Beginners Introduction to the
Assembly Language of
ATMEL-AVR-Microprocessors

by
Gerhard Schmidt

http://www.avr-asm-tutorial.net

April 2009

History:
Added chapter on code structures in April 2009
Additional corrections and updates as of January 2008
Corrected version as of July 2006

Original version of December 2003

http://www.avr-asm-tutorial.net/

Avr-Asm-Tutorial 1 http://www.avr-asm-tutorial.net

Content
Why learning ASSEMDIET?......cco.iiiiiiii ettt sttt et e e e e e 1
SROTT ANA BASY...eeeveeiieriieeieeete ettt sttt e e e st e e st e bt e sttt e e s e e e seneeeeennreeens 1
FaSt QNd QUICK ...ceouiiiieee ettt ettt ettt ettt e e sate e e e 1
ASSEMDIET 1S €ASY 10 LEAIM.uiiiiiiiiiiiiieeiiie et ettt ettt ettt e st e e st e e s aibtaeeeeeenanes 1
AVRs are ideal for learning asSemMDbIET.............ooiiiiiiiiiiiiiiiiieee e 1
TTESE TL] ettt ettt ettt et e sh e et a e et a et et ae e e bt e bt e n e nnee st e e naee 2
Hardware for AVR-Assembler-Programming..........c..ccooeeviiiiiiniiiieniieeccceesee e 3
The ISP-Interface of the AVR-processor family..........ccueeviiiiiiiiiiiiiiiniiieieceiecciee e 3
Programmer for the PC-Parallel-POrt..............cooiiiiiiiiiiiiiiie ettt 3
EXPerimental DOATAS.c.eeiiiiiiiiiieiie ettt ettt et e et et e et e e et e e et e e et e e sataaaeeeeens 4
Experimental board with an ATHNY 13....cccc.oiiiiiiiiiiie e e e 4
Experimental board with an AT90S2313/ATmega2313.......ccooviiiriieiiieeieeeeeeeee e 5
Ready-to-use commercial programming boards for the AVR-family............coccoeiiiiiiiiiiiiiniei, 7
STIZ200. ..ttt ettt et e s et e bt e eab e e bt e s ab e e bt e eab e e bt e sab e e bt e et e st e e nabree s 7
STIS00. .ttt ettt e b e st e bt e s at e e bt s et e bt e eab e e b e e s et e e bt e eabeenb e sabeee s 7
AVR DIAZON...coiiiiiiiieieee ettt ettt e e ettt e e et e e e sttt e e e aabbeeeeaabbaeeeenbteeeesannnnanne 8
Tools for AVR assemMbly PrOZramiNg........c..eeevieeriieeriieeiiieerieeeriteeeieeesteeesneeesseeesaseesssseesnnseeesssnssseeeens 9
From a text file to instruction words in the flash MeMOTY.........coceiiiiiiiiiiiiiee 9
THE @AILOT ...ttt ettt e bt e st e bt e et e e ebee st e e s bt e eabeensaesneeeennes 9
Structuring asSemMDbIET COUE..........uiimiiiiiiiiiiiii ittt et e et e e satee e e e 10
COMIMENES. ...ttt ettt ettt e st e st e s bt e e b et e ettt e sab et e sabeeesabeeeambeeenmneeeeeeananns 10
Things t0 DE WITLLEN OIN TOP....eeeiurieeriiiieiiieeiiee et ee ettt et et e st e ettt e e ate e e bt eeebeeesabeeesareeeeeeannns 10
Things that should be done at Program SLArt...........cceeveiiiuieriiiiienie ettt s 11
Structuring Of Program COUE.......c.cueiruiiiiiiiiiiiieeeett ettt st e e 11
THE @SSEIMDIETeiiiiiiiiii ettt ettt e et e e sate e e et e e e e e e eaanes 14
Programming the ChIPS.......cceeiiiiiiiiiieiece ettt ettt e s e e 15
SIMulation 1N the STUAIO.cooiutiiiiiiiiiieeee ettt et e et e et e et e e s e e saeeeeeas 15
WAL 1S @ TEZISTET 7. ittt ettt ettt e et e st e e e bt e e sabte e eabeeseabeesbbeesabbbteeeeeenanbnaeeeens 20
DITETENE TEEISTEIS. ¢..teeiiieeitie ettt ettt ettt ettt ettt e eab e e e bt e e e bt e e e bt e e e bt e e eabbeesasbbaeeeeeas 21
POINEET-TEZISIETS. ..eutteiitie ettt ettt ettt ettt e ettt e ettt e st e e s bt e e s abteesabeesabeesaabeesabbeesabaeesnseeenaseeenas 21
Accessing memory 10cations With POINETS.c..eeirviiiiiieriiieriiee ettt e e e ee e e e 21
Reading program flash memory with the Z POINter.........c.cceevviiiiriiiiiiiiieiiie e 22
Tables in the program flash MEMOTY..........coociiiiiiiiiiiiii e 22
AccessSing reZiStErS With POTNLETS.cccuviiriiieriieeriieerieeeriiee et e et e s ite e st e e sbeeesatbaeeeeeesaabbeeeeeesnnns 22
Recommendation for the USE Of T@ZISIETS.eiiuiiiiiiiiiiiiieriee ettt e e ee e 23
POTES ...ttt a et e a et h e et a e et h e et e e bt e e e ettt e et eeeeeabreeenan 24
WRAL 1S @ POTE? ..ottt ettt b e sttt e e et esanae e e eaaneee s 24
WIILE ACCESS L0 POTLS..eeuviieririeeiiieerieeerteeesteeeteeetteessseeessseeessseeessseeesseesnsaeesnseeesnseeesnseeennsseeessssnnes 24
REAA ACCESS 10 POTTS....viienitieeiiie ettt ettt ettt ettt e ettt e ettt e s bt e e sabaeesabaeesaseeeasbeeensseeessaeeeeenns 25
Read-Modify-WTIte aCCESS 1O POTLS....eeerurreerieeeiieenteeerteeesteeesireeessteessreesseeesseeesseessssnssseeessssnnes 25
Memory MAPPEA POTT ACCESS....uveeerurrerrureeriureeritteeatteeateeesteeessseesssseesssseesssseessseesssseeesssssssssseeesssnnnes 25
Details of relevant ports in the AVR..........oooiiiiiiieeceee et e areee e e e 26
The status register as the MOSt USEA POTt......ccccuiieriiiieriiieeriieeeiteeetee e eree et ee e e sbaeesareeeessneeaeeeees 26
POTT AETALLS. ..ottt et e et e et e e bt e et e e et eeee s 27
SRADM ettt et e h e et e bt e h bt e bt e a bt e bt e e a bt e bt e et e e bt e e ab e e a bt e e e e bt e e e e eabbeeenan 28
Using SRAM in AVR assembler [anguage...........cooveeiiiiiiiiiiiiiiiieeeteeete ettt 28
WHaAt 1S SRAMY ...ttt et e st b e s bt st esab e e bt e s bt e ebeesateenbee s 28
For what purposes can [use SRAM?......couoiiii et 28
HOW 10 USE SRAMY ...ttt ettt e sab e et e et e e sat e s bt e e e aeeeee s 28
DIreCt AdAIESSIINE. ..ccvveeurieiiieieerie ettt ettt et e et sae e st e e sbe e st e e enn e e e e sanneeenaas 28
POINter addreSSING......oouviiiiiiiiieecee et 29
PoInter With OFfSEL.......coouiiiiiiiiiee ettt sttt e s 29
USE Of SRAM @S SEACK. ...ceiuiiiiiiiieeie ettt ettt e et e et s bt e e saaeee e 29
Defining SRAM AS SEACK........iiiiiiiiiiiieiiieestee ettt ettt e et e sttt e sibe e e e e eanbbaeeeeeennas 30
USE OF the STACK.ueiiiiiiiiiiie ettt sttt e et e st s bt e e st e e st e e esaseeseaas 30
Bugs with the Stack OPeration..........cccueeiriiiiiiiieiiiie et e e s eeeeeas 31

Jumping and BranChing..........cocoooioiiiiii e e 32

Avr-Asm-Tutorial 2 http://www.avr-asm-tutorial.net

Controlling sequential execution of the Program...........ccccovveriiiiieniiienienieeeeee e 32
What happens during @ rESEL7.........coouiiiiiiiiiiiiiieeete ettt et e et e e eee e e e 32
Linear program execution and branches.............ccocooiiiiiiiiiiiiiniiiicecceeeeeeeee e 33
BIanCRINE.coouviiiiiii ettt ettt e et e e bt e et e e et e e s bee e e 33
Timing during program EXECULIOM.ueeuvterueerreertieeteeteerreeteeeteesteesreesteeeneenseesareesbeeenneesseesareenneeenans 34
Macros and Program EXECULION.c...eerurerreerueeereeetee et enteeeteesteeereesteeeeneesaeeereesseeeneesaneeeeennneeesanneees 34
SUDTOULIIIES. ..ottt ettt et ettt e bt et e bt st e e bt e st e e bt e saneebeesaneeeeeannee 35
Interrupts and Program EXECULION.c..ueruiereiriieeieeeieeriee e esteeeteeteesreesreesereesseesaneesneesareenbeesaneenann 36
CALCULALIONS. ...ttt ettt et e e e et e s bt et e sbt e et e b b e et e e bt e et e e nbeesabeenbneeeaa 39
Number SyStems 1N @SSEIMDIET..........cocutiriiiiiiiiierieee ettt st e e e 39
Positive whole numbers (Dytes, WOTdS, €C.).....cevuiiiriiiiiiieiiiieeiee ettt e e e e eireeee e e e 39
Signed NUMDETS (INLEZETS)...vveerurreerutieeriiieeiieeeriteeeetteesttee ettt e sbteesabteesibeeesabeeesabeeesbeeessaeeeesssnnnnsees 39
Binary Coded Digits, BCD........oiiiiiiiiiieiie ettt ettt ste e e sitaeeentaaeeeeennnes 39
PaCKEA BOUDS......neiiiiteieete ettt ettt ettt ettt st sha e et e e eeeas 40
Numbers in ASCII-fOIMAL.........ooiuiiiiiiieeee ettt et e e saeeee e 40
Bit ManIPUIALIONS.....ceouiiiiiiieiiiieeieeee ettt ettt e ettt e sttt e st e e s bt e e s baeeeenntbaaeeeeeennbaneaeens 40
SHIft AN TOTALE. ...coueeeiiieiiiee ettt ettt e a e et esbe e ettt e e s bbb e e e eabbeeeeaeee 41
Adding, subtracting and COMPATING.......cccuverriuieiriieeriieeiieeerteeesiteeestteesteeeseeeesaaeeessnssseeeeesesssnseneeeens 42
Adding and subtracting 16-bit NUMDETS.cccuiiiiiiiiiiiieie ettt e e e 42
Comparing 16-DIit NMUIMDETS.ccciuiiieiiieiiieeeiieeeiteeeieeeetee et e et eeesbeessaaeesssaeessaeessaeesnssneeeesannes 42
Comparing With CONSTANES.eeiiiiiiiiie ittt ettt et e et e et e e e e e eaibteeeeeeeeaanes 42
Packed BCD Math......cocoiiiiiiiiiiecee ettt ettt sttt s 43
Format conversion fOr NUMDETS.coiiiiiiiiiiiie ettt ettt st s e s 44
Conversion of packed BCDs to BCDs, ASCII or Binaries...........cccceevevireeiieeniiiiieeeeeeiiieeeeeeenens 44
Conversion of Binaries t0 BCD.........coouiiiiiiiiii et 44
IMIUTEIPIICALION. ..ttt ettt et e ettt e et e e bt e e eab e e e sabeeesabeeeeeensbbaeeeeeas 44
Decimal MUItIPIICATION. ...cccuuiiiiiiiiiiieiiiee ettt ettt et e et e e st e e st e e e e e ettt eeeeeeaanas 44
Binary MultipIiCATION.coouiiiiiiiiiiieeite ettt ettt et e et e e e e e e 45
AVR-ASSEMDIET PIOZIAM....c..eiiiiiiiiiiieiie ettt ettt ettt sneesbee e saneeeeaas 45
BINATY TOTATIOM. ...eieiiiieiieeiieiee ettt ettt s et e st et e eaneesiee e e e e s eanneeeas 46
Multiplication N the STUAIO........uiieiiiiiiiiiiie ettt e et e e abeeesreeeas 46
Hardware MultipliCAtION.cooueiiiiiiiieiieieee ettt et eaee s eneee e 48
Hardware multiplication of 8-by-8-bit BINaries..........ccccevuiiiriiiiiiiiiiiiie e 48
Hardware multiplication of a 16- by an 8-bit-binary...........cccecveeriiiiniiiiniiiieeeeeeeeee e 49
Hardware multiplication of a 16- by @ 16-bit-binary...........ccceceieviiiiniiiiiniiieiieeeeeeeeeee e 51
Hardware multiplication of a 16- by a 24-bit-binary..........cccceeueeriiiiniieiniieeieeeieeeeeeeeee e 53
DIEVISION. ..ttt ettt ettt esat et esb et et e e sbt e eab e e b et et e e eh b e et e s bt e e e e bt e e e nanraeeeas 54
Decimal dIVISION.....couiiiiiiiiiiitieee ettt ettt ettt ettt e e e 54
BINAry IVISION.....eiiiiiiiiiieeiiie ettt et e et e et e e st e e e tbeeetbeeesaeeeesaeesnnssbeeeeeeannnnsaaeeeeeannnn 54
Program steps during diVISION.........ccueieriieeriieiiiieet ettt et st ee st esbee e s bee e e e snabeeeeeeennas 55
Division in the STMUIATOT.......cooiiiiiiiieiie ettt ettt e e s abeee e 55
INUMDET COMVETSION. ... ittt ettt ettt ettt ettt e sat e et e bt e et eesbteeabeesbbe e easbeeeesabbeeennraeenans 57
DECTMAL FTACHIONS.ciiiiiiiieeiieeie ettt ettt et e b e st e s bt et e bt e st e e sabeeabeesaaee s 57
LIN@AT CONMVETSIONS...c.utiitieiieeiie ettt ettt et ettt sa e et esa e et e s bt e et esb b e e bt e sbaesabeesbbe e bt esbaeeanbaeeens 57
Example 1: 8-bit-AD-converter with fixed decimal output.............coccueriiiniieiiiniiiieeeeeeeen 58
Example 2: 10-bit-AD-converter with fixed decimal OUtPUL...........cooieriiiiiiniiiiiiiieiceeeeeee 59

PN 1111 GO OO ORI P TP PPPRRRROPPPR 60
Instructions SOrted DY fUNCHION.ceiiiiieiiieeiieeeieee ettt e e e et e e etreesbeeeeeesnnsraeaeens 60
Directives and Instruction lists in alphabetiC Order............cocverieriiiiiiiniiiieceeecee e 62
Assembler directives in alphabetiC OTdET........c.cc.eiiiiiiiiiiiiiiiiiece e 62
Instructions 1n alphabetic OTAET..........cccuiiiiiiiiiiiiie e 63
POTT AETALLS. ..ottt ettt e et e et e e bt e e et e e et eeee s 65
Status-Register, Accumulator fIags..........c.ooviiiiiiiiiiiii e 65
STACKPOINIETeeuiieiiieeiieett ettt st ettt e st e st e ae e st e e e e seneeeseneeeeeenne 65
SRAM and External INterrupt CONIOL............eerriiiiiiiiiiiieeiieeeiie ettt e 65
External INnterrupt CONLIOL........cooviiiiiiiiiiieieetee ettt 66
Timer INterrupt CONLIOL........iiiiiiiiiiieiie ettt e et e e tte e et e e e e e s iibaeeeeesennnes 66
TIMEI/COUNLET ...ttt ettt ettt s e e b e et e bt e sabeesbeeeaneenaeesaneens 67

THMEI/COUNLET L.ovreneeeieeeeeeeeeeeee ettt e e e e e e ettt e e eeseeee et eeaaaaeseseeetesasanasesesesesannnnnns 68

Avr-Asm-Tutorial 3 http://www.avr-asm-tutorial.net

WalCRAOZ-TIMETcoiiiiiiiiiee ettt e st 69
EEPROM. ...ttt ettt et h e et e bt e et e e bt e e a b e e bt e e ab e e bt e eabb e e e eabeeeeans 69
Serial Peripheral Interface SPL............cooiiiiiiiiie e 70
UART ettt e h et e b e s et e e bt e et e e bt e e ab e e sbteeabeessteeennbbeeeenbbeeesnbeeeaans 71
ANALOZ COMPATALOT......eeiutiiiiiieiritieeitee ettt e ettt e ettt e sttt e ebeeesabeeestbeessabeesabbeesabteesanbbbeeeeseannbbeeeesssnnnns 71
/O POTES. ...ttt et ettt e s at e et e s bt e s bt e e sab b e e sab e e e ebt e e ebeeeeeaa 72
POrts, alphabetic OTAET.....ccc.uiiiiiiiiiiie ettt st e sttt e st e e e e eibeaeeee s 72

LIS OF ADDIEVIATIONS. . .ceeee et e s e e eaaeseeaaaeseeenaeeeeeanaes 73

Avr-Asm-Tutorial 1 http://www.avr-asm-tutorial.net

Why learning Assembler?

Assembler or other languages, that is the question. Why should | learn another language, if | already
learned other programming languages? The best argument: while you live in France you are able to get
through by speaking English, but you will never feel at home then, and life remains complicated. You can
get through with this, but it is rather inappropriate. If things need a hurry, you should use the country's
language.

Many people that are deeper into programming AVRs and use higher-level languages in their daily work
recommend that beginners start with learning assembly language. The reason is that sometimes, namely
in the following cases:

e if bugs have to be analyzed,

e if the program executes different than designed and expected,

e if the higher-level language doesn't support the use of certain hardware features,
e if time-critical in line routines require assembly language portions,

it is necessary to understand assembly language, e.g. to understand what the higher-level language
compiler produced. Without understanding assembly language you do not have a chance to proceed
further in these cases.

Short and easy

Assembler instructions translate one by one to executed machine instructions. The processor needs only
to execute what you want it to do and what is necessary to perform the task. No extra loops and
unnecessary features blow up the generated code. If your program storage is short and limited and you
have to optimize your program to fit into memory, assembler is choice 1. Shorter programs are easier to
debug, every step makes sense.

Fast and quick

Because only necessary code steps are executed, assembly programs are as fast as possible. The
duration of every step is known. Time critical applications, like time measurements without a hardware
timer, that should perform excellent, must be written in assembler. If you have more time and don't mind if
your chip remains 99% in a wait state type of operation, you can choose any language you want.

Assembler is easy to learn

It is not true that assembly language is more complicated or not as easy to understand than other
languages. Learning assembly language for whatever hardware type brings you to understand the basic
concepts of any other assembly language dialects. Adding other dialects later is easy. As some features
are hardware-dependent optimal code requires some familiarity with the hardware concept and the dialect.
What makes assembler sometimes look complicated is that it requires an understanding of the controller's
hardware functions. Consider this an advantage: by learning assembly language you simultaneously learn
more about the hardware. Higher level languages often do not allow you to use special hardware features
and so hide these functions.

The first assembly code does not look very attractive, with every 100 additional lines programmed it looks
better. Perfect programs require some thousand lines of code of exercise, and optimization requires lots of
work. The first steps are hard in any language. After some weeks of programming you will laugh if you go
through your first code. Some assembler instructions need some months of experience.

AVRs are ideal for learning assembler

Assembler programs are a little bit silly: the chip executes anything you tell it to do, and does not ask you if
you are sure overwriting this and that. All protection features must be programmed by you, the chip does
exactly anything like it is told, even if it doesn't make any sense. No window warns you, unless you
programmed it before.

To correct typing errors is as easy or complicated as in any other language. Basic design errors, the more
tricky type of errors, are also as complicated to debug like in any other computer language. But: testing
programs on ATMEL chips is very easy. If it does not do what you expect it to do, you can easily add some
diagnostic lines to the code, reprogram the chip and test it. Bye, bye to you EPROM programmers, to the
UV lamps used to erase your test program, to you pins that don't fit into the socket after having them
removed some dozen times.

Changes are now programmed fast, compiled in no time, and either simulated in the studio or checked in-
circuit. No pin is removed, and no UV lamp gives up just in the moment when you had your excellent idea
about that bug.

Avr-Asm-Tutorial 2 http://www.avr-asm-tutorial.net

Test it!

Be patient doing your first steps! If you are familiar with another (high-level) language: forget it for the first
time. Behind every assembler language there is a certain hardware concept. Most of the special features
of other computer languages don't make any sense in assembler.

The first five instructions are not easy to learn, after that your learning speed rises fast. After you had your
first lines: grab the instruction set list and lay back in the bathtub, wondering what all the other instructions
are like.

Serious warning: Don't try to program a mega-machine to start with. This does not make sense in any
computer language, and just produces frustration. Start with the small ,Hello world“-like examples, e.g.
turning some LEDs on and off for a certain time, then explore the hardware features a bit deeper.

Recommendation: Comment your subroutines and store them in a special directory, if debugged: you will
need them again in a short time.

Have success!

Avr-Asm-Tutorial 3 http://www.avr-asm-tutorial.net

Hardware for AVR-Assembler-Programming

Learning assembler requires some simple hardware equipment to test your programs, and see if it works
in practice.

This section shows two easy schematics that enable you to home brew the required hardware and gives
you the necessary hints on the required background. This hardware really is easy to build. | know nothing
easier than that to test your first software steps. If you like to make more experiments, leave some more
space for future extensions on your experimental board.

If you don't like the smell of soldering, you can buy a ready-to-use board, too. The available boards are
characterized in this section below.

The ISP-Interface of the AVR-processor family

Before going into practice, we have to learn a few essentials on the serial programming mode of the AVR
family. No, you don't need three different voltages to program and read an AVR flash memory. No, you
don't need another pre-programmed microprocessor to program the AVRs. No, you don't need 10 I/O lines
to tell the chip what you like it to do. And you don't even have to remove the AVR from the socket on your
your experimental board, before programming it. It's even easier than that.

All this is done by a build-in interface in the AVR chips, that enable you to write and read the content of the
program flash and the built-in-EEPROM. This interface works serially and needs only three signal lines:

« SCK: A clock signal that shifts the bits to be written to the memory into an internal shift register, and
that shifts out the bits to be read from another internal shift register,

« MOSI: The data signal that sends the bits to be written to the AVR,
« MISO: The data signal that receives the bits read from the AVR.

These three signal pins are internally connected to the programming machine only if you change the
RESET (sometimes also called RST or restart) pin to zero. Otherwise, during normal operation of the AVR,
these pins are programmable I/O lines like all the others.

1 2 If you like to use these pins for other purposes during normal operation, and for in-
HISDO O‘H’TG syste_m—programming, you'll have to take care, _that these two purposes _do not
conflict. Usually you then decouple these by resistors or by use of a multiplexer.

SCK O OHDSI What is necessary in your case, depends from your use of the pins in the normal
operation mode. You're lucky, if you can use them for in-system-programming

RST{) (Oecup exclusively.

ISPEPIN Not necessary, but recommendable for in-system-programming is, that you supply

the programming hardware out of the supply voltage of your system. That makes it

1 2 easy, and requires two additional lines between the programmer and the AVR

HOST O O‘U‘TG board. GND is the common ground or negative pole of the supply voltage, VTG

(target voltage) the supply voltage (usually +5.0 volts). This adds up to 6 lines

LEDO OGHD between the programmer hardware and the AVR board. The resulting ISP6
connection, as defined by AMEL, is shown on the left.

RSTO OGHD Standards always have alternative standards, that were used earlier. This is the

technical basis that constitutes the adapter industry. In our case the alternative

SCKO OGHD standard was designed as ISP10 and was used on the STK200 board, sometimes

also called CANDA interface. It's still a very widespread standard, and even the

HMISO O OGHD more recent STK500 board is equipped with it. ISP10 has an additional signal to

ISP10PIN drive a red LED. This LED signals that the programmer is doing his job. A good
idea. Just connect the LED to a resistor and clamp it the positive supply voltage.

Programmer for the PC-Parallel-Port

Now, heat up your soldering iron and build up your programmer. It is a quite easy schematic and works
with standard parts from your well-sorted experiments box.

Yes, that's all you need to program an AVR. The 25-pin plug goes into the parallel port of your PC, the 10-
pin-ISP goes to your AVR experimental board. If your box doesn't have a 74LS245, you can also use a
74HC245 (with no hardware changes) or a 74L.S244/74HC244 (by changing some pins and signals). If you
use HC, don't forget to tie unused inputs either to GND or the supply voltage, otherwise the buffers might
produce extra noise by capacitive switching.

Avr-Asm-Tutorial 4 http://www.avr-asm-tutorial.net

Parallelport-In-System-Programmer : S |

HISO

E= &I
a1

[19

5

=
B
jy

G o0 ok
|

LED

11 74 [p—

L

1

O

O

= s =

I £l

245

En -l
20 g DIR|
e, Y
bt

oo
EN ER

%R

A
=
3
T:

L

OT

o
L7l

The necessary program algorithm is done by the ISP software. Be aware that this parallel port interface is
not supported by ATMEL's studio software any more. So, if you want to program your AVR directly from
within the studio, use different programmers. The Internet provides several solutions.

If you already have a programming board, you will not need to build this programmer, because you'll find
the ISP interface on some pins. Consult your handbook to locate these.

Experimental boards

You probably want to do your first programming steps with a self-made AVR board. Here are two versions
offered:

e A very small one with an ATtiny13, or

e a more complicated one with an AT90S2313 or ATmega2313, including a serial RS232 interface.

Experimental board with an ATtiny13

This is a very small board that allows experiments with the ATtinyl3's internal hardware. The picture
shows

e the ISP10 programming interface on the left, with a programming LED attached via a resistor of
390 Ohms,

e the ATtiny13 with a pull-up of 10k on its RESET pin (pin 1),
e the supply part with a bridge rectifier, to be supplied with 9..15V from an AC or DC source, and a

small 5V regulator.
Q Q0O

. 4
ISP10-
Programming-—
Interface oo PB2 PE1 PBO
+5V SCK MISO MOST
—0 O ADCL AINL AINO
10 e TO oc0B ocoA 78L0S
O O PCINT2 INTO PCINTO ouT IN + ~ _O
PCINT1 10 170
* +| n B40
o _ GND c100 9..15V
—O ATMEL ATtinyl3 T l e
@ 20 Cl PCINT5
RESET PCINT3
ADCO CLKI PCINT4
daw ADC3 ADC2
PB5 PB3 PB4 GND
50 HB
¢\
R}
10k 9

(BOO

The ATtiny13 requires no external XTAL or clock generator, because it works with its internal 9.6 Mcs/s

Avr-Asm-Tutorial 5 http://www.avr-asm-tutorial.net

RC generator and, by default, with a clock divider of 8 (clock frequency 1.2 Mcs/s).

' Lo —1 L ww== The hardware can be build on a

small board like the one shown in
the picture. All pins of the tiny13 are
accessible, and external hardware
components, like the LED shown,
can be easily plugged in.

This board allows the use of the
ATtn13's hardware components like
I/O-ports, timers, AD converters,
etc.

Experimental board with an AT90S2313/ATmega2313

For test purposes, were more 1/O-pins or a serial communication interface is necessary, we can use a
AT90S2313 or ATmega2313 on an experimental board. The schematic shows

« a small voltage supply for connection to an AC transformer and a voltage regulator 5V/1A,

« a XTAL clock generator (here with a 10 Mcs/s XTAL, all other frequencies below the maximum for
the 2313 will also work),

Avr-Asm-Tutorial 6 http://www.avr-asm-tutorial.net

Experimental 2313 board (C¥001 DGAFAC

i 18pk 18pk i
E 100 I I :
: % E nk 0 =Tal H
zkz zkz[|[zke 1?5;; :r +f I e S oMz
H 16 15 & 2 ExD 7 H
h PCO B—{1) h
! DsR RO 15 12 1 Loop J1Marmal k! = IMTO DCF77- !
: @ N o1 O -0 -O—— P01 PD2 Clock |
: 1D 14 11 Data 7 INT1 :
| 3 oz 1z PD3 |
' OTR 8] 5 MAK232 ol LOC)-p JZNgmal 16/ '
; 7 “ha - CTs 4 = 5
' o 14 ontrol :
; (Male) BTS 14 .
: ’7 1L| 3 4|_| PEZ |
5 20 o AT9052313 5
: | 18lpgg ;
i @ @M= | 9)pR7 |
E = SCK 17lpps E
' e = RESET RESET '
. wWED 1] .
! e LED w 14148 !
i 1k i
e (e = |
| £ 47k '
| s |
; 43 1N49001 :
: 5, @ :
: 9..15V F30pK ——530pK ;
: ~ (2 T+ |7805] _r_p_r_+ o :
| P e T " 1 '
' L 470 3EY 1T | | H
| 1 !
: ~l |
E MNullmodem-cable To Board .
; DSK :
e o5 @ ;
. RD ;
. (2) ZRTs .
. TD5 .
= @RI =
H TTR @@ H
: GND (E) “Tms ;

Temale) .

+ the necessary parts for a safe reset during supply voltage switching,
+ the ISP-Programming-Interface (here with a ISP10PIN-connector).

So that's what you need to start with. Connect other peripheral add-ons to the numerous free 1/O pins of
the 2313.

The easiest output device can be a LED, connected via a resistor to the positive supply voltage. With that,
you can start writing your first assembler program switching the LED on and off.

Avr-Asm-Tutorial 7 http://www.avr-asm-tutorial.net

If you
e do not need the serial communication interface, | B d
14/16, '
e if you do not need hardware handshake signals, . t
RTS on the 9-pin-connector over a 2.2k resistor t(gas
If you use an ATmega2313 instead of an AT90S2313, the
e the external XTAL is not necessary, as the ATn t
skip all connections to pins 4 and 5,
e if you want to use the external XTAL instead of | ; b o]

program the fuses of the ATmega accordingly.

Ready-to-use commercial programming boards for the
AVR-family

If you do not like homebrewed hardware, and if have some extra money left that you don't know what to do
with, you can buy a commercial programming board. Depending from the amount of extra money you'd like
to spend, you can select between more or less costly versions. For the amateur the following selection
criteria should be looked at:

e price,

e PC interface (preferably USB, less convenient or durable: 9-pin RS232, requiring additional
software: interfaces for the parallel port of the PC),

e support reliability for newer devices (updates are required from time to time, otherwise you sit on a
nearly dead horse),

e hardware features (depends on your foreseeable requirements in the next five years).

The following section describes the three standard boards of ATMEL, the STK200, the STK500 and the
Dragon. The selection is based on my own experiences and is not a recommendation.

STK200
The STK200 from ATMEL is a historic board. If you grab a used one you'll get

e a board with some sockets (for 8, 20, 28 and 40 pin devices),

e eight keys and LEDs, hard connected to port D and B,

e an LCD standard 14-pin interface,

e an option for attaching a 28-pin SRAM,

e a RS232 interface for communication,

e a cable interface for a PC parallel port on one side and a 10-pin-ISP on the other side.
HV programming is not supported.

The board cannot be programmed from within the Studio, the programming software is no longer
maintained, and you must use external programs capable of driving the PC parallel port.

If someone offers you such a board, take it only for free and if you're used to operate software of the
hecessary kind.

STK500

Easy to get is the STK500 (e.g. from ATMEL). It has the following hardware:

« Sockets for programming most of the AVR types (e.g. 14-pin devices or TQFP packages require
additional hardware),

+ serial and parallel programming in normal mode or with high voltage (HV programming brings
devices back to life even if their RESET pin has been fuse-programmed to be normal port input),

+ ISP6PIN- and ISP10PIN-connection for external In-System-Programming,
« programmable oscillator frequency and supply voltages,

+ plug-in switches and LEDs,

« a plugged RS232C-connector (UART),

« a serial Flash-EEPROM (only older boards have this),

Avr-Asm-Tutorial 8 http://www.avr-asm-tutorial.net

+ access to all port pins via 10-pin connectors.

A major disadvantage of the board is that, before programming a device, several connections have to be
made manually with the delivered cables.

The board is connected to the PC using a serial port (COMXx). If your laptop doesn't have a serial interface,
you can use one of the common USB-to-Serial-Interface cables with a software driver. In that case the
driver must be adjusted to use between COM1 and COMS8 and a baud rate of 115k to be automatically
detected by the Studio software.

Programming is performed and controlled by recent versions of AVR studio, which is available for free from
ATMEL's web page after registration. Updates of the device list and programming algorithm are provided
with the Studio versions, so the support for newer devices is more likely than with other boards and
programming software.

Experiments can start with the also supplied AVR (older versions: AT90S8515, newer boards versions
include different types). This covers all hardware requirements that the beginner might have.

AVR Dragon

The AVR dragon is a very small board. It has an USB interface, which also supplies the board and the 6-
pin-ISP interface. The 6-pin-ISP-Interface is accompanied by a 20-pin HV programming interface. The
board is prepared for adding some sockets on board, but doesn't have sockets for target devices and other
hardware on board.

The dragon is supported by the Studio software and is a updated automatically.

Its price and design makes it a nice gift for an AVR amateur. The box fits nicely in a row with other
precious and carefully designed boxes.

Avr-Asm-Tutorial 9 http://www.avr-asm-tutorial.net

Tools for AVR assembly programing

Four basic programs are necessary for assembly programming. These tools are:

« the editor,

+ the assembler program,

« the chip programing interface, and

+ the simulator.
Two different basic routes are possible:

1. anything necessary in one package,
2. each task is performed with a specific program, the results are stored as specific files.

Usually route #1 is chosen. But because this is a tutorial, and you are to understand the underlying
mechanism first, we start with the description of route #2 first.

From a text file to instruction words in the flash memory

The editor

Assembler programs are written with an editor. The editor just has to be able to create and edit ASCII text
files. So, basically, any simple editor does it.

Some features of the editor can have positive effects:

e Errors, that the assembler later detects, are reported along with the line number in the text file. Line
numbers are also a powerful invention of the computer-age when it comes to discussions on your
code with someone else. So your editor should be able to display the line number. Unfortunately
nearly all editors, that a mighty software company provides as part of its operating systems, are
missing that feature. Probably Widows 2019 re-invents that feature, and sells better among
assembler freaks.

e Typing errors are largely reduced, if those errors are marked with colors. It is a nice feature of an
editor to highlight the components of a line in different colors. More or less intelligent recognition of
errors ease typing. But this is a feature that | don't really miss.

e If your editor allows the selection of fonts, chose a font with fixed spacing, like Courier. Headers
look nicer with that.

e Your editor should be capable of recognizing line ends with any combination of characters
(carriage returns, line feeds, both) without producing unacceptable screens. Another item on the
wishlist for Widows 2013.

If you prefer shooting with cannons to kill sparrows, you can use a mighty word processing software to
write assembler programs. It might look nicer, with large bold headings, gray comments, red warnings,
changes marked, and reminders on To-Do's in extra bubble fields. Some disadvantages here: you have to
convert your text to plain text at the end, losing all your nice design work, and your resulting textfile should
not have a single control byte left. Otherwise this single byte will cause an error message, when you
assemble the text. And remember: Line numbers here are only correct on page one of your source code.

ngawasm [O] <]

o B9 Seh Aredle D, Mok e So, whatever text program you chose,
) Bl [[(S it's up to you. The following examples
e =B are written in wavrasm, an editor
iHOlIST _J

worrst provided by ATMEL in earlier days.
.LIST
| Hior kommt mine cinfacho Schloife In the plain editor field we type in our
foop: directives and assembly instructions. It
FME deoe is highly recommended that lines come
together with some comments (starting
with ;). Later understanding of what
we've planned here will be helpful in

later debugging.

Now store the program text, named to
something.asm into a dedicated
directory, using the file menu. The
o assembly program is complete now.

z

7
—
[Ln12 [Call [INILIRA

=

If you'd like to see what syntax-highlighting means, | have a snapshot of such an AVR editor here.

Avr-Asm-Tutorial 10 http://www.avr-asm-tutorial.net

The editor recognizes
@ fle Edt Proect Window Help =18]xl| instructions automatically and
DB 2o B mis] bl uses different colors (syntax
l; bas ist ein Testprogramn 2l highlighting) to signal user
-NOLIST _ constants and typing errors in
-INCLUDE "C:‘\avrtoolsiappnotesi8515def._inc” . . .
LIsT those instructions (in black).

Storing the code in an .asm file
provides nearly the same text

; Hier kommt eine einfache Schleife

loop:

RJHP loop GoutbbiEdton file, colors are not stored in the
AR Editor for Windows 95/98/MT4 .
@ Tan Sillksaar 1399 file.
£%F Editar iz a freeware program
Note: "&WR" is a trademark of Atmel Carp.
S S Don't try to find this editor or its
“ergion 1.2.200 . . .

n author; the editor is history and
tan@zillikzaar ee R .
| no longer maintained.
3 [Ny Jui

101 [4

Structuring assembler code

This page shows the basic structure of an assembler program. These structures are typical for AVR

assembler. This text discusses
. comments,
- header informations,

+ code at program start and
« the general structure of programs.

Comments

The most helpful things in assembler programs are comments. If you need to understand older code that
you wrote, sometimes years after, you will be happy about having some or more hints what is going on in
that line. If you like to keep your ideas secret, and to hide them against yourself and others: don't use
comments. A comment starts with a semicolon. All that follows behind on the same line will be ignored by
the compiler. If you need to write a comment over multiple lines, start each line with a semicolon. So each
assembler program should start like that:

; Click.asm, Program to switch a relais on and off each two seconds

; Written by G.Schmidt, last change: 7.10.2001

’

Put comments around all parts of the program, be it a complete subroutine or a table. Within the comment
mention the special nature of the routine, pre-conditions necessary to call or run the routine. Also mention
the results of the subroutine in case you later will have to find errors or to extend the routine later. Single
line comments are defined by adding a semicolon behind the command on the line. Like this:

LDI R16,0x0A ; Here something is loaded
MOV R17,R16 ; and copied somewhere else

Things to be written on top

Purpose and function of the program, the author, version information and other comments on top of the
program should be followed by the processor type that the program is written for, and by relevant
constants and by a list with the register names. The processor type is especially important. Programs do
not run on other chip types without changes. The instructions are not completely understood by all types,
each type has typical amounts of EEPROM and internal SRAM. All these special features are included in a
header file that is named xxxxdef.inc, with xxxx being the chip type, e.g. 2313, tn2323, or m8515. These
files are available by ATMEL. It is good style to include this file at the beginning of each program. This is
done like that:

.NOLIST ; Don't list the following in the list file
.INCLUDE "m8515def.inc" ; Import of the file
.LIST ; Switch 1ist on again

The path, where this file can be found, is only necessary if you don't work with ATMEL's Studio. Of course
you have to include the correct path to fit to your place where these files are located. During assembling,
the outpu of a list file listing the results is switched on by default. Having listing ob might result in very long
list file (*.Ist) if you include the header file. The directive .NOLIST turns off this listing for a while, LIST turns
it on again. Let's have a short look at the header file. First these files define the processor type:

.DEVICE ATMEGAS8515 ; The target device type

The directive .DEVICE advices the assembler to check all instructions if these are available for that AVR

http://www.atmel.com/
file:///home/gerd/Documents/webpages/avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#struktur
file:///home/gerd/Documents/webpages/avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#start
file:///home/gerd/Documents/webpages/avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#kopf
file:///home/gerd/Documents/webpages/avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#comments

Avr-Asm-Tutorial 11 http://www.avr-asm-tutorial.net

type. It results in an error message, if you use code sequences that are not defined for this type of
processor. You don't need to define this within your program as this is already defined within the header
file. The header file also defines the registers XH, XL, YH, YL, ZH and ZL. These are needed if you use the
16-bit-pointers X, Y or Z to access the higher or lower byte of the pointer separately. All port locations are
also defined in the header file, so PORTB translates to a hex number where this port is located on the
defined device. The port's names are defined with the same names that are used in the data sheets for the
respective processor type. This also applies to single bits in the ports. Read access to port B, Bit 3, can be
done using its bit name PINB3, as defined in the data sheet. In other words: if you forget to include the
header file you will run into a lot of error messages during assembly. The resulting error messages are in
some cases not necessarily related to the missing header file. Others things that should be on top of your
programs are the register definitions you work with,e.g.:

.DEF mpr = R16 ; Define a new name for register R16

This has the advantage of having a complete list of registers, and to see which registers are still available
and unused. Renaming registers avoids conflicts in the use of these registers and the names are easier to
remember. Furtheron we define the constants on top of the source file, especially those that have a
relevant role in different parts of the program. Such a constant would, e.g., be the Xtal frequency that the
program is adjusted for, if you use the serial interface on board. With

.EQU fq = 4000000 ; XTal frequency definition

at the beginning of the source code you immediately see for which clock you wrote the program. Very
much easier than searching for this information within 1482 lines of source code. To the top of that page

Things that should be done at program start

After you have done the header, the program code should start. At the beginning of the code the reset- and
interrupt-vectors (their function see in the JUMP section) are placed. As these require relative jumps, we
should place the respective interrupt service routines right behind. In case of ATmega types with larger
flash memory JUMP instructions can be used here, so be careful here. There is some space left then for
other subroutines, before we place the main program. The main program always starts with initialization of
the stack pointer, setting registers to default values, and the init of the hardware components used. The
following code is specific for the program.

Structuring of program code

The described standardized structure is included in a program written for Windows Operating Systems,

which can be downloaded at http://www.avr-asm-download.de/avr_head.zip.

2] AVR RS Findey o - Slakea) Unzip the exec_utable file, and simply run
it. It shows this: Here you can choose
ATtiny by clicking on it, and then select

Header-File
Aam-Header-File: | [EEEEE R

M Gl ATtinyl3 in the dropdown field AVR-
Type Preselection T e
" 4Tsmega ¢ ATmega (ATty (" AT30CAN (¢ ATSOUSE ¢ ATSERF & AT305 & Any type yp "

AR -Type: |[Select] w | Ints? Reaister name to use: |IMP Register]F16 « W program uses intermupts
Porta, Output PortB Dutput
[A0 A1 A2 A3 A4l AST 46T &7 [BO[” BI[C B2 B3 B4 BS[BE[EB7

Update | ‘ | Help me! | Close ‘

You are now asked to navigate to its respective include-file tn13def.inc. Show the program the way where
the header file is located.

http://www.avr-asm-download.de/avr_head.zip
file:///home/gerd/Documents/webpages/avr-asm-tutorial/html/avr_en/beginner/JUMP.html
file:///home/gerd/Documents/webpages/avr-asm-tutorial/html/avr_en/beginner/STRUCTURE.html#top

Avr-Asm-Tutorial 12

http://www.avr-asm-tutorial.net

EZ] AVR-ASM-Header &

»

=E=)

Header-File

Asm-Header-File: | C:\Program Fileshatmel\ayR T oolshAvrdssembler2\Appnotesiind 3def.inc

AR-Tope charactenistics

Type Prezelection
(" ATemega © ATmega & ATty & ATI0CAM ¢ ATI0USE ATBERF

AVR-Type: |ATTINYTZ | Found. Reaister name to use; | mp Register|R16

Partd, Output PortB Output
r I o o [~ a4 I I v BOIV B1lw BZ[B3[B4 BE[

" AT30S

-

" Any bupe

v program uzes interrupts

e ke ke e e ke e e e e ok ol e ke ol e vl e e ol ol ke ke ol e e ol e e e ke ol e e e e o e e e ol e e e
; * [2dd Project title here] *
i * [hdd more info on software wersiom here] *
; * (C)20xx by [Add Copyright Info here] =

e ke e e e o e o e o e e o e e o o e e o o e e o e

; Included header
-HOLIST
- INCLUDE
.LIST

file for target LVE type

"tnl3def.inc" ; Header for ATTINY1:

; HARDWARE INFORMATIOCHN

; [Add a2l]l hardware information here]

PORTS AND FINS

i [Add names for hardware ports and pins here]
; Format: .EQU Controlportout = BORIA

-EQU Controlportin = PIN&

-EQU LedCutputPin = BORTAZ

CONSTANTS IO CHRENGE

; [Rdd 211 constants here that can be subject

4

Update Copy To Chpboard Wwinke To File

Help me!

m

Cloge

This produces the following code:

’

%k %k %k >k >k %k %k %k %k %k %k %k %k %k %k %k %k % % % % % % % % % % % % % % % % %k % %k % % % %k %k % % %

. * [Add Project title here] *
; * [Add more info on software version here] *
; ¥ (C)20xx by [Add Copyright Info here] *

%k %k %k >k %k X

’

; Included header file for target AVR type
.NOLIST
.INCLUDE
LLIST

"tnl3def.inc" ; Header for ATTINY13

; [Add names for hardware ports and pins here]

; Format: .EQU Controlportout = PORTA

; .EQU Controlportin = PINA

; .EQU LedQutputPin = PORTA2

; CONSTANTS TO CHANGE

Here you can enter
your desired multi
purpose register,
the output configu-
ration on ports A
and B, if available,
and if you want to
use interrupts.

Click Update to fill
the window with
your code frame.

Click
CopyToClipboard
, if you want to
paste this code into
your code editor, or
WriteToFile to
write this to an
assembler code file
instead.

If you don't know
what it is for and
what to do, press
the Help button.

Avr-Asm-Tutorial

13

; [Add all constants here that can be subject
; to change by the user]

; Format:

; [Add all constants here that are not subject

.EQU const = $ABCD

; to change or calculated from constants]

; Format:

; [Add all register names here,

.EQU const = $ABCD

; all used registers without specific names]

; Format:

.DEF rmp = R16

.DEF rmp = R16 ; Multipurpose register

’

; SRAM

.DSEG

.ORG 0X0060

; Format: Label: .

; RESET A

.CSEG

.ORG %0000
rimp Main
reti ; Int
reti ; Int
reti ; Int
reti ; Int
reti ; Int
reti ; Int
reti ; Int
reti ; Int
reti ; Int

Main:

; Init stack

1di
out

; Init Port

1di
out

1di

sei

slee

rmp,

BYTE N

; Reset
vector
vector
vector
vector
vector
vector
vector
vector
vector

SPL, rmp

B

include info on

http://www.avr-asm-tutorial.net

reserve N Bytes from Label:

vector

OLOoOoONOUTES WN =

LOW(RAMEND) ; Init LSB stack

rmp, (1<<DDB2) | (1<<DDB1) | (1<<DDB®)
DDRB, rmp
; [Add all other init routines here]
rmp,1<<SE ; enable sleep
out MCUCR, rmp

p

go to sleep
nop ; dummy for wake up
rimp loop ; go back to loop

’

Direction of Port B

Avr-Asm-Tutorial 14 http://www.avr-asm-tutorial.net

; End of source code

The assembler

Now we have a text file, with blank ASCII characters. The next step is to translate this code to a machine-
oriented form well understood by the AVR chip. Doing this is called assembling, which means ,put together
the right instruction words". The program that reads the text file and produces some kind of output files is
called Assembler. In the easiest form this is a instruction-line program that, when called, expects the
address of the text file and some optional switches, and then starts assembling the instructions found in
the text file.

If your editor allows calling external programs, this is an easy task. If not (another item on the wish list for
the editor in Widows 2010), it is more convenient to write a short batch file (again using an editor). That
batch file should have a line like this:

PathToAssemblenAssembler.exe -options PathToTextfile\Textfile.asm

Klicking on the editor's external program
Ele Edk Seach Asentie (piiors.. Window Heb caller or on the batch file starts the
DferfFal (X[-aE (B [2 command line assembler. That piece of
e e =121 =<1 i
L —— — software reports the complete translation
“NOLTST =l process (in the smaller window), here
INCLUDE "C:“avrtools appnotes~851G0def . inc” .
LIST with no errors. If errors occur these are
Eier kom e e _ = BRI notified, along w_ith their typ_e and line
LOR o N N XL R — number. Assembling resulted in one word
Cresting 'TEST.EEP" of code which resulted from the RJMP
Creating 'TEST .HEX' . . .
Sroating TEST OBI instruction that we used. Assembling our
hssenbling 'TEST ASH' . single asm-text file now has produced
;['ru:lu\:hng C:vavrtoolshappnotes~8515def . inc fOUI’ Other f||es (nOt a" apply hel'e)
TOJTran NEnory usage:
Code 1 words . .
Constants (dwsdbh): 0 vords The first of these four new files,
Toral b owords TEST.EEP, holds the content that should
Azsenbly complete with no srrors. .
9?£eting e mre be written to the EEPROM of the AVR.
- This is not very interesting in our case,
- 2z because we didn't program any content
_ NMT T 1 for the EEPROM. The assembler has

therefore deleted this file when he
completed the assembly run, because it is empty.

B Testhex - Editor M= B3 The second file, TEST.HEX, is more relevant

Datei Beabeten Suchen 2 because this file holds the instructions later

programmed into the AVR chip. This file looks
|- 626068086FFCF30 1 like this.

1008008 FF

The hex numbers are written in a special
ASCIl form, together with address
informations and a checksum for each line.
This form is called Intel-hex-format, and is
AW very old and stems from the early world of
computing. The form is well understood by

the programing software.

B Testobj =] The third file, TEST.OBJ, will be
00000000 5220 4FB2 ... #...... introduced later, this file is needed to
00000010 6465 6374 2046 696C 6500 0000 OOCF FFOD ject File....... ; :
00000020 DO0A DO54 4553 S42E 4153 4D00 4334 5061 .. .TEST.ASM.Civa simulate an AVR. lts format is
00000030 7672 746F GFAC 735C 6170 706E 6F74 6573 vrtools“appnotes hexadecimal and defined by ATMEL.
00000040 5C38 3531 3564 6566 2E69 6E63 0000 \8515def . inc. .

Using a hex-editor its content looks
like this. Attention: This file format is
not compatible with the programmer
software, don't use this file to program the AVR (a very common error when starting). OB files are only
produced by certain ATMEL assemblers, don't expect these files with other assemblers.

The fourth file, TEST.LST, is a text file. Display its content with a simple editor. The following results.

Avr-Asm-Tutorial

15

Bl Test.lst - Editor
Datei Bearbeiten Suchen i

http://www.avr-asm-tutorial.net

C1o=)| The program with all its addresses, instructions and

; Das ist ein Testprogramm

v -HOLIST

loop:

0000008 cfff RJHMP loop

Assembly complete with no errors.

i

AURASHM ver. 1.28 TEST.ASH Sun Jun 18 @1:46:13 2801

H
; Hier kommt eine einfache Schleife

-

—| error messages are displayed in a readable form. You
will need that file in some cases to debug errors.

Listfiles are generated only if the appropriate option is
selected on the command line options and if the
.NOLIST directive doesn't suppress listing.

| Programming the chips

To program our hex code, as coded in text form in the .HEX-file, to the AVR a programmer software is
necessary. This software reads the .HEX-file and transfers its content, either bit-by-bit (serial
programming) or byte-by-byte (parallel programming) to the AVR's flash memory. We start the programmer
software and load the hex file that we just generated.

Test - ATMEL AVR ISP
Project File Buffer Program Options indow Help

=] B3

gk =ael [QEelva] (3] (€]

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF_FF_FF FF_FF_FF FF_FF FF FF FF FF FF FF FF

T T T T T T T T T T T
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF_FF _FF_FF FF_FF FF FF FF FF FF FF FF FF FF FF

<

Title: ITesl

Project ID: [0001

LComments: [Dies ist das Testprogramm

Manager 4 Device 4 Security and Fuses

Alout ATMEL AVR ISP

ATMEL AVR ISP

‘ mEL “ersion 2.65
L

Copyright (c) 1998-1999 Kanda Systems Ltd

|FUr Help. press F1

In an example that looks
like this. Please note: the
displayed window stems
from ISP.exe, a historic
program no longer distribu-
ted by ATMEL. Other pro-
grammer software looks
similar.

The software will burn our
code in the chip's program
store. There are a number
of preconditions necessary
for this step and several
reasons possible, if this
step fails. Consult your
programmer software help,
if problems occur.

Programming hardware and appropriate software alternatives for different PC operating systems are
available on the Internet. As an example for programming over the PC's parallel or serial communication
port, PonyProg2000 should be mentioned here.

Simulation in the studio

In some cases self-written assembly code, even assembled without errors, does not exactly do what it
should do when burned into the chip. Testing the software on the chip could be complicated, esp. if you
have a minimum hardware and no opportunity to display interim results or debugging signals. In these
cases the Studio software package from ATMEL provides ideal opportunities for debugging. Testing the
software or parts of it is possible, the program code could be tested step-by-step displaying results.

The pictures shown here are taken from Version 4 of the Studio, that is available for free on ATMEL's
website. Older versions looks different, but do nearly the same. The Studio is a software that has all you
need to develop, debug, simulate and burn your assembler programs into the AVR type of your choice.

The studio is started and looks like this.

Avr-Asm-Tutorial 16 http://www.avr-asm-tutorial.net

i -~ o e w— v L E
! File Project Build View Tools Debug Help
PR A 0 B i e % TS RS e Ol SELE e O 0 sd
: [Trace Disabled W% %W G sk TG [g e S
- r"
é Mew Project ‘
N
Recent projects | td odified | |
L C:ilzarsh, . AdeviBWR\tests\testsprmitestspm. aps 23-Dec-2008 15:03:43
’ C:AUzersh. . \akkuload\Cunrentversionakkuload. aps A0-Mow-2008 18:23:04
& ChUsersh Amult_16_24%mult_16_24.aps 28-5ep-2008 16:23.058
] C:AUzersh.. Mimer_intstimer_intsimer_int. aps 04-Aug-2008 11:17.09 !
& ChUsersh. Astandard_tnl Bhetandard_tn3.aps 26-Jul-2008 171819
[] C:hUzersh. AdeviaWRMests\test_inchcount_up.aps 20-Jul-2008 131013
[] C:Azersh, AExamplesiCount_Uphcount_up.aps O7-Jul-2008 1417.37
L Coilzarsh, . AdeviaWR\tests\test_inchtest-start aps 29-Jun-2008 20:51:44
& CAUzersh, . deviaWRitests\test_inchtest_inc.aps 28-Jun-2008 16:55:38 Bits
& CUsersh ADelay16_500ms\Delayl 5_500ms. aps 2R-tay-2008 14:47:14
Loaded plugin STKS00
gee plug-in: Mo WinAlll yer 415623 W
<< Back Mext z» Firizh
L
|
L F—T— '
i =l Build ﬂ Message I% Find in Files |faBreakpoints and Tracepoints !
L
| & CAP NUM OVR _:;J
i - —— - ——

The first dialog asks whether an existing project should be opened or a new project is to be started. In
case of a newly installed Studio “New Project” is the correct answer. The Button “Next>>" brings you to the
settings dialog of your new project.

— Create new project

Project type: Project name;

% Atnel AVE Ass Itesﬂ

Q ¥ Create initial fle W Create folder
P

Iritial file:
= ol

Itest'l .83

k =
> Py IE:'\UserS\.g.schmidt\D ocumentshdesAWE Sestsh |

g2 |

N Wer 4.15.623

Location:

<< Back | Mext =5 I Finizh Cancel Help

Here you select “Atmel AVR Assembler” as your project type, give that project a name (here “testl”) and
let the Studio crate an initial (empty) file for your source code, let it create a folder and select a location for
that project, where you have write access to.

The button “Next>>" opens the platform and device selection dialog:

Avr-Asm-Tutorial 17 http://www.avr-asm-tutorial.net

Welcome to AVR Studic 4

Select debug platform and device
Drebug platform: D evice:
2R Dragon ATmegadBP -
AVE OME! ATmegabd
AWE Simulatar ATmegab40
AW Simulatar 2 ATmegabdd

E ICE 200 ATmegabd4P
ICE40 ATmegabds
ICESD ATmegab450
JTaG ICE ATmegab43
JTAGICE mkll ATmegab430

< ATmegads15 -

-
Wer 415623
<« Back | | Finizh | Cancel | Help |

As debug platform select either “AVR simulator” or “AVR simulator 2”. As Device select your AVR type,
here an ATmega8 was selected. If your desired type is grayed out, select another simulator platform.
Close this window with the “Finish” button. Now a large window pops up, which has lots of different sub-
windows.

AVR Studio - CA\Users\g.schmidf\Documents\deviAVR\tests\test]\testl.asm * - —_— E@éj
File Project Build Edit View Tools Debug Window Help
O EH { RS9~ Gk 4RSS = == =0E Q@
Trace Disabled R =T L o .. 4 hd
Ei‘ testl ChUsers\g.schmidt\Docu... EI@ _{‘g_ v .
Ea u;ceJﬂes ¢ Testl demonstrates Studio Name Value =1
| #] testl.asm .
) : . # T»AD_CONVERTER
I 43 Included Files nolist
5 Labels cinclude "m8def | inc” ﬂD:’-\NALOG_COMPARA_._
’ Jlist e @CPU
423 Output :
3 Object File : Register definitions 4 E) EEPROM
d : +] %3 EXTERNAL_INTERR...
= d=f rmp = Rl + 2 PORTB
: =2
1di rmp.0b11111111 i‘SPORTC
out DDEE, rmp + == PORTD —
labell: 459 5PI
1di Irmp. obB0O1010101 =< TIMER COUNTER 0
S ﬂTIMER_COUNTER_‘I
1di rmp,0b10101010 T j
out PORTE. rmp b i
! rinp labell MName Address Value Bits
1] f
Fl " CAUsers\g.schmidt\Documents\dew\AVRY 4 »
estlitestl.asm(3): Including file "C:“\Program Files\ZAtmel‘\AVR Tools‘\Avrhss:
estl\testl.asm({l0): error: syntax error, unexpected ',', expecting '=' L
4 1 r
=] Build ﬂ Message —Tﬂ Find in Files jBreakp-:uints and Tracepoints
I
ATmegas AVR Simulator Auto . Ln 20, Coll CAP NUM OWVR

On the left, the project window allows you to manipulate and view all your project files. In the middle, the
editor window, allows you to write your source code (try typing its content to your editor window, don't care
about the colors - these are added by the editor - remember syntax-highlighting?). On the left bottom is a

“Build” section, where all your error messages go to. On the right side is a strange I/O view and below a
rather white field, we'll come to that later on.

All window portions can be made larger and smaller and even can be shifted around on the screen. Try

mixing these windows! The next pictures show some differently looking windows, but they are all the same
as here.

After typing the source code shown above to your source file in the editor completely, push the menu
“Build” and its sub-menu “Build”. If you typed correctly, the following shows up in your “Build” window:

Avr-Asm-Tutorial

ILVRASM: AVE macro assembler 2.1.30 (build 592 Nowv
Copyright ({C) 1995-2008 ATMEL Corporation

C:\Uzera\g.zachmidt\Documenta\dev\AVR\testa\teatl\teatl.asm(5):

ATmegal memory use summary [bytes]:

18

7 2008 12:38:17)

Segment Begin End Code Data Used Size Usel
[.cseg] 0x000000 0x00000e 14 [u] 14 8192 0.2%
[.dseg] 0x000060 0x0000&0 1] [u] 1 0.0%
[.eseg] 0x000000 0x000000 0 0 0 0.0%

Assembly complete, 0 errors. 0 warnings

Including file

'C:\Program Files\Atmel\AVR Tocls\AvrAssembler2\Appnotes\midef.inc'
C:\Users\g.schmidt\Documents\dev\AVE\tests\testl\testl.asm(20): No EEPROM data, deleting C:\Users\g.schmidt\Documents‘dev\RVE\tests\testl\testl.eep

http://www.avr-asm-tutorial.net

=] Build ol‘.-1essage —ﬂFindin Files jBreakp-:ints and Tracepoints

Make sure, you read all window content once for the first time, because it gives you a lot more info besides
the small green circle. All that should be fine, otherwise you typed errors into the code and the circle is red.

You can now push the menu item “Debug” and some windows change their content, size and position. If
you also push the menu item “View”, “Toolbars” and “Processor” and shift around windows, it should look

like this:

inDlist
cinclude
list

"medef . inc"

Fegi=ter definitions

‘def rmp = R16
s 1di

out
lab=l1:

1di
out

rmp.0b11111111
DDEE. rmp

rnp, 0b01010101
PORTE. rnp

ldi rmp.0bl0101010
out PORTE. rmp
rjmp labell

e |

ATmeaaR memntrw
4 T

Testl demdhstrates Studioc

nas anmmarvy [hvtes’

Processor

Mame

Program Courter
Stack Painter
X poirter
Y pointer
Z poirter
Cycle Counter
Frequency
Stop Watch
SREG

~| Registers

ChUsersig.schmidt\Documents\dev\ AVR\tes

AVEASM: AVE macro assembler 2.1.3¢
Copyright (C) 1995-2008 ATMEL Corg

C:\Users\g.schmidc)Documentshdevid
C:\Users\g.schmidc\Documentshdevii

Testl demonstrates Studio
‘.nol i=st
cinclude "mEdef | inc”

list
E Regi=ter definitions

.def rmp = El&
1di rmp.0b11111111
| out DDRE. rmp
labell:
1di rmp.0b01010101
ocut PORTE.rmp
1di rmp.0bl0l01010
out PORTE. rmp
rijmp labell

el |

Chlsershg.schmidt\Documents\deviAVR\tes

LVEASM: LVE macro assembler 2.1.3(
Copyright (C) 1995-2008 ATMEL Corg

C:\Users\g.schmidc\Documentshdevid
C:\Users\g.schmidt\Documents\devil

ATmeaaf memnry use aummary [hutes’
]

ElBuild | € Message | 5 Find in Files | C@Bn

———
T ™

-

ROO
R0
RO2
RO3
R4
RO3
RO&
ROV
Ri3
RO
R10
R11
R12

Project | Processor

= The former editor window has
" a yellow arrow now. This
Value =1/|| arrow points to the next
(000000 instruction that will be
EEEEE executed (not really executed,
s but rather “simulated”).
(0000 The processor window shows
0 the current program counter
‘;'EETSMHZ value (yes, the program starts
8 o 1 8 at_ address 0), the stack
pointer (no matter what that
000 might be - wait for that later
00 __||| inthe course), a cycle counter
=00 L and a stop watch. If you push
(00 . on the small “+” left to the
(00 word “Registers”, the content
;gg of the 32 registers is
500 displayed (yes, they are all
00 empty when you start the
00 processor simulation).
Egg Now let us proceed with the
= - first instruction. Menu item
" “Debug” and “Step into” or
| simply F11 executes the first

Processor

MName

Program Courter

Stack Pointer
¥ pointer
Y pointer
Z pointer

Cycle Counter

Frequency

Stop Watch

SREG

~| Registers

ROO
RO1
RO2
RO3
RO4
RO5
RO&
RO7
RO
ROS
R10
R11
R12
R13
R14
R15
R16
R17

=] Build ﬂr‘.lessage —Tﬂ,Findin Files jBreakp-:uints and Tracepoints

4.0000 MHz

0.25us

OOEEMMNED

00
(00
00
(0D
(00
00
00
(00
(00
00
0D
(00
00
00
00
(00
FF
(00

instruction.

The instruction “Idi rmp,0b11111111"
loads the binary value 1111.1111 to
register R16. An instruction we will learn
more about later on in the course.

The yellow arrow now has advanced
one instruction down, is now at the OUT
instruction.

In the processor window, the program
counter and the cycle counter are both
at 1 now.

And register 16, down the list of
registers, is red now and shows OxFF,
which is hexadecimal for binary
1111.1111.

To learn about another simulator
window just advance simulation one
step further to execute the OUT
instruction (e. g. by pushing the key F11.

Avr-Asm-Tutorial

19

http://www.avr-asm-tutorial.net

Testl demonstrates Studio Processor x j a8 - ANALOG_COMPARATOR =
nolist Name Value = Name Walue =
cinclude “mfdef . inc” Program Counter (000002
List Stack Porier 00000 L AD_CONVERTER
: . S ; 41T ANALOG_COMPARA. .
: Register definitions X pointer (<0000 cPU
: ¥ pointer 0000 B @
o5 8 eI N Z pointer 0000 @ EJEEPROM
: P u +1 S5 EXTERNAL_INTERR...
1di rmp,0b11111111 Cycle Courtter 2 ~I|I=2PORTE
out DDRE. rmp Frequency 4 0000 MHz = -
labell - Stop Watch e Port B Data Register (w00
| 1di rmp,0b0O1010101 = Port B Data Directio... (xFF
out PORTE. rmp SEES MOBEEUOEC PotBinput Fins (00
ldi rmp,0b10101010 -l Registers =0
Dl{lt FORTE., rnp ROD D0 4 § Eggﬁ;
rjmp labell RO 000 J ﬂE._. j
q R02 (<00 Name Address Value Bits
: RO3 00 | DDRE 737 xFF AR
Clsers\g.schmidt\Documentshdev\AVR tes RO4 00 =2 PINB D16 (326) =00 COOO0O0O00
Pl \
RO5 =00 =2 PORTE m18(k38) 00 OOOOOOOO
RO& 00

The instruction “Out DDRB,rmp” writes OxFF to a port named DDRB. Now the action is on the 1/O view
window. If you push on PORTB and the small “+” left of it, this window displays the value OxFF in the port
DDRB in two different forms: as OxFF in the upper window portion and as 8 black squares in the lower

window section.

To make it even more black, we push F11 two times and write 0x55 to the port PORTB.

Testl demonstrates Studiaj

As expected, the

_ 4% - [¢: ANALOG_COMPARATOR = port PORTB
‘nolist ;
cinclude "mBdef inc" flome Nohue Changes Its
list #11)AD_CONVERTER content and has
. ANALO CORIDAD A
Fegizter definitions ngPU C]Ein Fenster oder den Schreibtisch erfassenh ::gz: black W?l?tg
def rmp = R16 =+ [E) EEPROM res now
: _ +) S EXTERNAL_INTERR... Squares now.
ldi rmp,0b11111111 ;||EPOHTB | Al’lother two Fll,
out DDEE, rmp - e e
labell: Port B Data Register (55 writing OXAA to
ldi rmp.0b01010101 Port B Data Directio... xFF PORTB, changes
out PORTE. rmp Port B Input Pins 000
| 1di rmp,0b10101010 =9 PORTC the black and
out PORTE. rmp = i
s 428 PORTD white squares to
i the opposite
¢ Ll_‘ MName Address Walue Bits color.
_ - ¢ DORE k17 (37 GFF AN NNEEE
ChUsersyg.schmidt\Documents\devi Al < p g PINE 16 (036) =00 OO0O0O0O0O00
=8 PORTE b1 (2e38) G5 JECOECECE
. All what has been
: Testl demonstrates Studlaj _{g , ANALOG_COMPARATOR = expected, but what
.I}Dlisé o odet oot Name Value happened to port
Clnclude m =L . 1nc .
list #T»AD_CONVERTER PINB? We didn't
' beai et indts T ANALOG_COMPARA write something to
: egl=zter definitions ﬂECF‘U P|NB, but it has
‘def rmp = R16 ﬂgEEPHOM the opposite colors
- -+ W3 EXTERMAL_INTERR... .
1di rmp,0b11111111 |z2 PORTE | than PORTB, just
out DDRE, rmp = . like the colors
labell Port B Data Reaister AR bef in PORTB
1di rmp, 0BO1010101 Port B Data Directio... (xFF elore in :
out PORTE, rmp Port B Input Fins 55 i i
1di rmp.0b10101010 =8 PORTC ? PINB is an input
cut PORTE mp put— il port for external
+| =——— H
nl rinp labs = pins. Because the
] 'IJ Mame Address Value Bits direction ports in
- $ DDREB b7 (k37 ofF NEEEEEE DDRB are set to
Ch\Users\g.schmidt\Documents\deviAl < P gF‘INB D16 (26} css ONCOECOECOE be outputs, PINB
=2 PORTE D18 ((38) A4 HlCOECECIMO follows the pin

status of PORTB,

just one cycle later. Nothing wrong here. If you like to check this, just press F11 several times and you see

that this is correct.

That is our short trip through the simulator software world. The simulator is capable to much more, so it
should be applied extensively in cases of design errors. Visit the different menu items, there is much more
than can be shown here. In the mean time, instead of playing with the simulator, some basic things have to

learned about assembler language, so

put the Studio aside for a while.

Avr-Asm-Tutorial 20 http://www.avr-asm-tutorial.net

What is a register?

Registers are special storages with 8 bits capacity and they look like this:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Note the numeration of these bits: the least significant bit starts with zero (mathematically: 2° = 1).

A register can either store numbers from 0 to 255 (positive number, no negative values), or numbers from -
128 to +127 (whole number with a sign bit, located in bit 7), or a value representing an ASCII-coded
character (e. g. 'A"), or just eight single bits that do not have something to do with each other (e. g. for eight
single flags, used to signal eight different yes/no decisions).

The special character of registers, compared to other storage sites, is that
+ they are connected directly to the central processing unit called the accumulator,

+ they can be used directly in assembler instructions, either as target register for the result or as read
register for a calculation or transfer,

+ operations with their content require only a single instruction word.

There are 32 registers in an AVR. They are originally named RO to R31, but you can choose to name them
to more meaningful ones using a so-called assembler directive. An example:

.DEF MyPreferredRegister = R16

Assembler directives always start with a dot. Instructions or labels do NEVER start with a dot. Note that
assembler directives like this are only meaningful for the assembler but do not produce any code that is
executable in the AVR target chip. The name “MyPreferredRegister” will not show up in the assembled hex
code, and therefore this name cannot be derived from that hex code.

Instead of using the register name R16 we can now use our own name “MyPreferredRegister”, if we want
to use R16 within an instruction. So we write a little bit more text each time we use this register, but we
have an association what might be the content of this register.

Using the instruction line
LDI MyPreferredRegister, 150

which means: load the number 150 immediately to the register R16, LoaD Immediate. This loads a fixed
value or a constant to that register. Following the assembly, or translation of this code into binary or hex,
the program storage written to the AVR chip looks like this:

000000 E906

This will show up in the listing, a file called *.Ist produced by the assembler software, which is a simple text
file. All numbers are in hex format: The first hex number is the address (000000), where the instruction is
written to in the program flash memory of the AVR, the second is the instruction code (E906). E906 tells
the processor three different things in one word, even if you don't see this directly:

e a basic load instruction code, that stands for LDI,
e the target register (R16) where the value 150 is to be written to,
e the value of the constant (150).

Don't be afraid: you don't have to remember this coding because the assembler knows how to translate all
this to finally yield E906 and the AVR executes it.

Within one instruction two different registers can play a role. The easiest instruction of this type is the copy
instruction, MOV. The naming of this instruction MOV deserves a price for the most confusing definition,
because the content of a register cannot be moved (what would be left in a register, if you MOVE its
content to somewhere else?). It should better be named COPY, because it copies the content of one
register to another register. Like this:

.DEF MyPreferredRegister = R16
.DEF AnotherRegister = R15
LDI MyPreferredRegister, 150
MOV AnotherRegister, MyPreferredRegister

The first two lines of this monster program are directives that define the new names of the registers R16
and R15 for the assembler. Again, these lines do not produce any code for the AVR. The instruction lines
with LDI and MOV produce code:

000000 E906
000001 2F01

The instruction write the value 150 into register R16 and copy its content to the target register R15. Very

Avr-Asm-Tutorial 21 http://www.avr-asm-tutorial.net

IMPORTANT NOTICE:
The first register is always the target register where the result is written to!

(This is unfortunately different from what one expects or from how we speak, think and write - left to right.
It is a simple convention, probably inspired by some Asian languages where writing is from right to left.
That was once defined that way to confuse the beginners learning assembler. That is why assembly
language is that complicated.)

Different registers

The beginner might want to write the above instructions like this:
.DEF AnotherRegister = R15
LDI AnotherRegister, 150

And: you lost. Only the registers from R16 to R31 load a constant immediately with the LDI instruction, RO
to R15 don't do that. This restriction is not very fine, but could not be avoided during construction of the
instruction set for the AVRs.

There is one exception from that rule: setting a register to Zero. This instruction
CLR MyPreferredRegister

is valid for all registers.

Besides the LDI instruction you will find this register class restriction with the following additional
instructions:

« ANDI Rx,K ; Bit-And of register Rx with a constant value K,
+ CBR Rx,M ; Clear all bits in register Rx that are set to one within the constant mask value M,
« CPI Rx,K ; Compare the content of the register Rx with a constant value K,

« SBCI Rx,K ; Subtract the constant K and the current value of the carry flag from the content of
register Rx and store the result in register Rx,

+ SBR Rx,M; Set all bits in register Rx to one, that are one in the constant mask M,
+ SER Rx ; Set all bits in register Rx to one (equal to LDI Rx,255),

+ SUBI Rx,K ; Subtract the constant K from the content of register Rx and store the result in register
RXx.

In all these instructions the register must be between R16 and R31! If you plan to use these instructions
you should select one of these registers for that operation. It is shorter and easier to program. This is an
additional reason why you should use the directive to define a register's name, because you can easier
change the registers location later on, if required.

Pointer-registers

A very special extra role is defined for the register pairs R27:R26, R29:R28 and R31:R32. The role is so
important that these pairs have extra short names in AVR assembler: X, Y and Z. These short names are
understood by the assembler. These pairs are 16-bit pointer registers, able to point to addresses with max.
16 bit length, e. g. into SRAM locations (X, Y or Z) or into locations in program memory (Z).

Accessing memory locations with pointers

The lower byte of the 16-bit-address is located in the lower register, the higher byte in the upper register.
Both parts have their own names, e.g. the higher byte of Z is named ZH (=R31), the lower Byte is ZL
(=R30). These names are defined within the assembler. Dividing a 16-bit-word constant into its two
different bytes and writing these bytes to a pointer register is done like follows:

.EQU address = RAMEND ; RAMEND is the highest 16-bit address in SRAM, defined in the *def.inc header file,
LDI YH,HIGH(address) ; Load the MSB of address
LDI YL,LOW(address) ; Load the LSB of address

Accesses via pointer registers are programmed with specially designed instructions. Read access is
named LD (LoaD), write access named ST (STore), e. g. with the X-pointer:

Similarly you can use Y and Z for that purpose.

Avr-Asm-Tutorial 22 http://www.avr-asm-tutorial.net

Pointer Sequence Examples

X Read/Write from address X, don't change the pointer LD R1,X or ST X,R1

X+ Read/Write from/to address X, and increment the pointer afterwards by LD R1,X+ or ST X+,R1
one

-X First decrement the pointer by one and read/write from/to the new|LD R1,-X or ST -X,R1

address afterwards

Reading program flash memory with the Z pointer

There is only one instruction for the read access to the program storage space. It is defined for the pointer
pair Z and it is named LPM (Load from Program Memory). The instruction copies the byte at program flash
address Z to the register RO. As the program memory is organized word-wise (one instruction on one
address consists of 16 bits or two bytes or one word) the least significant bit selects the lower or upper
byte (O=lower byte, 1= upper byte). Because of this the original address must be multiplied by 2 and
access is limited to 15-bit or 32 kB program memory. Like this:

LDI ZH,HIGH(2*address)

LDI ZL,L OW(2*address)
LPM

Following this instruction the address must be incremented to point to the next byte in program memory.
As this is used very often a special pointer incrementation instruction has been defined to do this:

ADIW ZL,1
LPM

ADIW means ADd Immediate Word and a maximum of 63 can be added this way. Note that the assembler
expects the lower of the pointer register pair ZL as first parameter. This is somewhat confusing as addition
is done as 16-bit- operation.

The complement instruction, subtracting a constant value of between 0 and 63 from a 16-bit pointer
register is named SBIW, Subtract Immediate Word. (SuBtract Immediate Word). ADIW and SBIW are
possible for the pointer register pairs X, Y and Z and for the register pair R25:R24, that does not have an
extra name and does not allow access to SRAM or program memory locations. R25:R24 is ideal for
handling 16-bit values.

In some later types of AVR the automatic incrementation of Z following the LPM instruction has an extra
instruction, LPM Z+. Please consult the instruction list in the data sheet of your AVR type to see if this
applies to the type you are working with.

Tables in the program flash memory

Now that you know how to read from flash memory you might wish to place a list of constants or a string of
text to the flash and read these. How to insert that table of values in the program memory? This is done
with the assembler directives .DB and .DW. With that you can insert byte wise or word wise lists of values.
Byte wise organized lists look like this:

.DB 123,45,67,89 ; a list of four bytes, written in decimal form
.DB "This is a text. "; a list of byte characters, written as text

You should always place an even number of bytes on each single line. Otherwise the assembler will add a
zero byte at the end, which might be unwanted.

The similar list of words looks like this:
.DW 12345,6789 ; a list of two word constants

Instead of constants you can also place labels (e. g. jump targets) on that list, like that:

Labell:

[... here are some instructions ...]
Label2:

[... here are some more instructions ...]
Table:

.DW Labell,Label? ; a word wise list of labels

w,n

Labels should start in column 1, but have to be ending with a “”. Note that reading the labels from that
table with LPM (and subsequent incrementation of the pointer) first yields the lower byte of the word, then
the upper byte.

Accessing registers with pointers

A very special application for the pointer registers is the access to the registers themselves. The registers
are located in the first 32 bytes of the chip's address space (at address 0x0000 to 0x001F). This access is

Avr-Asm-Tutorial 23 http://www.avr-asm-tutorial.net

only meaningful if you have to copy the register's content to SRAM or EEPROM or read these values from
there back into the registers. More common for the use of pointers is the access to tables with fixed values
in the program memory space. Here is, as an example, a table with 10 different 16-bit values, where the
fifth table value is read to R25:R24:

MyTable:
.DW 0x1234,0x2345,0x3456,0x4568,0x5678 ; The table values, word wise
.DW 0x6789,0x789A,0x89AB,0x9ABC,0xABCD ; organized
Read5: LDl ZH,HIGH(MyTable*2) ; address of table to pointer Z
LDI ZL,LOW(MyTable*2) ; multiplied by 2 for bytewise access
ADIW ZL,10 ; Point to fifth value in table
LPM ; Read least significant byte from program memory
MOV R24,R0 ; Copy LSB to 16-bit register
ADIW ZL,1 ; Point to MSB in program memory
LPM ; Read MSB of table value
MOV R25,R0 ; Copy MSB to 16-bit register

This is only an example. You can calculate the table address in Z from some input value, leading to the
respective table values. Tables can be organized byte- or character-wise, too.

Recommendation for the use of registers

The following recommendations, if followed, decide if you are an effective assembler programmer:
+ Define names for registers with the .DEF directive, never use them with their direct name Rx.
+ If you need pointer access reserve R26 to R31 for that purpose.
+ A 16-bit-counter is best located in R25:R24.

+ If you need to read from the program memory, e. g. fixed tables, reserve Z (R31:R30) and RO for that
purpose.

+ If you plan to have access to single bits within certain registers (e. g. for testing flags), use R16 to
R23 for that purpose.

+ Registers necessary for math are best placed to R1 to R15.
+ If you have more than enough registers available, place all your variables in registers.

« If you get short in registers, place as many variables as necessary to SRAM.

Avr-Asm-Tutorial 24 http://www.avr-asm-tutorial.net

Ports
What is a Port?

Ports in the AVR are gates from the central processing unit to internal and external hard- and software
components. The CPU communicates with these components, reads from them or writes to them, e. g. to
the timers or the parallel ports. The most used port is the flag register, where flags from previous
operations are written to and branching conditions are read from.

There are 64 different ports, which are not physically available in all different AVR types. Depending on the
storage space and other internal hardware the different ports are either available and accessible or not.
Which of the ports can be used in a certain AVR type is listed in the data sheets for the processor type.
Larger ATmega and ATXmega have more than 64 ports, access to the ports beyond #63 is different then
(see below).

Ports have a fixed address, over which the CPU communicates. The address is independent from the type
of AVR. So e.g. the port address of port B is always 0x18 (0x stands for hexadecimal notation, 0x18 is
decimal 24). You don't have to remember these port addresses, they have convenient aliases. These
names are defined in the include files (header files) for the different AVR types, that are provided from the
producer. The include files have a line defining port B's address as follows:

.EQU PORTB, 0x18

So we just have to remember the name of port B, not its location in the I/O space of the chip. The include
file 8515def.inc is involved by the assembler directive

.INCLUDE "C:\Somewhere\8515def.inc"

and the registers of the 8515 are all defined there and easily accessible.

Ports usually are organized as 8-bit numbers, but can also hold up to 8 single bits that don't have much to
do with each other. If these single bits have a meaning they have their own name associated in the include
file, e. g. to enable the manipulation of a single bit. Due to that name convention you don't have to
remember these bit positions. These names are defined in the data sheets and are given in the include file,
too. They are provided here in the port tables.

Write access to ports

As an example the MCU General Control Register, called MCUCR, consists of a number of single control
bits that control the general property of the chip. Here are the details of port MCUCR in the AT90S8515,
taken from the device data book. Other ports look similar.

Bit 7 6 5 4 3 2 1 0

$35 ($55) I SRE SRW SE SM ISC11 ISC10 1ISC01 ISCO00 I MCUCR
Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

It is a port, fully packed with 8 control bits with their own names (ISC00, ISCO01, ...). Those who want to
send their AVR to a deep sleep need to know from the data sheet how to set the respective bits. Like this:

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, 0b00100000
OUT MCUCR, MyPreferredRegister
SLEEP

The Out instruction brings the content of my preferred register, a Sleep-Enable-Bit called SE, to the port
MCUCR. SE enables the AVR to go to sleep, whenever the SLEEP instruction shows up in the code. As
all the other bits of MCUCR are also set by the above instructions and the Sleep Mode bit SM was set to
zero, a mode called half-sleep will result: no further instruction execution will be performed but the chip still
reacts to timer and other hardware interrupts. These external events interrupt the big sleep of the CPU if
they feel they should notify the CPU.

The above formulation is not very transparent, because “0b00100000” is not easy to remember, and no
one sees easily what bit exactly has been set to one by this instruction. So it is a good idea to formulate
the LDl instruction as follows:

LDI MyPreferredRegister, 1<<SE
This formulation tells the assembler to
e take a one (“17),

e to read the bit position of the Sleep Enable bit (‘SE”) from the symbol list, as defined in the header

Avr-Asm-Tutorial 25 http://www.avr-asm-tutorial.net

file 8515def.inc, which yields a value of “5” in that case,
e to shift (“<<”) the “1” five times left (“1<<5"), in steps:
1. initial: 0000.0001,
2. first shift left: 0000.0010,
3. second shift left: 0000.0100, and so on until
4. fifth shift left: 0010.0000.
e to associate this value to MyPreferredRegister and to insert this LDI instruction into the code.

To make it clear again: This shifting is done by the assembler software only, not within the code in the
AVR. It is pure convention to increase the readability of the assembler source text.

How does this change, if you want to set the Sleep Mode bit (“SM”) and the Sleep Enable bit (“SE”) within
the same LDI instruction? SM=1 and SE=1 enables your AVR to react to a SLEEP instruction by going to a
big sleep, so only do this if you understand what the consequences are. The formulation is like this:

LDI MyPreferredRegister, (1<<SM) | (1<<SE)

Now, the assembler first calculates the value of the first bracket, (1<<SM), a “1” shifted four times left
(because SM is 4) and that yields 0001.0000, then calculates the second bracket, (1<<SE), a “1” shifted
five times left (because SE is 5). The “|” between the two brackets means BIT-OR the first and the second
value, each bit one by one. The result of doing this with 0001.0000 and 0010.0000 in that case is
0011.0000, and that is our desired value for the LDI instruction. Even though the formulation

(1<<SM) | (1<<SE)
might, on the first look, not be more transparent than the resulting value
0011.0000

for a beginner, it is easier to understand which bits of MCUCR are intended to be manipulated in this LDI
instruction. Especially if you have to read and understand your code some months later, SM and SE are a
better hint that the Sleep Mode and Enable bits are targeted here. Otherwise you would have to consult the
device's data book much more often.

Read access to ports

Reading a port's content is in most cases possible using the IN instruction. The following sequence

.DEF MyPreferredRegister = R16
IN MyPreferredRegister, MCUCR

reads the bits in port MCUCR to the register named MyPreferredRegister. As many ports have undefined
and unused bits in certain ports, these bits always read back as zeros.

More often than reading all 8 bits of a port one must react to a certain status bit within a port. In that case
we don't need to read the whole port and isolate the relevant bit. Certain instructions provide an
opportunity to execute instructions depending on the level of a certain bit of a port (see the JUMP section).

Read-Modify-Write access to ports

Setting or clearing certain bits of a port, without changing the other port bits, is also possible without
reading and writing the other bits in the port. The two instructions are SBI (Set Bit I/O) and CBI (Clear Bit I/
O). Execution is like this:

.EQU ActiveBit=0 ; The bit that is to be changed
SBI PortB, ActiveBit ; The bit “ActiveBit” will be set to one
CBI PortB, Activebit ; The bit “ActiveBit” will be cleared to zero

These two instructions have a limitation: only ports with an address smaller than 0x20 can be handled,
ports above cannot be accessed that way. Because MCUCR in the above examples is at hex address $38,
the sleep mode and enable bits can't be set or cleared that way. But all the port bits controlling external
pins (PORTx, DDRXx, PINx) are accessible that way.

Memory mapped port access

For the more exotic programmer and the “elephant-like” ATmega and ATXmega (where ATMEL ran out of
accessible port addresses): the ports can also be accessed using SRAM access instructions, e.g. ST and
LD. Just add 0x20 to the port's address (remember: the first 32 addresses are associated to the registers!)
and access the port that way. Like demonstrated here:

.DEF MyPreferredRegister = R16
LDI ZH,HIGH(PORTB+32)
LDI ZL,LOW(PORTB+32)
LD MyPreferredRegister,Z

Avr-Asm-Tutorial 26 http://www.avr-asm-tutorial.net

That only makes sense in certain cases, because it requires more instructions, execution time and
assembler lines, but it is possible. It is also the reason why the first address location of the SRAM is 0x60
or 0x100 in some larger AVR types.

Details of relevant ports in the AVR

The following table holds the most used ports in a “small” AT90S8515. Not all ports are listed here, some
of the MEGA and AT90S4434/8535 types are skipped. If in doubt see the original reference.

Component Port name Port-Register
Accumulator SREG Status Register
Stack SPL/SPH Stackpointer
External SRAM/External Interrupt MCUCR MCU General Control Register
External Interrupts GIMSK Interrupt Mask Register
GIFR Interrupt Flag Register
Timer Interrupts TIMSK Timer Interrupt Mask Register
TIFR Timer Interrupt Flag Register
8-bit Timer 0 TCCRO Timer/Counter 0 Control Register
TCNTO Timer/Counter 0
16-bit Timer 1 TCCR1A Timer/Counter Control Register 1 A
TCCR1B Timer/Counter Control Register 1 B
TCNT1 Timer/Counter 1
OCRI1A Output Compare Register 1 A
OCR1B Output Compare Register 1 B
ICRIL/H Input Capture Register
Watchdog Timer WDTCR Watchdog Timer Control Register
EEPROM Access EEAR EEPROM address Register
EEDR EEPROM Data Register
EECR EEPROM Control Register
Serial Peripheral Interface SPI SPCR Serial Peripheral Control Register
SPSR Serial Peripheral Status Register
SPDR Serial Peripheral Data Register
Serial Communication UART UDR UART Data Register
USR UART Status Register
UCR UART Control Register
UBRR UART Baud Rate Register
Analog Comparator ACSR Analog Comparator Control and Status Register
I/0-Ports PORTx Port Output Register
DDRXx Port Direction Register
PINX Port Input Register

The status register as the most used port

By far the most often used port is the status register with its 8 bits. Usually access to this port is only by
automatic setting and clearing bits by the CPU or accumulator, some access is by reading or branching on
certain bits in that port, in a few cases it is possible to manipulate these bits directly (using the assembler
instructions SEx or CLx, where x is the bit abbreviation). Most of these bits are set or cleared by the
accumulator through bit-test, compare- or calculation-operations.

The most used bits are:
e Z:If setto one, the previous instruction yielded a zero result.
e C: If set to one, the previous instruction caused a carry of the most significant bit.

The following list has all assembler instructions that set or clear status bits depending on the result of the
previous instruction execution.

Avr-Asm-Tutorial 27 http://www.avr-asm-tutorial.net

Bit Calculation Logic Compare Bits Shift Other
Z ADD, ADC, ADIW, DEC, AND, ANDI, OR, CP,CPC, BCLR Z, ASR, LSL, CLR
INC, SUB, SUBI, SBC, ORI, EOR, COM, CPI BSET Z, CLZ, LSR, ROL,
SBCI, SBIW NEG, SBR, CBR SEZ, TST ROR
C ADD, ADC, ADIW, SUB, COM, NEG CP, CPC, BCLRGC(, ASR, LSL, -
SUBI, SBC, SBCI, SBIW CPI BSET C, LSR, ROL,
CLC, SEC ROR
N |ADD, ADC, ADIW, DEC, AND, ANDI, OR, CP,CPC, BCLRN, ASR, LSL, CLR
INC, SUB, SUBI, SBC, ORI, EOR, COM, CPI BSET N, LSR, ROL,
SBCI, SBIW NEG, SBR, CBR CLN, SEN, ROR
TST
V |ADD, ADC, ADIW, DEC, AND, ANDI, OR, CP,CPC, BCLRYV, ASR, LSL, CLR
INC, SUB, SUBI, SBC, ORI, EOR, COM, CPI BSET YV, CLV, LSR, ROL,
SBCI, SBIW NEG, SBR, CBR SEV, TST ROR
S SBIW - - BCLR S, - -
BSET S, CLS,
SES
H |ADD, ADC, SUB, SUBI, NEG CP, CPC, BCLRH, - -
SBC, SBCI CPI BSET H,
CLH, SEH
T - - - BCLR T, - -
BSET T, BST,
CLT, SET
- - - BCLR I, BSET - RETI
I, CLI, SEI

Port details

Port details of the most common ports are shown in an extra table (see annex).

Avr-Asm-Tutorial 28 http://www.avr-asm-tutorial.net

SRAM
Using SRAM in AVR assembler language

Nearly all AVR-types have static RAM (SRAM) on board (only very few old devices don't). Only very
simple assembler programs can avoid using this memory space by putting all necessary information into
registers. If you run out of registers you should be able to program the SRAM to utilize more space.

What is SRAM?

SRAM are memories that are not directly accessible by the central processing unit (Arithmetic and Logical
Unit ALU, sometimes called
accumulator) like the registers

Recheneinheit Register SRAM are. If you access these

—E7 : memory locations you usually

 —= | Rz - : use a register as interim

¥ o storage. In the example

ALU ES displayed here a value in
BB . .

RT YT SRAM will be copied to the

register R2 (1st instruction), a
calculation with the value in R3
is made and the result is

Rzlg writen to R3 (second
igg ; instruction). After that this value

is written back to the same
SRAM location (instruction 3,
not shown here).

So it is clear that operations with values stored in the SRAM are slower to perform than those using
registers alone. On the other hand: even the smallest AVR types have 128 bytes of SRAM available, much
more than the 32 registers can hold.

The types from the old AT90S8515 upwards offer the additional opportunity to connect additional external
RAM, expanding the internal 512 bytes. From the assembler point-of-view, external SRAM is accessed like
internal SRAM. No extra instructions must be learned for accessing that external SRAM.

For what purposes can | use SRAM?

Besides simple storage of values, SRAM offers additional opportunities for its use. Not only access with
fixed addresses is possible, but also the use of pointers, so that floating access to subsequent locations in
SRAM can be programmed. This way you can build up ring buffers for interim storage of values or
calculated (variable) tables. This is not very often used with registers, because they are too few and prefer
fixed access.

Even more relative is the access using an offset to a fixed starting address in one of the pointer registers.
In that case a fixed address is stored in a pointer register, a constant value is added to this address and
read/write access is made to that address with an offset. With that kind of access, tables are very more
effective.

But the most relevant use for SRAM is the so-called stack. You can push values (variables) to that stack.
Be it the content of a register, that is temporarily needed for another purpose. Be it a return address prior to
calling a subroutine, or the return address prior to a hardware-triggered interrupt.

How to use SRAM?

Direct addressing

To copy a value to a memory location in SRAM you have to define the address. The SRAM addresses you
can use reach from the start address (very often 0x0060 in smaller AVRs, 0x0100 in larger ATmega) to the
end of the physical SRAM on the chip (in the AT90S8515 the highest accessible internal SRAM location is
0x025F, see the device data sheet of your AVR type for more details on this).

With the instruction
STS 0x0060, R1

the content of register R1 is copied to the first SRAM location in address 0x0060. With
LDS R1, 0x0060

the SRAM content at address 0x0060 is copied to the register. This is the direct access with an address

Avr-Asm-Tutorial 29 http://www.avr-asm-tutorial.net

that has to be defined by the programmer.

The symbols defined in the *def.inc include file, SRAM_START and RAMEND, allow to place your
variables within the SRAM space. So it is better to use these definitions to access the 15" memory byte,
like this:

LDS R1,SRAM_START+15

Symbolic names can be used to avoid handling fixed addresses, that require a lot of work, if you later want
to change the structure of your data in the SRAM. These names are easier to handle than hex numbers, so
give that address a name like:

.EQU MyPreferredStorageCell = SRAM_START
STS MyPreferredStorageCell, R1

Yes, it isn't shorter, but easier to remember. Use whatever name that you find to be convenient.

Pointer addressing

Another kind of access to SRAM is the use of pointers. You need two registers for that purpose, that hold
the 16-bit address of the location. As we learned in the Pointer-Register-Division, pointer registers are the
register pairs X (XH:XL, R27:R26), Y (YH:YL, R29:R28) and Z (ZH:ZL, R31:R30). They allow access to the
location they point to directly (e. g. with ST X, R1), after prior decrementing the address by one (e. g. ST
-X, R1) or with subsequent auto-incrementation of the address (e. g. ST X+, R1). A complete access to

three cells in a row looks like this:
.EQU MyPreferredStorageCell = SRAM_START
.DEF MyPreferredRegister = R1
.DEF AnotherRegister = R2
.DEF AndYetAnotherRegister = R3
LDI XH, HIGH(MyPreferredStorageCell)
LDI XL, LOW(MyPreferredStorageCell)
LD MyPreferredRegister, X+
LD AnotherRegister, X+
LD AndYetAnotherRegister, X

Easy to operate, those pointers. And as easy as in other languages than assembler, that claim to be easier
to learn.

Pointer with offset

The third construction is a little bit more exotic and only experienced programmers use this in certain
cases. Let's assume we very often in our program need to access three consecutive SRAM locations. Let's
further assume that we have a spare pointer register pair, so we can afford to use it exclusively for our
purpose. If we would use the ST/LD instructions we always have to change the pointer if we access
another location of the three. Not very convenient.

To avoid this, and to confuse the beginner, the access with offset was invented. During that access the
register value isn't changed. The address is calculated by temporarily adding the fixed offset. In the above
example the access to location 0x0062 would look like this. First, the pointer register is set to our central
location SRAM_START:

.EQU MyPreferredStorageCell = SRAM_START
.DEF MyPreferredRegister = R1
LDI YH, HIGH(MyPreferredStorageCell)
LDI YL, LOW(MyPreferredStorageCell)

Somewhere later in the program I'd like to write to cell 2 above SRAM_START:
STD Y+2, MyPreferredRegister

The corresponding instruction for reading from SRAM with an offset
LDD MyPreferredRegister, Y+2

is also possible.

Note that the 2 is not really added to Y, just temporarily during the execution of this instruction. To confuse
you further, this can only be done with the Y- and Z-register-pair, not with the X-pointer!

Of about 100 cases, the use of this opportunity is more effective in one single case. So don't care if you
don't understand this in detail. It is only for experts, and only necessary in a few cases.

That's it with the SRAM, but wait; the most relevant use as stack is still to be learned.

Use of SRAM as stack

The most common use of SRAM is its use as stack. The stack is a tower of wooden blocks. Each

Avr-Asm-Tutorial 30 http://www.avr-asm-tutorial.net

additional block goes onto the top of the tower, each recall of a value removes the most upper block from
the tower. Removal of blocks from the base or from any lower portion of the tower is too complicated and
confuses your whole tower, so never try this. This structure is called Last-In-First-Out (LIFO) or easier: the
last to go on top will be the first coming down from the top.

Defining SRAM as stack

To use SRAM as stack requires the setting of the stack pointer first. The stack pointer is a 16-bit-pointer,
accessible like a port. The double register is named SPH:SPL. SPH holds the most significant address
byte, SPL the least significant. This is only true, if the AVR type has more than 256 byte SRAM. If not, SPH
is not necessary, is undefined, and must not and cannot be used. We assume we have more than 256
bytes SRAM in the following examples.

To construct the stack, the stack pointer is loaded with the highest available SRAM address. (In our case
the tower grows downwards, towards lower addresses, just for historic reasons and to confuse the
beginner!).

.DEF MyPreferredRegister = R16
LDI MyPreferredRegister, HHGH(RAMEND) ; Upper byte
OUT SPH,MyPreferredRegister ; to stack pointer
LDI MyPreferredRegister, LOW(RAMEND) ; Lower byte
OUT SPL,MyPreferredRegister ; to stack pointer

The value RAMEND is, of course, specific for the processor type. It is defined in the INCLUDE file for the
processor type. The file 8515def.inc has the line:
.equ RAMEND =$25F ; Last On-Chip SRAM Location

The file 8515def.inc is included with the assembler directive
.INCLUDE "C:\somewhere\8515def.inc"

at the beginning of our assembler source code.

So we defined the stack now, and we don't have to care about the stack pointer any more, because
manipulations of that pointer are mostly automatic.

Use of the stack

Using the stack is easy. The content of registers are pushed onto the stack like this:
PUSH MyPreferredRegister ; Throw that value on top of the stack
Where that value goes to is totally uninteresting. That the stack pointer was decremented after that push,
we don't have to care. If we need the content again, we just add the following instruction:
POP MyPreferredRegister ; Read back the value from the top of the stack
With POP we just get the value that was last pushed on top of the stack. Pushing and popping registers
makes sense, if
+ the content is again needed some lines of the code later,
« all registers are in use, and if
+ no other opportunity exists to store that value somewhere else.

If these conditions are not given, the use of the stack for saving registers is useless and just wastes
processor time.

More sense makes the use of the stack in subroutines, where you have to return to the program location
that called the routine. In that case the calling program code pushes the return address (the current
program counter value) onto the stack and temporarily jumps to the subroutine. After its execution the
subroutine pops the return address from the stack and loads it back into the program counter. Program
execution is continued exactly one instruction behind the instruction, where the call happened:

RCALL Somewhat ; Jump to the label “somewhat:”
[...] here we will later continue with the program.

Here the jump to the label “somewhat.” somewhere in the program code,

Somewhat: ; this is the jump address

[...] Here we do something

[...] and we are finished and want to jump back to the calling location:
RET

During execution of the RCALL instruction the already incremented program counter, a 16-bit-address, is
pushed onto the stack, using two pushes (the LSB and the MSB). By reaching the RET instruction, the
content of the previous program counter is reloaded with two pops and execution continues there.

You don't need to care about the address of the stack, where the counter is loaded to. This address is

Avr-Asm-Tutorial 31 http://www.avr-asm-tutorial.net

automatically generated. Even if you call a subroutine within that subroutine the stack function is fine. This
just packs two return addresses on top of the stack, the nested subroutine removes the first one, the
calling subroutine the remaining one. As long as there is enough SRAM, everything is fine.

Servicing hardware interrupts isn't possible without the stack. Interrupts stop the normal execution of the
program, wherever the program currently is. After execution of a specific service routine as a reaction to
that interrupt program execution must return to the previous location, to before the interrupt occurred. This
would not be possible if the stack is not able to store the return address.

The enormous advances of having a stack for interrupts are the reason, why even the smallest AVRs
without having SRAM have at least a very small hardware stack.

Bugs with the stack operation
For the beginner there are a lot of possible bugs, if you first learn to use stack.

Very clever is the use of the stack without first setting the stack pointer. Because this pointer is set to zero
at program start, the pointer points to the location 0x0000, where register RO is located. Pushing a byte
results in a write to that register, overwriting its previous content. An additional push to the stack writes to
O0xFFFF, an undefined position (if you don't have external SRAM there). A RCALL and RET will return to a
strange address in program memory. Be sure: there is no warning, like a window popping up saying
something like ,lllegal access to memory location xxxx".

Another opportunity to construct bugs is to forget to pop a previously pushed value, or popping a value
without pushing one first.

In a very few cases the stack overflows to below the first SRAM location. This happens in case of a never-
ending recursive call. After reaching the lowest SRAM location the next pushes write to the ports (0x005F
down to 0x0020), then to the registers (0x001F to 0x0000). Funny and unpredictable things happen with
the chip hardware, if this goes on. Avoid this bug, it can even destroy your external hardware!

Avr-Asm-Tutorial 32 http://www.avr-asm-tutorial.net

Jumping and Branching

Here we discuss all instructions that control the sequential execution of a program. It starts with the starting
sequence on power-up of the processor, continues with jumps, interrupts, etc.

Controlling sequential execution of the program

What happens during a reset?

When the power supply voltage of an AVR rises and the processor starts its work, the hardware triggers a
reset sequence. The ports are set to their initial values, as defined in the device data sheet. The counter
for the program steps will be set to zero. At this address the execution always starts. Here we have to have
our first word of code. But not only during power-up this address is activated:

« During an external reset on the reset pin of the device a restart is executed.

« If the Watchdog counter reaches its maximum count, a reset is initiated. A watchdog timer is an
internal clock that must be reseted from time to time by the program, otherwise it restarts the
processor.

+ You can call reset by a direct jump to that address (see the jump section below).

The third case is not a real reset, because the automatic resetting of register- and port-values to a well-
defined default value is not executed. So, forget that for now.

The second option, the watchdog reset, must first be enabled by the program. It is disabled by default.
Enabling requires write instructions to the watchdog's port. Setting the watchdog counter back to zero
requires the execution of the instruction

WDR

to avoid a reset.

After execution of a reset, with setting registers and ports to default values, the code at address 0000 is
word wise read to the execution part of the processor and is executed. During that execution the program
counter is already incremented by one and the next word of code is already read to the code fetch buffer
(Fetch during Execution). If the executed instruction does not require a jump to another location in the
program the next instruction is executed immediately. That is why the AVRs execute extremely fast, each
clock cycle executes one instruction (if no jumps occur).

The first instruction of an executable is always located at address 0000. To tell the compiler (assembler
program) that our source code starts now and here, a special directive can be placed at the beginning,
before the first code in the source is written:

.CSEG
.ORG 0000

The first directive, .CSEG, lets the compiler switch his output to the code section. All following is translated
as code and is later written to the program flash memory section of the processor. Another target segment
would be the EEPROM section of the chip, where you also can write bytes or words to.

.ESEG

The third segment is the SRAM section of the chip.
.DSEG

Other than with EEPROM content, where content is really going to the EEPROM during programming of
the chip, the DSEG segment content is not programmed to the chip. There is no opportunity to burn any
SRAM content. So the .DSEG is only used for correct label calculation during the assembly process. An
example:

.DSEG ; The following are label definitions within the SRAM segment
MyFirstVariablelsAByte:

.BYTE 1, the DSEG-Pointer moves one byte upwards
MySecondVariablelsAWord:

.BYTE 2 ; the DSEG-Pointer moves two bytes upwards
MyThirdVariablelsAFieldForABuffer:

.BYTE 32; the DSEG-Pointer moves 32 bytes upwards

So, only three labels are defined within the assembler, no content is produced.

The ORG directive within the code segment, .ORG, above stands for the word “origin” and manipulates the
address within the code segment, where assembled words go to. As our program always starts at 0x0000
the CSEG/ORG directives are trivial, you can skip these without getting into an error. We could start at
0x0100, but that makes no real sense as the processor starts execution at 0000. If you want to place a
table exactly to a certain location of the code segment, you can use ORG. But be careful with that: Only
jump forward with .ORG, never backwards. And be aware that the flash memory space that you skipped in

Avr-Asm-Tutorial 33 http://www.avr-asm-tutorial.net

between your current code location and the one you forced with .ORG is always filled with the instruction
word OxFFFF. This instruction does nothing, just goes to the next instruction. So be sure your execution
never jumps into such undefined space in between.

If on the beginning of your code section you want to set a clear sign within your code, after first defining a
lot of other things with .DEF- and .EQU-directives, use the CSEG/ORG sequence as a signal for yourself,
even though it might not be necessary to do that.

As the first code word is always at address zero, this location is also called the reset vector. Following the
reset vector the next positions in the program space, addresses 0x0001, 0x0002 etc., are interrupt vectors.
These are the positions where the execution jumps to if an external or internal interrupt has been enabled
and occurs. These positions called vectors are specific for each processor type and depend on the internal
hardware available (see below). The instructions to react to such an interrupt have to be placed to the
proper vector location. If you use interrupts, the first code, at the reset vector, must be a jump instruction,
to jump over the other vectors. Each interrupt vector, that is planned to be enabled, must hold a jump
instruction to the respective interrupt service routine. If the vector is not used, a dummy instruction like
RETI (RETurn from Interrupt) is best placed here. The typical program sequence at the beginning is like
follows:

.CSEG
.ORG 0000
RJMP Start ; the reset vector
RJMP IntServRoutl ; the interrupt service routine for the first interrupt
RETI ; a dummy for an unused interrupt
RJMP IntServRout3 ; the interrupt service routine for the third interrupt
[...] here we place all the other interrupt vector instructions

[...] and here is a good place for the interrupt service routines themselves
IntServRoutl:
[...] Code of the first int service routine
RETI ; end of service routine 1
IntServRout2:
[...] Code of the third int service routine
RETI ; end of service routine 2
[...] other code
Start: ; This here is the program start
[...] Here we place our main program

The instruction “RJMP Start” results in a jump to the label Start;, located some lines below. Remember,
labels always end with a “”. Labels, that don't fulfill these conditions are not taken for serious, but
interpreted as instructions. Missing labels result in an error message ("Undefined label"), and compilation

is interrupted.

Linear program execution and branches

Program execution is always linear, if nothing changes the sequential execution. These changes are the
execution of an interrupt or of branching instructions.

Branching

Branching is very often depending on some condition, called conditional branching. As an example we
assume we want to construct a 32-bit-counter using the registers R1 to R4. The least significant byte in R1
is incremented by one. If the register overflows during that operation (255 + 1 = 0), we have to increment
R2 similarly. If R2 overflows, we have to increment R3, and so on.

Incrementation by one is done with the instruction INC. If an overflow occurs during that execution of
INC R1, the zero bit in the status register is set to one (the result of the operation is zero). The carry bit in
the status register, as usually set when something overflows, is not changed during an INC. This is not to
confuse the beginner, but carry can be used for other purposes instead. The Zero-Bit or Zero-flag in this
case is enough to detect an overflow. If no overflow occurs we can just leave the counting sequence.

If the Zero-bit is set, we must execute additional incrementation of the next upper register. To confuse the
beginner the branching instruction, that we have to use, is not named BRNZ but BRNE (BRanch if Not
Equal). A matter of taste ...

The whole count sequence of the 32-bit-counter should then look like this:

INC R1; increase content of register R1
BRNE GoOn32 ; if not zero, branch to GoOn32:
INC R2 ; increase content of register R2
BRNE GoOn32
INC R3
BRNE GoOn32
INC R4
GoOn32:

So that's about it. An easy thing. The opposite condition to BRNE is BREQ or BRanch EQual.

Avr-Asm-Tutorial 34 http://www.avr-asm-tutorial.net

Which of the status bits, also called processor flags, are changed during execution of an instruction is
listed in instruction code tables, see the List of Instructions. Similarly to the Zero-bit you can use the other
status bits like that:

BRCC label/BRCS label; Carry-flag 0 (BRCC) or 1 (BRCS)
BRSH label; Equal or greater

BRLO label; Smaller

BRMI label: Minus

BRPL label; Plus

BRGE label; Greater or equal (with sign bit)

BRLT label; Smaller (with sign bit)

BRHC label/BRHS label; Half overflow flag 0 or 1
BRTC label/BRTS label; T-Bit 0 or 1

BRVC label/BRVS label; Two's complement flag 0 or 1
BRIE label/BRID label; Interrupt enabled or disabled

to react to the different conditions. Branching always occurs if the condition is met. Don't be afraid, most of
these instructions are rarely used. For the beginner only Zero and Carry are relevant.

Timing during program execution

Like mentioned above the required time to execute one instruction is equal to the processor's clock cycle.
If the processor runs on a 4 MHz clock frequency then one instruction requires 1/4 ps or 250 ns, at 10 MHz
clock only 100 ns. The required time is as exact as the internal or external or xtal clock is. If you need
exact timing an AVR is the optimal solution for your problem. Note that there are a few instructions that
require two or more cycles, e. g. the branching instructions (if branching occurs) or the SRAM read/write
sequence. See the instruction table for details.

To define exact timing there must be an opportunity that does nothing else than delay program execution.
You might use other instructions that do nothing, but more clever is the use of the no-operation instruction
NOP. This is the most useless instruction:

NOP

This instruction does nothing but wasting processor time. At 4 MHz clock we need just four of these
instructions to waste 1 ps. No other hidden meanings here on the NOP instruction. For a signal generator
with 1 kHz we don't need to add 4000 such instructions to our source code, but we use a software counter
and some branching instructions. With these we construct a loop that executes for a certain number of
times and are exactly delayed. A counter could be a 8-bit-register that is decremented with the DEC
instruction, e. g. like this:

CLR R1 ; one clock cycle
Count:
DEC R1 ; one clock cycle
BRNE Count ; two for branching, one for not branching

This sequence wastes (1) + (255*2) + (1*3) = 514 clock cycles or 128.5 ps at 4 MHz.

16-bit counting can also be used to delay exactly, like this

LDI ZH,HIGH(65535) ; one clock cycle
LDI ZL,LOW(65535) ; one clock cycle
Count:
SBIW ZL,1 ; two clock cycles
BRNE Count ; two for branching, one for not branching

This sequence wastes (1+1) + (65534*4) + (1*3) = 262,141 clock cycles or 65,535.25 ps at 4 MHz.

If you use more registers to construct nested counters you can reach any delay. And the delay is as exact
as your clock source is, even without a hardware timer.

Macros and program execution

Very often you have to write identical or similar code sequences on different occasions in your source
code. If you don't want to write it once and jump to it via a subroutine call you can use a macro to avoid
getting tired writing the same sequence several times. Macros are code sequences, designed and tested
once, and inserted into the code by its macro name. As an example we assume we need to delay program
execution several times by 1 ps at 4 MHz clock. Then we define a macro somewhere in the source:

.MACRO Delay1
NOP
NOP
NOP
NOP

.ENDMACRO

This definition of the macro does not yet produce any code, it is silent. Code is produced only if you call
that macro by its name:

Avr-Asm-Tutorial 35 http://www.avr-asm-tutorial.net

[...] somewhere in the source code
Delay1
[...] code goes on here

This results in four NOP instructions inserted to the code at that location. An additional “Delayl” inserts
additional four NOP instructions.

If your macro has longer code sequences, or if you are short in code storage space, you should avoid the
use of macros and use subroutines instead.

By calling a macro by its name you can add some parameters to manipulate the produced code. But this is
more than a beginner has to know about macros.

Subroutines

In contrary to macros a subroutine does save program storage space. The respective sequence is only
once stored in the code and is called from whatever part of the code. To ensure continued execution of the
sequence following the subroutine call you need to return to the caller. For a delay of 10 cycles you need
to write this subroutine:

Delay10: ; the call of the subroutine requires some cycles
NOP ; delay one cycle
NOP ; delay one cycle
NOP ; delay one cycle
RET ; return to the caller

Subroutines always start with a label, otherwise you would not be able to jump to it, here named
“Delay10:”. Three NOPs follow and a RET instruction. If you count the necessary cycles you just find 7
cycles (3 for the NOPs, 4 for the RET). The missing 3 are for calling that routine:

[...] somewhere in the source code:
RCALL Delay10
[...] further on with the source code

RCALL is a relative call. The call is coded as relative jump, the relative distance from the calling routine to
the subroutine is calculated by the compiler. The RET instruction jumps back to the calling routine. Note
that before you use subroutine calls you must set the stack pointer (see Stack), because the return
address must be packed on top of the stack during the RCALL instruction.

If you want to jump directly to somewhere else in the code you have to use the jump instruction:

[...] somewhere in the source code
RJMP Delay10

Return:

[...] further on with source code

Note that RJMP is also a relative jump instruction with limited distance. Only ATmega AVRs have a JMP
instruction allowing jumps over the complete flash memory space, but these instructions require two words
and more instruction time than RJMP, so avoid it if possible.

The routine that you jumped to can not use the RET instruction in that case, because RJMP does not
place the current execution address to the stack. To return back to the calling location in the source
requires to add another label and the called routine to jump back to this label. Jumping like this is not like
calling a subroutine because you can't call this routine from different locations in the code.

RCALL and RJMP are unconditioned branches. To jump to another location, depending on some
condition, you have to combine these with branching instructions. Conditioned calling of a subroutine can
best be done with the following (confusing) instructions. If you want to call a subroutine depending on a
certain bit in a register use the following sequence:

SBRC R1,7 ; Skip the next instruction if bit 7 in register 1 is 0
RCALL UpLabel ; Call that subroutine

SBRC reads ,Skip next instruction if Bit 7 in Register R1 is Clear (=Zero)“. The RCALL instruction to
“UpLabel:” is only executed if bit 7 in register R1 is 1, because the next instruction is skipped if it would be
0. If you like to call the subroutine in case this bit is 0 then you use the corresponding instruction SBRS.
The instruction following SBRS/SBRC can be a single word or double word instruction, the processor
knows how far he has to jump over it. Note that execution times are different then. To jump over more than
one following instruction these instructions cannot be used.

If you have to skip an instruction in case two registers have the same value you can use the following
exotic instruction:

CPSE R1,R2 ; Compare R1 and R2, skip next instruction if equal
RCALL SomeSubroutine ; Call SomeSubroutine

A rarely used instruction, forget it for the beginning. If you like to skip the following instruction depending
on a certain bit in a port use the following instructions SBIC and SBIS. That reads “Skip if the Bit in I/o
space is Clear (or Set)”, like this:

Avr-Asm-Tutorial 36 http://www.avr-asm-tutorial.net

SBIC PINB,0 ; Skip next instruction if Bit 0 on input port B is 0
RJMP ATarget ; Jump to the label ATarget

The RJMP-instruction is only executed if bit 0 in port B is high. This is something confusing for the
beginner. The access to the port bits is limited to the lower half of ports, the upper 32 ports are not usable
here.

Now, another exotic application for the expert. Skip this if you are a beginner. Assume we have a bit switch
with 4 switches connected to port B. Depending on the state of these 4 bits we would like to jump to 16
different locations in the code. Now we can read the port and use several branching instructions to find out,
where we have to jump to today. As alternative you can write a table holding the 16 addresses, like this:

MyTab:
RJMP Routinel
RJMP Routine2

[..]
RJMP Routinel6

In our code we copy that address of the table to the Z pointer register:

LDI ZH,HIGH(MyTab)
LDI ZL,L OW(MyTab)

and add the current state of the port B (in R16) to this address.

ADD ZL,R16

BRCC NoOverflow

INC ZH
NoOverflow:

Now we can jump to this location in the table, either for calling a subroutine:

ICALL ; call the subroutine which address is in Z

or as a jump with no way back:
[JMP ; jump to address in Z

The processor loads the content of the Z register pair into its program counter and continues operation
there. More clever than branching over and over?

Interrupts and program execution

Very often we have to react on hardware conditions or other events. An example is a change on an input
pin. You can program such a reaction by writing a loop, asking whether a change on the pin has occurred.
This method is called polling, its like a bee running around in circles searching for new flowers. If there are
no other things to do and reaction time does not matter, you can do this with the processor. If you have to
detect short pulses of less than a ps duration this method is useless. In that case you need to program an
interrupt.

An interrupt is triggered by some hardware conditions. All hardware interrupts are disabled at reset time by
default, so the condition has to be enabled first. The respective port bits enabling the component's interrupt
ability are set first. The processor has a bit in its status register enabling him to respond to the interrupt of
all components, the Interrupt Enable Flag. Enabling the general response to interrupts requires the
following instruction:

SEI ; Set Int Enable Bit

Each single interrupt requires additional port manipulation to be enabled.

If the interrupting condition occurs, e. g. a change on the port bit, the processor pushes the actual program
counter to the stack (which must be enabled first! See initiation of the stackpointer in the Stack section of
the SRAM description). Without that, the processor wouldn't be able to return back to the location, where
the interrupt occurred (which could be any time and anywhere within program execution). After that,
processing jumps to the predefined location, the interrupt vector, and executes the instructions there.
Usually the instruction there is a JUMP instruction to the interrupt service routine, located somewhere in
the code. The interrupt vector is a processor-specific location and depending from the hardware
component and the condition that leads to the interrupt. The more hardware components and the more
conditions, the more vectors. The different vectors for some older AVR types are listed in the following
table. (The first vector isn't an interrupt but the reset vector, performing no stack operation!)

Name Interrupt Vector Address Triggered by
2313 2323 8515
RESET 0000 0000 0000 Hardware Reset, Power-On-Reset, Watchdog Reset
INTO 0001 0001 0001 Level change on the external INTO pin

INT1 0002 - 0002 Level change on the external INT1 pin

Avr-Asm-Tutorial 37 http://www.avr-asm-tutorial.net

Name Interrupt Vector Address Triggered by
2313 2323 8515

TIMER1ICAPT 0003 - 0003 Capture event on Timer/Counter 1
TIMER1ICOMPA - - 0004 Timer/Counter 1 = Compare value A
TIMER1 COMPB - - 0005 Timer/Counter 1 = Compare value B
TIMER1 COMP1 0004 - - Timer/Counter 1 = Compare value 1
TIMER1 OVF 0005 - 0006 Timer/Counter 1 Overflow
TIMERO OVF 0006 0002 0007 Timer/Counter 0 Overflow
SPISTC - - 0008 Serial Transmit Complete
UART TX 0007 - 0009 UART char in receive buffer available
UART UDRE 0008 - 000A UART transmitter ran empty
UART TX 0009 - 000B UART All Sent
ANA_COMP - - 000C Analog Comparator

Note that the capability to react to events is very different for the different types. The addresses are
sequential, but not identical for different types. Consult the data sheet for each AVR type.

The higher a vector in the list the higher is its priority. If two or more components have an interrupt
condition pending at the same time, the up most vector with the lower vector address wins. The lower int
has to wait until the upper int was served. To disable lower ints from interrupting during the execution of its
service routine the first executed int disables the processor's I-flag. The service routine must re-enable this
flag after it is done with its job.

For re-setting the | status bit there are two ways. The service routine can end with the instruction:
RETI

This return from the int routine restores the I-bit after the return address has been loaded to the program
counter.

The second way is to enable the I-bit by the instruction

SEI ; Set Interrupt Enabled
RET ; Return

This is not the same as the RETI, because subsequent interrupts are already enabled before the program
counter is re-loaded with the return address. If another int is pending, its execution is already starting
before the return address is popped from the stack. Two or more nested addresses remain on the stack.
No bug is to be expected, but it is an unnecessary risk doing that. So just use the RETI instruction to avoid
this unnecessary flow to the stack.

An Int-vector can only hold a relative jump instruction to the service routine. If a certain interrupt is not used
or undefined we can just put a RETI instruction there, in case an erroneously enabled int happens before
we wrote an interrupt service routine. In a few cases it is absolutely necessary to react to these false ints.
That is the case if the execution of the respective service routine does not automatically reset the interrupt
condition flag of the peripheral. In that case a simple RETI would reset the otherwise never-ending
interrupts. This is the case with some of the UART interrupts.

As, after an interrupt is under service, further execution of lower-priority interrupts are blocked, all int
service routines should be as short as possible. If you need to have a longer routine to serve the int, use
one of the two following methods. The first is to allow ints by SEI within the service routine, whenever
you're done with the most urgent tasks. This is not very clever. More convenient is to perform the urgent
tasks, setting a flag somewhere in a register for the slower reaction portions and return from the int
immediately.

A very serious rule for int service routines is:
The first instruction is always to save the processor status flags in a register or on the stack.

Do this before you use instructions that might change flags in the status flag register. The reason is that
the interrupted main program might just be in a state using the flag for a branch decision, and the int would
just change that flag to another state. Funny things would happen from time to time. The last instruction
before the RETI therefore is to copy the saved flags from the register back to status port or to pop the
status register content from the stack and restore its original content. The following shows examples how
to do that:

Saving in a register: Saving on the stack:

Isr: Isr:
IN R15,SREG ; save flags PUSH R15 ; save register on stack
[... more instructions...] IN R15, SREG

Avr-Asm-Tutorial 38 http://www.avr-asm-tutorial.net

[...more instructions...]

OUT SREG,R15 ; restore flags OUT SREG,R15 ; restore flags
POP R15
RETI ; return from interrupt RETI ; return from interrupt

The method on the right is slower, the method on the left requires a register exclusively for that purpose.

Generally: All used registers in a service routine should either be exclusively reserved for that purpose or
saved on stack and restored at the end of the service routine. Never change the content of a register within
an int service routine that is used somewhere else in the normal program without restoring it.

Because of these basic requirements a more sophisticated example for an interrupt service routine here.

.CSEG ; Code-Segment starts here
.ORG 0000 ; Address is zero

R JMP Start ; The reset-vector on Address 0000

RJMP IService ; 0001: first Int-Vector, INTO service routine
[...] here other vectors

Start: ; Here the main program starts
[...] here is enough space for defining the stack and other things

IService: ; Here we start with the Interrupt-Service-Routine
PUSH R16 ; save a register to stack
IN R16,SREG ; read status register
PUSH R16 ; and put on stack

[...] Here the Int-Service-Routine does something and uses R16
POP R16 ; get previous flag register from stack
OUT SREG,R16 ; restore old status
POP R16 ; get previous content of R16 from the stack
RETI ; and return from int

Looks a little bit complicated, but is a prerequisite for using ints without producing serious bugs. Skip
PUSH R16 and POP R16 if you can afford reserving the register for exclusive use within the service
routine. As an interrupt service routine cannot be interrupted (unless you allow interrupts within the
routine), all different int service routines can use the same register.

You understand now, why allowing interrupts within an interrupt service routine, and not at its end with
RETI, is not a good idea?

That's it for the beginner. There are some other things with ints, but this is enough to start with, and not to
confuse you.

Avr-Asm-Tutorial 39 http://www.avr-asm-tutorial.net

Calculations

Here we discuss all necessary instructions for calculating in AVR assembler language. This includes
number systems, setting and clearing bits, shift and rotate, and adding/subtracting/comparing and the
format conversion of numbers.

Number systems in assembler

The following formats of numbers are common in assembler:
« Positive whole numbers (Bytes, Words, Longwords, etc.),
+ Signed whole numbers (Shortints, Integers, Longints, etc.),
+ Binary Coded Digits (BCD),
- Packed BCDs,
+ ASClI-formatted numbers.

If you come from a high-level language: forget pre-defined number formats. Assembler doesn't have that
concept nor its (sometimes frustating) limitations. What you earn is: you are the master of your own format!

Positive whole numbers (bytes, words, etc.)

The smallest whole number to be handled in assembler is a byte with eight bits. This codes numbers
between 0 and 255. Such bytes fit exactly into one register of the MCU. All larger numbers must be based
on this basic format, using more than one register. Two bytes yield a word (range from 0 .. 65,535), three
bytes form a longer word (range from 0 .. 16,777,215) and four bytes form a double word (range from O ..
4,294,967,295).

The single bytes of a word or a double word can be stored in whatever register you prefer. Operations with
these single bytes are programmed byte by byte, so you don't have to put them in a row. In order to form a
row for a double word we could store it like this:

.DEF r16 = dwO0
.DEF r17 = dwl
.DEF r18 = dw2
.DEF r19 = dw3

Registers dw0 to dw3 are in a row, but don't need to be. If we need to initiate this double word at the
beginning of an application (e. g. to 4,000,000), this should look like this:

.EQU dwi = 4000000 ; define the constant
LDI dw0,LOW(dwi) ; The lowest 8 bits to R16
LDI dwl,BYTE2(dwi) ; bits 8 .. 15 to R17
LDI dw2,BYTE3(dwi) ; bits 16 .. 23 to R18
LDI dw3,BYTE4(dwi) ; bits 24 .. 31 to R19

So we have splitted this decimal number, called dwi, to its binary portions BYTE4 to BYTE1 and packed
them into the four byte packages. Now you can calculate with this double word.

Signed numbers (integers)

Sometimes, but in rare cases, you need negative numbers to calculate with. A negative number is defined
by interpreting the most significant bit of a byte as sign bit. If it is 0 the number is positive. If it is 1 the
number is negative. If the number is negative we usually do not store the rest of the number as is, but we
use its inverted value. Inverted means that -1 as a byte integer is not written as 1000.0001 but as
1111.1111 instead. That means: subtract 1 from O (and forget the overflow). The first bit is the sign bit,
signaling that this is a negative number. Why this different format (subtracting the number from 0) is used
is easy to understand: adding -1 (1111.1111) and +1 (0000.0001) yields exactly zero, if you forget the
overflow that occurs during that operation (to the ninth bit).

In one byte the largest integer number to be handled is +127 (binary 01111111), the smallest one is -128
(binary 1,0000000). In other computer languages this number format is called short integer. If you need a
bigger range of values you can add another byte to form a larger integer value, ranging from +32,767 ..
-32,768), four bytes provide a range from +2,147,483,647 .. -2,147,483,648, in other languages called a
Longint or Doublelnt.

Binary Coded Digits, BCD

Positive or signed whole numbers in the formats discussed above use the available space most effectively.
Another, less dense number format, but easier to handle and understand is to store decimal numbers in a
byte for one digit each. The decimal digit is stored in its binary form in a byte. Each digit from 0 .. 9 needs
four bits (binary values 0000 .. 1001), the upper four bits of the byte are always zeros, blowing a lot of hot
air into one byte. For to handle the value 250 we would need at least three bytes, e. g.:

Avr-Asm-Tutorial 40 http://www.avr-asm-tutorial.net

Bit value 128 64 32 16 8 4 2 1
R16, Digit 1 =2 0 0 0 0 0 0 1 0
R17, Digit2 = 5 0 0 1 0 1
R18, Digit3 =0 0 0 0 0 0

sInstructions to use:
LDIR16,2
LDIR17,5
LDIR18,0

You can calculate with these numbers, but this is a bit more complicated in assembler than calculating with
binary values. The advantage of this format is that you can handle as long numbers as you like, as long as
you have enough storage space. The calculations are as precise as you like (if you program AVRs for
banking applications), and you can convert them very easily to character strings.

Packed BCDs

If you pack two decimal digits into one byte you don't loose that much storage space. This method is called
packed binary coded digits. The two parts of a byte are called upper and lower nibble. The upper nibble
usually holds the more significant digit, which has advantages in calculations (special instructions in AVR
assembler language). The decimal number 250 would look like this when formatted as a packed BCD:

Byte Digits Value 8 4 2 1 8 4 2 1
2 4&3 02 0 0 0 0 0 0 1 0
1 2&1 50 0 1 0 1 0 0 0 0

; Instructions for setting:
LDI R17,0x02 ; Upper byte
LDI R16,0x50 ; Lower byte

To set this correct you can use the binary notation (Ob...) or the hexadecimal notation (0x...) to set the
proper bits to their correct nibble position.

Calculating with packed BCDs is a little more complicated compared to the binary form. Format changes to
character strings are nearly as easy as with BCDs. Length of numbers and precision of calculations is only
limited by the storage space.

Numbers in ASCIl-format

Very similar to the unpacked BCD format is to store numbers in ASCII format. The digits 0 to 9 are stored
using their ASCII (ASCIlI = American Standard Code for Information Interchange) representation. ASCII is
a very old format, developed and optimized for teletype writers, unnecessarily very complicated for
computer use (do you know what a char named End Of Transmission EOT meant when it was invented?),
very limited in range for other than US languages (only 7 bits per character), still used in communications
today due to the limited efforts of some operating system programmers to switch to more effective
character systems. This ancient system is only topped by the European 5-bit long teletype character set
called Baudot set or the Morse code, still used by some finger-nervous people.

Within the ASCIl code system the decimal digit O is represented by the number 48 (hex 0x30, binary
0b0011.0000), digit 9 is 57 decimal (hex 0x39, binary 0b0011.1001). ASCII wasn't designed to have these
numbers on the beginning of the code set as there are already instruction chars like the above mentioned
EOT for the teletype. So we still have to add 48 to a BCD (or set bit 4 and 5 to 1) to convert a BCD to
ASCIIl. ASCII formatted numbers need the same storage space like BCDs. Loading 250 to a register set
representing that number would look like this:

LDIR18,2

LDIR17,'5'
LDI R16,0'

The ASCII representation of these characters are written to the registers.

Bit manipulations

To convert a BCD coded digit to its ASCII representation we need to set bit 4 and 5 to a one. In other
words we need to OR the BCD with a constant value of hex 0x30. In assembler this is done like this:

ORI R16,0x30

If we have a register that is already set to hex 0x30 we can use the OR with this register to convert the
BCD:

Avr-Asm-Tutorial 41 http://www.avr-asm-tutorial.net

OR R1,R2

Back from an ASCII character to a BCD is as easy. The instruction
ANDI R16,0x0F

isolates the lower four bits (= the lower nibble). Note that ORI and ANDI are only possible with registers
above R15. If you need to do this, use one of the registers R16 to R31!

If the hex value OxOF is already in register R2, you can AND the ASCII character with this register:
AND R1,R2

The other instructions for manipulating bits in a register are also limited for registers above R15. They
would be formulated like this:

SBR R16,0p00110000 ; Set bits 4 and 5 to one

CBR R16,0p00110000 ; Clear bits 4 and 5 to zero

If one or more bits of a byte have to be inverted you can use the following instruction (which is not possible
for use with a constant):

LDI R16,0b10101010 ; Invert all uneven bits
EOR R1,R16 ; in register R1 and store result in R1

To invert all bits of a byte is called the One's complement:
COM R1

inverts the content in register R1 and replaces zeros by one and vice versa. Different from that is the Two's
complement, which converts a positive signed number to its negative complement (subtracting from zero).
This is done with the instruction

NEG R1

So +1 (decimal: 1) yields -1 (binary 1.1111111), +2 yields -2 (binary 1.1111110), and so on.

Besides the manipulation of the bits in a register, copying a single bit is possible using the so-called T-bit
of the status register. With

BSTR1,0

the T-bit is loaded with a copy of bit 0 in register R1. The T-bit can be set or cleared, and its content can be
copied to any bit in any register:

CLT ; clear T-bit, or
SET ; set T-bit, or
BLD R2,2 ; copy T-bit to register R2, bit 2

Shift and rotate

Shifting and rotating of binary numbers means multiplying and dividing them by 2. Shifting has several sub-
instructions.

Multiplication with 2 is easily done by shifting all bits of a byte one binary digit left and writing a zero to the
least significant bit. This is called logical shift left or LSL. The former bit 7 of the byte will be shifted out to
the carry bit in the status register.

LSL RI1

The inverse division by 2 is the instruction called logical shift right, LSR.
LSR R1

The former bit 7, now shifted to bit 6, is filled with a 0, while the former bit 0 is shifted into the carry bit of
the status register. This carry bit could be used to round up and down (if set, add one to the result).
Example, division by four with rounding:

LSR R1; division by 2

BRCC Div2 ; Jump if no round up

INC R1 ; round up

Div2:
LSR R1; Once again division by 2
BRCC DivE ; Jump if no round up
INCR1 ; Round Up

DIivE:

So, dividing is easy with binaries as long as you divide by multiples of 2.

If signed integers are used the logical shift right would overwrite the sign-bit in bit 7. The instruction
warithmetic shift right* ASR leaves bit 7 untouched and shifts the 7 lower bits, inserting a zero into bit
location 6.

Avr-Asm-Tutorial 42 http://www.avr-asm-tutorial.net

ASRR1

Like with logical shifting the former bit 0 goes to the carry bit in the status register.

What about multiplying a 16-bit word by 2? The most significant bit of the lower byte has to be shifted to
yield the lowest bit of the upper byte. In that step a shift would set the lowest bit to zero, but we need to
shift the carry bit from the previous shift of the lower byte into bit 0 of the upper byte. This is called a rotate.
During rotation the carry bit in the status register is shifted to bit 0, the former bit 7 is shifted to the carry
during rotation.

LSL R1; Logical Shift Left of the lower byte
ROL R2 ; ROtate Left of the upper byte

The logical shift left in the first instruction shifts bit 7 to carry, the ROL instruction rolls it to bit O of the upper
byte. Following the second instruction the carry bit has the former bit 7 of the upper byte. The carry bit can
be used to either indicate an overflow (if 16-bit-calculation is performed) or to roll it into more upper bytes
(if more than 16 bit calculation is done).

Rolling to the right is also possible, dividing by 2 and shifting carry to bit 7 of the result:
LSR R2 ; Logical Shift Right, bit 0 to carry
ROR R1 ; ROtate Right and shift carry in bit 7

It's easy dividing with big numbers. You see that learning assembler is not THAT complicated.

The last instruction that shifts four bits in one step is very often used with packed BCDs. This instruction
shifts a whole nibble from the upper to the lower position and vice versa. In our example we need to shift
the upper nibble to the lower nibble position. Instead of using

ROR R1
ROR R1
ROR R1
ROR R1
we can perform that with a single
SWAPRI1

This instruction exchanges the upper and lower nibble. Note that the content of the upper nibble will be
different after applying these two methods.

Adding, subtracting and comparing

The following calculation operations are too complicated for the beginners and demonstrate that assembler
is only for extreme experts, hi. Read on your own risk!

Adding and subtracting 16-bit numbers

To start complicated we add two 16-bit-numbers in R1:R2 and R3:R4. (In this notation, we mean that the
first register is the most significant byte, the second the least significant).

ADD R2,R4 first add the two low-bytes
ADC R1,R3 ; then the two high-bytes

Instead of a second ADD we use ADC in the second instruction. That means add with carry, which is set or
cleared during the first instruction, depending from the result. Already scared enough by that complicated
math? If not: take this!

We subtract R3:R4 from R1:R2.

SUB R2,R4, first the low-byte
SBC R1,R3 ; then the high-byte

Again the same trick: during the second instruction we subtract another 1 from the result if the result of the
first instruction had an overflow. Still breathing? If yes, handle the following!

Comparing 16-bit numbers

Now we compare a 16-bit-word in R1:R2 with the one in R3:R4 to evaluate whether it is bigger than the
second one. Instead of SUB we use the compare instruction CP, instead of SBC we use CPC:

CP R2,R4 ; compare lower bytes
CPC R1,R3 ; compare upper bytes

If the carry flag is set now, R1:R2 is larger than R3:R4.

Comparing with constants

Now we add some more complicated stuff. We compare the content of R16 with a constant: 0b10101010.

Avr-Asm-Tutorial 43 http://www.avr-asm-tutorial.net

CPI R16,0xAA

If the Zero-bit in the status register is set after that, we know that R16 is equal to OxAA. If the carry-bit is
set, we know, it is smaller. If Carry is not set and the Zero-bit is not set either, we know it is larger.

And now the most complicated test. We evaluate whether R1 is zero or negative:
TSTRI

If the Z-bit is set, the register R1 is zero and we can follow with the instructions BREQ, BRNE, BRMI,
BRPL, BRLO, BRSH, BRGE, BRLT, BRVC or BRVS to branch around a little bit.

Packed BCD math

Still with us? If yes, here is some packed BCD calculations. Adding two packed BCDs can result in two
different overflows. The usual carry shows an overflow, if the higher of the two nibbles overflows to more
than 15 decimal. Another overflow, from the lower to the upper nibble occurs, if the two lower nibbles add
to more than 15 decimal.

To take an example we add the packed BCDs 49 (=hex 49) and 99 (=hex 99) to yield 148 (=hex 0x0148).
Adding these in binary math, results in a byte holding hex OxE2, no byte overflow occurs. The lower of the
two nibbles should have an overflow, because 9+9=18 (more than 9) and the lower nibble can only handle
numbers up to 15. The overflow was added to bit 4, the lowest significant bit of the upper nibble. Which is
correct! But the lower nibble should be 8 and is only 2 (18 = 0b0001.0010). We should add 6 to that nibble
to yield a correct result. Which is quite logic, because whenever the lower nibble reaches more than 9 we
have to add 6 to correct that nibble.

The upper nibble is totally incorrect, because it is OXE and should be 3 (with a 1 overflowing to the next
upper digit of the packed BCD). If we add 6 to this OXE we get to 0x4 and the carry is set (=0x14). So the
trick is to first add these two numbers and then add 0x66 to correct the 2 digits of the packed BCD. But
halt: what if adding the first and the second number would not result in an overflow to the next nibble? And
not result in a digit above 9 in the lower nibble? Adding 0x66 would then result in a totally incorrect result.
The lower 6 should only be added if the lower nibble either overflows to the upper nibble or results in a
digit larger than 9. The same with the upper nibble.

How do we know, if an overflow from the lower to the upper nibble has occurred? The MCU sets the H-bit
in the status register, the half-carry bit. The following shows the algorithm for the different cases that are
possible after adding two nibbles and adding hex 0x6 after that.

1. Add the nibbles. If overflow occurs (C for the upper nibbles, or H for the lower nibbles), add 6 to correct,
if not, do step 2.

2. Add 6 to the nibble. If overflow occurs (C resp. H), you're done. If not, subtract 6.

To program an example we assume that the two packed BCDs are in R2 and R3, R1 will hold the overflow,
and R16 and R17 are available for calculations. R16 is the adding register for adding 0x66 (the register R2
cannot add a constant value), R17 is used to correct the result depending from the different flags. Adding
R2 and R3 goes like that:

LDI R16,0x66 ; for adding 0x66 to the result

LDI R17,0x66 ; for later subtracting from the result

ADD R2,R3 ; add the two two-digit-BCDs

BRCC NoCy1 ; jump if no byte overflow occurs

INC R1; increment the next higher byte

ANDI R17,0x0F ; don't subtract 6 from the higher nibble
NoCy1:

BRHC NoHcl ; jump if no half-carry occurred

ANDI R17,0xFO0 ; don't subtract 6 from lower nibble
NoHcl:

ADD R2,R16 ; add 0x66 to result

BRCC NoCy?2 ; jump if no carry occurred

INC R1 ; increment the next higher byte

ANDI R17,0x0F ; don't subtract 6 from higher nibble
NoCy2:

BRHC NoHc2 ; jump if no half-carry occurred

ANDI R17,0xFO0 ; don't subtract 6 from lower nibble
NoHc2:

SUB R2,R17 ; subtract correction

A little bit shorter than that:

LDI R16,0x66

ADD R2,R16

ADD R2,R3

BRCC NoCy

INC R1

ANDI R16,0x0F
NoCy:

BRHC NoHc

ANDI R16,0xF0

Avr-Asm-Tutorial 44 http://www.avr-asm-tutorial.net

NoHc:
SUB R2,R16

Question to think about: Why is that equally correct, half as long and less complicated and where is the
trick?

Format conversion for numbers

All number formats can be converted to any other format. The conversion from BCD to ASCII and vice
versa was already shown above (Bit manipulations).

Conversion of packed BCDs to BCDs, ASCII or Binaries

Conversion of packed BCDs is not very complicated either. First we have to copy the number to another
register. With the copied value we change nibbles using the SWAP instruction to exchange the upper and
the lower one. The upper part is cleared, e. g. by ANDing with 0xOF. Now we have the BCD of the upper
nibble and we can either use as is (BCD) or set bit 4 and 5 to convert it to an ASCII character. After that we
copy the byte again and treat the lower nibble without first SWAPping and get the lower BCD.

A little bit more complicated is the conversion of BCD digits to a binary. Depending on the numbers to be
handled we first clear the necessary bytes that will hold the result of the conversion. We then start with the
highest BCD digit. Before adding this to the result we multiply the result with 10. (Note that in the first step
this is not necessary, because the result is zero either).

In order to do the multiplication by 10, we copy the result to somewhere else. Then we multiply the result
by four (two left shifts resp. rolls). Adding the previously copied number to this yields a multiplication with 5.
Now a multiplication with 2 (left shift/roll) yields the 10-fold of the result. Finally we add the BCD and repeat
that algorithm until all decimal digits are converted. If, during one of these operations, there occurs a carry
of the result, the BCD is too large to be converted. This algorithm handles numbers of any length, as long
as the result registers are prepared.

Conversion of Binaries to BCD

The conversion of a binary to BCDs is more complicated than that. If we convert a 16-bit-binary we can
subtract 10,000 (0x2710), until an overflow occurs, yielding the first digit. Then we repeat that with 1,000
(0x03ES8) to yield the second digit. And so on with 100 (0x0064) and 10 (0x000A), then the remainder is
the last digit. The constants 10,000, 1,000, 100 and 10 can be placed to the program memory storage in a
word wise organized table, like this:

DezTab:
.DW 10000, 1000, 100, 10
and can be read word-wise with the LPM instruction from the table.

An alternative is a table that holds the decimal value of each bit in the 16-bit-binary, e. g.

.DB 0,3,2,7,6,8
.DB 0,1,6,3,8,4
.DB 0,0,8,1,9,2
.DB 0,0,4,0,9,6
.DB 0,0,2,0,4,8 ; and so on until
.DB 0,0,0,0,0,1

Then you shift the single bits of the binary left out of the registers to the carry. If it is a one, you add the
number in the table to the result by reading the numbers from the table using LPM. This is more
complicated to program and a little bit slower than the above method.

A third method is to calculate the table value, starting with 000001, by adding this BCD with itself, each
time after you have shifted a bit from the binary to the right, and added to the BCD result.

Many methods, much to optimize here.
Multiplication
Multiplication of binary numbers is explained here.

Decimal multiplication

In order to multiply two 8-bit-binaries we remind ourselves, how this is done with decimal numbers:

Avr-Asm-Tutorial 45 http://www.avr-asm-tutorial.net

1234 * 567 = ?

In single steps decimal:

+ We multiply the first number with the lowest significant digit of the second number and add this to the
result.

« We multiply the first number with 10 and then with the next higher digit of the second number and
add this to the result.

« We multiply the first number with 100, then with the third-highest digit, and add this to the result.

Binary multiplication

Now in binary. Multiplication with the single digits is not necessary, because there are only the digits 1 (add
the number) and 0 (don't add the number). Multiplication by 10 in decimal goes to multiplication by 2 in
binary mode. Multiplication by 2 is done easily, either by adding the number with itself, or by shifting all bits
one position left and writing a 0 to the void position on the right. You see that binary math is very much
easier than decimal. Why didn't mankind use this from the beginning?

AVR-Assembler program

The following source code demonstrates realization of multiplication in assembler.
; Mult8.asm muiltiplies two 8-bit-numbers to yield a 16-bit-result

'NOLIST
.INCLUDE "C:\avrtools\appnotes\8515def.inc"
.LIST

Flow of multiplication

; 1.The binary to be multiplicated with is shifted bitwise into the carry bit. If it is a one, the binary number is added to the
; result, if it is not a one that was shifted out, the number is not added.

; 2.The binary number is multiplied by 2 by rotating it one position left, shifting a 0 into the void position.

; 3.If the binary to be multiplied with is not zero, the multiplication loop is repeated. If it is zero, the multiplication is done.

; Used registers

.DEF rm1 = RO ; Binary number to be multiplicated (8 Bit)
.DEF rmh = R1; Interim storage

.DEF rm2 = R2 ; Binary number to be multiplicated with (8 Bit)
.DEF rel = R3 ; Result, LSB (16 Bit)

.DEF reh = R4 ; Result, MSB

.DEF rmp = R16 ; Multi purpose register for loading

'CSEG
.ORG 0000

’

imp START

START:
Idi rmp,0xAA ; example binary 1010.1010
mov rm1,rmp ; to the first binary register
Idi rmp,0x55 ; example binary 0101.0101
mov rm2,rmp ; to the second binary register

. Here we start with the multiplication of the two binaries in rm1 and rm2, the result will go to reh:rel (16 Bit)
MULTS:
: Clear start values

clr rmh ; clear interim storage

cir rel ; clear result registers

clr reh

; Here we start with the multiplication loop

MULTS8a:

Avr-Asm-Tutorial 46 http://www.avr-asm-tutorial.net

Step 1: Rotate lowest bit of binary number 2 to the carry flag (divide by 2, rotate a zero into bit 7)

clc ; clear carry bit
ror rm2 ; bit 0 to carry, bit 1 to 7 one position to the right, carry bit to bit 7

Step 2: Branch depending if a 0 or 1 has been rotated to the carry bit

brcc MULTS8b ; jump over adding, if carry has a 0

Step 3: Add 16 bits in rmh:rml to the result, with overflow from LSB to MSB
’ add rel,rm1 ; add LSB of rm1 to the result
adc reh,rmh ; add carry and MSB of rm1

MULTSb:

;' Step 4: Multiply rmh:rm1 by 2 (16 bits, shift left)
, clc ; clear carry bit
rol rm1 ; rotate LSB left (multiply by 2)
rol rmh ; rotate carry into MSB and MSB one left

Step 5: Check if there are still one's in binary 2, if yes, go on multiplicating
, tst rm2 ; all bits zero?

brne MULTS8a ; if not, go on in the loop
End of the multiplication, result in reh:rel

y

; Endless loop

LOOP:
rjmp loop

Binary rotation

For understanding the multiplication operation,

>0 it is necessary to understand the binary oF
| rotation instructions ROL and ROR. These |
|1|D 1| D|1|D|1|D| instructions shift all bits of a register one [g[1]o[1[o[1]o]1]
position left (ROL) resp. right (ROR). The void
ROL position in the register is filled with the content ROR
| -1 1 of the carry bit in the status register, the bit that 1=
rolls out of the register is shifted to this carry . |
o L] 9] Lz jefe bit. This operation is demonstrated using OxAA ojofiljofljollfo
as an example for ROL and 0x55 as an

example for ROR.

Multiplication in the studio

The following screen shots show the multiplication program in the simulator (to make a difference: here
Studio version 3).

i AVR Studio - MultBe_asm [_[O]x]
File Edit Project Debug Breakpoints Trace & tiggers “Watch Options ¥iew Tools “window Help
|azdgo|me - @ e | b || 6 00 | EL B ® T (P 1) R T
e
= Mult8e_asm Hi[=] E3
; T=zed registers i
jDEF rml = R0 ;. Binarv number to be multiplicated (8 Bit}
.DEF rmh = Rl ;| Interin storages
.DEF rm2 = R2Z ;| Binarvy number to be multiplicated with (&
.DEF rel = R3 : Kesult, LSE (16 Bit}
.DEF reh = R4 ; Result, HSE H
DEF rmp = R16 : Multi purpose register for loading The Object'COde has been
“csEc opened, the cursor is placed

ORG 0000

on the first executable

52|
StaRT instruction. F11 does single
1di rmp.0xdd | ezanple binsry 1010 1010
mnov rmnl.rmp ; to the first binarvy register steps.
1di rmp.0x55 : examnple binsry 0101 0101

mov rmZ2.rmp | to the second binary register

Here we start with the multiplication of the two binari
in rml und rm2. the result will go to reh:rel (16 Bit)

MULTS :
: Clear start walues
]l rmh clear interim =storace
4] | >
L] i
| |Simulator |AT90S8515 |Ln 32, Col 1 NUM o

Avr-Asm-Tutorial 47

“ A¥HR Studio - MultBe.asm Hi=1E3

File Edit Project Debug Breakpoints Trace & tiggers “Watch DOptions Miew Toolz Window Help
Bz d@|o|me s« a e ST AL o [EL [T T (R 0 3
FEODE o8 @

& Mult8e.asm H=] B || = Reastes B[] =
-

START : RO = 0Ozxdd E17 = 0=x00
1di rmp, 0zdd : ezanple binary 10101010 R1 = 0=00 R18 = 0O=d0
mnov rnl, rmp to the first binary register R2 = 0x55 E19 = 0=x00
1di rmp, 0=55 : ezamnple binary 0101.0101 R3 = 0=x00 E20 = 0=x00
mov rmZ, rmp to the second binary register R4 = 0=x00 R21 = 0=00

" tart with the multiplication of the two bi RS DuDb R22 - D00

. Ere we =Lar w1 = mu 1plication oc (=] wo 1nar: R6 = D DD R23 = D DD

: in rml und rmZ2, the result will go to reh:rel (16 Bit) R7? = 0202 R24 = Dzﬂﬂ

Y . R8 = 0x00 ER25 = 0=00

EULTB' R9 = 0x00 R26 = 0=01

. R10 = 0x01 R27 = 0=00

o Clear start values

| EEEEY clear interin storage R11 = 0x00 R28 = 0z00
clr rel ;| clear result registers R1z = Ox00 K239 = 0=x00
clr reh R13 = 0=x00 R30 = 0=01

: R14 = 0x58 R31 = 0=00

; Here we start with the multiplication loop _||E15 = 0=x04

: R16 = 0=55

MULTE=a:

Step 1: Rotate lowest bit of binary number 2 to the cax

flag (diwide by 2. rotate a zero into bit 7)

clc ;| clear carry bit
ror rm2 ; bit 0 to carrv. bit 1 to ? one position
the right. carry bit to bit 7

l |

A

-

<] »

|Redo the previousl v | | Sirnulator |ATI0SE615 |Ln 46, Cal 1 ML A
2 AVR Studio - MultBe.asm [_ O] <]
File Edit Project Debug Breakpointz Trace & tiggers “Watch Optionz Miew Tool: Window Help

|azEa@ o me o o
[FEn# e e

SR [0 % 5B B G0 =

B MultBe. asm =] E3 || E R egisters - |o]=~
: a|||RD0 = D=Ad R17 = 0=00
; Here we =tart with the multiplication of the two binari Rl = 0=x00 R18% = 0O=40
in rml und rm2. the result will go to reh:rel {16 Bit) F2 = 0O=55 FR19 = 0O=00
: R3 = 0=00 R20 = 0O=00
MULTS : R4 = 0=00 R2Z1 = 0=00
: RS = 0=00 R22 = 0=00
Clear start wvalues Re = 0=00 R22 = 0=00
cir rm? B ciear intefim stqrige B? = 002 R2Z4 = 0=00
gli i:h clear resu registers B8 = 0=00 BE25 = 0=00
R9 = 0=00 RZ& = 0O=01
; : : : Rl0 = 0=x01 R27 = 0=00
H tart th th ltipl t 1
: ere we start wi = nultiplication loop Rii - 0=00 B28 - 0m00
HMILTEa - R12 = 0x00 R29 = 0=x00
R R13 = 0=00 R30 = 0O=01
Step 1 Rotate lowest bhit of binary number 2 to the car R14 = 0=x58 R31 = 0O=x00
flag {diwide by Z. rotate a =zero into bit 73 R15 = 0=04
: _J||F16 = 0O=585
o | ; clear carry bit
ror Trmd bit 0 to carry. bit 1 to 7 one position
the right., carrv bit to bit 7
Step 2: Branch depending if & 0 or 1 has been rotated &
the carrv bit
broo MULTE8L | jump over adding, if carry has a 0 o
| | ¥l =
K|

L4
|Ln 57, Col 1 ML 7

|Simulator |ATI058515

2 AVR Studio - Mult8e_asm [_ (O] x]

File Edit Project Debug EBreakpoints Trace & triggers ‘Watch Option: View Tools Window Help
lazEago|=e - a2 S| 6| 60 o0 | ELEC B T P 0 [E
[FEDE o|a

= MultBe asm H=] B || E3Negistes N [m]
: a|||RO0 = 0=xd& R17 = 0=00
;. Here we start with the nultiplication of the two binarid Rl = 0x00 R13 = 0x40
in rml und rm2. the result will go to reh:rel (16 Bit) k2 = 0=24 ER19 = 0=x00
: RE3 = 0=00 ER20 = 0=x00
HULTS : F4 = 0=00 E21 = 0=00
. RSt = 0=00 R22 = 0=00
Clear start walues . _ R& = 0=00 R?3 = 0=00
cir rm? B ciear 1nteilm storage R7 = 0x02 R2?4 = 000
gli iZh clear result registers RS = 0x00 BE2?5 = 000
RE9 = 0=00 E2e& = 0=01
: _— : R10 = 0=x01 R27 = 0=00
: Here we start with the nultiplication loop Bil = 0200 B26 = 0x00
HULTEa - R12 = 0=00 R29 = 0=00
. RE13 = 0=00 R30 = 0=x01
Step 1: Rotate lowest bit of binarvy number 2 to the caz R14 = 0x58 R31 = 0=00
flag idivide by 2, rotate a zero into bit 7) RE15 = 0=04
Rl6 = 0=GG
clc . clear carry bit
ror rm bit 0 to carry, bit 1 to 7 one position
the right, carry bit to bit 7
Step 2: Branch depending ifZ a 0 or 1 has been rotated £
the carry bit
$|J brcc HULTE Jjump over adding, if carry has a 0 <
4 | K 4 -
4]

4
|Ln B4, Col 1 UM o

[|Simulator |ATI058515

http://www.avr-asm-tutorial.net

The registers RO and R2 are
set to OXAA and 0x55, our test
binaries, to be multiplied.

R2 is rotated to the
right, to roll the least
significant bit into the
carry bit. 0x55
(0101.0101) yielded
0x2A (0010.1010).

Because the carry bit

had a one, the
content of the
registers RI1:R0 is

added to the (empty)
register pair R4:R3,
resulting in 0x00AA
there.

http://www.avr-asm-tutorial.net

Now the register pair
R1:RO is rotated one
position left to
multiply this binary
by 2. From Ox00AA,
multiplication by 2
yields 0x0154.

The whole multipli-
cation loop is repea-
ted as long there is
at least one binary 1
in register R2. These
following loops are
not shown here.

Avr-Asm-Tutorial 48
% AVR Studio - Mult8e.asm H=] E3
File Edit Project Debug Breakpointz Trace & triggerz “Watch Optionz View Tool: Window Help

[z o|lme o || T8 |6 o [EL D B P 0[] E
|PE0E(o 5| m|
= MultBe_asm [_[of =] | Bl]

cle | clear carry bit a|||R0 = 0=Ad R17 = 0=00
ror rm2 ; bit 0 to carry., bit 1 to 7 one positior Rl = 0=x00 ER1% = 0O=40
; the right. carry bit to bit 7 E2 = 0=x2i FRE19 = 0=x00
: R3 = 0=xAd R20 = 0=00
; Step 2: Branch depending if a 0 or 1 ha=s been rotated t R4 = 0=00 R2Z1 = 0=00
; the carry bit RS = 0=x00 R22 = 0=00
. broc MULTS8DL 0 jump over adding, if cerry has a 0 g? ; gigg ggi ; gigg
: Step 3: Add 16 bits in rmh:rml to the result. with ovex gg i ngD R25 i O=00
: trom LSE to MSB = 0=00 R26 = D=0l
R10 = 0=x01 R27 = 0=00
add rel.rml ; add ILSE of rml to the result R1l = 0=00 R28 = 0=00
adc reh.rmh | add carry and HSE of rwml k12 = 0=x00 ERZ3 = 0=00
: R13 = 0=x00 R30 = 0=01
HULTSEb: R14 = 0=x58 R31 = 0=00
: R15% = 0=x04
D 5Step 4 MHultiply rmh:rml by 2 (16 bits. shift left) El6 = 0=55
5) ; clear carrvy bit
rol rml ; rotate LSE left (multiply by 23
rol rmh ;| rotate carry into HSB and MSE one left
E Step 5: Checlk if there are =till one's in binary 2. il
: ves, go on maltiplicating
t=t rm? - Aall hit= wero?
4| | b -

1] *

[|Sirulator |ATI058515 |Ln 78, Cal1 ML g
i AVR Studio - MultBe.asm =] B3
File Edit Prmoject Debug EBreakpointe Trace & triggers Watch Option: Wiew Toolz Window Help

|alzug@ o|me - | =1/ 53 || 60 o0 (2L 55 B B (P 0 R En

EEEEEEIE:

= Mult8e_azm [_TOl =] (&l i i] s
B AI RO = 0Ox54 R17 = 0=00
MULTEL: Rl = 0=01 R18 = 0=40
: R2 = 0=x2& R19 = 0=00
D Step 40 Multiply rmh:rml by 2 (16 bit=. =shift leit) E3 = 0xaAd E20 = 0=00
: R4 = 0x00 R21 = 0=00

cle ;. clear carrvy bit RS = 000 R22? = 0=00
rol rml ;| rotate LSE leﬁt (multiply by 23 BE = 0Ox00 R22 = 0=00
) rol rmh ;| rotate carry into MSE and HSE one left F? = 0Ox0? EF24 = 0=00
; Step 5: Check if there asre still one's in binary 2. 1% Eg : gzgg ggg : gzg?
ves, go on multiplicating Fi0 = 0=01 E27 = 0=00
L=t . =21l bits zero? Rll = 0=00 E2& = 0=00
brne MULTS8a : if not, go on in the loop Rl2 = 0x00 E29 = 0=00
- R13 = 0=x00 R30 = 0=01
; End of the multiplication, result in reh:rel R14 = 0x58 R31 = 0=00
: R15 = 0=04
; Endles=s loop Rle = 0=xL55
LOOE:
rimnp loop
=
< [=
1] »

[T 3058515 |Ln 83, Cal 1

[NOMTT

| |Simulatar

Using key F5 of the
studio we multi-
stepped over these
loops to a break-
point at the end of
the multiplication
routine. The result
register pair R4:R3
has the result of
the multiplication of
OxAA by 0x55:
0x3872.

This wasn't that complicated, just remind yourself on the similar decimal operations. Binary multiplication is

much easier than decimal.

Hardware multiplication

All ATmega, ATXmega, AT90CAN and AT90PWM have an on-board hardware multiplicator, that performs
8 by 8 bit multiplications in only two clock cycles. So whenever you have to do multiplications and you are

sure that this software never ever needs not to run on an AT90S- or ATtiny-chip, you
hardware feature.

The following shows how to multiply

e 8-by-8-binaries,

e 16-by-8-binaries,
e 16-by-16-binaries,
e 16-by-24-binaries.

Hardware multiplication of 8-by-8-bit binaries

can make use of this

The use is simple and straight-forward: if the two binaries to be multiplied are in the registers R16 and

R17, just type

Avr-Asm-Tutorial 49 http://www.avr-asm-tutorial.net

mul R16,R17

Test=s 8-by-8-bit hardware multiplication with ATmegal .
: As the result of these two 8-bit

: Define Registers binaries might be up two 16 bits
def ResL = RO long, the result will be in the
-def ResM = k1 registers R1 (most significant byte)
def ml = R16 22

def m2 = R17 and RO (least significant byte).

That's all about it.

Load multiplicators

=3 1di wml.250
1di m2.100

Perform multiplication
mul ml,.m2

. 16-bit result is in R1:R0

Hardware-Multiplication 8-Bit * 8-Bit The program demonstrates the simulation in
Registerplan the Studio. It multiplies decimal 250 (hex FA)
a1* bl = e2-e1 — by decimal 100 (hex 64), in the registers R16
2 and R17.
R1
al* bl al* bl _.l- RO
Register = » =] After execution, the
E00= 0x2Z2 ROl= Oxsl RO2= 0x00 Program Counter 000003 regISterS RO (LSB) and
RO3= 0x00 RO4= 0x00 ROS= 0x00 : R1 (MSB) hold the result
Stack Pointer (D000 _
RO&= 0x00 RO7= 0x00 RO8= 0x00 X poirter 0000 hex 61A8 or decimal
RO9= 0x00 R10= 0x00 R1l= 0x00 : 25 .000.
RlZ= 0x00 R13= O0x00 Rl4= 0x00 L L1 ’
R15= 0x00 R16= OxFR R17= 0Oxéd e LalLLY
R18= 0x00 B19= 0x00 R20= 0x00 Cycle Counter |2 |
R2l= 0x00 E22= 0x00 R23= 0x00 Frequency 1.0000 MHz And: vyes, that requires
EEE= :x:g EEE= 2}{.:: EE§= :}L:: Stop Watch 200us Only two CYCIES, or 2
0 DeDO Bl Depm :HE_G DOEEmOE0 microseconds with a 1
I Registers Mcs/s clock.
| Project Reqister] Project | Processor eqister
i g Project | P Er

Hardware multiplication of a 16- by an 8-bit-binary

You have a larger binary to multiply? Hardware is limited to 8, so we need to invest some genius ideas
instead. To solve the problem with larger binaries, we just look at this combination of 16 and 8 first.
Understanding this concept helps understanding the method, so you will be able to solve the 32-by-64-bit
multiplication problem later.

First the math: a 16-bit-binary m1M:m1L are simply two 8-bit-binaries m1M and mlL, where the most
significant one m1M of these two is multiplied by decimal 256 or hex 100. (For those who need a reminder:
the decimal 1234 is simply (12 multiplied by 100) plus 34, or (1 multiplied by 1000) plus (2 multiplied by
100) plus (3 multiplied by 10) plus 4.

Hardware-Multiplication 16-Bit * 8-Bit So the 16-bit-binary m1 is equal to 256*m1M
Registerplan plus m1L, where m1M is the MSB and mlL is
miM:miL * m2 = m1M the LSB. Multiplying m1 by 8-bit-binary m2 so
miL is, mathematically formulated:
(256*m1M + m1L) * m2 = m2
TesT e ml*m2=(256*m1lM + mlL) * m2, or
256"m1M * m2 + MM * M2 —— Res2 * * *
Lo AL * o - - e 256*mlM*m2 + mlL*mz2.

So we just need to do two multiplications and
to add both results. Sorry, if you see three
asterisks in the formula: the multiplication with 256 in the binary world doesn't require any hardware at all,
because it is a simple move to the next higher byte. Just like the multiplication by 10 in the decimal world is
simply moving the number one left and write a zero to the least significant digit.

So let's go to a practical example. First we need some registers to
e load the numbers ml and m2,

e provide space for the result, which might have 24 bits length.

Avr-Asm-Tutorial 50 http://www.avr-asm-tutorial.net

Test hardware multiplication 16-by-8-bit

; Register definitions:

.def Res1 = R2

.def Res2 = R3

.def Res3 = R4

.defmlL =R16

.def mIM = R17

.defm2 = R18

First we load the numbers: Register =

RO0= 0x00 ROl= 0x00 RO2= 0x00

; RO3= 0x00 R04= 0x00 ROS= 0x00

; Load Registers ROG= 0x00 ROT= 0x00 RO8= 0x00

; RO9= 0x00 R10= 0x00 R1l= 0x00

.equ m1 = 10000 R12= 0x00 R13= 0x00 Rl4= 0x00

: R15= 0x00 R16= 0xl0 R17= 0x27
Idi m1IM,HIGH(m1) ; upper 8 bits of m1 to mIM flfi= O0xFA R1%= D=0} R20= (=0
Idi m1L,LOW(m1) ; lower 8 bits of m1 to m1L R2l= Oxfi} RZZ= Ox0 RZ3= Ox0

RiZd4= 0x00 R25= 0x00 R2Z6= 0x00
R27= 0x00 R2&= 0x00 R2%= 0x00
R30= 0x00 R31= 0x00

Idi m2,250 ; 8-bit constant to m2

The two numbers are loaded into R17:R16 (dec 10000 = hex
2710) and R18 (dec 250 = hex FA).

B Project | Processor | B Register

Then we multiply the LSB first: =
Register x
;) ROO= 0xA0 ROl= 0xOF ROZ= 0x00
; Multiply RO3= 0x00 RO4= 0x00 RO5= 0x00
; _ ROG= 0x00 ROT= 0x00 RO8= 0x00
mul miL,m2 ; Multiply LSB RO%= 0x00 R10= 0x00 Rll= 0x00
mov Res1,R0 ; copy result to result register R1Z= 0x00 R13= 0x00 R1l4= 0x00
mov Res2,R1 R15= 0x00 R1&= 0xl0 R17= 0x27
R1&= 0xFL R19= 0x00 R20= 0x00
The LSB multiplication of hex 27 by hex FA vyields hex OF0A, Eii: 3:33 Ei;: g:gg E:z: 3:33
written to the registers R00 (LSB, hex AO) and R01 (MSB, E27— 0x00 RI8= 0x00 R39= 0x00

hex OF). The result is copied to the lower two bytes of the R30= 0x00 R31= 0x00
result register, R3:R2.

F‘ruje-_—_ Processor Register

Now the multiplication of the MSB of m1 with m2 follows: Reter =

mul mIM,m2 ; Multiply MSB ROO= Ox1é ROl= 0x26 RO2Z= 0OxA0
R03= 0x0F RO4= 0x00 ROS= 0x00

sl : H E06= 0x00 RO7= 0x00 ROES= 0x00
The multiplication of the MSB of m1, hex 10, with m2, hex FA, M0 Dt B0 Gxlf B11— Do

yields hex 2616 in R1:RO. R12= 0x00 R13= 0x00 R14= 0x00
R15= 0x00 R16= 0x10 R17= 0x27
R18= 0xFA R19= 0x00 R20= 0x00
RZ1= 0x00 R22= 0x00 R23= 0x00
R24= 0x00 R25= 0x00 R26= 0x00
R27= 0x00 R28= 0x00 R29= 0x00
R30= 0x00 R31= 0x00

B Project | Processor | B Register

Now two steps are performed at once: multiplication by 256 -
. . .. Register =
and adding the result to the previous result. This is done by | ="~~~ .
adding R1:RO to Res3:Res2 instead of Res2:Resl. R1 can | gzpzc wse mose 0s26 RoS— 0x00
just be copied to Res3. RO is added to Res2 then. If the carry | ros= oxoo ro7= 0xoo Ros= oxoo

is set after adding, the next higher byte Res3 is increased by [®0%= 0x00 R10= 0x00 Rll= 0x00
Rl12= 0x00 R13= 0x00 Rl4d= 0x00

one. R15= 0x00 Rl16= 0x10 R17= 0x27
mov Res3,R1 ; copy MSB result to result byte 3 Rl8= OxFR RI19= 0x00 ER20= 0x00
add Res2,R0 ; add LSB result to result byte 2 f2l= 0z00 R22= Ox00 R23= Oxl0
brce Nolnc ; if not carry, jump f24= DxO R25= Dx00 R26= Dx0O
inc Res3 R27= 0x00 R28= 0x00 R29= 0x00
Nolnc: R30= 0x00 R31= 0x00

The result in R4:R3:R2 is hex 2625A0, which is decimal B project

Processor | B Regist:
2500000 (as everybody knows), and is obviously correct. s e

Avr-Asm-Tutorial 51 http://www.avr-asm-tutorial.net

Processor x
Program Counter k000008
Stack Pointer 0000
X poirter 0000 T . .
Y poirter 0000 The cycle counter of the multiplication points to 10, at 1 MHz
e 0000 clock a total of 10 microseconds. Very much faster than
Cycle Counter [0 | software multiplication!
Frequency 1.0000 MHz
Stop Watch 10.00us
SREG OOmEMHED
+| Registers
& Project | Processor | Bl Register

Hardware multiplication of a 16- by a 16-bit-binary

Now that we have understood the principle, it should be easy to do 16-by-16. The result requires four bytes
now (Res4:Res3:Res2:Resl, located in R5:R4:R3:R2). The formula is:

Hardware-Multiplication 16-Bit * 16-Bit
Registerplan . m1 * m2 = (256*m1M + m1L) *

miM:-m1L * = m1M

miL (256*m2M + m2L)
256" m1M + miL) * (286" m2M + m2L) = 2ZM
SRS S Sl R ikl - 65536*m1IM*m2M +
2567266 m 1IN m2 M + m1M * m2 Resd 256*"m1M*m2L +
ZEE* MM * m2L + miM * m2L Res3 .
256" mIL * m2M + miL * m2 Res2 256*m1L*m2M +
miL * m2L miL * m2L Res1 mi1L*m2L

Obviously four multiplications now. We start with the first and the last as the two easiest ones: their results
are simply copied to the correct result register positions. The results of the two multiplications in the middle
of the formula have to be added to the middle of our result registers, with possible carry overflows to the
most significant byte of the result. To do that, you will see a simple trick that is easy to understand. The
software:

; Test Hardware Multiplication 16 by 16
; Define Registers

.def Res1 = R2
.def Res2 = R3
.def Res3 = R4
.def Res4 = R5
.defmliL = R16
.defmIM =R17
.defm2L = R18
.def m2M = R19
.deftmp = R20

; Load input values

.equ m1 = 10000

.equ m2 = 25000
Idi mIM,HIGH(m1)
Idi miL,LOW(m1)
Idi m2M,HIGH(mZ2)
Idi m2L,LOW(m2)

; Multiply
clr R20 ; clear for carry operations
mul miIM,m2M ; Multiply MSBs
mov Res3,R0 ; copy to MSW Result
mov Res4,R1
mul m1L,m2L ; Multiply LSBs
mov Res1,R0 ; copy to LSW Result
mov Res2,R1
mul mIM,m2L ; Multiply 1M with 2L
add Res2,R0 ; Add to Result
adc Res3,R1
adc Res4,tmp ; add carry

Avr-Asm-Tutorial 52 http://www.avr-asm-tutorial.net

mul m1L,m2M ; Multiply 1L with 2M

add Res2,R0 ; Add to Result Register x
adc Res3,R1 ROO= 0x00 ROl= 0x00 ROZ= 0x00
adc Res4,tmp RO3= 0x00 RO4= 0x00 ROS= 0x00

; ROG= 0x00 RO7= 0x00 ROEB= 0x00

; Multiplication done R0O9= 0x00 R10= 0x00 R1l= 0x00

Rl2= 0x00 Rl13= 0x00 Rl4= 0x00
BEl5= 0x00 BRle= 0x10 BR17= 0x27
. . . Elg8= 0xAZ2 BRlo9= 0xgl R20= 0x00
Simulation shows the following steps. o1= 0xOG B27= Ox00 R23= Ox0o
R24= 0x00 R25= 0x00 R26= 0x00
R27= 0x00 R28= 0x00 R29= 0x00
E30= 0x00 BR31= 0x00

’

Loading the two constants 10000 (hex 2710) and 25000 (hex

61A8) to the registers in the upper register space ... Project | B2l Register

Multiplying the two MSBs (hex 27 and 61) and copying the | Register X
result in R1:RO to the two most upper result registers [zoo= 0xc7 RO1= 0x0F BOZ= 0x00

R5:R4 ... RO3= 0x00 RO4= 0xC7 ROS= 0xCE

ROg= 0x00 RO7= 0x00 ROS= 0x00
RO%= 0x00 RI10= 0x00 Rl1l= 0x00
Rlz= 0x00 Rl13= 0x00 Rl4= 0x00
R15= 0x00 Rl6= 0x10 RI17= 0x27
Rl&= 0OxAZ R19= 0x6l R20= 0x00
RZl= 0x00 R2Z= 0x00 RZ3= 0x00

£ &
R24= 0x00 R25= 0x00 ER2&= 0x00
R27= 0x00 R28= 0x00 ER29%= 0x00
R30= 0x00 R31= 0x00
Register »®

ROO= 0x30 ROl= 0x0R RO2= OxE0
Multiplying the two LSBs (hex 10 and A8) and copying the | mos= oxoz Ro4= 0x07 EOS= 0x0E
result in R1:RO0 to the two lower result registers R3:R2 ... RO&= 0x00 RO7= 0x00 RO8= Ox0OO0
R09%= 0x00 R10= 0x00 Rll= 0x00
Bl2= 0x00 R13= 0x00 Rld= 0x00
B15= 0x00 Rl&= 0x10 R17= 0x27
Rl8= OxA8 R19= 0x6l R20= 0x00
E21= 0200 R22= 0x00 R23= 0x00
E24= 0200 R25= 0x00 R2&= 0x00
B27= 0x00 R2&8= 0x00 R29%= 0x00
B30= 0x00 R31= 0x00

Register X
ROO0O= 0x9% ROl= 0xl19 RO2= 0xE0
R03= Oxh2 RO4= 0OxE0 RO3= 0OxOE
Multiplying the MSB of m1 with the LSB of m2 and adding the | raoé= oxoo =Ro7= ox00 ROE= 0x00

result in R1:RO to the result register's two middle bytes, no [&%= 0x0 R10=0x00 Rll= 0=00
Bl2= 0x00 BR13= 0x00 ERl4= 0x00

carry occurred .. R15= 0x00 R16= 0x10 R17= 0x27
R18= OxAE R19= 0x61 R20= 0x00
R21= 0x00 R22= 0x00 R23= 0x00
R24= 0x00 R25= 0x00 R26= 0x00
R27= 0x00 R28= 0x00 R29= 0x00
R30= 0x00 R31= 0x00

Register e

o . . ROO= 0x10 RO1= 0x06 ROZ= 0x80
Multlplylng the LSB of m1 with the MSB of m2 and addlng the Y ros= oxE> RO4= 0xFEé ROS= 0xOF
result in R1:R0 to the result register's two middle bytes, no [ros= 0x00 RO7= 0x00 ROE= 0x00
carry occurred. The result is hex OEE6B280, which is [297~ 230 207 fxof 1= 2xo8
250000000 and obviously correct ... Pie ox0p Ri6 Oxll RiT— OxZ?

Rl8= 0xAS RI1%= 0Ox6l RZ0= 0x00

R21= 0x00 R22= 0x00 R23= 0x00
Processor x R24= 0x00 R25= 0x00 R2&= 0x00
Program Courter 5x000012 B27= 0x00 R2&8= 0x00 R29= 0x00
Stack Pointer (x0000 Raf= OxO0 B3l Oxff
¥ pointer (cDDDD
;EEEE: EEEEE & Project | EERegister
Cycle Counter 19
Frequency 10000 MHz Multiplication
Stop Watch [19.00 us | needed 19 clock cycles, which is very much faster than with
SREG OOEEMEED software multiplication. Another advantage here: the required
+) Registers time is ALWAYS exactly 19 cycles, and it doesn't depend on
the input numbers (like is the case with software multiplication
Processor | Bl Register and on overflow occurrences (thanks to our small trick of

adding zero with carry). So you can rely on this ...

Avr-Asm-Tutorial 53

Hardware multiplication of a 16- by a 24-bit-binary
Hardware-Multiplication 16-Bit * 24-Bit

Registerplan

azal* = egbed.e3ez el a2

ail
(256a2 + al) * (65536™03 + 256%2 + b1) = b3

b2
256 Y 65536 TaZ2 " b3 + az” b3 b1
256 * 256 * a2 * b2 + a2* b2 \ &3
256 * a2 * b1 + a2*b1\ el
655636 * a1 * b3 + al* b3 ;zt e3
256 a1l *h2+ al " b2 ——————p| €2
al* bl al* bl ————————— el

; Hardware Muiltiplication 16 by 24 bit
.include "m8def.inc"

; Register definitions

.def al = R2 ; define 16-bit register
.defa2 =R3

.def bl = R4 ; define 24-bit register
.defb2 =R5

.defb3 =R6

.def el = R7 ; define 40-bit result register
.defe2 =R8

.defe3 =R9

.defe4 =R10

.defe5=R11

.def c0 = R12 ; help register for adding
.defrl = R16 ; load register

; Load constants
.equ a = 10000 ; multiplicator a, hex 2710
.equ b = 1000000 ; multiplicator b, hex 0F4240
Idi r,BYTEI1(a) ; load a
mov al,rl
Idi r,BYTEZ2(a)
mov a2,rl
Idi r,BYTE1(b) ; load b
mov bl,rl
Idi r,BYTEZ2(b)
mov b2,rl
Idi rl,BYTE3(b)
mov b3,rl

; Clear registers
clr el ; clear result registers
clre2
clre3
clre4
clre5
clr c0 ; clear help register

; Multiply
mul a2,b3 ; term 1
add e4,R0 ; add to result
adc e5,R1
mul a2,b2 ; term 2
add e3,R0
adc e4,R1
adc e5,c0 ; (add possible carry)
mul a2,b1 ; term 3
add e2,R0O
adc e3,R1
adc e4,c0
adc e5,c0
mul al,b3 ; term 4
add e3,R0
adc e4,R1
adc e5,c0
mul al,b2 ; term 5
add e2,R0
adc e3,R1
adc e4,c0
adc e5,c0
mul al,bl ; term 6

http://www.avr-asm-tutorial.net

The multiplication of a 16 bit
binary "a" with a 24 bit binary "b"
leads to results with up to 40 bit
length. The multiplication
scheme requires six 8-by-8-bit
multiplications and adding the
results to the appropriate
position in the result registers.

The assembler source code for
this:

Avr-Asm-Tutorial 54 http://www.avr-asm-tutorial.net

add el,R0O
adc e2,R1
adc e3,c0
adc e4,c0
adc e5,c0

; done.

nop
; Result should be hex 02540BE400

The complete execution requires
e 10 clock cycles for loading the constants,
e 6 clock cycles for clearing registers, and

e 33 clock cycles for multiplication.
Division
No, unfortunately there is no hardware division. You need to do this in software!

Decimal division

Again we start with the decimal division, to better understand the binary division. We assume a division of
5678 by 12. This is done like this:

878

- 7 * 120 = 840
38

- 3¢ 12 = 36
2

Result: 5678 : 12 = 473 Renmi nder 2

Binary division

In binary the multiplication of the second number in the above decimal example (4 * 1200, etc.) is not
necessary, due to the fact that we have only 0 and 1 as digits. Unfortunately binary numbers have much
more single digits than their decimal equivalent, so transferring the decimal division to its binary equivalent
is a little bit inconvenient. So the program works a bit different than that.

The division of a 16-bit binary number by a 8-bit binary in AVR assembler is listed in the following section.

; Div8 divides a 16-bit-number by a 8-bit-number (Test: 16-bit-number: 0xAAAA, 8-bit-number: 0x55)
.NOLIST

.INCLUDE "C:\avrtools\appnotes\8515def.inc" ; adjust the correct path to your system!
.LIST

, Registers

.DEF rd1l = RO ; LSB 16-bit-number to be divided

.DEF rd1h = R1 ; MSB 16-bit-number to be divided

.DEF rd1u = R2 ; interim register

.DEF rd2 = R3 ; 8-bit-number to divide with

.DEF rel = R4 ; LSB result

.DEF reh = R5 ; MSB result

.DEF rmp = R16; multipurpose register for loading

.CSEG
.ORG 0
rjmp start
start:
; Load the test numbers to the appropriate registers
Idi rmp,0xAA ; OXAAAA to be divided
mov rd1h,rmp
mov rd1l,rmp
Idi rmp,0x55 ; 0x55 to be divided with
mov rd2,rmp
; Divide rd1h:rd1l by rd2
div8:
clr rd1u ; clear interim register
clr reh ; clear result (the result registers
clr rel ; are also used to count to 16 for the
inc rel ; division steps, is set to 1 at start)
; Here the division loop starts
div8a:

Avr-Asm-Tutorial 55

clc ; clear carry-bit

rol rd1l ; rotate the next-upper bit of the number

rol rd1h ; to the interim register (multiply by 2)

rol rd1u

brcs div8b ; a one has rolled left, so subtract

cp rd1u,rd?2 ; Division result 1 or 0?

bres div8c ; jump over subtraction, if smaller
div8b:

sub rd1u,rd2; subtract number to divide with

sec ;setcarry-bit, resultis a 1

rimp div8d ; jump to shift of the result bit
div8c:

clc ; clear carry-bit, resulting bit is a 0
div8d:

rol rel ; rotate carry-bit into result registers

rol reh

http://www.avr-asm-tutorial.net

brcc div8a ; as long as zero rotate out of the result registers: go on with the division loop

; End of the division reached
stop:
rjimp stop ; endless loop

Program steps during division

During execution of the program the following steps are ran:

+ Definition and preset of the registers with the test binaries,

« presetting the interim register and the result register pair (the result registers are presetted to
0x0001! After 16 rotations the rolling out of the one stops further division steps.),

+ the 16-bit-binary in rd1h:rd1l is rotated bitwise to the interim register rd1u (multiplication by 2), if a 1
is rotated out of rd1u, the program branches to the subtraction step in step 4 immediately,

« the content of the interim register is compared with

the 8-bit binary in rd2, if rd2 is smaller it is

subtracted from the interim register and the carry-bit is set to one, if rd2 is greater the subtraction is

skipped and a zero is set to the carry flag,

+ the content of the carry flag is rotated into the result register reh:rel from the right,

- if a zero rotated out of the result register, we have to repeat the division loop, if it was a one the

division is completed.

If you don't understand rotation yet you'll find this operation discussed in the multiplication section.

= DivBe.asm Hi=] E3
; Diw8 divides a lé-bit-number by a 8-bit-number -
; Test: leé-bit-number: 0Oxiiddd., S-bit-number: 0=xGE T
_NOLIST
JIHCLUDE " wavrtoolssappnotes~8515des inc”
LIST
E Registers
_DEF rdil = RO : L5B l6-bit—number to be diwvided
.DEF rdlih = R1 : MSE lé-bit-number to be diwided —
DEF rdlu = RZ : interim register
DEF rd? = R3 : G-bit-number to divide with
.DEF rel = R4 : LSE result
.DEF r=h = RE : HMSE re=ult
.DEF rmp = R1l6: multipurposs register for loading
CSEG
LORG O
e |
étart:
E Losd the test numbsrs to the appropriate registers
I’ 1A+ rmn O=Ad - (I=dA445 o be disided I T
4 *

%

Division in the simulator

The following screen shots demonstrate the
program steps in the studio (here in version
3, so it looks different). To do this, you have
to assemble the source code and open the
resulting object file in the studio.

The object code has been started, the
cursor (yellow arrow) is on the first
executable instruction. The key F11
performs single steps.

- AVA Studio - DivBe_asm

File Edit Pmject Debug Breakpoints Trace & tiggers “Watch Options Wiew Tools Window Help

[_[O]x]

e e@ o|lme o s - ||fove

|| g o L e @ P 0 R

==

I DivBe asm [_] |

-

B3 Registers
Oxdd

a
[=}
[

Ozdd

Load the test numbers to the sappropriate registers
- 0=00

1di rmp.0O=zdd @ Oxkiéfd to be divided R3 O=GC
mov rdih, rmp R4 h=no
mov rdll.rmp RS 0=00
1di rmp.0=55 . 0=55 to be divided with BE 0=00
mov rd2.rmp

0=00
0=00
0=00
0x00

! Divide rdlh:rdll by rdz
diva:

{=+1] ; clear interim register R11 0x=00 R285 0=00
clr reh ; olear result (the result registers R12 0=00 R29 O=00
clr rel ; are also used to count to 16 for the R1z2 0=00 R20 0=00
inc rel ; diwvision steps, iz ==t to 1 at =start) R14 D=00 R31 O=00
: R1E 0=00
. Here the division loop starts BElf = n=St
diwvBa:

clo : clear carrv-bit

rol rdll ;| rotate the next-upper bit of the numbe

rol rdlh : to the interim register (multiply by Z

rol rdlu

|| bros div8b : 2 one has rolled left. so subtract
cp rdlu.rd2 | Division result 1 ox 0O
bres AdAiwfe dumt cwer =suhtrastdion if =mal 'Iﬁr_lLl

4] [

]

M =1E3
0x00
000
000
000
0=00
0=00
0=00
0=00
0x=00
0x=00
0x00

R18
R1%
R20
21
Rz22
R23
R24
R25
R2p
R27

The test binaries OXAAAA and
0x55, to be divided, have
been written to the registers
R1:R0O and R3.

»
[Ln 36, Col 1 UM Y

[Simulator [ATE0SEE1E

Avr-Asm-Tutorial

File Edit Project Debug Ereakpointz Trace & tiggers “Watch Options Yiew Tools 'wWindow

56

Help

i AVR Studio - DivBe asm =] E3

J-é‘@gﬁ|g“§,nnm@|“mvss =] &

| oo o6 5L B B T (B 0 BB Eh

HEEEE S | m

http://www.avr-asm-tutorial.net

The interim register R2 and
the result register pair are set
to their predefined values.

[DivBe.asm !EIE =] Reglslels !Elﬁ
: - [RO = O=&& R17 = 0=00
: Load the test numbers to the appropriate registers R1 = Oxak R18 = 0=00
: k2 = 0x00 R19 = 0x00
1di rmp, OxAhk O=ikit to be divided B3 = 0x55 ER20 = 0=x00
nov ;gﬂ"ﬂg R4 = 0=01 E21 = O0=00
ldi rmp, 0x55 . 0x55 to be divided with RS C Dall R2Z - D=D0
nov rd2. rnm R7 = 0x00 E24 = 0=00
! Divide rdih:rdll by rd2 R3 = 0x=d0 R2& - 0=00
. R9 = 0x00 R26 = 0x00
divd: R10 = 0x00 R27 = 0x00
clr rdlu | clear interim register R1l = 0=x00 R28 = 0=00
clr reh | clesr result (the result registers k12 = 0=x00 R29 = O=00
clr rel : are also ussed to count to 16 for the R13 = 0=00 R30 = 0O=00
inc rel division steps, i= =et to 1 at start) REl14 = 0=00 R31 = 0=00
: R15 = 0=00
: Here the division loop starts Rl6 = 0x5%S
divia:
: clear carrv-bit
rol rdll - rotate the next—upper bit of the numbe
rol rdlh ; to the interim register (multiply by 2
rol rdlu
m bres diwfb @ 2 one has rolled left, =o subtract
cp rdlu,rd2 ;| Division result 1 or 07
hre= di vl Gumn_ower subtractiom if o= a11Ef_J:J
4] F L\
Kl E
i AYR Studio - DivBe.asm =] E3
File Edit Pject Debug Breakpoints Trace &tiggers ‘Watch Options Wiew Tools Window Help

|asd@ o= ~m P = &

| 6o s | (L 55 B B (P 0y =3 (= |

| E0E|e & o

diva:

clo : clear carrv-bit
rol rdll : rotate the next—upper bit of the nunbe
rol rdlh ; to the interim register (multiply by =
rol rdiu

=+ : a one has rolled left, so subtract

; Diwision result 1 or 07

Gumn nwer subtraction i f Rra]]ﬂi_J:J
L

bro= diwhc

File Edit Pioject Debug Breakpointz Trace & tiggers ‘wWatch DOptions Wiew Toolg

[DivBe asm !El [5] Heglslels !El-
B - [RD = 0=54 RI17 = 0=00
; Load the test number=s to the appropriate registers Rl = 0=55 R18 = 0=00
) o RZ = 0=01 R19 = 0O=00
1di rmp.0O=xdd @ O=iii4 to be divided B3 = 0=55 R20 = 0=00
naw iﬁi‘f‘iﬁg R4 = 0x01 R21 = 0x00
1di rmp,0x56 . 0=55 to be divided with R - =00 R22 - =D
. nov rd2, rnp R7 = 0z00 R24 = 0=00
! Divide rdilh:rdll by rdz RS - 0x00 R25 - 0«00
B RE9 = 0x00 R26 = 0=x00
diw8: F10 - 0=00 R27 - O=00
|| clr rdlu : clear interim register R11 = 0=x00 R28 = 0=00
clr reh : clear result {(the result registers R12 = 0x00 R29 = 0x00
clr rel | are also used to count to 16 for the R13 = 0=00 R30 = 0=00
inc rel | division steps. i= ==t to 1 at start) R14 = 0=00 R31 = 0=00
: R15 = 0=00
; Here the diwvision loop starts R16 = 0xG5

“ AVA Studio - DivBe_asm M= E3

Wwindow Help

R1:R0 was rotated left to R2,
from OxAAAA the doubled
value of 0x015554 was
yielded.

No overflow from rotation
into carry has occurred and

Jﬂ%\@gﬁ|a“gn mM@WDIVEE

Slliker % BIE W B G 0EE

0x01 in R2 was smaller than

R

bro= divsb
cp rdlu, rd2
broc= divic

2 one ha=s rolled left. =o subtract
Division result 1 or 07
jump ower subtraction. if smaller

div8b:
sub rdlu.rd2: subtract nunber to divide with
=ec ; =et carry-bit. result iz a 1
rimnp divdd jumnp to shift of the result bit
diwv8c:
clo ; clear carry-bit, resulting bit i= a 0
divid:
rol rel | rotate carry-bit into result registers
=] . as long as zero rotate out of the
. registers: go on with the division
: End of the division reached
=top:
rimnp stop . endless loop

= AYR Studio - DivBe.asm

File Edit Project Debug Breakpointz Trace & tiggers “Watch Option: Wiew Tools

[RO = 0=Ed4 Ri7 = Om00
Rl = 0O=x55
Rz = 0=01
R3 = 0=ES
R4 = 0=02
RS = 0=00
Ré = 0=00
R? = 0=00
R = 0=00
RS = 0=00
R10 = 0=00
R11 = 0=00
R12 = 0=00
R13 = 0=00
R14 = 0=00
R15 = 0=00
R16 = 0O=x55

Window Help

R17
R18
R19
R20
R21
R22
R23
R24
R25
R2p
R27
R28
R29
R30
R31

0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00

i DivBe_asm !EE I [e] Heglslels =0 =] l

0x55 in R3, so subtraction
was skipped. A zero in the
carry is rotated into the result
register R5:R4. The former
content of the result register,
a single 1-bit in position 0
has rotated to position 1
(content now: 0x0002). As a
zero was rotated out of the
result register pair, the next
step to be executed is a
branch to the beginning of

the division loop start
and the loop is repeated.

|gﬂﬁ|o‘ Enmﬁ@‘lDlVSE

|+

| g 50 | 36 ® O (P 1 (=B h|

After executing the loop

=N

16 times we have
reached the breakpoint

= DivBe.asm !E. I [] Heglslets -0 x] I

divib:

zub rdlu.rd2. subtract number to divide with

=ec . =et carry-bit, result iz a 1

rimp diwdd junp to =hift of the result bit
divic:

clc clear carry-bit, resulting bit iz a 0
divid:

rol rel rotate carrv-bit into result registers

rol reh

brco diw8a © as long as zero rotate out of the z
; registers: go on with the division
; End of the diwision reached

=top:

; endless loop

[R0 = 0=00 RI7 = O=00
Rl = 0=00
Rz = 0=00
R3 = 0=E&S
R4 = 0=02
RE = 0=02
Re = 0=00
R7 = 0=00
k2 = 0=00
R9 = 0=z00
R10 = 0=00
E11 = 0=00
R12 = 0=00
R13 = 0x00
R14 = 0x00
R15 = 0x00
Rl16 = 0x55

R17
Rlg
R19
R20
R21
R22
R23
R24
R2E
R26
R27
R28
R29
R30
R31

0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00
0=00

set at the end of the
division routine. The
result register in R5:R4
holds 0x0202, the result
of the division. The
registers R2:R1:R0 are
empty, so we do not
have a remainder left. If
a remainder would have
been resulted we can
use it to decide whether
an incrementation of the
result should take place,
rounding of the result up.
This step is not coded
here.

4

[| Simulator |AT3058515

|Ln B4, Cal 1

T

Avr-Asm-Tutorial 57 http://www.avr-asm-tutorial.net

i Processor _|3O] x|

= Counter |0=00000012 s Bepister | 000071 o _
b i The whole division needs 60 micro-seconds

Stack Pointer |0=00000000 ‘-Register |0<0000 processor time (open a processor view in
Cycle Counter |00000222 ZRegister [0%0001 the studio menu). A rather long time for a

division.
Time Elapzed ID-DE i Frequency |4.D k4Hz

Flagz Stopiafatch
R [o | Epsnssmamin it it emdin I | |
rrr¥rFrre LClear 0.06 rnz

Number conversion
Number conversion routines are not included here. Please refer to the website at

http://www.avr-asm-tutorial.net/avr_en

if you need the source code or a better understanding.

Decimal Fractions

First: Do not use any floating points, unless you really need them. Floating points are resource killers in an
AVR, lame ducks and need extreme execution times. Run into this dilemma, if you think assembler is too
complicated, and you prefer Basic or other languages like C or Pascal.

Not so, if you use assembler. You'll be shown here, how you can perform the multiplication of a fixed point
real number in less than 60 micro-seconds, in special cases even within 18 micro-seconds, at 4 MHz clock
frequency. Without any floating point processor extensions and other expensive tricks for people too lazy
to use their brain.

How to do that? Back to the roots of math! Most tasks with floating point reals can be done using integer
numbers. Integers are easy to program in assembler and perform fast. The decimal point is only in the
brain of the programmer, and is added somewhere in the decimal digit stream. No one realizes, that this is
a trick.

Linear conversions

As an example the following task: an 8-Bit-AD-Converter measures an input signal in the range from 0.00
to 2.55 Volt, and returns as the result a binary in the range from $00 and $FF. The result, a voltage, is to
be displayed on a LCD display. Silly example, as it is so easy: The binary is converted to a decimal ASCII
string between 000 and 255, and just behind the first digit the decimal point has to be inserted. Done!

The electronics world sometimes is more complicated. E. g., the AD-Converter returns an 8-Bit-Hex for
input voltages between 0.00 and 5.00 Volt. Now we're tricked and do not know how to proceed. To display
the correct result on the LCD we would have to multiply the binary by 500/255, which is 1.9608. This is a
silly number, as it is almost 2, but only almost. And we don't want that kind of inaccuracy of 2%, while we
have an AD-converter with around 0.25% accuracy.

To cope with this, we multiply the input by 500/255%256 or 501.96 and divide the result by 256. Why first
multiply by 256 and then divide by 2567 It's just for enhanced accuracy. If we multiply the input by 502
instead of 501.96, the error is just in the order of 0.008%. That is good enough for our AD-converter, we
can live with that. And dividing by 256 is an easy task, because it is a well-known power of 2. By dividing
with numbers that are a power of 2, the AVR feels very comfortable and performs very fast. By dividing
with 256, the AVR is even faster, because we just have to skip the last byte of the binary number. Not even
shift and rotate!

The multiplication of an 8-bit-binary with the 9-bit-binary 502 (hex 1F6) can have a result larger than 16
bits. So we have to reserve 24 bits or 3 registers for the result. During multiplication, the constant 502 has
to be shifted left (multiplication by 2) to add these numbers to the result each time a one rolls out of the
shifted input number. As this might need eight shifts left, we need further three bytes for this constant. So
we chose the following combination of registers for the multiplication:

Number Value (example) Register
Input value 255 R1
Multiplicand 502 R4:R3:R2

Result 128,010 R7 :R6 :R5

http://www.avr-asm-tutorial.net/avr_en

Avr-Asm-Tutorial 58 http://www.avr-asm-tutorial.net

After filling the value 502 (00.01.F6) to R4 : R3: R2 and clearing the result registers R7 : R6 : R5, the
multiplication goes like this:

1. Test, if the input number is already zero. If yes, we're done.

2. If no, one bit of the input number is shifted out of the register to the right, into the carry, while a zero
is stuffed into bit 7. This instruction is named Logical-Shift-Right or LSR.

3. If the bit in carry is a one, we add the multiplicand (during step 1 the value 502, in step 2 it's 1004,
a. s. 0.) to the result. During adding, we care for any carry (adding R2 to R5 by ADD, adding R3 to
R6 and R4 to R7 with the ADC instruction!). If the bit in the carry was a zero, we just don't add the
multiplicand to the result and jump to the next step.

4. Now the multiplicand is multiplied by 2, because the next bit shifted out of the input number is worth
double as much. So we shift R2 to the left (by inserting a zero in bit 0) using LSL. Bit 7 is shifted to
the carry. Then we rotate this carry into R3, rotating its content left one bit, and bit 7 to the carry. The
same with R4.

5. Now we're done with one digit of the input number, and we proceed with step 1 again.

The result of the multiplication by 502 now is in the result registers R7 : R6 : R5. If we just ignore register
R5 (division by 256), we have our desired result. To enhance accuracy, we can use bit 7 in R5 to round the
result. Now we just have to convert the result from its binary form to decimal ASCII (see Conversion bin to
decimal-ASCIl on the website). If we just add a decimal point in the right place in the ASCII string, our
voltage string is ready for the display.

The whole program, from the input number to the resulting ASCII string, requires between 79 and 228
clock cycles, depending from the input number. Those who want to beat this with the floating point routine
of a more sophisticated language than assembler, feel free to mail me your conversion time (and program
flash and memory usage).

Example 1: 8-bit-AD-converter with fixed decimal output

; Demonstrates floating point conversion in Assembler, (C)2003 www.avr-asm-tutorial.net

; The task: You read in an 8-bit result of an analogue-digital-converter, number is in the range from hex 00 to FF.
; You need to convert this into a floating point number in the range from 0.00 to 5.00 Volt
; The program scheme:
;1. Multiplication by 502 (hex 01F6).That step multiplies by 500, 256 and divides by 255 in one step!
;2. Round the result and cut the last byte of the result. This step divides by 256 by ignoring the last byte of the result.
; Before doing that, bit 7 is used to round the result.
;3. Convert the resulting word to ASCII and set the correct decimal sign. The resulting word in the range from 0 to 500
; is displayed in ASCll-characters as 0.00 to 5.00.
; The registers used:
; The routines use the registers R8..R1 without saving these before. Also required is a multipurpose register called rmp,
; located in the upper half of the registers. Please take care that these registers don't conflict with the register use in the
; rest of your program.
; When entering the routine the 8-bit number is expected in the register R1. The multiplication uses R4:R3:R2 to hold
; the multiplicator 502 (is shifted left max. eight times during multiplication). The result of the multiplication is calculated
;in the registers R7:R6:R5. The result of the so called division by 256 by just ignoring R5 in the result, is in R7:R6. R7:R6
;is rounded, depending on the highest bit of R5, and the result is copied to R2:R1.
. Conversion to an ASCII-string uses the input in R2:R1, the register pair R4:R3 as a divisor for conversion, and places the
; ASCII result string to R5:R6:R7:R8 (R6 is the decimal char).
; Other conventions:
; The conversion uses subroutines and the stack.The stack must work fine for the use of three levels (six bytes SRAM).
, Conversion times:
; The whole routine requires 228 clock cycles maximum (converting $FF), and 79 clock cycles minimum (converting $00).
; At 4 MHz the times are 56.75 microseconds resp. 17.75 microseconds.
: Definitions:
; Registers
.DEF rmp = R16 ; used as multi-purpose register
; AVR type: Tested for type AT90S8515, only required for stack setting, routines work fine with other AT90S-types also
.NOLIST
.INCLUDE "8515def.inc"
.LIST
; Start of test program
; Just writes a number to R1 and starts the conversion routine, for test purposes only
.CSEG
.ORG $0000
jmp main
main:
Idi rmp,HIGH(RAMEND) ; Set the stack
out SPH,rmp
Idi rmp,LOW(RAMEND)
out SPL,rmp
Idi rmp,$FF ; Convert $FF
mov R1,rmp
rcall fpconv8 ; call the conversion routine
no_end: ; unlimited loop, when done

Avr-Asm-Tutorial 59

rjmp no_end
; Conversion routine wrapper, calls the different conversion steps
foconv8:
rcall fpconv8m ; multiplicate by 502
rcall fpconv8r ; round and divide by 256
rcall fpconv8a ; convert to ASCII string
Idi rmp,"." ; set decimal char
mov R6,rmp
ret ; all done
; Subroutine multiplication by 502
foconv8m:
clr R4 ; set the multiplicant to 502
Idi rmp,$01
mov R3,rmp
Idi rmp,$F6
mov R2,rmp
clr R7 ; clear the result
clr R6
clr R5
foconv8m]1:
or R1,R1 ; check if the number is all zeros
brne foconv8m?2 ; still one's, go on convert
ret ; ready, return back
foconv8m?2:
Isr R1 ; shift number to the right (div by 2)
brcc fpconv8m3 ; if the lowest bit was 0, then skip adding
add R5,R2 ; add the number in R6:R5:R4:R3 to the result
adc R6,R3
adc R7,R4
foconv8m3:
Isl R2 ; multiply R4:R3:R2 by 2
rol R3
rol R4
rjimp fpconv8m1 ; repeat for next bit
; Round the value in R7:R6 with the value in bit 7 of R5
foconv8r:
clr rmp ; put zero to rmp
Isl R5 ; rotate bit 7 to carry
adc R6,rmp ; add LSB with carry
adc R7,rmp ; add MSB with carry
mov R2,R7 ; copy the value to R2:R1 (divide by 256)
mov R1,R6
ret
; Convert the word in R2:R1 to an ASCII string in R5:R6:R7:R8
foconv8a:
clr R4 ; Set the decimal divider value to 100
Idi rmp,100
mov R3,rmp
rcall fpconv8d ; get ASCII digit by repeated subtraction
mov R5,rmp ; set hundreds string char
Idi rmp,10 ; Set the decimal divider value to 10
mov R3,rmp
rcall fpconv8d ; get the next ASCII digit
mov R7,rmp ; set tens string char
Idi rmp,’0" ; convert the rest to an ASCII char
add rmp,R1
mov R8,rmp ; set ones string char
ret

http://www.avr-asm-tutorial.net

; Convert binary word in R2:R1 to a decimal digit by substracting the decimal divider value in R4:R3 (100, 10)

foconv8d:
Idi rmp,’0" ; start with decimal value 0
foconv8d1:
¢cp R1,R3 ; Compare word with decimal divider value
cpc R2,R4
brec foconv8d2 ; Carry clear, subtract divider value
ret ; done subtraction
foconv8d2:
sub R1,R3 ; subtract divider value
sbc R2,R4
inc rmp ; up one digit
rjmp fpconv8d1 ; once again
; End of conversion test routine

Example 2: 10-bit-AD-converter with fixed decimal output

This example is a bit more complicated. Refer to the website if you need it.

Avr-Asm-Tutorial 60 http://www.avr-asm-tutorial.net

Annex

Instructions sorted by function

For the abbreviations used see the list of abbreviations.

Function Sub function instruction Flags Clk
0 CLRrl ZNV 1
SR(;atgister 255 SER th 1
Constant LDI rh,c255 1
Register => Register MOV r1,r2 1
SRAM => Register, direct LDS r1,c65535 2
SRAM => Register LD rl,rp 2
SRAM => Register and INC LD rl.rp+ 2
DEC, SRAM => Register LD rl,-rp 2
SRAM, displaced => Register LDD rl,ry+k63 2
Port => Register IN rl1,pl 1
Stack => Register POP r1 2
Copy
Program storage Z => R0 LPM 3
Register => SRAM, direct STS ¢65535,r1 2
Register => SRAM ST rp,rl 2
Register => SRAM and INC ST rp+,rl 2
DEC, Register => SRAM ST -rp,rl 2
Register => SRAM, displaced STD ry+k63.r1 2
Register => Port OUT pl,rl 1
Register => Stack PUSH r1 2
8 Bit, +1 INCrl ZNV 1
8 Bit ADD r1,r2 ZCNVH 1
Add 8 Bit + Carry ADC r1,r2 ZCNVH 1
16 Bit, constant ADIW rd.k63 ZCNVS 2
8 Bit, -1 DECrl ZNV 1
8 Bit SUB r1,r2 ZCNVH 1
8 Bit, constant SUBIrh,c255 ZCNVH 1
Subtract
8 Bit - Carry SBC r1,r2 ZCNVH 1
8 Bit - Carry, constant SBClrh,c255 ZCNVH 1
16 Bit SBIW rd,k63 ZCNVS 2
logic, left LSLr1 ZCNV 1
logic, right LSRrl ZCNYV 1
Shift Rotate, left over Carry ROL r1 ZCNYV 1
Rotate, right over Carry ROR r1 ZCNYV 1
Arithmetic, right ASR r1 ZCNV 1
Nibble exchange SWAP r1 1
And AND r1,r2 ZNV 1
And, constant ANDI rh,c255 ZNV 1
Or ORrl,r2 ZNV 1
Binary Or, constant ORI rh,c255 ZNV 1
Exclusive-Or EOR rl,r2 ZNYV 1
Ones-complement CoOMrl ZCNV 1
Twos-complement NEG r1 ZCNVH 1

file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#ComNeg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#ComNeg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Eor
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Ori
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Or
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#ANDI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#And
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Swap
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Asr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Ror
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Rol
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Lsr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Lsl
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#ASIW
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#SBCI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#SubSbc
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#SUBI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#SubSbc
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#DEC
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#ASIW
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#AddAdc
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#AddAdc
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Inc
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/SRAM.html#PushPop
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#OUT
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/SRAM.html#StdLdd
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LDSI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LDSI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LDSI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/SRAM.html#STSLDS
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LPM
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/SRAM.html#PushPop
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PORTS.html#IN
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/SRAM.html#StdLdd
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LDSI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LDSI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LDSI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/SRAM.html#STSLDS
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#MOV
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#LDI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#SER
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#CLR

Avr-Asm-Tutorial 61 http://www.avr-asm-tutorial.net

Function Sub function instruction Flags Clk
Register, set SBR rh,c255 ZNV 1
Register, clear CBR rh,255 ZNV 1
Bits Register, copy to T-Flag BST rl,b7 T 1
change Register, copy from T-Flag BLD r1,b7 1
Port, set SBI pl,b7 2
Port, clear CBI pl,b7 2
Zero-Flag SEZ VA 1
Carry Flag SEC C 1
Negative Flag SEN N 1
Status bit Twos complement carry Flag SEV \% 1
set Half carry Flag SEH H 1
Signed Flag SES S 1
Transfer Flag SET T 1
Interrupt Enable Flag SEI I 1
Zero-Flag CLz VA 1
Carry Flag CLC C 1
Negative Flag CLN N 1
Status bit Twos complement carry Flag CLV \'% 1
Clear Half carry Flag CLH H 1
Signed Flag CLS S 1
Transfer Flag CLT T 1
Interrupt Enable Flag CLI I 1
Register, Register CPrl,r2 ZCNVH 1
Register, Register + Carry CPCrl,r2 ZCNVH 1
Compare -
Register, constant CPI rh,c255 ZCNVH 1
Register, <0 TSTr1 ZNV 1
Relative RJMP c4096 2
Indirect, Address in Z [IMP 2
Immediate Subroutine, relative RCALL c4096 3
Jump Subroutine, Address in Z ICALL 3
Return from Subroutine RET 4
Return from Interrupt RETI I 4

file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Reti
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Ret
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#IjmpIcall
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Rcall
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#IjmpIcall
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Rjmp
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Tst
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#CPI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#CpCpc
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#CpCpc
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PDETAIL.html#SREG
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PORTS.html#CBISBI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PORTS.html#CBISBI
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#Bld
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/CALC.html#CltSetBst
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#CBR
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/REGISTER.html#SBR

Avr-Asm-Tutorial

62

http://www.avr-asm-tutorial.net

Function

Conditional
Jump

Conditioned
Jumps

Others

Sub function
Status bit set
Status bit clear
Jump if equal
Jump if not equal
Jump if carry set
Jump if carry clear
Jump if equal or greater
Jump if lower
Jump if negative
Jump if positive

Jump if greater or equal (Signed)
Jump if lower than zero (Signed)

Jump on half carry set
Jump if half carry clear
Jump if T-Flag set
Jump if T-Flag clear

Jump if Twos complement carry set

Jump if Twos complement carry clear

Jump if Interrupts enabled
Jump if Interrupts disabled
Register bit=0

Register bit=1

Port bit=0

Port bit=1

Compare, jump if equal
No Operation

Sleep

Watchdog Reset

instruction

BRBS b7,c127
BRBC b7,c127
BREQ c127
BRNE c127
BRCS c127
BRCC c127
BRSH c127
BRLO c127
BRMI c127
BRPL c127
BRGE c127
BRLT c127
BRHS c127
BRHC c127
BRTS c127
BRTC c127
BRVS c127
BRVC c127
BRIE c127
BRID c127
SBRC r1,b7
SBRS rl1,b7

SBIC pl,b7

SBIS pl,b7
CPSE r1,r2

NOP
SLEEP
WDR

Flags

Clk
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2/3
1/2/3
1/2/3
1/2/3
1/2/3
1
1
1

Directives and Instruction lists in alphabetic order

Assembler directives in alphabetic order

Directive
.CSEG
.DB

.DEF

.DW
.ENDMACRO
ESEG
.EQU
INCLUDE
.MACRO
.ORG

. means ...

Assemble to the Code segment

Insert data byte(s)
Define a register name

Insert data word(s)

Macro is complete, stop recording
Assemble to the EEPROM segment

Define a constant by name and set its value

Insert a file's content at this place as if it would be part of this file

Start to record the following instructions as a macro definition

Set the assembler output address to the following number

file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#CsegOrg
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/PORTS.html#SLEEP
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#NOP
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Cpse
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#SBICS
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#SBICS
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#SBRCS
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#SBRCS
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brne
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Breq
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Brxx

Avr-Asm-Tutorial

63 http://www.avr-asm-tutorial.net

Instructions in alphabetic order

Instruction
ADC r1,r2
ADD rl1,r2
ADIW rd,k63
AND r1,r2
ANDI rh,c255
ASR 1

BLD r1,b7
BRCC c127
BRCS c127
BREQ c127
BRGE c127
BRHC c127
BRHS c127
BRID c127
BRIE c127
BRLO c127
BRLT c127

BRMI c127
BRNE c127
BRPL c127
BRSH c127
BRTC c127
BRTS c127
BRVC c127
BRVS c127
BST r1,b7
CBIplb7
CBR rh,k255
CLC

CLH

CLI

CLN
CLRr1
CLS

CLT

CcLv

Clz
COMr1
CPrl,r2
CPCrl,r2
CPI rh,c255
CPSE r1,r2
DECr1
EOR r1,r2
ICALL

IJMP IN rl,pl
INC r1

LD r1,(rp,rp+,-rp)

LDD r1,ry+k63

... performs ...

Add r2 with Carry to r1 and store result in r1

Add r2 to r1 and store result in r1

Add the immediate word constant k63 to the double register rd+1:rd (rd = R24, R26, R28, R30)
And bit wise r1 with the value in r2 and store the result in r1

And bit wise the upper register rh with the constant c255 and store the result in rh

Arithmetic shift the register r1 right

Copy the T-flag in the status register to bit b7 in register r1

Branch by c127 instructions for- or backwards if the carry flag in the status register is clear
Branch by c127 instructions for- or backwards if the carry flag in the status register is set
Branch by c127 instructions for- or backwards if the zero flag in the status register is set
Branch by c127 instructions for- or backwards if the carry flag in the status register is clear
Branch by c127 instructions for- or backwards if the half carry flag in the status register is clear
Branch by c127 instructions for- or backwards if the half carry flag in the status register is set
Branch by c127 instructions for- or backwards if the interrupt flag in the status register is clear
Branch by c127 instructions for- or backwards if the interrupt flag in the status register is set
Branch by c127 instructions for- or backwards if the carry flag in the status register is set

Branch by c127 instructions for- or backwards if the negative and overflow flag in the status register are
set

Branch by c127 instructions for- or backwards if the negative flag in the status register is set
Branch by c127 instructions for or backwards if the zero flag in the status register is set
Branch by c127 instructions for- or backwards if the negative flag in the status register is clear
Branch by c127 instructions for- or backwards if the carry flag in the status register is clear
Branch by c127 instructions for- or backwards if the transfer flag in the status register is clear
Branch by c127 instructions for- or backwards if the transfer flag in the status register is set
Branch by c127 instructions for- or backwards if the overflow flag in the status register is clear
Branch by c127 instructions for- or backwards if the overflow flag in the status register is set
Copy the bit b7 in register r1 to the transfer flag in the status register

Clear bit b7 in the lower port pl

Clear all the bits in the upper register rh, that are set in the constant k255 (mask)

Clear the carry bit in the status register

Clear the half carry bit in the status register

Clear the interrupt bit in the status register, disable interrupt execution

Clear the negative bit in the status register

Clear the register r1

Clear the signed flag in the status register

Clear the transfer flag in the status register

Clear the overflow flag in the status register

Clear the zero flag in the status register

Complement register r1 (ones complement)

Compare register r1 with register r2

Compare register r1 with register r2 and the carry flag

Compare the upper register rh with the immediate constant c255

Compare r1 with r2 and jump over the next instruction if equal

Decrement register r1 by 1

Exclusive bit wise Or register r1 with register r2 and store result in r1

Call the subroutine at the address in register pair Z (ZH:ZL, R31:R30)

Jump to the address in register pair Z (ZH:ZL, R31:R30)

Increment register r1 by 1

Load the register r1 with the content at the location that register pair rp (X, Y or Z) points to (rp+
increments the register pair after loading, -rp decrements the register pair prior to loading)

Load the register r1 with the content at the location that register pair ry (Y or Z), displaced by the
constant k63, points to

file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr

Avr-Asm-Tutorial

64 http://www.avr-asm-tutorial.net

LDI rh,c255 Load the upper register rh with the constant c255

LDS r1,c65535 | Load register r1 with the content at location c65535

LPM Load register RO with the content of the flash memory at the location that register pair Z (ZH:ZL,
LPMr1 R31:R30), divided by 2, points to, bit 0 in Z points to lower (0) or upper (1) byte in flash (Load register
LPMrl.Z+ r1, Z+ increment Z after loading, -Z decrement Z prior to loading)

LPMrl,-Z

LSL r1 Logical shift left register r1

LSR 1 Logical shift right register r1

MOV rl,r2 Move register r2 to register r1

NEG r1 Subtract register r1 from Zero

NOP No operation

OR rl,r2 Bit wise or register r1 with register r2 and store result in register r1

ORI rh,c255 Bit wise or the upper register r1 with the constant c255

OUT pl,rl Copy register r1 to I/O port p1

POP 1 Increase the stack pointer and pop the last byte on stack to register r1

PUSH r1 Push register r1 to the stack and decrease the stack pointer

RCALL c4096
RET

RETI

R IMP c4096
ROL r1

ROR 11
SBCrl1,r2
SBCl rh,c255

SBl pl.b7
SBIC pl.b7

SBIS pl.b7
SBIW rd,k63

SBR rh,c255
SBRC rl1,b7
SBRS r1,b7
SEC

A

STD ry+k63,r1

STS c65535,r1
SUB rl,r2
SUBI rh,c255
SWAP r1
ISTrl

WDR

Push program counter on stack and add signed constant c4096 to the program counter (relative call)
Pop program counter from stack (return to call address)

Enable interrupts and pop program counter from stack (return from interrupt)
Relative jump, add signed constant c4096 to program address

Rotate register r1 left, copy carry flag to bit 0

Rotate register r1 right, copy carry flag to bit 7

Subtract r2 and the carry flag from register r1 and write result to r1

Subtract constant c255 and carry flag from the upper register rh and write result to rh
Set bit b7 in the lower port pl

If bit b7 in the lower port pl is clear, jump over the next instruction

If bit b7 in the lower port pl is set, jump over the next instruction

Subtract the constant k63 from the register pair rd (rd+1:rd, rd = R24, R26, R28, R30)
Set the bits in the upper register rh, that are one in constant c255

If bit b7 in register r1 is clear, jump over next instruction

If bit b7 in register r1 is set, jump over next instruction

Set carry flag in status register

Set half carry flag in status register

Set interrupt flag in status register, enable interrupt execution

Set negative flag in status register

Set all bits in the upper register rh

Set sign flag in status register

Set transfer flag in status register

Set overflow flag in status register

Set zero flag in status register

Put controller to the selected sleep mode

Store content in register r1 to the memory location in register pair rp (rp = X, Y, Z; rp+: increment
register pair after store; -rp: decrement register pair prior to store)

Store the content of register r1 at the location that register pair ry (Y or Z), displaced by the constant
k63, points to

Store the content of register r1 at the location c65535
Subtract register r2 from register r1 and write result to r1
Subtract the constant c255 from the upper register rh
Exchange upper and lower nibble in register r1
Compare register r1 with Zero

Watchdog reset

file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr
file:///home/gerd/Documents/webpages/avr-asm-download/course/en/html/avr_en/beginner/JUMP.html#Wdr

Avr-Asm-Tutorial 65 http://www.avr-asm-tutorial.net

Port details

The table of the relevant ports in the ATMEL AVR types AT90S2313, 2323 and 8515. Byte wise accessible
ports or register pairs are not displayed in detail. No warranty for correctness, see the original data sheets!

Status-Register, Accumulator flags

Port Function Port-Address RAM-Address
SREG Status Register Accumulator 0x3F Ox5F
7 6 5 4 3 2 1 0
I T H S \Y N Z C
Bit Name Meaning Opportunities Conmmand
0: Interrupts disabled CLl
7 | Global Interrupt Flag
1: Interrupts enabled SEI
) 0: Stored bitis 0 CLT
6 T Bit storage —
1: Stored bit is 1 SET
0: No halfcarry occurred CLH
5 H Halfcarry-Flag
1: Halfcarry occurred SEH
) 0: Sign positive CLS
4 S Sign-Flag _ -
1: Sign negative SES
0: No carry occurred CLV
3V Two's complement-Flag
1: Carry occurred SEV
. 0: Result was not negative/smaller CLN
2 N Negative-Flag -
1: Result was negative/smaller SEN
0: Result was not zero/unequal CLZ
1 Zz Zero-Flag
1: Result was zero/equal SEZ
0: No carry occurred CLC
0 C Carry-Flag
1: Carry occurred SEC

Stackpointer

Port Function Port-Address RAM-Address

E"P'-/SP Stackpointer 003D/OX3E OXSD/OXSE
Name Meaning Availability

Low-Byte of Stack

SPL ; From AT90S2313 upwards, not in 1200
pointer
SPH Ecl)?:t_eB;Yte of Stack From AT90S8515 upwards, only in devices with >256 bytes internal SRAM

SRAM and External Interrupt control

Port Function Port-Address RAM-Address
MCUCR MCU General Control Register 0x35 0x55
7 6 5 4 3 2 1 0
SRE SRW SE SM ISC11 ISC10 ISCO01 ISC00
Bit Name Meaning Opportunities

0=No external SRAM connected
1=External SRAM connected

7 SRE Ext. SRAM Enable

Avr-Asm-Tutorial

66

Bit Name
6 SRW
5 SE

4 SM

3 ISCl11
2 ISC10
1 ISCo1
0 ISC00

Meaning

Ext. SRAM Wait States

Sleep Enable

Sleep Mode

Interrupt control Pin INT1
(connected to GIMSK)

Interrupt control Pin INTO
(connected to GIMSK)

Opportunities
0=No extra wait state on external SRAM
1=Additional wait state on external SRAM
O=Ignore SLEEP instructions
1=SLEEP on instruction
O=Idle Mode (Half sleep)
1=Power Down Mode (Full sleep)
00:
01:
10:
11:
00:
01:
10:
11:

Low-level initiates Interrupt
Undefined

Falling edge triggers interrupt
Rising edge triggers interrupt
Low-level initiates interrupt
Undefined

Falling edge triggers interrupt

Rising edge triggers interrupt

External Interrupt Control

Port

Function

GIMSK General Interrupt Maskregister

Port-Address RAM-Address
0x3B 0x5B

7
INT1

6
INTO

5

4

3 2

http://www.avr-asm-tutorial.net

Bit Name

7 INT1

Meaning

Interrupt by external pin INT1

Opportunities
0: External INT1 disabled

(connected to mode in MCUCR)

Interrupt by external Pin INTO
(connected to mode in MCUCR)

(Not used)

6 INTO

1: External INT1 enabled
0: External INTO disabled
1: External INTO enabled

Port Function

GIFR General Interrupt Flag Register 0x3A

Port-Address RAM-Address

Ox5A

7 6 5 4

2 1 0

INTF1

INTFO

Bit Name

Meaning

Opportunities

7 INTF1 Interrupt by external pin INT1 occurred Aytomatic clear by execution of the Int-Routine or
6 INTFO Interrupt by external pin INTO occurred Clear by instruction

0..5

(Not used)

Timer Interrupt Control

Port Function Port-Address RAM-Address
TIMSK Timer Interrupt Maskregister 0x39 0x59
7 6 5 4 3 2 1 0
TOIE1 OCIE1A OCIE1B - TICIE1 - TOIEO -

Avr-Asm-Tutorial 67
Bit Name Meaning Opportunities
) 0: No Int at overflow
7 TOIE1 Timer/Counter 1 Overflow-Interrupt
1: Int at overflow
_ 0: No Int at equal A
6 OCIEIA Timer/Counter 1 Compare A Interrupt
1: Int at equal A
) 0: No IntatB
5 OCIE1IB Timer/Counter 1 Compare B Interrupt
1: Int at equal B
4 (Not used)
_ 0: No Int at Capture
3 TICIE1 Timer/Counter 1 Capture Interrupt
1: Int at Capture

(N

1 TOIEO Timer/Counter 0 Overflow-Interrupt

ot used)
0: No Int at overflow
1: Int at overflow

http://www.avr-asm-tutorial.net

0 (Not used)
Port Function Port-Address RAM-Address
TIFR Timer Interrupt Flag Register 0x38 0x58
7 6 5 4 3 2 1 0
TOV1 OCF1A OCF1B - ICF1 - TOVO -
Bit Name Meaning Opportunities
7 TOV1 Timer/Counter 1 Overflow reached _
Interrupt-Mode:
6 OCF1A Timer/Counter 1 Compare A reached Automatic Clear
5 OCF1B Timer/Counter 1 Compare B reached by execution of the
Int-Routine
4 (Not used)
3 ICF1 Timer/Counter 1 Capture-Event occurred OR
2 (not used) Polling-Mode:
1 TOVO Timer/Counter 0 Overflow occurred Clear by
instruction
0 (not used)
Timer/Counter 0
Port Function Port-Address RAM-Address
TCCRO Timer/Counter 0 Control Register 0x33 0x53
7 6 5 4 3 2 1 0
- - - - - CS02 CSo1 CS00
Bit Name Meaning Opportunities
000: Stop Timer
001: Clock = Chip clock
010: Clock = Chip clock / 8
_ 011: Clock = Chip clock / 64
2.0 CS02..CS00 Timer Clock -
100: Clock = Chip clock / 256
101: Clock = Chip clock / 1024
110: Clock = falling edge of external Pin TO
111: Clock = rising edge of external Pin TO
3.7 (not used)

Avr-Asm-Tutorial

68

Port Function

TCNTO Timer/Counter O count register

Port-Address RAM-Address

0x32

0x52

Timer/Counter 1

http://www.avr-asm-tutorial.net

Port Function Port-Address RAM-Address
TCCR1A Timer/Counter 1 Control Register A 0x2F Ox4F
7 6 5 4 3 2 1 0
COM1A1 COM1A0 COM1B1 COMI1BO - - PWM11 PWMI10
Bit Name Meaning Opportunities
7 COM1A1
Compare Output A 00: OC1A/B not connected
6 COMIAO 01: OC1A/B changes polarity
5 COM1B1 10: OC1A/B to zero
Compare Output B 11: 1A/B
4 comigo P P OCIAE to one
} (not used)
not use
2
00: PWM off
PWM11 . 01: 8-Bit PWM
1.0 pywmMmio Pulse width modulator 0o o pywMm
11: 10-Bit PWM
Port Function Port-Address RAM-Address
TCCR1B Timer/Counter 1 Control Register B 0x2E Ox4E
7 6 5 4 3 2 1 0
ICNC1 ICES1 - - CTC1 CS12 CS11 CS10
Bit Name Meaning Opportunities
Noise Canceler 0:disabled, first edge starts sampling
7 ICNC1 . .
on ICP-Pin 1: enabled, min four clock cycles
i 0: falling edge triggers Capture
6 ICESI Edge selection g edge trigg p
on Capture 1: rising edge triggers Capture
5..4 (not used)
Clear at) .
3 C(CTC1 Compare Match A 1: Counter set to zero if equal
000: Counter stopped
001: Clock
010: Clock /8
011: Clock /64
2..0 CS12..CS10 Clock select 100: Clock / 256
101: Clock / 1024
110: falling edge external Pin T1
111: rising edge external Pin T1

Port

Function

TCNTI1L/H Timer/Counter 1 count register

Port-Address RAM-Address
0x2C/0x2D 0x4C/0x4D

Avr-Asm-Tutorial 69 http://www.avr-asm-tutorial.net

Port Function Port-Address RAM-Address
OCRI1AL/H Timer/Counter 1 Output Compare register A 0x2A/0x2B 0x4A/0x4B hex

Port Function Port-Address RAM-Address
OCRI1BL/H Timer/Counter 1 Output Compare register B 0x28/0x29 0x48/0x49

Port Function Port-Address RAM-Address
ICRIL/H Timer/Counter 1 Input Capture Register 0x24/0x25 0x44/0x45

Watchdog-Timer

Port Function Port-Address RAM-Address
WDTCR Watchdog Timer Control Register 0x21 0x41
7 6 5 4 3 2 1 0
- - - WDTOE WDE WDP2 WDP1 WDPO
Bit Name Meaning WDT-cycle at 5.0 Volt
7.5 (not used)

Previous set to

4 WDTOE Watchdog Turnoff Enable disabling of WDE required

3 WDE Watchdog Enable 1: Watchdog active
000: 15 ms
001: 30 ms
010: 60 ms

. 011: 120 ms

2..0 WDP2..WDP0Q Watchdog Timer Prescaler 100: 240 ms
101: 490 ms
110: 970 ms
111:19s

EEPROM

Port Function Port-Address RAM-Address

EEARL/H EEPROM Address Register 0x1E/Ox1F 0x3E/0x3F
EEARH only in types with more than 256 Bytes EEPROM (from AT90S8515 upwards)

Port Function Port-Address RAM-Address
EEDR EEPROM Data Register 0x1D 0x3D
Port Function Port-Address RAM-Address
EECR EEPROM Control Register 0x1C 0x3C
7 6 5 4 3 2 1 0
- - - - - EEMWE EEWE EERE

Avr-Asm-Tutorial

70

http://www.avr-asm-tutorial.net

7
3
2
1
0

Bit

Name

EEMWE
EEWE

EERE

Meaning Function

EEPROM Master Write Enable

(not used)

EEPROM Write Enable Set to initiate write
EEPROM Read Enable Set initiates read

Previous set enables write cycle

Serial Peripheral Interface SPI

SPDR SPI Data Register 0xOF

Port Function Port-Address RAM-Address
SPCR SPI Control Register 0x0D 0x2D
7 6 5 4 3 2 1 0
SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO
Bit Name Meaning Function
0: Interrupts disabled
7 SPIE SPI Interrupt Enable
1: Interrupts enabled
0: SPI disabled
6 SPE SPI Enable
1: SPI enabled
0: MSB first
5 DORD Data Order _
1: LSB first
0: Slave
4 MSTR Master/Slave Select
1: Master
0: Positive Clock Phase
3 CPOL Clock Polarity -
1: Negative Clock Phase
0: Sampling at beginning of Clock Phase
2 CPHA Clock Phase -
1: Sampling at end of Clock Phase
1 SPR1 00: Clock / 4
01: Clock / 16
SCK clock frequency
0 SPRO 10: Clock / 64
11: Clock / 128
Port Function Port-Address RAM-Address
SPSR SPI Status Register OxOE 0x2E
7 6 5 4 3 2 1 0
SPIF WCOL - - - - - -
Bit Name Meaning Function
7 SPIF SPI Interrupt Flag Interrupt request
6 WCOL Write Collision Flag Write collission occurred
5..0 (not used)
Port Function Port-Address RAM-Address

Ox2F

Avr-Asm-Tutorial

UART

71 http://www.avr-asm-tutorial.net

Port

UDR UART I/O Data Register

Function
0x0C

Port-Address RAM-Address

0x2C

Port Function Port-Address RAM-Address
USR UART Status Register 0x0B 0x2B
7 6 5 4 3 2 1 0
RXC TXC UDRE FE OR - - -
Bit Name Meaning Function
7 RXC UART Receive Complete 1: Char received
6 TXC UART Transmit Complete 1: Shift register empty
5 UDRE UART Data Register Empty 1: Transmit register available
4 FE Framing Error 1: lllegal Stop-Bit
3 OR Overrun 1: Lost char
2..0 (not used)
Port Function Port-Address RAM-Address
UCR UART Control Register 0x0A 0x2A
7 6 5 4 3 2 1 0
RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8
Bit Name Meaning Function
7 RXCIE RX Complete Interrupt Enable 1: Interrupt on received char
6 TXCIE TX Complete Interrupt Enable 1: Interrupt at transmit complete
5 UDRIE Data Register Empty Interrupt Enable 1: Interrupt on transmit buffer empty
4 RXEN Receiver Enable 1: Receiver enabled
3 TXEN Transmitter Enable 1: Transmitter enabled
2 CHR9 9-bit Characters 1: Char length 9 Bit
1 RXB8 Receive Data Bit 8 (holds 9" data bit on receive)
0 TXB8 Transmit Data Bit 8 (write 9" data bit for transmit here)
Port Function Port-Address RAM-Address
UBRR UART Baud Rate Register 0x09 0x29
Analog Comparator
Port Function Port-Address RAM-Address
ACSR Analog Comparator Control and Status Register 0x08 0x28
7 6 5 4 3 2 1 0
ACD - ACO ACI ACIE ACIC ACIS1 ACISO
Bit Name Meaning Function
7 ACD Disable Disable Comparators
6 (not used)
5 ACO Comparator Output Read: Output of the Comparators
4 ACI Interrupt Flag 1: Interrupt request

Avr-Asm-Tutorial 72
Bit Name Meaning Function
3 ACIE Interrupt Enable 1: Interrupts enabled

2 ACIC Input Capture Enable 1: Connect to Timer 1 Capture
1 ACIS1 00: Interrupt on edge change
01: (not used)
Input Capture Enable _
0 ACISO 10: Interrupt on falling edge

11: Interrupt on rising edge

1/0O Ports

Port Register Function Port-Address RAM-Address
PORTA Data Register 0x1B 0x3B

A DDRA Data Direction Register Ox1A 0x3A
PINA Input Pins Address 0x19 0x39
PORTB Data Register 0x18 0x38

B DDRB Data Direction Register 0x17 0x37
PINB Input Pins Address 0x16 0x36
PORTC Data Register 0x15 0x35

C DDRC Data Direction Register 0x14 0x34
PINC Input Pins Address 0x13 0x33
PORTD Data Register 0x12 0x32

D DDRD Data Direction Register 0x11 0x31
PIND Input Pins Address 0x10 0x30

Ports, alphabetic order

ACSR, Analog Comparator Control and Status Register
DDRXx, Port x Data Direction Register

EEAR, EEPROM address Register

EECR, EEPROM Control Register

EEDR, EEPROM Data Register

GIFR, General Interrupt Flag Register
GIMSK, General Interrupt Mask Register
ICRIL/H, Input Capture Register 1

MCUCR, MCU General Control Register
OCRI1A, Output Compare Register 1 A
OCR1B, Output Compare Register 1 B

PINXx, Port Input Access

PORTX, Port x Output Register

SPL/SPH, Stackpointer

SPCR, Serial Peripheral Control Register
SPDR, Serial Peripheral Data Register
SPSR, Serial Peripheral Status Register
SREG, Status Register

TCCRO, Timer/Counter Control Register, Timer 0
TCCRI1A, Timer/Counter Control Register 1 A
TCCRI1B, Timer/Counter Control Register 1 B
TCNTO, Timer/Counter Register, Counter 0
TCNT1, Timer/Counter Register, Counter 1
TIFR, Timer Interrupt Flag Register

TIMSK, Timer Interrupt Mask Register

UBRR, UART Baud Rate Register

UCR, UART Control Register

UDR, UART Data Register

WDTCR, Watchdog Timer Control Register

http://www.avr-asm-tutorial.net

Avr-Asm-Tutorial

73

List of abbreviations

The abbreviations used are chosen to include the value range. Register pairs are named by the lower of
the two registers. Constants in jump instructions are automatically calculated from the respective labels

during assembly.

Category Abbrev.

rl

r2

rh

rd

rp

ry

k63

cl27
Constant c255

c4096

€65535
Bit b7

pl

p

Register

Port

Means ...
Ordinary Source and Target register
Ordinary Source register
Upper page register
Twin register
Pointer register
Pointer register with displacement
Pointer-constant
Conditioned jump distance
8-Bit-Constant
Relative jump distance
16-Bit-Address
Bit position
Ordinary Port
Lower page port

http://www.avr-asm-tutorial.net

Value range
R0O..R31

R16..R31

R24(R25), R26(R27), R28(R29), R30(R31)
X=R26(R27), Y=R28(R29), Z=R30(R31)
Y=R28(R29), Z=R30(R31)

0..63

-64..+63

0..255

-2048..+2047

0..65535

0..7

0..63

0..31

	Why learning Assembler?
	Short and easy
	Fast and quick
	Assembler is easy to learn
	AVRs are ideal for learning assembler
	Test it!

	Hardware for AVR-Assembler-Programming
	The ISP-Interface of the AVR-processor family
	Programmer for the PC-Parallel-Port
	Experimental boards
	Experimental board with an ATtiny13
	Experimental board with an AT90S2313/ATmega2313

	Ready-to-use commercial programming boards for the AVR-family
	STK200
	STK500
	AVR Dragon

	Tools for AVR assembly programing
	From a text file to instruction words in the flash memory
	The editor
	Structuring assembler code
	Comments
	Things to be written on top
	Things that should be done at program start
	Structuring of program code
	The assembler

	Programming the chips
	Simulation in the studio
	What is a register?
	Different registers
	Pointer-registers
	Accessing memory locations with pointers
	Reading program flash memory with the Z pointer
	Tables in the program flash memory
	Accessing registers with pointers

	Recommendation for the use of registers

	Ports
	What is a Port?
	Write access to ports
	Read access to ports
	Read-Modify-Write access to ports
	Memory mapped port access
	Details of relevant ports in the AVR

	The status register as the most used port
	Port details

	SRAM
	Using SRAM in AVR assembler language
	What is SRAM?
	For what purposes can I use SRAM?
	How to use SRAM?
	Direct addressing
	Pointer addressing
	Pointer with offset

	Use of SRAM as stack
	Defining SRAM as stack
	Use of the stack
	Bugs with the stack operation

	Jumping and Branching
	Controlling sequential execution of the program
	What happens during a reset?

	Linear program execution and branches
	Branching

	Timing during program execution
	Macros and program execution
	Subroutines
	Interrupts and program execution

	Calculations
	Number systems in assembler
	Positive whole numbers (bytes, words, etc.)
	Signed numbers (integers)
	Binary Coded Digits, BCD
	Packed BCDs
	Numbers in ASCII-format

	Bit manipulations
	Shift and rotate
	Adding, subtracting and comparing
	Adding and subtracting 16-bit numbers
	Comparing 16-bit numbers
	Comparing with constants
	Packed BCD math

	Format conversion for numbers
	Conversion of packed BCDs to BCDs, ASCII or Binaries
	Conversion of Binaries to BCD

	Multiplication
	Decimal multiplication
	Binary multiplication
	AVR-Assembler program
	Binary rotation
	Multiplication in the studio

	Hardware multiplication
	Hardware multiplication of 8-by-8-bit binaries
	Hardware multiplication of a 16- by an 8-bit-binary
	Hardware multiplication of a 16- by a 16-bit-binary
	Hardware multiplication of a 16- by a 24-bit-binary

	Division
	Decimal division
	Binary division
	Program steps during division
	Division in the simulator

	Number conversion
	Decimal Fractions
	Linear conversions
	Example 1: 8-bit-AD-converter with fixed decimal output
	Example 2: 10-bit-AD-converter with fixed decimal output

	Annex
	Instructions sorted by function
	Directives and Instruction lists in alphabetic order
	Assembler directives in alphabetic order
	Instructions in alphabetic order

	Port details
	Status-Register, Accumulator flags
	Stackpointer
	SRAM and External Interrupt control
	External Interrupt Control
	Timer Interrupt Control
	Timer/Counter 0
	Timer/Counter 1
	Watchdog-Timer
	EEPROM
	Serial Peripheral Interface SPI
	UART
	Analog Comparator
	I/O Ports

	Ports, alphabetic order
	List of abbreviations

