
Handbook of Research on
P2P and Grid Systems
for Service-Oriented
Computing:
Models, Methodologies,
and Applications

Nick Antonopoulos
University of Surrey, UK

George Exarchakos
University of Surrey, UK

Maozhen Li
Brunel University, UK

Antonio Liotta
University of Essex, UK

Hershey • New York
InformatIon scIence reference

Volume I

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Development Editor: Christine Bufton
Publishing Assistant: Kurt Smith
Typesetter: Carole Coulson
Quality control: Jamie Snavely
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Handbook of research on P2P and grid systems for service-oriented computing : models, methodologies and applications /
Nick Antonopoulos ... [et al.].
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book addresses the need for peer-to-peer computing and grid paradigms in delivering efficient service-
oriented computing"--Provided by publisher.
 ISBN 978-1-61520-686-5 (hardcover) -- ISBN 978-1-61520-687-2 (ebook) 1.
Peer-to-peer architecture (Computer networks)--Handbooks, manuals, etc. 2.
Computational grids (Computer systems)--Handbooks, manuals, etc. 3. Web
services--Handbooks, manuals, etc. 4. Service oriented architecture--
Handbooks, manuals, etc. I. Antonopoulos, Nick.
 TK5105.525.H36 2009
 004.6'52--dc22
 2009046560

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

495

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 21

Self-Adjustment for Service
Provisioning in Grids

Daniel M. Batista
University of Campinas, Brazil

Nelson L. S. da Fonseca
University of Campinas, Brazil

INTRODUCTION

Grids are systems, not subject to a central con-
troller, that use open and standard protocols in the
coordination of resources; their main objective is
the provision of services or resources for applica-
tions (Foster, 2002). Thanks to such grids, research
projects involving different areas of knowledge
have emerged (Bethel et al., 2003; CERN, 2007;
ESG, 2008]), and the uniqueness of these have led
to the coinage of the term e-Science (e-Science,

2008) to describe the collaborative research that is
now possible worldwide.

Grids are environments that provide services,
rather than isolated resources, and they can be easily
understood when applications that require simulta-
neous resource allocations are considered. Specific
allocations must be made so that the final service
offered by the grid meets the overall requirements
of applications, such as minimum bandwidth and
maximum delay.

Grids are usually classified as to services of-
fered. Skillicorn (2002) presents the following
classification: computational grids, which support

AbsTRACT

The fluctuation in resource availability, as well as the uncertainties in relation to requirements for appli-
cations, call for the implementation of grids that self-adjust resource allocations to avoid degradation in
the quality of service provided for those applications. Various proposals have been made for grid systems
that will react to changes in resource availability, which are the key for the creation of service-oriented
grids. The purpose of this chapter is to present the main characteristics which are necessary for these
systems to provide quality of service. Twelve grid systems are described, highlighting their differences
and presenting their strong and weak points for the construction of service-oriented grids. The chapter
also presents open research questions.

DOI: 10.4018/978-1-61520-686-5.ch021

496

Self-Adjustment for Service Provisioning in Grids

high-performance processing; access grids, which
provide specialized resources, such as scientific
instruments shared by specific organizations; data
grids, which furnish access to data sets measured
in Terabytes via networks and datacentric grids. It
should be clear, however, that the same grid can
be used for more than one type of service.

Quality of Service (QoS) requirements and the
consequent satisfaction of users have guided the
search for mechanisms that will enable the creation
of grids furnishing non-trivial QoS requirements.
Without such mechanisms, grids would provide
only best effort services.

Unlike conventional multiprocessing systems
confined to local networks, grids extend through-
out various domains and provide diverse services.
Moreover, the lack of a central controller, the
heterogeneity of resources, constant changes in
the capacity available and uncertainties in ap-
plication requirements make the management of
grids a challenging activity.

As there are no guarantees that the capacity
available will remain unchanged as time goes
by, the monitoring of the state of resources and
procedures for reacting to changes are major is-
sues to be addressed by the provision of services
in grids. Without mechanisms to monitor and to
take reactive actions, there is no guarantee that
the application requirements can be properly met.
The cyclic procedure of monitoring and reaction
represents the core of a self-adjustment system
for resource allocation. In the literature, there
are several proposals for mechanisms for use in
the process of self-adjustment in grids (Wolski,
Spring & Hayes, 1999, Buyya, Abramson &
Giddy, 2001, Allen et al., 2001, Huedo, Montero
& Llorent, 2002, Vadhiyar & Dongarra, 2003,
Lowekamp, 2003, Montero, Huedo & Llorente,
2003, Al-Ali, Hafid, Rana & Walker, 2003, Sun-
dararaj, Gupta & Dinda, 2004, Sun & Wu, 2005,
Blythe et al., 2005, Prodan & Fahringer, 2005).
Many of the solutions are specific for a small
set of applications or are specific for grids that
provide only one type of service (Montero et al.,

2003, Sundararaj et al., 2004, Blythe et al., 2005,
Prodan & Fahringer, 2005).

This chapter presents the main characteristics that
grids with self-adjustment capability must have to
furnish QoS for applications. It also compares twelve
existing grid systems, highlighting the differences be-
tween them and presenting their characteristic strong
and weak points which influence the construction
of service-oriented grids. After the comparison of
the systems, the chapter ends with the presentation
of some problems open to research.

bACKgROUND

This section introduces the concepts necessary for
the understanding of the rest of the chapter. Several
issues that justify the need for the establishment
of self-adjusting systems are identified, and the
relationship between the provision of services and
self-adjustment is also highlighted. The steps in the
process of grid self-adjustment are also outlined.
Previous work relating to service-oriented grids
are then described.

self-Adjustment of
Resource Allocation

The self-adjustment of resource allocation in
grids consists of several cyclic steps that must be
undertaken as long as the grid exists (Batista, da
Fonseca, Miyazawa & Granelli, 2008). Figure 1
summarizes the functioning of a self-adjustment
system. In general, these systems implement steps
responsible for monitoring the grid, scheduling
applications and migrating tasks. Those steps
designed to minimize the time of execution of
applications are described first:

1. Given the description of the application
and the description of the grid, which can
be represented by a graph with vertices for
the hosts and edges as links, a schedule is
derived to answer the questions: “In which

497

Self-Adjustment for Service Provisioning in Grids

host should a task be executed and at what
instant in time should these executions and
necessary data transfers occur?”

2. The code and the data necessary for each
application task are transferred to the defined
hosts and task executions are initiated

3. While the tasks are running, the links and
hosts are monitored in order to detect changes
that may modify the running time expected
for the application

4. After information on the state of links and
hosts is collected, a comparison must be
made between the present state and the
previous one. If there have been changes, a
new schedule is defined for the tasks not yet
terminated (Step 5). If there are no changes,
monitoring is resumed (Step 3)

5. Based on the new state of the grid, a new
schedule of tasks is established. Only those
tasks that have not yet been executed are
scheduled

6. This new schedule is compared to the previ-
ous one. If they are the same, monitoring is
resumed (Step 3). If not, the possible gain to
be obtained by migration is checked (Step 7)

7. With the new mapping, the gains and costs
for the migration of tasks from the current
site to the new one are analyzed. If the gains
outweigh costs, migration is undertaken (Step
8). If not, monitoring is resumed (Step 3)

8. When a decision to migrate is made, migration
is initiated and monitoring resumed. (Step 3)

The difference between Steps 4 and 6 is
critical. The former detects changes in the state
of resources and decides if a new schedule is
necessary. The latter compares the new schedule
with the previous schedule to detect the need for
migrations. Step 6 is necessary because changes
in the state of resources do not necessarily imply
the need for a new schedule.

Each of the steps listed above can be imple-
mented in various ways; the differences between
these are fundamental for an understanding of the
design of service-oriented grids.

Previous Work

Comparisons similar to those presented in this chap-
ter are found in Krauter, Buyya and Maheswaran

Figure 1. A system with self-adjustment in execution (changes in scheduling occur during the execution)

498

Self-Adjustment for Service Provisioning in Grids

(2002), Yu and Buyya (2005), Laure, Stockinger
and Stockinger (2005) and Ranjan, Harwood
and Buyya (2008). Krauter et al. (2002) provide
a rating and comparison of various mechanisms
for allocating grid resources. This classification
is meant to facilitate the comparison of various
functions performed by the mechanisms, such as
resource discovery, scheduling and assessment of
QoS requirements. What distinguishes this chapter
from previous work is that it compares mechanisms
designed for self -adjustment of resources to those
carried out by various middlewares. Several of the
mechanisms presented in Krauter et al. (2002), are
specific for a limited situation and have not been
implemented. Moreover, this chapter compares and
evaluates eight separate mechanisms (including
monitoring, scheduling and migration) whereas
Krauter et al. (2002) analyze only three.

Yu and Buyya (2005) present a comparison of
mechanisms specific to grids running applications
described by workflows, whereas the present
comparison is not restricted to a specific type of
application.

In Laure et al. (2005), requirements neces-
sary for the promotion of good performance
in data grids are evaluated. Although these are
mechanisms for the self-adjustment of resource
allocation, the focus is on the evaluation of the
requirements for the manipulation of data. Only
four grids and middlewares are compared in rela-
tion to the requirements specified, whereas in this
chapter we have included twelve systems.

Ranjan et al. (2008) compare different sched-
uling schemes and discuss how the techniques
for resource discovery on Peer to Peer (P2P)
networks can be extended to meet the needs of
grid resource allocation. These grid systems are
designed only to provide the processing capacity
necessary for the applications. Here, however, the
grid systems are examined in relation to various
aspects which have an impact on the quality of
service provided, not only in terms of resource
discovery. Furthermore, this chapter does not
focus on a single type of grid.

Proposals for the construction of service-ori-
ented grids can be found in Al-Ali et al. (2003) and
in Buyya et al. (2001). In the former, applications
inform QoS requirements through a service level
agreement (SLA), with a mechanism proposed to
monitor the execution of the applications; if the
SLA is broken, the behavior of the applications is
adjusted, or more resources are allocated to these
applications. In the latter, various issues related to
service management in grids and the associated
costs are analyzed.

Previous work has thus been limited in scope,
whereas this account presents experiments con-
ducted to evaluate the performance of twelve
different proposals. The results are also compared,
thus furnishing the reader with a general overview
of the functions available and the benefits to
be accrued from each specific mechanism. The
information presented here expands the work of
Batista and da Fonseca (2007) and that of Batista
and da Fonseca (2008) in relation to new systems
and the number of characteristics considered.

sYsTEms ImPLEmENTINg
mECHANIsms FOR sELF-
ADJUsTmENT IN gRIDs

Various characteristics of grids with self-ad-
justment capabilities must be considered in the
evaluation of the performance of such systems:
scope of application, measures monitored, forecast
overhead, triggering events, complexity of reac-
tion, complexity of (re)- scheduling, robustness,
and experimental validity.

•	 Scope of application: Self-adjustment
mechanisms should specify the applica-
tion requirements for which they were
designed. Certain mechanisms implement
algorithms	 focusing	 on	 a	 specific	 type	 of	
application, whereas others try to address
more complex applications composed of a
large number of dependent tasks. Still other

499

Self-Adjustment for Service Provisioning in Grids

solutions focus on applications consisting
of independent tasks, regardless of the im-
pact caused by the state of the link during
execution. If self-adjustment mechanisms
not designed for the type of application
being run are used, however, the results
may be worse than if no self-adjustment
had been employed. In order to minimize
the need for users to classify applications
before executing them, it is preferable to
have generic self-adjustment mechanisms
oriented to all kinds of applications.

•	 Measures monitored: The monitoring
of	all	attributes	of	resources	that	influence	
the execution of applications is quite de-
sirable. For example, for applications that
make use of both network and processing
resources, it is important to monitor delay,
available bandwidth and CPU availability.
Various proposals for self-adjustment fo-
cus on the available bandwidth and CPU
availability, but few consider a more-in-
clusive monitoring that includes delay on
links, memory, and storage space available
on hosts.

•	 Forecast overhead: Some mechanisms
employ forecasting techniques to antici-
pate changes in the state of grid resources.
By using a limited number of measure-
ments, the state of resources can be pre-
dicted and an ideal allocation of resources
conceptualized. Despite the fact that such
forecasting should apparently be manda-
tory, for all self-adjustment mechanisms,
the potential overhead generated by this
forecasting must be kept in mind. The ideal
would be to have a self-adjustment mecha-
nism able to predict the state of resources
based on a limited number of measure-
ments and in a relatively short period of
time in relation to the execution time of the
application.

•	 Triggering events: Variations in the state
of grid resources during the execution of

applications can be used to trigger changes
in resource allocation. All changes that
might cause degradation during execution
or that lead to under-utilization of grid re-
sources can be dealt with by changes in
resource allocation. Mechanisms that re-
act only in the case of failure of initially
allocated resources cannot adequately ex-
plore grid resources. The ideal would be to
have mechanisms that consider degrada-
tion in the availability of initially allocated
resources, as well as introducing new re-
sources as potential triggering events for
resource reallocation.

•	 Complexity of reaction: After the detec-
tion of events triggering new resource allo-
cation, self-adjustment mechanisms must
react. Many of the reactions proposed con-
sist of migrating tasks to new resources.
Many mechanisms react by changing the
way the resources are interconnected in
virtual organization, although maintain-
ing the initial allocation unaltered from the
point of view of the user. The complexity
of the process used by a mechanism has a
major	 influence	on	 the	advantages	of	 that	
mechanism, since it must react before the
proposed changes are no longer adequate.
Depending on the dynamics of the grid,
reactions that take a long time may be
useless.

•	 Complexity of (re) scheduling: Scheduling
and rescheduling of tasks should be car-
ried out in time frames short enough not to
invalidate the decisions taken. In a highly
changeable environment, scheduling and
rescheduling should occur in very brief
intervals. Although several of the mecha-
nisms which have been proposed use heu-
ristics to ensure that critical applications
are not penalized, some employ more com-
plex methods for the scheduling of tasks
and often require the use of their own grid
to establish the schedule.

500

Self-Adjustment for Service Provisioning in Grids

•	 Robustness: Due to the lack of tools to ac-
curately describe applications, it is a com-
mon practice for allocation mechanisms
to rely on descriptions provided by users
when submitting applications to the grid.
Self-adjustment mechanisms have low ro-
bustness if they fail to recognize the fact
that the user may have provided mislead-
ing information about demands, since
decisions are taken on the basis of this
information rather than what may actu-
ally be the case. Therefore, an ideal self-
adjustment mechanism would take deci-
sions about application demands based on
the Quality of Information (QoI) actually
provided, rather than that supplied by the
user. In such an ideal system, applications
with identical descriptions but different
QoIs would receive different treatments by
the mechanism.

•	 Experimental validity: Various mecha-
nisms have been evaluated experimentally
(Wolski et al., 1999, Buyya et al., 2001,
Allen et al., 2001, Huedo et al., 2002,
Vadhiyar & Dongarra, 2003, Montero et
al., 2003, Sundararaj et al., 2004, Sun &
Wu, 2005, Blythe et al., 2005, Prodan &
Fahringer, 2005). However, these experi-
ments	 are	 often	 insufficient	 to	 draw	 ade-
quate conclusions. Mechanisms that mod-
ify resource allocation must be evaluated
for all possible combinations of variations
in conditions. Besides considering different
conditions that lead to a low performance,
experiments	to	confirm	the	operation	of	a	
mechanism must use a representative set
of applications, grids, and variations in the
state of resources and uncertainties in the
application descriptions made by users.

The rest of this section describes some of the
systems used to implement mechanisms for the
self-adjustment of resource allocation. Finally,
a comparison of these is presented, highlighting

the characteristics relevant for the construction
of such self-adjustment systems.

systems Description

This section will describe twelve grid systems that
implement mechanisms for the self-adjustment
of resource allocation. Each of the twelve has
its own unique self-adjusting mechanism. This
chapter does not consider all existing grid sys-
tems, but only those which are well known and
documented.

Network Weather Service (NWS)

The NWS, presented in Wolski et al. (1999),
provides distributed service for the forecast of
grid performance. NWS has been adopted for
monitoring and forecasting services by various
scheduling proposals and the self-adjustment of
resource allocation.

NWS focuses on monitoring, as well as the
forecasting of the state of resources. Therefore,
it does not specify techniques for use during
scheduling or rescheduling. NWS measures and
foresees the available processing capacity of
the grid host, as well as the time necessary to
establish a Transmission Control Protocol (TCP)
connection; the end-to-end network delay and
end-to-end bandwidth availability between hosts
are also considered.

For forecasting, various time series models
have been applied, with the predicted values
compared to those that are measured. The model
providing the least error is then the one used for
future forecasting. Available processing capacity
is monitored on the basis of the correlation of
measurements made using both active and passive
techniques. The frequency of active measurements
is adjusted adaptively: if the latest values of the
available processing capacity remain relatively
stable, the time interval is increased; if not, this
interval is decreased. The monitoring of the char-
acteristics of an end-to-end network is achieved

501

Self-Adjustment for Service Provisioning in Grids

only by active measurements. The measurement
of delay and available bandwidth involves the
transfer of a fixed amount of data from one grid
host to another. The time needed to establish a
TCP connection is determined by establishing
and terminating an artificial connection. Network
overloading and unreliable measurements can be
avoided by the configuration of sensors in the hosts
which are organized hierarchically so that active
measurements will be made only of a representa-
tive subset of the available sensors.

The forecasting techniques of NWS are ori-
ented toward applications that require information
about the state of resources at time intervals of tens
of seconds to minutes, i.e. short-term applications
(Wolski et al., 1999). Such a short interval of time
does not allow the NWS to obtain a long-term view
of the state of the grid, although this can lead to
the generation of inefficient initial schedules and
the migration of tasks for applications which will
takes hours to be executed.

Although NWS does use forecasting techniques
to deal with uncertainty in resource availability,
no mechanism treats uncertainty in application
demands. The graphs resulting from experiments
using NWS to evaluate forecasting techniques
have been presented (Wolski et al., 1999), but no
details as to the workload generated in these ex-
periments are provided. For most NWS forecasts,
the available bandwidth is underestimated.

Grid Architecture for Computational
Economy (GRACE)

The GRACE presented in Buyya et al. (2001) is
an architecture oriented to the regulation of the
supply and demand of resources with associated
financial costs. The goal of GRACE is to pro-
vide services to help owners and consumers of
resources maximize their interests. While owners
provide resources with the aim of making profit,
consumers seek to obtain the required QoS at the
lowest possible price. GRACE defines high-level
blocks that can be implemented independent of

middleware, type of resources and applications
running on a grid.

GRACE was designed to make use of exist-
ing middleware services and requires a minimum
set of resources. Among the various components
that must be implemented is the resource broker,
which is responsible for mediating between the
user and the grid resources. It is responsible for
resource discovery, application scheduling, and
detection of changes in the grid state, as well as
adaptations to these changes. GRACE leads users
to perceive of the grid as a set of resources that
meet specific requirements of QoS at a price that
users agree to pay. Buyya et al., 2001) recommend
the use of the Nimrod/G broker and use it in all
the experiments they report.

One of contributions of GRACE is to allow
adaptive resource allocation. Adaptation is ben-
eficial only if users get to know the requirements
of their applications, since only then will they
be able to specify budgets for the use of the grid
resources.

Since GRACE was designed to be as generic
as possible, there is no limitation on the type of
application. Several attributes of the hosts and of
the network can be monitored and charged. The
same can be said about rescheduling and migra-
tion of tasks.

The performance of GRACE was evaluated
using the EcoGrid testbed, which aggregates
resources from 4 continents. A hundred and
sixty-five CPU-intensive tasks, each requiring
approximately five minutes, were executed,
with the service requested being that all of them
be performed in a single hour. Performance was
evaluated according to the price paid by the user
for the utilization of resources. In a first experi-
ment, resource choice was based on the price of
each resource. It was found that most of the re-
sources used were the cheapest ones. Although
more expensive resources had a higher capacity,
they were the least used. Even using the cheap-
est resources, however, the timing requirement
of application was generally met successfully.

502

Self-Adjustment for Service Provisioning in Grids

Without the use of algorithms to minimize the
cost paid by the user, there was an increase of
around 50% in the total value, which proved the
effectiveness of the proposal when costs are as-
sociated with resources.

Two problems in the proposal made in Buyya
et al. (2001) should, however, be considered: the
lack of evaluation of the performance in relation
to network links and migration due to variations
in the cost of resource utilization (although the
latter is mentioned an issue for future research in
Buyya et al. (2001)).

Cactus Worm

The Cactus Worm (Allen et al., 2001) is a parallel
computational framework for the execution of ap-
plications. Cactus Worm incorporates structures in
the applications to promote adaptation in the face
of changes in the state of grid resources. It also
implements mechanisms for resource selection
that will migrate tasks if the application perfor-
mance drops below a certain pre-defined level.

Monitoring and the decision to migrate tasks
are implemented on the basis of violations in
QoS contracts and the inclusion of new resources
which can potentially improve the execution of the
application. Contracts in terms of the minimum
requirements to be provided are made between
users and providers. The requirements that can
be evaluated are operating system, memory and
available bandwidth. The monitoring of the state
of resources is carried out by using the Monitoring
and Discovery System (MDS) tool, implemented
with Globus middleware. On the other hand,
task scheduling is based on the algorithm of the
Condor middleware, which selects the resources
that satisfy the application requirements at the
lowest price.

One distinctive characteristic of the Cactus
Worm is its migration procedure. The data neces-
sary for a task to continue execution on another host
can be sent to a storage site before the migration
to that new host. The problem with this approach

is that the storage site may well become a bottle-
neck in the system and slow down migration. The
advantage of this approach, however, is that it can
allow task migration between resources that are
in hosts which are not directly connected.

In Allen et al. (2001), the applications assigned
to Cactus were those of large-scale simulations
tending to take hours to complete. One disad-
vantage is that there is no mechanism to deal
with uncertainty in either application demands
or resource availability, nor for the prediction of
the grid state.

The performance of the Cactus Worm was
evaluated using a Grid Application Development
Software (GrADS) testbed, which is a grid that
aggregates processing resources from various
universities in the United States. The results of
the experiment reported did demonstrate the ef-
fectiveness of the system for detecting violations
of contracts, but no details about the application
used were provided except for the fact that the
results were based on a simulation. Moreover,
the framework as a whole can not be evaluated,
since there is no information provided for com-
paring whether or not there was a true gain when
using it.

Experimental Framework

The system presented in Huedo et al. (2002) is
called a framework for executing applications
in dynamic grid environments. The objective of
this framework is to provide intelligent and au-
tonomous grids that will allow users to execute
applications in the mode “submit and forget”.
The framework was presented as a solution for
adapting the execution of applications; it promotes
migrations in the following cases: i) degradation
of application performance, ii) changes in avail-
ability of resources and iii) changes in application
requirements.

In Huedo et al. (2002), the components of this
framework are presented at the same high level as
are those of GRACE, and the mode of functioning

503

Self-Adjustment for Service Provisioning in Grids

is similar to that of GRACE, with implementation
being independent of the applications, the grid
and the middleware.

A greedy algorithm was adopted to schedule
tasks for minimizing the execution time. However,
although it provides rapid initial scheduling, the
problem of this technique is that it does not take
into consideration network costs, and this is ag-
gravated by the need for task migration. There is no
specific technique for the monitoring of resources,
although some tools have been suggested for this
purpose, such as the NWS. In the proposal, there
was no reference to the consideration of network
resources which could be requested by applica-
tions; however, processing capacity and memory
can be allocated on hosts by applications. In Huedo
et al. (2002), there is no restriction on application.
However, some changes in applications are neces-
sary to make them aware of the grid state.

The performance of this framework was
evaluated using the Tidewater Research Grid
Partnership (TRGP) testbed, which connects
resources from two research institutions in the
United States. A single CPU-intensive fluid dy-
namic application was executed. The framework
revealed good results in 4 situations: i) when mi-
gration was to better resources than those initially
allocated, which shortened the execution time by
42%, ii) when migration was due to performance
degradation, which decreased execution time by
35%, iii) when changes occurred in application
requirements and migrations were able to meet
these new needs, and iv) when network links
were disrupted, as the execution of the applica-
tion was restarted with other resources. These
results show the effectiveness of the proposal
for the most common situations. However, it
has not yet been evaluated for data-intensive
applications, nor for the situation of a decrease
in available bandwidth.

Moreover, no treatment of uncertainty in infor-
mation about resource availability is incorporated,
nor is any technique adopted to predict the future
state of the grid. Uncertainties in application

demands are handled through rescheduling and
task migration. In the rest of this chapter, this
framework is referred to as the “Experimental
Framework”.

Migration Framework for Grids

Vadhiyar and Dongarra (2003) present the migra-
tion framework for grids system. This system
was designed to improve the response time of
individual applications on the grid through the
implementation of coupled techniques to suspend
or migrate tasks in the event of fluctuation of
resource availability. Information about the ex-
ecution time of applications is used to evoke the
most profitable migrations and avoid unnecessary
migrations of those tasks for which termination is
eminent. The proposal is oriented to applications
with executions lasting for several minutes.

In Vadhiyar and Dongarra (2003), the monitor-
ing of the progress and the migration of tasks is
treated as two separate actions conducted jointly
in order to avoid unnecessary migrations. A de-
cision to migrate is taken after a comparison of
the execution time of a task on the present host
to that on one where it could theoretically mi-
grate. Migration takes place if the execution time
would be reduced more than 30%. The authors
themselves admit that this is not a particularly
good approach, since gains of less than 30% can
still be attractive.

The scheduling mechanism adopted is based
on the construction of a specific model for the
execution of the application, which requires previ-
ous knowledge of its requirements. The NWS is
used for the monitoring of resources. The proposal
contains no explicit information about the resource
attributes evaluated, although the experiments
reported did consider both available bandwidth
and available processing capacity.

Not only did the system compute the time of
execution for the application, but also used fixed
overheads from previous experiments in real envi-
ronments to estimate the new execution time.

504

Self-Adjustment for Service Provisioning in Grids

Experiments to evaluate the performance of
this migration framework were carried out on the
GrADS testbed. The ScaLAPACK application
(ScaLAPACK, 2007) was used for these experi-
ments and executed with different combinations of
parameters to produce different execution times.
The decision of the framework was reported to
be adequate in all except one of the cases tested.
In this single case, the application stayed on the
original host, although the best option would
have been to migrate to another host; this led to
the failure to obtain the reduction which could
have been obtained of around 35% in execution
time. In general, the reduction in execution time
was around 70%. Other experiments showed the
effectiveness of the proposal when new resources
became available during the lifetime of the ap-
plication.

In the rest of this chapter, this framework is
referred to as “Migration Framework”.

Watching Resources from the
Edge of the Network (Wren)

Another proposal based on monitoring is pre-
sented in Lowekamp (2003), but, unlike the NWS,
it monitors only the state of the links that connect
the hosts. This proposal is part of the project Wren,
a project for the development of scalable solutions
for network monitoring.

The Wren project monitors links and discov-
ers the grid topology. It uses passive techniques
when there is traffic on the network generated by
grid applications but active ones when no grid
application is on the network, or when the exist-
ing traffic does not consume much bandwidth.
This approach tends to reduce the interference of
monitoring on the network. The proposal promises
to be scalable for various types of applications:
from those which make heavy use of the network
to those that are 100% CPU-intensive.

However, procedures for rescheduling, mi-
gration of tasks and dealing with uncertainties in
application requirements and resource availability

are not specified. Moreover, no experimental
results are provided to prove the effectiveness of
the proposal.

One contribution of Wren is the introduction
of methods and functions that enable the use of
low-overhead active probes to predict the network
state when the transfer of a large amount of data
takes place.

GridWay

The GridWay project (Montero et al., 2003) uses
Globus middleware to make the execution of
tasks easier and more efficient regardless of the
dynamics of the environment. This project borrows
some of the ideas and solutions implemented in
the Experimental Framework discussed above.

The GridWay project (Montero et al., 2003) em-
phasizes the migration of application tasks when
resources are available which will lead to a better
performance than that initially allocated. Three
aspects are examined before a decision to migrate
is taken: i) performance of the new host, ii) time
remaining to finish the execution of each task, iii)
“distance” to the proposed new host where tasks
will be terminated. These aspects distinguish the
GridWay project from other existing mechanisms
for self-adjustment of resource allocation.

The mechanisms employed by the GridWay
are oriented to applications which make heavy
use of the network, although these are quite
common in some research areas, such as particle
physics and bioinformatics. Because GridWay is
oriented to these kinds of application, there is a
genuine concern with the use of the network at
the moment of determining the destination for
migration, since a large amount of data will be
transferred via the network. Migrations will only
be performed if the gain, based on the execution
time of the application as a whole, surpasses a
certain threshold defined by the user.

The scheduling adopted utilizes requirements
informed by the application. The hosts are mod-
eled as resources to provide processing capacity,

505

Self-Adjustment for Service Provisioning in Grids

whereas the network itself is modeled as the re-
sources which provide bandwidth. The memory
available does not affect the estimation of potential
gains achieved from migration. No methods are
specified for monitoring the state of resources,
despite the fact that the NWS is considered to be
an option for this function. There is no treatment of
uncertainty in relation to application demands and
resource availability, nor is there any consideration
of predictions about the state of resources.

As in Huedo et al. (2002), the experiments
carried out were based on the execution of a fluid
dynamic processing application using a testbed,
although no details of the topology formed by the
resources of the grid were provided. Five hosts
with heterogeneous capacities were used. An initial
first experiment executed the application without
migration, which generating a total execution time
of about 350 seconds. In the following experiments,
migration was carried out at different points during
the execution of the application. A 10% threshold
was adopted for the triggering of migrations. Migra-
tion was proposed only three times, with a reduction
in execution time of around 13%. When migration
was induced but not proposed by GridWay, the time
of execution of the application became longer. In
cases in which manual migration led to an execu-
tion time shorter than 350 seconds, no reductions
less than 10% were recorded.

Grid QoS Management (G-QoSM)

The G-QoSM framework (Al-Ali et al., 2003)
is based on heuristics for the adaptation of QoS.
The algorithms adopted in this framework target
the adjustment of resource allocation to meet the
requirements defined by the SLA.

G-QoSM centers on the provision of mecha-
nisms to support QoS. G-QoSM services have an
associated cost, as in the GRACE system, and the
goal of the algorithms adopted is to maximize the
profit of service providers. This may not favor the
user, who may wish to establish tradeoffs between
QoS support and the cost of services.

The types of services supported by the G-
QoSM are derived from the Internet Differentiated
Services (DiffServ) architecture. For the first, the
guaranteed-service class, the grid must provide
applications with services exactly as they required.
For the second, the controlled load class, applica-
tions define a range of values for the quality of
service parameter. For the third, the best-effort
class, no contract between users and the grid is
involved; hence, any resource is potentially al-
locable for the execution of applications.

Three scenarios can activate allocation ad-
justment in the G-QoSM framework. The first
is the need for new services which cannot meet
the required QoS; in this case, allocation can be
redefined so these requests for new services will
have a higher level of priority than do existing
ones. The second is finalization of services; in this
case, resources are liberated, and allocations of
other applications still in execution are evaluated
to detect potential gains from movement. The third
is QoS degradation; in this case, the requirements
defined in the SLA are no longer met, and this
triggers a search for better resources to meet the
requirements of the degraded applications.

The available bandwidth is monitored by the
Network Resource Manager (NRM), whereas
the processing capacity of available hosts is
monitored by the information service of Globus
middleware. The NRM operates in a hierarchi-
cal structure similar to that of the NWS, with
information measured more frequently within the
same domain than between domains. Despite the
fact that only information about bandwidth and
available processing capacity are provided, Al-Ali
et al. (2003) do state that the G-QoSM is capable
of supporting any type of service provided that it
can be quantified in an SLA and measured during
the execution of applications.

No specification of the type of applications
supported by the G-QoSM is provided. The same
lack is also found in regard to the treatment of
uncertainties in both application demands and
estimation of grid state.

506

Self-Adjustment for Service Provisioning in Grids

It is not clear in Al-Ali et al. (2003) whether
the experiments were conducted on a real testbed
or via simulations, since not enough details of the
scenario are provided, nor do the results provide
any information for drawing feasible conclusions
about gains due to the use of the proposal.

Virtual Topology and Traffic
Inference Framework (VTTIF)

Sundararaj et al. (2004) presents a proposal for
managing grids built on overlay networks. In this
proposal, an application sees the grid as a virtual
machine, with resources interconnected via a
virtual network. The virtual network is managed
by a special mechanism, VNET, whereas issues
referring to the topology of the virtual network
and the characteristics of the traffic generated are
under the responsibility of the Virtual Topology
and Traffic Inference Framework (VTTIF) mecha-
nism. The goal of both of these mechanisms is to
adapt the topology of the virtual network to the
traffic generated by application tasks. The execu-
tion time of an application can be shortened, since
there is a tendency to decrease the distance between
hosts that intercommunicate more frequently in
the execution of tasks.

The target applications for this proposal are
data-intensive Bulk Synchronous Parallel (BSP)
applications which require large-scale network
resources throughout their life cycle. For such
applications, the proposal deals adaptively with
uncertainties. Initially, a virtual star topology is
defined, centered on the user’s host, but with tasks
being executed on various other hosts. During
execution, the VTTIF monitors the traffic gener-
ated by the application and modifies the virtual
topology in order to adapt to the pattern of com-
munications performed.

The topology by VTTIF is measured by the
analysis of a traffic matrix, which stores informa-
tion about the packets transmitted between all hosts
in the current virtual topology. This information
is obtained passively.

No information is supplied about how the
initial scheduling is performed, nor about the
requirements of applications. Moreover, the
processing capacity of hosts is ignored during the
determination of the best virtual topology, although
this can lead to an increase in execution time if
the processing of an application task requires a
long time. Furthermore, no technique is cited for
forecasting the state of resources.

The performance of the proposal was evaluated
using a grid built especially for the experiments.
The first experiment evaluated the time spent in the
selection of a topology for the application, which
took about 1 minute. The second experiment evalu-
ated the time saved by adaptation of the virtual
topology. Several configurations were evaluated,
with reductions in execution time ranging from
22% to 50%. The lowest savings were obtained
when applications were allocated to hosts with
little available processing capacity, because the
proposal considers only the state of the network
at the moment of resource allocation.

Grid Harvest Service (GHS)

The GHS monitoring system proposed in Sun and
Wu (2005), like the NWS, focuses on the monitor-
ing and prediction of the state of the grid.

The GHS was designed to provide measurements
and forecasts for grids that execute applications
which take hours to complete. Like the NWS, the
GHS provides actual measurements and forecasts
of the available processing capacity of hosts, as well
as of the transmission capacity between pairs of
grid hosts. Forecasts in relation to host capacity use
statistical models of the resource demands of local
processes. Delay and the available bandwidth of the
network are predicted by artificial neural networks.
GHS uses both active and passive techniques to
measure the state of the hosts; however, no details
of the techniques used to measure the state of the
network are furnished in the proposal.

The GHS does, however, have modules for
the rescheduling and migration of tasks. It adopts

507

Self-Adjustment for Service Provisioning in Grids

two scheduling algorithms. The first distributes
tasks among the hosts to minimize the difference
of the mean execution times of tasks. The second
scheduler attempts to reduce the execution time
by allocating tasks to the same host so that the
amount of data transferred can be minimized
and the execution time kept to a minimum, thus
facilitating data-intensive applications.

Preliminary experiments showed the advantag-
es of the use of the GHS to forecast the long-term
state of grids. For two different grids, the errors
resulting from these forecasts were compared to
those resulting from NWS forecasts, and in both
cases the GHS forecast was closer to the actual
value experienced by the application. The results
of the GHS were compared to those of the Apples
scheduler, and the former was found to provide 10
to 20% faster scheduling and migrations.

Workflow-Based Approach (WBA)

The scheduling approach presented in Blythe
et al. (2005) self-adjusts resource allocation in
response to changes in the environment. The pro-
posed algorithm, the Workflow-based Approach
or WBA, is oriented to applications described by
workflows that are both data- and CPU-intensive.
This scheduler distributes resources relatively
evenly, thus avoiding the concentrated use of
some at the expense of the others. It works for
the whole life cycle of an application. If there is
any variation in the execution environment that
affects the predicted execution time for tasks,
these are re-scheduled to other hosts.

No specific information about task migration is
furnished in Blythe et al. (2005). The performance
of the scheduler is compared to that of the Task
Based Approach (TBA), a scheduler that does not
consider the dependencies of workflows and that
is presented in Blythe et al. (2005).

This scheduler considers both available pro-
cessing capacity and available bandwidth. The
algorithm does not, however, deal with monitoring
nor the forecast of the state of the resources.

Uncertainty seems to be a problem, with some
experiments demonstrating that the proposal is
not scalable for applications with errors in com-
putational and communication weights.

Unlike the other proposals, the experiments
designed to demonstrate the effectiveness of the
WBA were performed via simulation on a grid
consisting of six fully interconnected hosts. The
NS-2 network simulator was used to simulate
the transfer of data between grid hosts, with re-
source demands based on a real application used
in astronomy. For data-intensive applications,
the time of execution decreased by about 50%.
Experiments conducted with variations of up to
400% in the weight of tasks and data dependen-
cies showed that the algorithm was sensitive to
uncertainties, with the time of execution increasing
up to 400%. Errors in communication weights led
to a less dramatic increase in execution time of
at most 50%. Results such as these, hardly ever
found in literature, reinforce the importance of
considering the uncertainty in mechanisms that
allocate resources in grids.

No experiments were conducted to deter-
mine whether the WBA is capable of reacting to
changes.

Dynamic Scheduler for
Scientific Workflow

The dynamic scheduler presented in Prodan and
Fahringer (2005) is for applications described by
cyclic graphs. The scheduler employs techniques
for the elimination of cycles and produces a
modified Directed Acyclic Graph (DAG). The
scheduler uses genetic algorithms, and it can be
implemented on multiple parallel hosts to produce
a schedule in a shorter time interval than that if it
had been implemented on a single host.

Uncertainty in applications demands is ac-
counted for by this scheduler. The negative impact
of incorrect information is reduced by jointly
evaluating the application details supplied by the
users and those of a model created for the predic-

508

Self-Adjustment for Service Provisioning in Grids

tion of the execution time of the most crucial tasks,
even before they are executed. The construction
of this model requires the execution of the appli-
cation several times in a controlled environment
before submission to the grid. It is assumed that
applications have a linear dependence on input
parameters so that linear regression methods can
be used.

Task migration is triggered both in the case of
failure and in the case of an unpredicted increase
in execution time. Verification of performance
degradation considers the forecast of execution
time. If, after a given time interval, the execution
of task has not reached a predicted state, it is
migrated to another host. Unless there is a model
of prediction for an application in execution, mi-
grations will occur if the task does not finish its
execution within a pre-established time interval,
although this will not always result in gains, given
the heterogeneity of applications.

Available processing capacity on hosts and
available bandwidth are the resources accounted
for by this scheduler, although neither moni-
toring nor forecasting the state of the grid are
included.

The performance of the scheduler was evalu-
ated on a grid testbed consisting of 314 machines
spread around several organizations in Austria.
The first experiment assessed the execution time
of the scheduler. Without parallelism, the scheduler
took about 7 minutes to return a schedule for the
application used in the simulation. With parallel-
ism, however, the execution time was 59 times
faster, with the grid itself used to determine this
schedule. The second experiment assessed the
savings in time achieved with the scheduler in an
environment subjected to variations in available
processing capacity. Savings of around 25% were
observed in time of execution for the applications
studied.

systems Overview

This subsection summarizes the main characteris-
tics of each of the twelve systems described in the
preceding sections. The information is distributed
in three tables, with each developing certain re-
lated aspects. Table 1 provides a brief overview
of the systems surveyed, while Table 2 presents
the aspects related to application scheduling and
Table 3 presents information related to the treat-
ment of fluctuation and uncertainties, as well as
summarizing the comparative studies conducted.
The information provided in these tables is useful
for the comparison of the systems, which will be
presented in the following subsection.

Table 1 provides a brief description of the
systems and identifies the proposed objectives,
as well as the types of applications for which
they were designed. Although all of the systems
surveyed implement mechanisms related to the
self-adjustment of resource allocation in grids,
their objectives can be seen to be quite different
from one another. Whilst some systems clearly
specify the guarantee of QoS, such as GRACE
and G-QoSM, others are concerned principally
with monitoring and forecasting the state of the
grid, such as the NWS and Wren. The majority
of the systems do, however, aim at a reduction in
the execution time of applications.

The terminology used to describe these sys-
tems varies considerably, as do the applications
for which they were designed. Some systems are
defined as services for grids, such as the NWS,
while many are described as complete systems
designed to deal with the events that justify the
rescheduling and migration of tasks, such as the
Experimental Framework, Migration Framework,
GridWay and VTTIF. The types of applications
targeted range from generic characteristics such
as execution time, which is used to define the
scope of NWS and Cactus, to specific character-
istics such as the cyclic workflows targeted by
the Dynamic Scheduler. No specifications as to
type of applications for which they are relevant

509

Self-Adjustment for Service Provisioning in Grids

are mentioned in the discussion of GRACE, Ex-
perimental Framework and G-QoSM.

Table 2 summarizes the features of the systems
related to the scheduling of applications. It lists
the characteristics of the network and hosts in
the grids that are considered during scheduling,
the methods used for monitoring and predicting
the state of resources and the methods employed
to schedule applications. Most of the systems
focus on the available bandwidth, although a
few, such as the NWS and Wren, consider other
metrics. The NWS, for example, determines the
time required to establish a TCP connection and
delays imposed by the host, whereas the Wren
evaluates the links and hops that interconnect the
grid resources in relation to nominal capacity and

that of algorithms implemented to manage queues.
Host characteristics considered by most include
CPU availability, but some, such as Cactus, the
Experimental Framework and GridWay, also
consider availability of memory.

Differences in the methods employed to moni-
tor the state of resources are also found. Some
systems use other systems for monitoring. For
example, the NWS is suggested for use by the Ex-
perimental Framework, the Migration Framework
and the GridWay, and various systems, such as
the NWS, Wren, VTTIF and GHS, specify details
about the method to be employed in monitoring.
However, only the NWS, Wren and GHS employ
mechanisms for forecasting the state of resources.
Some methods schedule applications, ranging

Table 1.Brief summary of the systems surveyed

System Description Objective Applications for which designed

NWS Distributed service for predic-
tion of resource performance

To foresee the state of hosts and the
network accurately

Short-term applications

GRACE Architecture based on eco-
nomical computation for the
management of grid resources

To guarantee QoS for applications
without going over the user’s cost
limit

Unspecified

Cactus Mechanisms for adaptive
selection of resources

To allow efficient operation of grids Large- scale simulations taking
hours to complete

Experimental Framework Framework for adaptation to
grid dynamics

To allow efficient automatic execution
of tasks

Unspecified

Migration Framework Performance-oriented Migra-
tion Framework

To shorten execution time of indi-
vidual grid applications

Applications taking several min-
utes for execution

Wren Measurement system for scal-
able network clusters in Wide
Area Networks (WANs)

To monitor a network independent of
applications

i. Bulk data transfer
ii. Interactive visualization
iii. Optimistic computation

GridWay Opportunistic “Migrator” for
better resource use

To reduce the execution time of ap-
plications

Data-intensive applications

G-QoSM Management framework
based on grid QoS

To guarantee the service level of appli-
cations by maximizing provider gain

Unspecified

VTTIF Dynamic adapter of virtual
topology

To reduce the execution time of appli-
cations via changes in virtual topology

Bulk synchronous parallel ap-
plications

GHS System for performance eval-
uation and task scheduling

To reduce the execution time of ap-
plications

Applications taking long periods
of time for execution

WBA Heuristic for resource alloca-
tion and optimization

To reduce the execution time of ap-
plications and reduce the idleness of
resources

Applications described by work-
flows

Dynamic Scheduler Hybrid approach for schedul-
ing workflows based on
directed graphs

To self-adjust applications described
by graphs containing cycles

Applications described by work-
flows containing cycles

510

Self-Adjustment for Service Provisioning in Grids

from the simplest greedy searches for resources to
meet minimum application requirements (Cactus,
Migration Framework, GridWay and G-QoSM)
to genetic algorithms such as that implemented
by the Dynamic Scheduler.

Table 3 summarizes the characteristics of the
systems in relation to the actions to be taken if the
state of resources fluctuates, or if the information

about applications and / or resources is incorrect
(uncertainties). The experiments designed to
evaluate their performance is also reported, as
well as the specific type of event that will lead
to changes in the allocation of resources, since
some systems reevaluate allocations on a regular
basis, regardless the state of the grid (the NWS
and Wren), while others take action only when

Table 2. Application scheduling

System Network metrics
considered

Hosts metrics
considered

Resource monitoring
techniques employed

Availability forecast
method employed

Scheduling
algorithm

NWS i)TCP Connection Time
ii)E2E Delay
iii)E2E Bandwidth

i)Fraction of avail-
able CPU

i) Active for network
ii) Active and passive
for hosts

i) Historical + Series
ii)Applies the best se-
ries based on the past

-

GRACE Does not specify Does not specify Does not specify
(Nimrod/G can be used)

- Does not specify
(Nimrod/G can
be used)

Cactus i) Bandwidth i) Fraction of avail-
able CPU
ii) Memory

State of allocated hosts
and their links

- Requirements
Matching

Experimental
Framework

- i) Fraction of
available CPU
ii) Memory

Does not specify (NWS
can be used)

- Greedy

Migration
Framework

Bandwidth i) Fraction of avail-
able CPU

NWS - Requirements
Matching

Wren i) Capacity
ii)Queue algorithm
iii)Available bandwidth

- i) Active without
execution in grid
ii)Passive with execu-
tion in grid

Forecasts long-term
bandwidth using
probes short-term

-

GridWay i) Bandwidth i)Fraction of avail-
able CPU
ii) Memory

Does not specify (NWS
can be used)

- Requirements
Matching

G-QoSM i) Bandwidth i) Fraction of avail-
able CPU

i) Hierarchic for
network
ii) Globus service for
hosts

- Requirements
Matching

VTTIF i)Bandwidth
ii) Topology

- i) Without information
for hosts
ii)Passive via traffic
matrix for network

- Does not specify

GHS i) Bandwidth
ii) Delay

i) Fraction of avail-
able CPU

i) Does not detail
mechanism for network
ii) Active and passive
for hosts

i) Statistics for CPU
ii) ANN for network
i)

Heuristics based
on the capacity
of hosts

WBA i) Bandwidth i) Fraction of avail-
able CPU

Does not specify - Heuristics based
on workflow as
a whole

Dynamic
Scheduler

i) Bandwidth i) Fraction of avail-
able CPU

Does not specify - Genetic algo-
rithm and cycle
eliminator

511

Self-Adjustment for Service Provisioning in Grids

specific events occur, such as the entry of new
resources (Experimental Framework, Migration
Framework, GridWay, G-QoSM, VTTIF and
Dynamic Scheduler).

In most cases, the reaction to an adverse event
will be task migration; most systems reschedule
applications on the basis of the same procedure
used to generate the initial scheduling. They also

Table 3. Fluctuations, uncertainties and experiments

System Events which trigger
any reaction

Reaction executed Rescheduling
algorithm

Methods employed
to reduce impact of

uncertainties

Experiments
realized to evaluate

performance

NWS Frequency measurements
i) adaptive for CPU
ii) fixed for network

- - i) In resources: forecast
ii) In application: none

Measurements in
operational hosts and
links (not in grids)

GRACE Rules based on the ap-
plication performance

Does not specify Does not specify - Measurements in
EcoGrid testbed

Cactus Rules based on the ap-
plication performance

Migration (can be
done through an
intermediary)

A better host than
the current one

- Measurements in
GrADS testbed

Experimental
Framework

i) Better resource comes up
ii)Decrease in the re-
source performance
iii) Resource or network
failure
iv) Application change
v) User’s decision
vi) Owner’s decision

Migration or execu-
tion restarts

Greedy i) In the resources:
none
ii) In the application:
Detects during execu-
tion

Measurements in
TGRP testbed

Migration
Framework

i) Better resource comes
up
ii) Decrease in the re-
source performance

Migration to the
resource if the gain
is higher than 30%

Requirement
Matching

i) In the resources: none
ii) In the application:
builds specific models

Measurements in
GrADS testbed

Wren Measurement frequency - - - -

Gridway i)Better resource comes
up

Migration (estimate
left) to resource
if the gain is >
threshold

Requirement
Matching

- Measurements in a
testbed

G-QoSM i) Impossibility to attend
QoS
ii) Liberation of busy
resources
iii) QoS degradation

Adjustment of
allocated resources
(does not mention
migration)

Requirement
Matching

- Does not detail the
scenario

VTTIF Changes in the traffic pat-
tern in virtual topology of
application

Adaptation of virtual
topology (creates
and removes links in
overlay network)

Does not specify i) In the resources: none
ii) In the application:
infers the virtual topol-
ogy by network use

Measurements in
experimental grid

GHS Rules based on state of
resources (network and
hosts)

Migration to idle
resources

First host to at-
tend the require-
ments

i) In resources:
forecast
ii) In application: none

Measurements in
two grids

WBA Does not detail Does not detail Heuristic based
on workflow as a
whole

Presented as non
scalable

Simulations in NS-2

Dynamic
Scheduler

i) Failure in execution
ii) Performance decrease

Migration to better
resources

Genetic algo-
rithm and elimi-
nator of cycles

Decreases the effect
with preview execution
and creation of specific
model

Measurements in a
testbed grid

512

Self-Adjustment for Service Provisioning in Grids

ignore uncertainties and incorrect information in
the description of applications and deal with such
uncertainties by employing reactive techniques of
self-adjustment: if the resources have a capacity
different from that which was expected, tasks in
execution are migrated.

Comparison of systems

This subsection compares the grid characteristics
of the twelve self-adjustment systems discussed.
The information is presented in Table 4. A nominal
scale based on the terms “Low”, “Average” and
“High” is used to classify the approximation of
each characteristic of each system to an ideal self-
adjustment system. If a particular characteristic is
not addressed, “-” is used to indicate this.

The interpretation of the terms “Low”, “Aver-
age” and “High” varies according to the charac-
teristic being compared. For example, those grid
systems oriented to a specific type of application
are ranked as low for the “scope of application”,
whereas those reported to be appropriate for all
types of applications are ranked as “high”. All
others are ranked as “average” for this character-
istic. Moreover, systems monitoring only CPU
and bandwidth availability are ranked as “low” in
relation to “measures monitored”, whereas those
monitoring additional metrics are ranked as “av-
erage”; “high” is the score for systems allowing
the monitoring of user-defined metrics without
the need to change the system itself.

Forecasting overhead is concerned with the
amount of interference in grid functioning. In this
case, systems such as Wren and GHS received
low ratings since they interfere very little with
grid functioning, whereas the intrusion of NWS
led to an average rating.

If triggering events are restricted to changes in
resource availability and application requirements
a low score for this metric is attributed; moreover,
systems which only check potential changes at
periodic intervals are also given a score of low.
Systems which consider the other changes in the Ta

bl
e

4.
 C

om
pa

ri
so

n
of

 c
ri

tic
al

 c
ha

ra
ct

er
is

tic
s o

f s
el

f-a
dj

us
tm

en
t s

ys
te

m
s e

va
lu

at
ed

Sy
st

em
s

Sc
op

e
of

A

pp
lic

at
io

n
M

ea
su

re
s

m
on

ito
re

d
Fo

re
ca

st

ov
er

he
ad

Tr
ig

ge
ri

ng

E
ve

nt
s

C
om

pl
ex

ity
 o

f
R

ea
ct

io
n

C
om

pl
ex

ity
 o

f
(r

e-
) s

ch
ed

ul
in

g
R

ob
us

tn
es

s
E

xp
er

im
en

ta
l

va
lid

ity

N
W

S
Av

er
ag

e
Av

er
ag

e
Av

er
ag

e
Av

er
ag

e
-

-
-

Lo
w

G
R

A
C

E
H

ig
h

H
ig

h
-

H
ig

h
Av

er
ag

e
-

-
Lo

w

C
ac

tu
s

Av
er

ag
e

H
ig

h
-

Av
er

ag
e

Av
er

ag
e

Lo
w

-
Lo

w

Ex
pe

rim
en

ta
l F

ra
m

ew
or

k
H

ig
h

Av
er

ag
e

-
H

ig
h

Av
er

ag
e

Lo
w

H
ig

h
Av

er
ag

e

M
ig

ra
tio

n
Fr

am
ew

or
k

Av
er

ag
e

H
ig

h
-

Av
er

ag
e

Av
er

ag
e

H
ig

h
Av

er
ag

e
Av

er
ag

e

W
re

n
Av

er
ag

e
Lo

w
Lo

w
Lo

w
-

-
-

-

G
rid

W
ay

Lo
w

Lo
w

-
Lo

w
Av

er
ag

e
Av

er
ag

e
-

Av
er

ag
e

G
-Q

oS
M

H
ig

h
H

ig
h

-
H

ig
h

Av
er

ag
e

Av
er

ag
e

-
Lo

w

V
TT

IF
Lo

w
Lo

w
-

Lo
w

H
ig

h
Lo

w
Av

er
ag

e
Av

er
ag

e

G
H

S
Av

er
ag

e
Av

er
ag

e
Lo

w
Av

er
ag

e
Av

er
ag

e
Lo

w
-

Av
er

ag
e

W
B

A
Lo

w
Av

er
ag

e
-

Av
er

ag
e

Av
er

ag
e

Lo
w

-
Av

er
ag

e

D
yn

am
ic

 S
ch

ed
ul

er
Lo

w
Av

er
ag

e
-

Av
er

ag
e

Av
er

ag
e

Av
er

ag
e

Av
er

ag
e

Av
er

ag
e

513

Self-Adjustment for Service Provisioning in Grids

grid, like the entrance of better resources or the
resources owner’s decisions, besides changes in
resource availability and application requirements,
are given a score of high.

In terms of the complexity of reaction, systems
managing both checkpoints and migrations are
considered to have an average rating, whereas the
restructuring of the overlay network of VTTIF led
to its ranking of high complexity.

The scheduling and management of applica-
tions involving various hosts is one of the main
concerns of self-adjustment systems, but such
scheduling can approximate an ideal system for
scheduling to a greater or lesser extent. If a sys-
tem uses a greedy approach to (re-)scheduling, it
receives a low score for the characteristic “Com-
plexity of (re-) scheduling”, whereas systems using
more complex schedulers that consider the whole
application and are based on more elaborated
heuristics (such as genetic algorithms) are ranked
as average. Systems which consider not only the
whole application but also use pre-defined models
have been rated as high.

The consideration of only bandwidth uncertain-
ties is considered to be an average approximation
to the ideal. Only when other uncertainties in the
system are considered is the system ranked high
for robustness. The use of predictive models
leads to a rating of average if these models are
not confirmed.

Any proposal must be verified, and these
self-adjustment systems are no exception. If the
assessment of the effectiveness of a system is not
fully described, that system is given a low score
for experimental validity. The report of a single,
well-defined scenario for validation leads to the
classification of that system as average. Only
those systems evaluated using different scenarios
and actual testbeds received a high rating for this
metric.

An ideal system should rate high in relation
to the characteristics “scope of application”,
“measures monitored”, “triggering events”, “ro-
bustness”, and “experimental validity”. This ideal

system should rate low in relation to all the other
characteristics. Table 4 shows that none of the
twelve systems surveyed met this criterion. The
mechanisms which come the closest to address-
ing all of them are the following: Experimental
Framework, Migration Framework, VTTIF,
Dynamic Scheduler and GHS. The first four go
beyond processes to foresee the state of resources,
whereas the GHS deals with uncertainties other
than those of application descriptions submitted
to a grid. Although seven out of the eight criteria
are addressed by all of these systems, this does not
mean that all of them are treated in the best possible
way. For example, the experiments carried out to
analyze the performance of these five systems do
not require confirmation of proper functioning
for all events leading to adjustments in resource
allocation. Moreover, the scope of application of
these systems, the measures monitored, and the
triggering events vary greatly.

Except for VTTIF, all mechanisms have simi-
lar complexity in the reaction to fluctuation of
the state of the grid. All these mechanisms react
through task migration making necessary the
implementation of processes necessary to deal
with the treatment of checkpoints.

In short, the scope of applications in the evalu-
ated systems ranges from systems that consider
one single class of applications, such as the WBA
that is aimed only at applications formed by
dependent tasks and which have communication
and processing requirements up to systems that
employ generic and independent mechanisms,
such as Experimental Framework.

In terms of measures monitored, there are
systems that focus on a single type of resource
as the VTTIF that only monitors the use of links
by the applications, and systems that monitor
different resources such as GRACE, which con-
siders resource availability by their costs which
should summarize the state and usefulness of the
resources.

Regarding forecast overhead, it is noticed that
the vast majority of systems do not implement any

514

Self-Adjustment for Service Provisioning in Grids

mechanism to foresee the state of resources. The only
systems that deal with this characteristic are the NWS,
the Wren and GHS. Among the three systems, the
NWS generates a higher overhead due to the need
of simulation to foresee the state of network.

As the systems are evaluated in terms of the
triggering events, it is noticed that the implemented
solutions range from those that react to a set of
small variations in grid, as the VTTIF, which only
reacts to changes related to the state of links and
to the requirements of tasks communication, up to
those that react to practically all events such as the
Experimental Framework, which includes failures,
user’s decisions, variations in the performance of
current resource in grid, the output and input of
grid resources as well as changes in requirements
of applications in execution.

The (re) scheduling complexity varies greatly
among the systems evaluated. There are highly
complex solutions such as the one of the Migra-
tion Framework, which builds a specific model
for the application to be scheduled and forecasts
the value of the execution time of each task, up to
solutions of low complexity, such as that presented
by VTTIF, which chooses the idle resources at the
submission time.

It is noticed that few systems implement
solutions to deal with robustness. The few solu-
tions implemented range from the change of the
overlay topology among the resources, if there
are changes in the communication pattern as
proposed by VTTIF, up to task migration when
there are differences between the application
behavior during the execution and the behavior
described at the submission time as proposed by
the Experimental Framework.

In terms of the experiment validity, none of the
systems carried out experiments that demonstrated
their effectiveness in a number of scenarios that can
be representative, given the inherent heterogeneity
of the grids. The proposals basically do not detail
the scenarios in which they were evaluated, such
as in the case of G-QoSM, or they were evaluated
on 1 or 2 testbeds, as in the GHS case.

Taking Table 4 as a reference, and considering
all the criteria equally important in the design of
an ideal self-adjustment system, the best systems
to be used as a starting point for an organization
are: Experimental Framework, GHS, Migration
Framework, Dynamic Scheduler and VTTIF.

FUTURE TRENDs

This section explores the comparisons presented
in Table 4 and identifies research issues related to
the self-adjustment of resource allocations which
have been left open. The criteria which were
most ignored were the forecasting of the state
of resources and the treatment of uncertainty in
the application descriptions. Moreover, although
the effectiveness of the proposals was evaluated,
more results are lacking generalizable. These three
criteria deserve special attention in future research
involving the self-adjustment of service oriented
grids so that the quality of services provided can
be assured.

The need to forecast the state of grid resources
can lead to specific investigations for each type
of shared resources, since the standard behavior
of communication resources is not necessarily the
same as that of processing resources. A statistical
analysis of grid traces might be a first step in the
search for the distribution of probabilities that
best describes the behavior of various resources
over the life-cycle of applications. Another issue
meriting research concerns the interference of
forecasting tools in the availability of bandwidth,
since some knowledge of the current and past
states of a grid is necessary to predict a future
state; this leads to the need for the installation of
constant monitoring systems.

Errors and inaccuracies in the description of
application demands can lead to unpredictability
in relation to execution time (Blythe et al., 2005),
which makes grid management more difficult and
may leave the user dissatisfied because perfor-
mance forecast may be quite different from what

515

Self-Adjustment for Service Provisioning in Grids

is actually achieved. Three threads of research
can be explored in order to reduce the impacts
of uncertainty in the description of applications.
The first concerns the insertion of Quality of In-
formation directly in the task scheduler. Instead
of receiving only the application and a descrip-
tion of the grid as input, schedulers would also
be informed about the reliability of information
provided. Based on this uncertainty, a scheduler
can provide more flexible scheduling. In this way,
a close to optimal schedule can be adopted, even
if actual requirements are different from those
present at the moment of submission.

The second thread of research involves de-
creasing uncertainty. Here, before being submit-
ted, applications would undergo more precise
evaluation of requirements (via a specific system).
This research clearly represents a much greater
challenge than does the first, since the require-
ments of applications may differ depending on the
resource on which a task will be executed. (A task
executed on hosts with differences in hardware or
operational system may behave differently).

The final thread of investigation involves a
comparison of reactive and preventive actions in
dealing with uncertainties. Reactive actions may
lead to a behavior different from that described
upon submission (Huedo et al., 2002), whereas
preventive ones involve the inclusion of uncer-
tainty upon initial allocation, thus avoiding un-
necessary reallocations.

The final criterion which should be explored
is related to the fact that there are as yet no rep-
resentative scenarios established for the study of
self-adjustment mechanisms in grids. Although
testbed measurements provide values very close
to real, the performance statistics are only valid
for a small number of applications and situations.
Two approaches for addressing this problem would
be the creation of complex benchmarks and the
proposal of simple checklists to be followed in
performance analysis. These benchmarks would
have to be complex, since they should present
not only a set of applications, but also a descrip-

tion of events to be used as resource input and
output, as well as of the topology formed by the
grid resources.

Checklists, though simpler in implementa-
tion than benchmarks, require intensive research
investment in relation to the characterization and
evaluation of events, applications and relevant
situations faced by self-adjustment systems in
grids all around the world.

CONCLUsION

The lack of a centralized grid control and dedi-
cated resources is one of the factors leading to
fluctuations in resource availability, consequently
affecting the quality of service. It is thus neces-
sary to implement techniques that can cope with
such fluctuations. Self-adjustment of resource
allocation are one of the possible mechanisms
which can enable the maintenance of the quality
of application services.

In the literature, various systems have been
proposed to implement mechanisms for dealing
with the development of self-adjustment systems.
In this chapter, we have presented a summary of
twelve of these systems and have compared vari-
ous aspects of each of them. For this comparison,
we have considered eight critical criteria involved
in self-adjustment which can influence the qual-
ity of the services provided by grids for specific
applications. Moreover, we have presented a
classification of these systems in relation to the
criteria addressed and use this classification to
identify as yet unresolved issues. Our compari-
son has shown that most of the systems available
neglect the forecasting of the state of resources
and the treatment of uncertainties in application
demands. It has also shown that most systems do
not conduct representative experiments to test
their effectiveness.

We hope that with the greater diffusion of grids,
especially the LHC grid, the information provided
here will be useful for grid users, as well as for the

516

Self-Adjustment for Service Provisioning in Grids

designers who project them. Implementing task
schedulers that are robust enough to deal with
uncertainties in the descriptions of applications, as
well as with unexpected changes in the capacity of
the resources available, is an interesting develop-
ment for the future. Moreover, the development
of a representative set of benchmarks for the
evaluation of self-adjustment systems for resource
allocation is of paramount importance.

REFERENCEs

Al-Ali, R., Hafid, A., Rana, O., & Walker, D.
(2003). QoS adaptation in service-oriented Grids.
In Proceedings of the 1st International Workshop
on Middleware for Grid Computing (MGC2003).
Retrieved November 12, 2008, from http://
www.wesc.ac.uk/resources/publications/pdf/
MGC289_final.pdf

Allen, G., Angulo, D., Foster, I., Lanfermann,
G., Liu, C., & Radke, T. (2001). The Cactus
Worm: Experiments with dynamic resource
discovery and allocation in a Grid environment.
International Journal of High Performance
Computing Applications, 15(4), 345–358.
doi:10.1177/109434200101500402

Batista, D. M., & da Fonseca, N. L. S. (2007). A
Brief Survey on Resource Allocation in Service
Oriented Grids. In Globecom Workshops - 1st
IEEE Workshop on Enabling the Future Service-
Oriented Internet (pp. 1-5). Washington, DC:
IEEE.

Batista, D. M., & da Fonseca, N. L. S. (2008).
Empowering Grids with flexibility to cope with
uncertainties. In ICC Workshops ‘08 - (CAMAD
2008) (pp. 227-231). Washington, DC: IEEE.

Batista, D. M., da Fonseca, N. L. S., Miyazawa,
F. K., & Granelli, F. (2008). Self-adjustment of
resource allocation for Grid applications. Com-
puter Networks, 52(9), 1762–1781. doi:10.1016/j.
comnet.2008.03.002

Bethel, W., Siegerist, C., Shalf, J., Shetty, P., Jankun-
Kelly, T., Kreylos, O., & Ma, K.-L. (2003). VisPortal:
Deploying Grid-enabled visualization tools through
a Web-portal interface. Tech. Rep. No.LBNL-52940,
Lawrence Berkeley National Laboratory.

Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K.,
Mandal, A., & Kennedy, K. (2005). Task schedul-
ing strategies for workflow-based applications in
Grids. In IEEE International Symposium on Clus-
ter Computing and Grids (CCGRID’05), volume
2 (pp. 759-767). Washington, DC: IEEE.

Buyya, R., Abramson, D., & Giddy, J. (2001). A
case for economy Grid architecture for service
oriented Grid computing. In Proceedings of the
15th International Parallel and Distributed Pro-
cessing Symposium (pp. 776-790). Washington,
DC: IEEE.

CERN. (2007). Worldwide LHC computing Grid.
Retrieved November 12, 2008, from http://lcg.
web.cern.ch/LCG/

e-Science (2008). 4th IEEE International Confer-
ence on e-Science, 2008. Retrieved November 12,
2008, from http://escience2008.iu.edu/

ESG. (2008). Earth System Grid (ESG). Retrieved
November 12, 2008, from http://www.earthsys-
temgrid.org/

Foster, I. (2002). What is the Grid? A three point
checklist. GRIDToday, 1(6). Retrieved No-
vember 12, 2008, from http://www-fp.mcs.anl.
gov/~foster/Articles/WhatIsTheGrid.pdf

Huedo, E., Montero, R. S., & Llrorent, I. M. (2002).
An experimental framework for executing applica-
tions in dynamic Grid environments. Tech. Rep.
No. 2002-43, NASA Langley Research Center.

Krauter, K., Buyya, R., & Maheswaran, M.
(2002). A taxonomy and survey of Grid resource
management systems for distributed computing.
[SPE]. Software, Practice & Experience, 32(2),
135–164. doi:10.1002/spe.432

517

Self-Adjustment for Service Provisioning in Grids

Laure, E., Stockinger, H., & Stockinger, K. (2005).
Performance engineering in data Grids. Concur-
rency and Computation: Practice and Experience,
17(2- 4), 171-191.

Lowekamp, B. B. (2003). Combining active and
passive network measurements to build scalable
monitoring systems on the Grid. SIGMETRICS
Performance Evaluation Review, 30(4), 19–26.
doi:10.1145/773056.773061

Montero, R. S., Huedo, E., & Llorente, I. M.
(2003). Grid resource selection for opportunistic
job migration. In Proceedings of the 9th Interna-
tional EuroPar Conference (pp. 366-373). Berlin:
Springer.

Prodan, R., & Fahringer, T. (2005). Dynamic
scheduling of scientific workflow application on
the Grid: A case study. In SAC’05: Proceedings of
the 2005 ACM Symposium on Applied Computing
(pp. 687-694). New York: ACM Press.

Ranjan, R., Harwood, A., & Buyya, R. (2008).
Peer-to-peer-based resource discovery in Global
Grids: a Tutorial. IEEE Communications Sur-
veys & Tutorials, 10(2), 6–33. doi:10.1109/
COMST.2008.4564477

ScaLAPACK. (2009). ScaLAPACK Home Page.
Retrieved March 2, 2009, from http://www.netlib.
org/scalapack/scalapack_home.html

Skillicorn, D. B. (2002). Motivating computational
Grids. In 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid(CCGRID’02)
(pp. 401-406).

Sun, X., & Wu, M. (2005). GHS: A Performance
System of Grid Computing. In 19th IEEE Inter-
national Parallel and Distributed Processing
Symposium. Washington, DC: IEEE. Retrieved
November 12, 2008, from http://doi.ieeecomput-
ersociety.org/10.1109/IPDPS.2005.234

Sundararaj, A. I., Gupta, A., & Dinda, P. A. (2004).
Dynamic topology adaptation of virtual networks
of virtual machines. In LCR ‘04: Proceedings of
the 7th Workshop on Workshop on Languages,
Compilers, and Runtime Support for Scalable
Systems (pp. 1-8). New York: ACM Press.

Vadhiyar, S. S., & Dongarra, J. J. (2003). A per-
formance oriented migration framework for the
Grid. In 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID’03)
(pp. 130-137).

Wolski, R., Spring, N. T., & Hayes, J. (1999).
The network weather service: A distributed
resource performance forecasting service for
metacomputing. Future Generation Computer
Systems, 15(5-6), 757–768. doi:10.1016/S0167-
739X(99)00025-4

Yu, J., & Buyya, R. (2005). A taxonomy of workflow
management systems for Grid computing (Tech.
Rep. No. GRIDS-TR-2005-1). Grid Computing
and Distributed Systems Laboratory, University
of Melbourne.

KEY TERms AND DEFINITIONs

Fluctuation: Variation in the capacity to
provide resources for grid applications as time
passes;

Grid: System using both open and standard
protocols in the coordination of resources that
are not subject to central control, with the goal of
providing services or resources for applications
(Foster, 2002);

Migration: Transfer of the codes and data of
a task from one grid resource to another;

Robustness: Ability of a grid system to main-
tain a given quality of service for an application,
despite fluctuations and uncertainties.

Scheduling: Procedure which defines the
resources that will be used for application tasks,

518

Self-Adjustment for Service Provisioning in Grids

as well as the intervals of time in which these
resources will be used;

Self-Adjustment System: System which
monitors grid resources and application execution
and which reacts to events potentially leading to
degradation of performance;

Task: Smallest unit for the execution of an
application on a grid;

Uncertainties: Incorrect information about
application requirements and / or the capacity of
resources available;

