
An Intrusion Detection System Using Ideas from
the Immune System

Fabŕıcio Śergio de Paula
Computing Institute

State University of Campinas
Avenida Albert Einstein, 1251

CEP: 13084-971, Campinas/SP, Brazil
Email: fabricio@las.ic.unicamp.br

Leandro Nunes de Castro
Graduation Program on Informatics

Catholic University of Santos
Rua Dr. Carvalho de Mendonça, 144
CEP: 11070-906, Santos/SP, Brazil

Email: lnunes@unisantos.edu.br

Paulo Ĺıcio de Geus
Computing Institute

State University of Campinas
Avenida Albert Einstein, 1251

CEP: 13084-971, Campinas/SP, Brazil
Email: paulo@las.ic.unicamp.br

Abstract— This paper proposes an intrusion detection frame-
work and presents a prototype for an intrusion detection system
based on it. This framework takes architectural inspiration
from the human immune system and brings desirable features
to intrusion detection systems, such as automated intrusion
recovery, attack signature extraction, and potential to improve
behavior-based detection. These features are enabled through
intrusion evidence detection. The prototype, calledADENOIDS, is
designed to deal with application attacks, extracting signature for
remote buffer overflow attacks. The framework and ADENOIDS
are described and experimental results are presented.

I. I NTRODUCTION

The Internet was designed to be an open and distributed
environment with mutual trust among users. Security issues
are rarely given high priority by software developers, vendors,
network managers or consumers. As a result, a considerable
number of vulnerabilities raises constantly. Once explored by
an attacker, these vulnerabilities put government, businesses,
and individual users at risk [1], [2].

Intrusion detection systems (IDSs) are useful tools to im-
prove the security of a computer system and, because of their
importance, they have become an integral part of modern net-
work security technology. An IDS acts by monitoring events
in a computer system or network, analyzing them for signs of
security problems [3]. Several techniques are used to achieve
intrusion detection such as expert systems, state transition
approaches, statistical analysis, and neural networks [3]. More
recently, several approaches based on the immune system
were proposed [4], [5], [6], [7]. Most of these approaches
concentrate on building models and algorithms for behavior-
based detection.

This paper presents a framework for intrusion detection and
automated response inspired by the human immune system.
This framework is intended to mimic, only at the architectural
level, several human immune system features, some of them
little explored in other works. Examples of these features are
intrusion tolerance, intrusion evidence detection, automated
attack signature extraction and system recovery mechanisms.

One of the most important aspects of this framework is
its assumption that successful attacks are inevitable, and its
strongest feature is its ability to deal with such situation. Note
that this is also the case with the vertebrate immune system.

Some disease-causing agents are successful in invading the
organism and causing harm to it before the immune system
can eliminate them. After that, the immune system learns
to cope with this type of agent, and some repair strategy is
taken to recover the damaged parts. In this way, the proposed
framework is more related to a research in virus identification
[8] than previous work in intrusion detection.

Based on the proposed framework, an IDS prototype, called
ADENOIDS, was developed to detect intrusion evidences in
running applications, restore the system after an intrusion
using a file system undo mechanism, and extract the attack
signature for remote buffer overflow attacks.

In fact, applications that provide publicly available services
have been the most intended targets of attack in the last years
[9]. Among several techniques employed to exploit application
vulnerabilities, buffer overflow has been one of the most
explored [9].

ADENOIDS was tested against two datasets and the ex-
perimental results are encouraging. The proposed signature
extraction algorithm can find the attack signature and discard
candidate signatures which do not correspond to an attack.

This paper is organized as follows. Section II describes the
main concepts of the immune system used as inspiration for
the development of the IDS framework, and briefly maps the
framework into the immune system. Section III synthesizes
the proposed framework, describing its components and the
general functioning. Section IV presents the implementation
aspects of ADENOIDS and experimental results are shown in
Section V. Section VI concludes the paper.

II. I NTRODUCTION TO THEIMMUNE SYSTEM

The immune system is a very complex bodily system,
and we do not intend to provide a comprehensive view of
its functioning in this paper. Instead, the description to be
presented here focuses on those aspects that inspired the
proposal and development of ADENOIDS. A more thorough
description of the immune system can be found in [5], [10],
[11].

A. General Concepts

All living beings have the ability to present resistance to
disease-causing agents, known as pathogens (e.g., viruses and

0-7803-8515-2/04/$20.00 ©2004 IEEE 1059

bacteria). The primary role of the immune system is to protect
our bodies against infections caused by pathogens. The defense
must occur in many levels and has to cover the whole body.
Therefore, various levels of defense mechanisms and barriers
have evolved in order to result in sufficient protection. The
immune system can be divided into innate immune system
and adaptive immune system, composed of diverse sets of
cells, molecules and organs that work in concert to protect the
organism. Each one of these systems recognize and respond
to particular types of pathogens. They have different but
complementary functions.

The innate immune system is very important as a first line
of defense against several types of pathogens and is also
crucial for the regulation of the adaptive immune system.
Cells belonging to the innate immune system are capable of
recognizing generic molecular patterns (a type of molecular
signature) that are only present in pathogens, and can never
be found in the cells of the host. Once a pathogen has
been recognized by a cell of the innate immune system,
this cell signals (through chemical messengers) other immune
cells, including those of the adaptive immune system, to start
fighting against the pathogen. Therefore, the innate immune
system plays a major role in providing co-stimulatory signals
for the adaptive immune system. Co-stimulatory signals are
usually provided by the innate immune system when the
organism is being damaged in some way. For the most types of
pathogens, the adaptive immune system cannot act without the
co-stimulatory signals provided by the innate immune system.

However, not all pathogens can be recognized by the innate
immune system. Some specific pathogens are only recognized
by cells and molecules of the adaptive immune system, also
called specific immune system. Any pathogenic pattern that
can elicit an adaptive immune response is known as an antigen.
Once the adaptive immune system is prepared to act, it can
adapt to the invading pathogen and create specific molecular
patterns to fight against the same or a similar future infection
of this type. This is a remarkable feature of the immune
system, from the biological and computational perspective:
the adaptiveness to previously seen molecular patterns, and
the generation and maintenance of stable memories of known
patterns.

B. Using Ideas from the Immune System to Introduce the
Proposed Framework

The proposed IDS framework specifies ten components
(see Figure 1). Some of these components are well-known
intrusion detection building blocks—such as Console, Data
Source, Knowledge-Based Detector and Behavior-Based De-
tector1—and the others are specified by this framework. The
components which bring ideas from the immune system are
emphasized here.

The Evidence-Based Detector is part of the innate (com-
puter) immune system. It is capable of providing its own

1The Knowledge-Based Detector and the Behavior-Based Detector are also
known in the IDS community by the terms “Misuse-Based Detector” and
“Anomaly-Based Detector”, respectively.

generic response (through the Innate Response Agent) and
generating danger signals indicating that damages are being
caused due to an attack in progress. These signals will be
responsible for co-stimulating the Behavior-Based Detector.
Another important feature of this component is that it can
stimulate an adaptive immune response (to be performed
further by the Adaptive Response Agent) via the Signature
Extractor, without requiring the intervention of the Evidence-
Based Detector.

The Behavior-Based Detector performs the recognition of
some “bad patterns” through a behavioral analysis. This com-
ponent detects a possible anomalous behavior, but it will wait
for a co-stimulatory signal from the Evidence-Based Detector
before this profile is definitely identified as an attack. If this
co-stimulatory signal is delivered then a maturation process
takes place.

The Signature Extractor is responsible for the signature
maturation process. It acts by exposing detected bad patterns
to normal system events, like in the negative selection of the
immune system. This process serves to eliminate some patterns
which are false-positives. At the end of this maturation process
the attack signature can be outputted.

The Knowledge-Based Detector corresponds to the adaptive
immune memory. After the maturation process, only specific
bad patterns are kept as memory. Once the Knowledge-Based
Detector detects an attack then a specific response to the attack
is initiated by the Adaptive Response Agent and the attack is
blocked before damage can happen.

The difference between the Adaptive Response Agent and
the Response Generator is that the later generates the type
of response that will be performed by the Adaptive Response
Agent.

Altogether, the Signature Extractor, the Response Generator,
the Knowledge-Based Detector, and the Adaptive Response
Agent, compose the adaptive immune system. The Evidence-
Based Detector, Behavior-Based Detector and Innate Response
Agent components compose the innate immune system, acting
in a generic way for different attack types. The Console
and Forensic Support Repository components were modeled
mainly for operational reasons.

III. T HE FRAMEWORK

This section introduces the proposed framework which can
support several features desirable in a computer immune
system. The main goals of this framework are:

1) Precise detection of known attacks and effective re-
sponse against them.

2) Detection of previously unknown attacks by analyzing
evidences of successful attacks to the system.

3) Ability to handle previously unknown attacks by:

a) Providing countermeasures to maintain the system
in acceptable conditions while a more detailed
analysis is done.

b) Learning about the attack in an attempt to extract
a signature that matches the attack.

1060

c) Storing attack-relevant information in a repository
for future use.

d) Restoring the affected system parts.

4) Precise detection and response to attacks that the system
learnt to recognize.

To achieve these goals, this framework makes use of a
set of components—each one with a particular function—and
specifies the relationship between them. Figure 1 illustrates
these components and the information flow between them. All
its components are detailed in Section III-A.

Evidence−Based
Detector

Repository
Forensic Support Response

Generator

Innate
Response
Agent

Adaptive
Response
Agent

Behavior−Based
Detector

Knowledge−Based
DetectorData Source

Signature
Extractor

Console

Fig. 1. The proposed framework. The components are represented
by solid line rectangles. A grouping of components is represented
by a dotted line rectangle. Solid directed lines indicate information
flow and dotted directed lines show control flow. Each flow occurs
between two components or between one component and all other
components of the group.

A. Framework Components

Some framework components are well-known intrusion de-
tection building blocks such as the Console, the Data Source,
the Knowledge-based Detector and the Behavior-based Detec-
tor. The Console is an interface between the framework and
the system administrator. The Data Source is not a component
by itself but represents the source of all information needed
for the correct IDS working. The remaining components are
described as follows.

1) Evidence-Based Detector:Responsible for monitoring
the computer system searching for events that indicate a suc-
cessful attack. Roughly, this component monitors the computer
system in search for “damage” that give higher privileges to
the attacker. This component must have a precise detection
mechanism, matching a security policy, in the sense that
both false-positives and false-negatives can happen only at a
near-zero rate. An Evidence-Based Detector with the given
restriction can be developed because: evidences are invariably
produced during an intrusion [12]; and a typical system attack
will subvert a privileged process to have an unexpected access
to the file system, edit system logs, enable unauthorized

communication, start a new service, alter information in an
unusual way or perform other related violations [13], [14].
Indeed, during an attack intruders usually modify the file
system [15]. In this scenario, monitoring application-level
events against a specified policy can be done basically through
system call policies, at a low performance cost [16].

The Evidence-Based Detector is also responsible for initi-
ating an innate response and the signature maturation process.
Whenever this component detects a security policy violation
the Innate Response Agent and Signature Extractor become
active. Also, information related to the detected attack can be
delivered to the Behavior-Based Detector, Forensic Support
Repository and Signature Extractor components.

2) Knowledge-Based Detector:Like in other IDSs, the
Knowledge-Based Detector holds a set of attack signatures
and works by looking for attempts of these attacks. Once one
attack is detected, the Adaptive Response Agent is activated.

3) Adaptive Response Agent:The Adaptive Response agent
is responsible for the execution of specific countermeasures
related to the attack signature. This component is activated
only by the Knowledge-Based Detector and serves to block
an attack before any damage can appear.

4) Behavior-Based Detector:This component acts just like
in classical behavior-based detection. Whenever the Behavior-
Based Detector component detects anomalous behavior ex-
ceeding a specified threshold, it activates the Innate Response
Agent. The detection of the Behavior-Based Detector is very
important for two reasons: 1) it can precede the detection of
attack evidences and thus can activate the Innate Response
Agent to minimize system damage; and 2) it can detect
anomalous behavior and therefore can also be used to point to
candidate attack signatures after attack evidences are found.

Taking advantage of the precise evidence-based detection,
the Behavior-Based Detector can also improve detection when:
1) the actual behavior appears to be anomalous and evidence-
based detection indicates absence of an attack (in this case, the
actual behavior can be incorporated into the normal profile);
2) the actual behavior appears to be normal and evidence-
based detection indicates an attack in progress (in this case, the
actual behavior can be removed from the normal profile). In
both cases it is possible to reduce further mistaken detection—
false-positives and false-negatives.

5) Innate Response Agent:The Innate Response Agent
is responsible for initiating a series of contention measures
to slow down a probable attack. Its reaction is limited and
general because the attack is not specifically identified yet.
The goal of this response is to minimize damage and to save
resources so as to allow the system to do a specific attack
analysis. Example of these measures are limiting bandwidth
or disk access, and changing the priority of a process. If
this component is activated by the Evidence-Based Detector,
the response can include a file system restoration, restarting
daemons and even a machine reboot. The Evidence-Based
Detector can also terminate a response in progress.

6) Signature Extractor:The purpose of the Signature Ex-
tractor is to analyze the system during or after an attack in

1061

an attempt to extract a signature that matches the attack.
This signature will enable a more efficient detection of this
attack in the future. This component gets information from the
Data Source, Behavior-Based Detector and Evidence Based-
Detector, and activates the Response Generator as soon as the
signature is created.

A general algorithm for the signature extraction problem is
proposed in this paper. It takes inspiration from the negative
selection process of the human immune system and it is suit-
able for general attacks. The algorithm divides the signature
extraction into two phases: the search for candidate signatures
and the maturation of the candidates.

Unlike other works [5], [7], [17] which generate candidate
detectors randomly, the proposed algorithm takes advantage
from the evidence detection and selects events prior to the
attack to be the candidates. Because the attack is a fact—by
the evidence detection—some events related to this attack must
happen before this evidence detection. The proposed approach
seems to be more appropriate to search for good candidates
than random generation. In fact, the most appropriate use of
the negative selection can be as a filter for invalid detectors,
and not for the generation of effective detectors [18].

The proposed algorithm is as follows. The input is com-
posed of a real numberp ∈]0; 1], a setE of events prior to
the evidence detection and a setN of events generated by the
computer system during normal working, whereN ∩ E = ∅.
The output is a setC ⊆ E of events, which are the extracted
attack signatures with estimated probability less thanp of
false-positives occurring during further detection. The steps
of this algorithm are as follows:

1. Restore the computer system to a safe state.
2. Select a setC of events to be the candidate signatures,

whereC ⊆ E.
3. progress← 0.
4. While progress <

⌈
|C|
p

⌉
do:

4.1. Get a new eventn ∈ N during the normal computer
system working.

4.2. For allci ∈ C, if ci matchesn, thenC ← C \ {ci}.
4.3. progress← progress + 1.

5. Return each signature inC. If |C| = 0, return null.
Step 2 involves the search for candidates and Step 4

performs the maturation of the candidates. SetC must be
chosen to contain events related to the attack being analyzed.
These candidate signatures can be obtained from the Behavior-
Based Detector or by selecting all events prior to the evidence
detection within a time interval.

The setN of normal events can be built in two ways:
1) By collecting events before the attack. In this case,

collected events must be stored in such way that they
can be retrieved in the future.

2) By collecting events after the attack. In this case, if
a new attack evidence is found during or soon after
the signature extraction process, the algorithm must be
restarted with the initial setC, because this new attack
can disregard relevant events of the prior attack.

In both cases, repeated attacks can create an opportunity to
correlate their events and extract signatures efficiently.

The matching criterion of Step 4.2 must take into account
the attack classes being considered by the IDS developer.
The matchescommand can, for example, represent a perfect
matching or a partial matching of one or more event attributes.

It should be noted that the running time of the signature
extraction process is dependent mainly upon three factors:
|C|, p and the generation rate of normal events. Therefore,
this process may be long and it is not intended to provide a
response in real-time.

7) Response Generator:Receives attack signatures and
elaborates a set of specific countermeasures to this attack.
It also delivers signatures with the countermeasures to the
Knowledge-Based Detector in order to prevent the attack in
the future. Example of countermeasures are to restart, kill or
stop a process, and to close a connection or block a specific
network traffic.

8) Forensic Support Repository:This component is de-
signed to store information gathered during positive attack
identification by the Evidence-Based Detector. It is modeled
to provide support for manual forensic analysis by preserving
data that cannot be corrupted even after a system restore [12].

B. Self-Maintenance

Since the presented framework makes the assumption that
successful attacks are inevitable, its components must be
protected in such a way that they cannot be damaged by the
attack. This protection can be implemented basically at the
operating system level, restricting the access from potential
attack targets.

IV. T HE ADENOIDS IDS

The prototype ADENOIDS was developed based upon the
proposed framework and it was designed to protect a single
computer against application level attacks and to automate
signature extraction for remote buffer overflow attacks. The
attack evidences are detected in running processes at the
system call level and the attack signatures are extracted at
the network level.

Table I shows the ADENOIDS modules2 and their rela-
tionship with the framework components. All modules were
implemented in C over the Linux kernel version 2.4.19. Some
framework components, such as the Response Generator, the
Knowledge-Based Detector and the Adaptive Response Agent
were not included in this prototype. Once attack signatures are
extracted at the network level, the response must only block
the patterns known to be ”bad”. Therefore these components
can be replaced by a tool like Snort-inline [19].

All information required by ADENOIDS are distributed
in three levels: system calls, network traffic and file system
information.

The ADCON module is provided through a set of configura-
tion files located in the/etc/adenoids directory and a set

2The term “module” was adopted to refer to an implemented framework
component.

1062

TABLE I

ADENOIDS MODULES AND RELATIONSHIP WITH THE FRAMEWORK.

ADENOIDS Module Relationship with the Framework

ADCON Console
ADEID Evidence-Based Detector
ADBID Behavior-Based Detector
ADIRA Innate Response Agent
ADSIG Signature Extractor
ADFSR Forensic Support Repository
UNDOFS File system restoration for ADIRA

of log files located in the/var/log/adenoids directory.
The remaining modules are described as follows.

A. ADEID

The ADEID module monitors running applications in the
search for events which violate pre-specified access policies.
Each access policy specifies a set of operations which can
be performed by a specific process. The events analyzed by
ADEID are:

• Files, directories and links: opening, creation, erasing, re-
naming, truncation and attribute changing (owner, group
and permissions).

• Process: creation and execution.
• Kernel modules: creation and deletion.
• Communication: signal sending, TCP connection creation

and acceptance, and UDP datagram sending and receiv-
ing.

The monitoring policies must be specified obeying the
following structure:
policy_name[/fully/qualified/program/pathname]
{

fs_acl{
list of pathnames and access permissions

}
can_exec{

list of programs which can be executed
}
max_children = maximum number of children processes
can_send_signal = yes | no
can_manip_modules{

list of kernel modules which can be
created and posteriorly deleted

}
connect_using_tcp = yes | no
send_using_udp = yes | no
accept_conn_on_ports{

list of port ranges which can be used to
accept connections

}
}

Although the system call policies proposed in [16] can be
more powerful, the ADEID policies make the specification
a simpler task. For building a good monitoring policy it is
necessary to know about the Linux file system hierarchy and
the main purpose of the application intended to be monitored.
ADEID has been used to monitor named, wu-ftpd, amd, imapd
and httpd applications for two months. It has demonstrated to
be very efficient to detect attacks, being free of false-positives
and false-negatives during the tests.

ADEID is implemented as a kernel patch by rewriting
some system calls which deal with the monitored events.

The new system calls do their original work and call the
detection procedure. By detecting attack evidences, ADEID
analyzes only successful system calls. This feature—which
characterizes the evidence detection, unlike [16]—also helps
to reduce the false-positive rate because unauthorized actions
will not be analyzed.

The policies are read from disk and loaded into memory
during the system startup. A new system call was also created
for test reasons to update the policies after the system ini-
tialization. Whenever a new process is executed through the
system callsys_execve() , ADEID searches for a related
access policy. If there is one defined for this process it is
attached to the process. After this moment, the process has all
relevant events monitored by ADEID. Once a process becomes
monitored, all new children processes will also be monitored.
In this case, if a child process does not have a specific policy
it will be monitored according to the parent process policy.

Whenever ADEID detects some attack evidence the ADIRA
module becomes active by calling a kernel procedure and,
after that, a SIGUSR1 is sent to ADSIG and information
about the attack—current process and violated policy—are
also delivered. For testing purposes an user can disable these
activation mechanisms.

Preliminary results show that the performance cost imposed
by ADEID is imperceptible for users. A general benchmark
for the most expensive operation—opening and reading cached
files—showed that this cost is, on average, lower than5% in an
Athlon XP 1900+ with 512MB RAM. Table II summarizes the
average performance penalty imposed by the ADEID module.
This penalty was calculated by comparing the execution time
of applications running over an unpatched kernel and the
execution time of these applications being monitored over
the ADEID patched kernel. Each test was repeated ten times
and was used a total of 800 files equally distributed in eight
categories of size: 100, 1000, 5000, 10000, 50000, 100000,
500000 and 1000000 bytes.

TABLE II

AVERAGE PERFORMANCE PENALTY IMPOSED BYADEID.

Operation Average Penalty (%)

System startup and halt 0.52
Open and read cached files 4.32
Create and write to files 0.09
Get cached files via httpd (Apache/2.0.40) 1.78

B. ADBID

The ADBID module is responsible for analyzing network
traffic in search for incoming information which appear to be
anomalous.

ADBID captures packets through pcap library and deliv-
ers them to application-specific procedures. An application-
specific procedure decodes the related application-level proto-
col delivering the request3 to be analyzed.

3The term “request” is was adopted to refer to application-level protocol
data.

1063

The role of ADBID is to point to the candidate attack sig-
natures. Because ADENOIDS focuses on signature extraction
for remote buffer overflow attacks, ADBID works by building
a statistical profile to detect requests whose length are less
probable to be found during normal operation and are found
in overflow attacks. Actually, ADBID detects requests whose
length is greater thanµ + 2s, whereµ is the arithmetic mean
of requests length ands is the standard deviation of requests
length.

ADBID writes all decoded requests to a file and all abnor-
mal decoded requests to a separate file.

The extensible ADBID implementation makes it possible to
add a new analysis procedure by creating this new procedure
and required data structures, and setting a function pointer at
the ADBID initialization. A new application can have your
traffic analyzed by adding some information about the appli-
cation in the code such as packet filter expression, application-
level protocol decoder procedure, ADEID monitoring policy
and application name.

C. ADIRA

The ADIRA module is implemented as a kernel patch
and works by restoring the computer system after an attack.
Actually ADIRA does not implement the contention measures
proposed by the Innate Response Agent and, consequently, it
is only activated by ADEID.

ADIRA restores the computer system through the following
steps:

1) Block all user processes.
2) Restore the file system through UNDOFS module.
3) Restart the monitored applications.
4) Kill the attacked process.
5) Unblock all blocked processes.

D. UNDOFS and ADFSR

The UNDOFS module implements a general mechanism to
provide file system restoration by applyingundotechniques. It
is also developed as a kernel patch and provides undo and redo
features to any file system which can support both, reading and
writing data.

This mechanism is activated before the following operations
over files, directories and links can be done: creation, erasing,
renaming, writing, truncation and attribute changing. For each
operation a specific undo log is created. This log holds the
necessary information in such way that the operation can be
reversed in the future. Redo logs are created by operations
performed during the undo process.

A kernel procedure can be called to request a file system
undo or redo up to a defined checkpoint. Actually the check-
points are inserted automatically during the system startup.

A configuration file states what directories are covered
by this mechanism. The default UNDOFS configuration
file includes the directories/bin , /boot , /dev , /etc ,
/initrd , /lib , /sbin , /usr and /var/named . These
directories contain the most important binaries and configura-
tion files needed for the correct system working.

The UNDOFS performance depends on the operation to be
done. Appending bytes to a file adds only a fixed-size log.
File truncation requires to read the bytes to be truncated and
to write them into the log file. File erasing and the overwrite
operation are also expensive.

It should be noted that the default UNDOFS configuration
file includes vital directories which are rarely modified and,
therefore, the imposed cost is very acceptable.

The ADFSR module implements an interface to provide
step-by-step redo by calling UNDOFS procedures after a
system reboot. In this way, the manual analysis of all file
system events happening during an attack is enabled; if a
system administrator or forensics specialist want to do that.

E. ADSIG

The ADSIG module is responsible for extracting attack
signatures from network traffic in such a way that this attack
can be efficiently identified and blocked in the future.

This module works exactly as proposed in Section III-A.6.
Once activated by ADEID, ADSIG reads the delivered infor-
mation about the violated policy—policy name and related
process—and inserts this information in a queue.

Whenever the current signature extraction terminates, AD-
SIG gets the information about the next one from the queue.
If there is one into the queue, ADSIG begins a new signature
extraction by opening the related ADBID abnormal requests
file and loading the candidate signatures into a proper data
structure. Actually ADSIG loads the candidates which were
captured within the last 24 hours. The next step consists of
opening the ADBID decoded requests file and to begin the
signature maturation process.

In the signature maturation process ADSIG considers only
requests which arrived after the attack. A matching criterion
was chosen to discard the candidates which are most probable
to be found during normal operation. In the actual ADSIG
implementation all candidates whose length is lower than or
equal to a normal request length are discarded. This works well
for buffer overflow attacks because if a request is normal—and
probably does not overflow a buffer size—a candidate whose
length is at most equal to the request length probably will
not overflow this buffer size too and can also be considered
normal4. At the end of the signature maturation process
ADSIG outputs the extracted signatures.

The current implementation does not take advantage of
subsequent attacks and the current signature extraction process
is restarted when new evidences are found.

The default value for the parameterp is 0.0001, what means
that the extracted signatures altogether will probably generate
less than one false-positive in ten thousand requests.

F. ADENOIDS Self-Maintenance

ADENOIDS implements a simple self-maintenance mecha-
nism, which consists of denying access to ADENOIDS mod-
ules, data and configuration files from the processes being

4A more complete analysis should consider a different buffer size for each
request type.

1064

monitored. In this way ADENOIDS considers that all possible
attack target—usually server applications—must be monitored.

V. EXPERIMENTAL RESULTS

This section presents experimental results obtained by test-
ing the ADENOIDS IDS. The main objectives of the tests were
to evaluate the ability of evidence-based detection, behavior-
based detection and signature extraction mechanisms.

The tests were done on an Athlon XP 1900+ with 512MB
DDR RAM, 80GB Ultra-DMA IDE 7200 RPM hard disk
running Linux kernel 2.4.19. This host system was used to at-
tack a User-mode Linux virtual machine running ADENOIDS
over a guest kernel 2.4.19. This guest system was customized
from a Red Hat Linux 6.2 to provide vulnerable named,
wu-ftpd, amd and imapd applications. All these applications
can be successfully attacked through buffer overflow exploits
collected around the world.

The ADEID, UNDOFS and ADFSR modules have been
used for two months whereas the ADBID, ADIRA and ADSIG
modules were tested for two weeks.

Each ADEID monitoring policy was built in two steps by
observing the reported violations:

1) Initial policy establishment. This step spent about half
an hour of intensive work.

2) Policy refinement. This step spent about two days of
sparse work.

After these steps, the ADBID demonstrated to be very
efficient to detect attacks, being free from false-positives and
false-negatives during the tests.

The complete ADENOIDS IDS was tested against the
1999 Darpa Offline Intrusion Detection Evaluation dataset—
available at http://www.ll.mit.edu/IST/ideval/index.html—and
against a dataset collected at our research laboratory (LAS
dataset).

The 1999 Darpa Offline IDS Evaluation dataset is composed
of training and test datasets which include network traffic data,
event logs and other audited data. Several attack types are
present in this evaluation, including buffer overflow attacks.
ADENOIDS was tested only against named buffer overflow
attacks because this dataset does not provide training data for
the imapd overflow and the vulnerable sendmail daemon was
not available. To compensate this, some buffer overflow attacks
in the test data for the wu-ftpd daemon were inserted. Because
ADENOIDS analyzes only events produced by one host the
test was done considering the network traffic destined to hosts
separately.

The LAS dataset was collected under normal conditions
at our external DNS server during 43 days. This dataset
was chosen by two factors: 1) named is a very important
application and often vulnerable; and 2) DNS queries can be
replayed easily. This dataset was first analyzed before the test
phase and was verified to be free of attacks.

Table III summarizes the results for the 1999 Darpa Offline
IDS Evaluation and the LAS datasets. An appropriate label
is placed before the beginning of each dataset results. The
first column describes the target daemon being considered

and the second column shows the average number of requests
per day to the considered target host in the whole dataset.
The third column presents the number of requests spent in
the ADBID training. The fourth column shows the number of
requests prior to the attack which were captured in the last 24
hours. Each test was performed by considering an exclusive
set of prior events. For the LAS dataset, it was used a fixed
number of 10,000 requests prior to the attack, exceeding the
average number of requests per day. The fifth column shows
the number of ADBID candidate signatures extracted from
each of these sets. The sixth column presents the number of
requests required by the complete signature extraction process.
In some tests the final ADSIG output can be known by using
only 1,000 normal events in the maturation process, but to
satisfy thep parameter (indicated between parenthesis) the
process must be continued. The seventh column indicates the
number of requests outputted by ADSIG at the end of the
maturation process. Some attacks can present more than one
attack signature and the eighth column indicates if the main
overflow request is found by ADSIG. The last column shows
the number of false-positives after the signature extraction
process.

The ADBID module was very efficient to found the candi-
date signatures. Its detection was capable of selecting fewer
candidates and the main buffer overflow request was always
inside the candidates’ set.

The ADSIG module has also demonstrated to be very appro-
priate to discard erroneous candidates. The overflow requests
were the only candidates at the end of the signature extraction
process in seventeen out of twenty one attacks analyzed. The
wu-ftpd false-positives were probably produced due to a fewer
number of requests in the dataset and, consequently, in the
maturation process. The first named false-positive was not also
an overflow, but it looks like a malformed host name query.

Although some false-positives can happen, the signature
generation algorithm claims that extracted signatures which
are valid requests will be probabilistically rare events in further
detection.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper proposes a new security framework which takes
inspiration from the human immune system. The analogies are
mainly kept at the architectural level and several well-known
intrusion detection techniques are integrated. In addition, new
components are specified. The result is a security framework
that is very appropriate to computer security problems.

An IDS, called ADENOIDS, based upon the proposed
framework was developed. This IDS is originally intended to
deal with application attacks, extracting attack signatures for
remote buffer overflow attacks. ADENOIDS is composed of
seven modules, as described in the paper.

This IDS was tested against the Darpa 1999 Offline IDS
Evaluation dataset and against another collected dataset. The
experimental results presented were very encouraging. The
proposed signature extraction algorithm can find the attack

1065

TABLE III

EXPERIMENTAL RESULTS FOR THE1999 DARPA OFFLINE IDS EVALUATION DATASET AND FOR THE LAS DATASET.

Target Average # of # Requests # Requests # Candidates Required # of # Extracted Signature # False-
Daemon Requests/Day ADBID Training Last 24 Hours Last 24 Hours Normal Events Requests Found? Positives
Experimental results for the 1999 Darpa Offline IDS Evalutaion dataset
named 174559 50000 58942 6 10000 (p = 0.0001) 1 yes 0
named 174559 50000 267336 11 10000 (p = 0.0001) 1 yes 0
named 174559 50000 266995 8 10000 (p = 0.0001) 1 yes 0
wu-ftpd 1575 2000 1873 29 4342 (p = 0.003) 13 yes 1
wu-ftpd 1575 2000 1603 36 4008 (p = 0.003) 12 yes 0
wu-ftpd 827 2000 918 22 3340 (p = 0.003) 10 yes 0
wu-ftpd 827 2000 795 22 3674 (p = 0.003) 11 yes 1
wu-ftpd 761 2000 670 24 4008 (p = 0.003) 12 yes 0
wu-ftpd 761 2000 1097 38 4008 (p = 0.003) 12 yes 0
Experimental results for the LAS dataset
named 8590 40922 10000 25 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 7 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 14 21099 (p = 0.0001) 2 yes 1
named 8590 40922 10000 20 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 18 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 15 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 10 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 18 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 20 20000 (p = 0.0001) 2 yes 1
named 8590 40922 10000 25 10000 (p = 0.0001) 1 yes 0
named 8590 40922 10000 20 11640 (p = 0.0001) 1 yes 0
named 8590 40922 10000 23 30955 (p = 0.0001) 1 yes 0

signatures and discard candidate signatures that would only
produce false-positives.

Future work includes new tests considering other vulnerable
applications, addition of new features in the IDS, a more
detailed analysis of the experimental results reported here, and
a study about ADENOIDS generalization capability. It is also
the authors’ intent to study the Danger Theory of the immune
system [20], [21] and check if it can add to the framework.

Although the ADENOIDS signature extraction mechanism
covers only buffer overflow attacks, the proposed framework
is extensible to other classes of attacks. The ideas described
here can also have straight applications in other areas, such as
honeypot automation and forensic analysis.

ACKNOWLEDGMENT

The authors would like to thank the FAPESP agency for
supporting this research.

REFERENCES

[1] S. Garfinkel and G. Spafford, “Practical UNIX & Internet Security”, 2nd
ed., O’Reilly and Associates, 1996.

[2] R. Pethia, “Computer Security”,Cert Coordidantion Center, Available on
the web at http://www.cert.org/advisories/CA-2002-27.html, 2000.

[3] R. Bace, “Intrusion Detection”, 1st ed., Macmillan Technical Publishing,
2000.

[4] S. Forrest, A. Perelson, L. Allen and R. Cherukuri, “Self-nonself dis-
crimination in a computer”, inProceedings of the IEEE Symposium on
Research in Security and Privacy, pp. 202-212, 1994.

[5] S. Hofmeyr and S. Forrest, “Architecture for an Artificial Immune
System”, inEvolutionary Computation, vol. 7, pp. 45-68, 2000.

[6] D. Dasgupta, “Immunity-Based Intrusion Detection System: A General
Framework”, in Proceedings of the 22nd National Information System
Security Conference, pp. 147-160, 1999.

[7] J. Kim and P. Bentley, “An Artificial Immune Model for Network
Intrusion Detection”, inProceedings of the 7th European Congress on
Intelligent Techniques and Soft Computing, 1999.

[8] J. Kephart, “A biologically inspired immune system for computers”,
Artificial Life IV: Proceedings of the Fourth International Workshop on
the Synthesis and Simulation of Living Systems, pp. 130-139, MIT Press,
1994.

[9] CERT/CC, “CERT Summaries 1995-2003”,Cert Coordination Center,
Available on the web at http://www.cert.org/summaries, 2004.

[10] L. N. de Castro and J. Timmis, “Artificial Immune Systems: A New
Computational Intelligence Approach”, 1st ed., Springer-Verlag, 2002.

[11] C. Janeway, P. Travers, M. Walport and J. Capra, “Immunobiology: The
Immune System in Health & Disease”. 4th ed., Garland Publishing, 1999.

[12] P. Stephenson, “Investigating Computer-Related Crime”, 1st ed., CRC
Press, 1999.

[13] CERT/CC, “CERT/CC Overview: Incident and Vulnerability
Trends”, CERT Coordination Center, Available on the web at
http://www.cert.org/present/cert-overview-trends, 2004.

[14] W. Kruse II, and J. Heiser, “Computer Forensics: Incident Response
Essentials”, 1st ed., Addison Wesley, 2002.

[15] G. Kim and E. Spafford, “The Design and Implementation of Tripwire:
A File System Integrity Checker”, inProceedings of the 2nd ACM
Conference on Computer and Communications Security, 1994.

[16] N. Provos, “Improving Host Security with System Call Policies”, in
Proceedings of the 12th USENIX Security Symposium, 2003.

[17] J. Kim and P. Bentley, “Negative Selection and Niching by an Artificial
Immune System for Network Intrusion Detection”, inProceedings of the
Genetic and Evolutionary Computation Conference, pp. 149-158, 1999.

[18] J. Kim and P. Bentley, “Evaluating Negative Selection in an Artificial
Immune System for Network Intrusion Detection”, inProceedings of the
Genetic and Evolutionary Computation Conference, pp. 1330-1337, 2001.

[19] J. Haile and R. McMillen, “Snort-inline tool”, Available on the web at
http://project.honeynet.org/papers/honeynet/tools, 2004.

[20] P. Matzinger, “Tolerance, Danger and the Extended Family”, inAnnual
Review of Immunology, vol. 12, pp. 991-1045, 1994.

[21] U. Aickelin, P. Bentley, S. Cayzer, J. Kim and J. McLeod, “Danger
Theory: The Link between AIS and IDS?”, inProceedings of the 2nd
International Conference on Artificial Immune Systems, pp. 147-155,
2003.

1066

	MAIN MENU
	Front Matter
	Sessions and Papers (TOC)
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

