they have different usage. The timeline and magnifier tool
can be used by any user to do a “behavioral walk-through”, while verifying how
many processes were launched, what actions they performed and from what kind,
etc. On the other hand, the spiral tool can be used to visually identify malware
from the same family, while simultaneously depicting an iconic overview of the



8

Table 1. Monitored operations and types grouped by activity equivalence and differ-
entiated by icons and colors

Action / Type MUTEX FILE PROC REG NET

READ

QUERY

RECEIVE

WRITE

SEND

CONNECT

CREATE

DISCONNECT

DELETE

TERMINATE

RELEASE

behavior that can be manipulated to show more detailed information (present
in the log file).

In this section, we show how the spiral tool serves as a visual dictionary and
how it can help classify malware from the same family. The current prototype
can be obtained from [9], together with larger screenshots. To the extent of our
tests, we extracted the execution behavior from 425 malware samples collected
by the system described in Section 3.1 and dynamically analyzed them with the
system described in Section 3.2.

All malware samples from our dataset are currently found “in the wild” and
together constitute variants from 31 families. Scanning them with the up to date
ClamAV antivirus engine [2] reveals 94 unidentified samples. In [9] one can also
verify the behavioral spiral pictures for each analyzed malware and its respective
log.

By observing the generated spirals, we realized that it is possible to group
some of them by their visual behavior. Also, malware samples from different
families present similar behavioral patterns among samples from their own class,
while at the same time keeping a dissimilarity from other classes’ samples. This
differentiation factor present in the visual patterns is an important indicative
that clustering algorithms, artificial intelligence and data mining techniques can
be applied to our logs to classify malware based on behavioral similarities.

In Figure 3, we chose two trojan families—Pincav and Zbot—and selected
three samples of each one to be printed side-by-side. Notice that even when the



9

malware samples from a family perform variant operations, they still keep a
behavioral pattern that can be used to characterize them in the same class.

Fig. 3. Behavioral spirals from three samples of the trojan families ‘Pincav’ (a) and
‘Zbot’ (b).

Another interesting fact is that if a malware sample tried to do more network
connections than another one from the same family (e.g., malicious scans) or if it
performed fewer actions or crashed, it is possible to clearly notice the similarities
between an incomplete behavior and a larger one, as shown in Figure 4, which
contains three samples of the Allaple family.

In Figure 5, we depict the behavioral spirals from four different malware
families—the worms Palevo and Autorun; the trojans Buzus and FakeSSH. No-
tice that we can visualize the separability of the classes with minor variances
among behaviors from the same family for Palevo, Autorun and FakeSSH. In
the case of Buzus, one can observe that the first two behaviors significantly
differ from the last ones, putting those samples apart from each other is an au-
tomated classification scheme. However, in Figure 6, one can also realize that a
sample whose AV assigned label is “UNKNOWN”—i.e. an unidentified sample—
presents a visual behavior that is quite similar to a sample from the trojan family
“Inject”.



10

Fig. 4. Three ‘Allaple’ worm variants showing: (a) a sample that could not connect to
the network and stopped its activies; (b) a sample that performed a short network scan;
(c) a sample performing a massive scan, where each red sphere means a connection to
a different IP address.

!"#$%&'()*"+ !"#$%,-."#-/+ 0#"1'/%2-3-4+ 0#"1'/%5'6)778+

!

!

!
!

! !

!

!
!

! !

!

!

! !

!
Fig. 5. Visual behavior extracted from four malware families.



11

Fig. 6. Unidentified malware (right) sample visually classified as a known threat—
Inject trojan (left).

6 Conclusion and Future Work

In this article we propose two interactive, visual-aided tools to increase the ef-
ficiency in malware analysis, which allow an overview of malicious behaviors to
security analysts. Moreover, our tools allow a walkthrough over the logs, the
annotation and emphasis on interesting actions, the searching for patterns, a
deep understanding of the damage performed on a target system and the visual
comparison among malware samples. Hence, the possibility of visual family dif-
ferentiation indicates that we can apply, in the future, an automated technique
to classify, to cluster or to mine behavioral data. Also, it is possible to visualize
which parts of a malware sample behavior are similar to another one’s, indicating
the same functionality or even code reuse. We are developing, as future works, a
behavioral database that can bring some intelligence to the annotation process
of the timeline/magnifier tool, the ability to load multiple logs at the same time
to visualize several spirals in parallel and, finally, a classification algorithm to be
integrated to the spiral tool that will allow us to automatically identify samples
that share a high level of similarity and, after that, visualize their behavior.

References

1. S. Buehlmann and C. Liebchen. Joebox: a secure sandbox application for windows
to analyse the behaviour of malware. http://www.joebox.org.

2. Clam antivirus. http://www.clamav.net.
3. G. Conti, E. Dean, M. Sinda and B. Sangster. Visual Reverse Engineering of Binary

and Data Files. Proceedings of the 5th international workshop on Visualization
for Computer Security(VizSec), 2008, pp. 1-17.

http://www.joebox.org
http://www.clamav.net


12

4. S. G. Eick, J. L. Steffen and E. E. Sumner, Jr. Seesoft—A Tool for Visualizing
Line Oriented Software Statistics. In IEEE Transactions on Software Engineering,
vol. 18, no. 11, pp. 957-968, 1992.

5. A. R. A. Grégio, I. L. Oliveira, R. D. C. dos Santos, A. M. Cansian and
P. L. de Geus. Malware distributed collection and pre-classification system us-
ing honeypot technology. Proceedings of SPIE , vol. 7344, pp. 73440B-73440B-10,
2009.

6. A. R. A. Grégio, D. S. Fernandes Filho, V. M. Afonso,R. D. C. dos Santos, M. Jino
and P. L. de Geus. Behavioral analysis of malicious code through network traffic
and system call monitoring. Proceedings of SPIE , vol. 8059, pp. 80590O-80590O-
10, 2011.

7. The Honeynet Project. Dionaea. http://dionaea.carnivore.it.
8. C. Kruegel, E. Kirda and U. Bayer. Ttanalyze: A tool for analyzing malware.

In Proceedings of the 15th European Institute for Computer Antivirus Research
(EICAR 2006) Annual Conference, 2006.

9. MBS Tool. Malicious Behavior’s Spiral - Beta version. http://www.las.ic.

unicamp.br/~gregio/mbs

10. N. Provos and T. Holz. Virtual Honeypots: from botnet tracking to intrusion de-
tection. Addison-Wesley Professional, 2007.

11. N. Provos. Honeyd - A Virtual Honeypot Daemon. In 10th DFNCERT Workshop,
2003.

12. D. Quist and L. Liebrock. Visualizing Compiled Executables for Malware Analysis.
Proceedings of the Workshop on Visualization for Cyber Security, 2009, pp. 27-32.

13. H. Read, K. Xynos and A. Blyth. Presenting DEViSE: Data Exchange for Visu-
alizing Security Events. IEEE Computer Graphics and Applications, vol. 29,pp.
6-11, 2009.

14. ThreatExpert. http://www.threatexpert.com.
15. P. Trinius, T. Holz, J. Gobel and F. C. Freiling. Visual analysis of malware behavior

using treemaps and thread graphs. International Workshop on Visualization for
Cyber Security(VizSec), 2009, pp. 33-38.

http://dionaea.carnivore.it
http://www.las.ic.unicamp.br/~gregio/mbs
http://www.las.ic.unicamp.br/~gregio/mbs
http://www.threatexpert.com

	Interactive, Visual-Aided Tools to Analyze Malware Behavior
	Introduction
	Related Work
	Data Gathering
	Malware Collection
	Behavior Extraction

	Interactive Visualization Tools for Behavioral Analysis
	Timeline and Magnifier
	Malicious Spiral

	Tests and Analysis of Results
	Conclusion and Future Work


