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Abstract—The processing of big data generated by the Indus-
trial Internet of Things (IIoT) calls for the support of processing
at the edge of the network as well as at the cloud data centers.
The Equal-Cost Multi-Path (ECMP), which is the default routing
technique in the cloud data centers, can degrade the network
performance when handling mouse and elephant flows. Such
degradation of performance can compromise the support of the
strict quality of service requirements of IIoT over 5G networks.
Novel techniques for scheduling the elephant flows can alleviate
this problem. Recently, several approaches have incorporated
Machine Learning (ML) techniques at the controller-side in
Software-Defined Data Center Networks (SDDCNs) to detect
elephant flows. However, these approaches can produce heavy
traffic overhead, low scalability, low accuracy, and high detection
time. This paper introduces the Network Elephants Learner and
anaLYzer (NELLY), a novel and efficient method for applying
incremental learning at the server-side of SDDCNs to accurately
and timely identify elephant flows with low traffic overhead. In-
cremental learning enables NELLY to adapt to varying network
traffic conditions and perform continuous learning with limited
memory resources. NELLY has been extensively evaluated using
real traces and various incremental learning algorithms. Results
show that NELLY is accurate and supports low classification
time when using adaptive decision trees algorithms.

Index Terms—Data center networks, flow classification, ma-
chine learning, software defined networking

I. INTRODUCTION

The Industrial Internet of Things (IIoT) aims at automating
industrial processes that can be supported by the analysis of
big data generated by a large number of interconnected devices
[1]. The real-time requirements of industrial applications and
the access demand of massive machine-type communications
call for the employment of the 5G technology in the foreseen
IIoT. In industrial plants, edge devices (fog nodes) will be used
for the processing of delay-sensitive data while cloud servers
will be employed for the processing of the huge amount of
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data generated by sensors. Extracting value from such big data
will be fundamental for enabling customized and flexible mass
production of goods [2], [3].

To support the big data demand in IIoT, cloud data centers
provide significant bandwidth capacity for a large number of
servers interconnected by a specially designed network, called
Data Center Network (DCN) [4]. This bandwidth capacity can
be optimized by using multipath routing, which distributes
traffic over multiple concurrent paths [5]. Nowadays, the
Equal-Cost Multi-Path (ECMP) is the default multipath rout-
ing mechanism for DCNs [6]. However, ECMP can degrade
the performance of DCNs due to the coexistence of many
small, short-lived flows (i.e., mice) and few large, long-
lived flows (i.e., elephants), since ECMP can assign more
elephant flows to the same path, generating hot-spots (i.e.,
some links overused while others underused). Flows traversing
hot-spots suffer from low throughput and high latency. Mice
and elephants are characteristic in cloud data centers running
Big Data Analytics (BDA) technologies [7], [8], [9], such as
MapReduce and Hadoop, which are pivotal in IIoT systems
for delivering value from the big data and making business
decisions [10]. Then, similar flows will be present in the cloud
data centers of IIoT systems. As a consequence, DCNs that
use only ECMP for managing the bandwidth demanded by
the big data in IIoT likely will not meet the target efficiency
specified for 5G networks.

Recent multipath routing mechanisms have leveraged
Software-Defined Networking (SDN) to face the ECMP limi-
tations; DCNs using SDN are referred to as Software-Defined
Data Center Networks (SDDCNs). SDN allows a logically
centralized controller to dynamically make and install routing
decisions on the basis of a global view of the network [11],
[12]. SDN-based multipath routing dynamically reschedules
elephant flows, while handling mouse flows by employing
default routing such as ECMP [6] and MiceDCER [13].
Reactive flow detection methods, which are at the heart of
SDN-based mechanisms, discriminate elephants from mice
by using static thresholds [14], [15], [16]. However, reactive
methods are not suitable for SDDCNs since hot-spots may
occur before the elephant flows are detected.

Novel SDN-based flow detection methods incorporate Ma-
chine Learning (ML) for proactively identifying elephant flows
[17]. However, ML-based methods operate at the controller-
side of SDDCNs, requiring the central collection of either
per-flow data [18] or sampling-based data [19], [20]. The
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central collection of per-flow data, however, causes problems
such as heavy traffic overhead and poor scalability. Sampling-
based data, on the other hand, tends to provide delayed and
inaccurate flow information. Moreover, sampling techniques
that mitigate the problem rely on non-standard SDN speci-
fications. Using ML on either the switch-side or server-side
represents a potential solution to the controller-side problems
since these locations enable prompt and per-flow data with low
traffic overhead. Switch-side flow detection methods based on
ML are impractical because they require specialized hardware
and put a heavy processing load on the switches. Conversely,
ML-based flow detection methods at the server-side require
only software modifications in the servers; nonetheless, these
methods have not been fully explored.

In this paper, we propose a novel flow detection method
denominated Network Elephants Learner and anaLYzer
(NELLY), which applies incremental learning at the server-
side of SDDCNs for accurately and timely identifying ele-
phant flows while generating low control overhead. Incre-
mental learning allows NELLY to constantly train a flow
size classification model from continuous and dynamic data
streams (i.e., flows) [17], [21], providing a constantly updated
model and reducing time and memory requirements. Thus,
NELLY adapts to the variations in traffic characteristics and
performs endless learning with limited memory resources. We
extensively evaluate NELLY using datasets extracted from real
packet traces and incremental learning algorithms. Quantitative
evaluation demonstrates that NELLY is efficient in relation
to accuracy and classification time when adaptive decision
trees algorithms are used. Analytic evaluation corroborates that
NELLY is scalable, causes low traffic overhead, and reduces
detection time, yet it is in conformance with SDN standards.

The remainder of this paper is as follows. Section II intro-
duces NELLY. Section III presents a quantitative evaluation of
NELLY using incremental learning algorithms and real packet
traces. Section IV compares NELLY to other related work.
Section V concludes the paper.

II. NELLY
Fig. 1 introduces NELLY, a flow detection method that

applies incremental learning at the server-side of SDDCNs
to identify elephant flows accurately in a reasonable time
while generating low control overhead. NELLY operates as a
software component either in the kernel of the host Operating
System (OS) or in the hypervisor of servers in the SDDCN
with the aim of monitoring all packets sent by the applica-
tions, containers, and virtual machines. Since NELLY detects
elephant flows at their origin, a small overhead is demanded.

The architecture of NELLY (see Fig. 1) has two subsystems:
Analyzer and Learner. The Analyzer applies a flow size classi-
fication model for detecting and marking elephant flows on the
fly. The Learner then applies an incremental learning algorithm
for building and updating the flow size classification model.
This model maps online features (i.e., features extracted from
the first few packets of a flow) onto the corresponding class of
flows (i.e., mice or elephants). The processes of the Analyzer
and the Learner run concurrently as depicted in Algorithms 1
and 2, respectively.
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Figure 1. NELLY Architecture

NELLY is conceived for recognizing and handling elephant
flows in real SDN implementations. NELLY can run on any
host operating system or hypervisor. In the control plane, any
OpenFlow-compliant controller (e.g., OpenDaylight) can be
used since NELLY operates at the server-side. In the data
plane, OpenFlow-compliant switches (e.g., Open vSwitch) can
be employed since NELLY requires only that the Top-of-
Rack (ToR) switches include a pre-configured routing rule to
forward elephant flows to the controller.

A. Analyzer

As illustrated in Fig. 1, the Analyzer consists of four
modules: Monitor, Filter, Classifier, and Marker. The process
of each module is detailed in Algorithm 1. As shown in
lines 1–2, the Monitor keeps track of flows by extracting the
header, size, and timestamp of each outgoing packet. A flow
consists of subsequent packets sharing the same value for
certain header fields, and separated by a time-space shorter
than a threshold timeout (θTO). NELLY enables a flexible
configuration of these flow parameters, namely, flow header
fields and θTO. For example, the flow header fields can be set
as the well-known 5-tuple: source IP, source port, destination
IP, destination port, and IP protocol. These flow header fields
can also include MAC addresses and VLAN ID. On the other
hand, the configuration of θTO is discussed in Section II-B.

The Analyzer manages a flow record in the Flow Repository
(FlowRepo) for each observed flow. As illustrated in Fig. 2, the
flow record includes the flow identifier (FlowID), start time,
last-seen time, packet header (e.g., 5-tuple), flow size, the size
and Inter-Arrival Time (IAT) of the first N packets, as well as
the identified class (i.e., mice or elephants). Note that the IAT
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Algorithm 1: Analyzer
input : outgoing packet p with header hp, size sp, and timestamp tp,

and flow size classification model m
output: either packet p or packet marked p∗
data : flow timeout threshold θTO , filtering flow size threshold θF ,

and number of first packets N
1 begin on receiving p

// Monitor
2 get hp, sp, and tp from p;
3 fid← compute FlowID using the flow header fields from hp;
4 if fid /∈ FlowRepo then
5 f ← call CREATE_FLOW(fid, hp , sp , tp)
6 else
7 F ← fetch the last flow f ∈ FlowRepo such that f .id = fid;
8 if (currentTime − f .lastSeenTime) > θTO then
9 f ← call CREATE_FLOW(fid, hp , sp , tp)

10 else
11 f ← call UPDATE_FLOW(f , sp , tp)
12 end
13 end

// Filter
14 if f .size < θF then return p;

// Classifier
15 if @ f .class then
16 f .class ← m.CLASSIFY(f );
17 update f → FlowRepo;
18 end

// Marker
19 if f .class = “Elephant” then
20 p∗ ← mark p;
21 return p∗;
22 end
23 return p;
24 end
25 function CREATE_FLOW(fid, hp , sp , tp):
26 f ← initialize a new flow with FlowID fid;
27 f .headerFields[] ← array of flow header fields from hp;
28 f .startTime ← f .lastSeenTime ← tp;
29 f .size ← f .sizePackets[0] ← sp;
30 create f → FlowRepo;
31 return f
32 end
33 function UPDATE_FLOW(f , sp , tp):
34 n ← current number of packets of f ;
35 if n ≤ N then
36 f .sizePackets[n] ← sp;
37 f .iatPackets[n] ← tp −−f .lastSeenTime;
38 end
39 f .size ← f .size + sp;
40 f .lastSeenTime ← tp;
41 update f → FlowRepo;
42 return f
43 end

of the first packet is not included because it does not provide
distinctive flow information (i.e., the IAT is always zero for
the first packet of every flow).

As depicted in lines 3–13 in Algorithm 1, the Monitor then
generates a FlowID from the flow header fields of each packet
and checks to see if it exists in the FlowRepo. If this FlowID
is missing (e.g., for packets 1 and 3 in Fig. 2), or if the time
since the last update of an existing record with this FlowID
is longer than θTO (e.g., for packet 4), the Monitor creates
a new record in the FlowRepo (Algorithm 1, lines 25–32).
Otherwise, the Monitor fetches and updates the flow record
(Algorithm 1, lines 33–43) using the FlowID stored in the
FlowRepo (e.g., for packets 2 and 5 through 10 in Fig. 2).
When multiple flow records sharing the same FlowID exist in
the FlowRepo, the Monitor always works with the most recent

one (e.g., for packets 5 to 10).
Using the updated flow record, the Filter (Algorithm 1, line

14) avoids the introduction of a delay in the classification of a
large number of mouse flows (usually latency-sensitive [14],
[15]) by sending the packets of flows with a size below a
certain threshold (θF ) directly to the SDDCN without further
processing (e.g., for packets 1 to 9 in Fig. 2). The Filter
also ensures that the Classifier receives all the required online
features for making the classification. The online features refer
to flow data extracted from the first N packets of a flow. The
Filter then guarantees the size and IAT of the first N packets
of a flow since the maximum value of N depends on θF .
For example, θF = 10 kB would require an N ≤ 7 over
Ethernet, otherwise, data from some packets would be missed.
Consequently, the Classifier operates once the Monitor has
processed packets that increment the size of flows over θF
(e.g., for packet 10).

The Classifier (Algorithm 1, lines 15–18) applies the flow
size classification model to the online features to identify
flows as either mice or elephants. This model results from an
incremental learning algorithm, which maps the online features
to the corresponding class of flows used as training data. After
applying the flow size classification model, the Classifier stores
the identified class in the FlowRepo for each flow record with
flow size greater than θF (e.g., elephant for flow of packet 10
in Fig. 2). Therefore, when processing a packet of a previously
identified flow, the Classifier checks the fetched class from
the FlowRepo to avoid any delay from the classification. The
Classifier then reports to the Marker the class of the flow
for each packet. We discuss in Section II-B how the Learner
collects the training data for building and updating the flow
size classification model.

The Marker (Algorithm 1, lines 19–23) forwards the packets
of flows classified as mice without changes but marks those
classified as elephants (e.g., packet 10 in Fig. 2). To mark
a packet, the Marker sets a predefined value in a code
point header field supported by SDN switches. For example,
OpenFlow switches support matching in two code point header
fields. The first of these is the 6-bit Differentiated Services
Code Point (DSCP) field of the IPv4 header. This DSCP
reserves a code point space for experimental and local usage
(i.e., ∗ ∗ ∗ ∗ 11, where ∗ is 0 or 1). The second is the 3-bit
802.1Q Priority Code Point (PCP) field of the Ethernet header.
In practice, NELLY can rely on either one of these fields, since
it is improbable that a data center use both DSCP and PCP
simultaneously [15].

The Marker can be extended by enabling a flexible config-
uration of the number of subsequent packets in an elephant
flow to be marked (M ), thus enabling a trade-off between
reliability and latency. For instance, as M increases, the lesser
the probability that the controller will miss elephant flows due
to losses of marked packets in the SDDCN. However, a higher
M introduces a delay in the Marker for a higher number of
packets of elephant flows. Once the controller has installed a
higher priority routing rule for handling a specific elephant
flow across the SDDCN, the subsequent marked packets of
this flow are not forwarded to the controller.
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Flow records in FlowRepo

FlowID
Start 

time

Last-seen 

time

Source 

IP

Source 

port

Destination 

IP

Destination 

port

IP 

protocol

Flow

size

Size of 

packet 1

Size of 

packet 2

IAT of 

packet 2
... Size of 

packet 7

IAT of 

packet 7
Class

1 1.1.1.1_2.2.2.2-2000_20-6 100 100 1.1.1.1 2000 2.2.2.2 20 6 1500 1500 - - ··· - - -

2 1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

3
1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

4

1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

1.1.1.1_2.2.2.2-2000_20-6 6000 6000 1.1.1.1 2000 2.2.2.2 20 6 1500 1500 - - ··· - - -

5

1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

1.1.1.1_2.2.2.2-2000_20-6 6000 6010 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 10 ··· - - -

6 to 9 The Monitor updates the fields last-seen time, flow size, and the size and IAT of packet N of the last flow record with FlowID 1.1.1.1_2.2.2.2-2000_20-6 (i.e., third row)

10

1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - - 

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

1.1.1.1_2.2.2.2-2000_20-6 6000 6060 1.1.1.1 2000 2.2.2.2 20 6 10500 1500 1500 10 ··· 1500 10 Elephant*

Outgoing packets

Packet
#

Time
(ms)

Size
(bytes)

Source 
IP

Source 
port

Destination 
IP

Destination 
port

IP 
protocol

1 100 1500 1.1.1.1 2000 2.2.2.2 20 6

2 900 1500 1.1.1.1 2000 2.2.2.2 20 6

3 2000 175 1.1.1.1 3000 3.3.3.3 80 6

4 6000 1500 1.1.1.1 2000 2.2.2.2 20 6

5 6010 1500 1.1.1.1 2000 2.2.2.2 20 6

6 to 9 6020 to 6050
(every 10ms) 1500 1.1.1.1 2000 2.2.2.2 20 6

10 6060 1500 1.1.1.1 2000 2.2.2.2 20 6
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● N = 7

In bold the values created or updated by the Monitor; * only the values of Class are updated by the Classifier.

For
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#

Time values are in milliseconds (ms) and size values are in bytes.

Figure 2. Example of how flow records are created and updated in the FlowRepo

B. Learner

As depicted in Fig. 1, the Learner consists of four modules:
Collector, Filter, Tagger, and Trainer. The process of each
module is detailed in Algorithm 2. As shown in lines 1–4,
the Collector fetches terminated flows from the FlowRepo at
every interval T . A flow is considered terminated if it remains
idle for longer than θTO. Therefore, the Collector recognizes
terminated flows by checking that a time longer than θTO
has passed since the last-seen time of the FlowID records in
the FlowRepo. Note that the Collector relies on the FlowID
records updated by the Monitor for the recognition of the
terminated flows, so their actual size can be obtained.

The Collector avoids increasing memory consumption in
NELLY by removing terminated flows from the FlowRepo
(Algorithm 2, line 5). The actual size of terminated flows
can also be further used to provide fixed-memory probability
distributions that support autonomous configuration of flow
size thresholds. Memory requirements in the FlowRepo thus
depend on both T and θTO. T provides a trade-off between
memory and processing. As T decreases, the Collector re-
moves the terminated flows from the FlowRepo more quickly,
consuming less memory, but leading to more processing. In
turn, θTO directly affects the number of FlowID records stored
in memory. As θTO increases, the FlowRepo retains FlowID
records for a longer time. θTO is related to the inactive timeout
configuration of flow rules in SDN-enabled switches, which
provides a trade-off between flow table occupancy and miss-
rate (i.e., when the packet IAT is greater than the timeout)
[22].

The Filter of the Learner (Algorithm 2, line 6) receives the

Algorithm 2: Learner
input : flow size classification model m
output: either actual m or updated m
data : learning time interval T , flow timeout threshold θTO , filtering

flow size threshold θF , and labeling flow size threshold θL
1 begin every T

// Collector
2 F ← fetch flows f ∈ FlowRepo;
3 for f ∈ F do
4 if currentTime − f .lastSeenTime > θTO then
5 delete f → FlowRepo;

// Filter
6 if f .size ≥ θF then

// Tagger
7 if f .size ≥ θL then f .class ← “Elephant” ;
8 else f .class ← “Mouse” ;

// Trainer
9 m← m.UPDATE(f .headerFields[], f .sizePackets[],

f .iatPackets[], f .class);
10 end
11 end
12 end
13 return m;
14 end

terminated flows from the Collector and reports to the Tagger
only those with size greater than θF . The terminated flows are
then used by the Trainer to build the flow size classification
model. Since the Classifier operates only with flows of a
size greater than θF , the Filter of the Learner prevents the
introduction of noise to the model.

The Tagger (Algorithm 2, lines 7–8) compares the actual
size of the filtered flows to a labeling threshold (θL) so
that they can be tagged as either mice or elephants. θL will
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vary (e.g., 100 kB or 1 MB) as a function of the traffic
characteristics and performance requirements of SDDCNs.
Labeled flows provide the Trainer (Algorithm 2, line 9) with
the ground truth for building a supervised learning model for
flow size classification [17]. This classification model maps
online features (i.e., packet header, size, and IAT of the first N
packets) onto the corresponding class (i.e., mice or elephants).
Recall that the Classifier relies on the flow size classification
model to identify elephant flows.

Since flows represent continuous and dynamic data streams,
the Trainer uses an incremental learning algorithm (e.g., Ho-
effding tree and online ensembles) for building the flow size
classification model. Incremental learning enables updating
the flow size classification model as the Trainer receives
labeled flows over time, rather than retraining from the begin-
ning [17], [21]. Therefore, NELLY adapts to varying traffic
characteristics and performs continuous learning with limited
memory resources. There is no need for the Trainer to maintain
labeled flows in memory. This is an important characteristic of
NELLY, since it helps to reduce the consumption of resources
in all the servers of the SDDCN.

III. EVALUATION

This section presents the evaluation of NELLY in relation
to accuracy and classification time by using real packet traces
and incremental learning algorithms. A generic approach for
designing ML-based solutions in networking [17] is used to
describe and conduct the evaluation of NELLY.

A. Datasets

Two real packet traces, UNI1 and UNI2, captured in uni-
versity data centers [23], were employed to evaluate NELLY
(Table I summarizes their characteristics). These two traces
are shorter than three hours long, but their mice and elephants
distributions are similar to those found in non-public traces
collected at different periods along the day [8], [9]. On the
other hand, to the best of our knowledge, neither traces nor
datasets of IPv6 traffic in DCNs are publicly available. In line
with that, NELLY was evaluated using IPv4 traffic only which
represents over 99% of the packets in UNI1 and UNI2.

Only the following parameters needed to be defined to
generate the datasets: the flow header fields, θTO, and N .
Firstly, the 5-tuple header (i.e., source IP, destination IP, source
port, destination port, and IP protocol) as the flow header fields
since it sufficiently characterizes IPv4 flows; hereinafter, they
are referred just as flows. Secondly, θTO = 5 s was established
on the basis of the break-even point analysis between the flow
table occupancy and the miss-rate in OpenFlow switches for
DCNs considered by [22]. Then, since the maximum value
of N depends on θF , N = 7 was set as the maximum
for θF = 10 kB. As shown in Table I, the selected θF
encompasses all the potential elephants (i.e., flows carrying
more than 95% of the traffic) and avoids the introduction
of the classification delay to mice (for more than 93% of
the flows). Using these parameters, the UNI1 and UNI2 data
traces were processed to generate the corresponding flow size
datasets, each containing somewhat more than a million flows

(see Table I). Since NELLY only classifies flows greater than
θF , those smaller than θF = 10 kB were removed from both
datasets. Therefore, the UNI1 and UNI2 datasets consisted of
approximately 70,000 and 60,000 flows, respectively.

The datasets [24] included the following flow information:
start time, end time, 5-tuple header, size and IAT of the first 7
packets, as well as flow size. The start and end times enabled
a more realistic evaluation (see Section III-C). The 5-tuple
header and the size and IAT of the first 7 packets represented
the online features for the flow size classification model. The
flow size is compared to different θL (e.g., 50 kB, 100 kB, and
500 kB) to label the flows as mice or elephants (i.e., classes
of interest). Unless otherwise stated, the datasets with θL =
100 kB were used. Labeled flows represented the ground truth
for learning and validating the flow size classification model.

For feature engineering [17], various different data types
were considered for the online features, particularly for the 5-
tuple header. Certainly, the size and IAT of the first 7 packets
(13 features, since the IAT of the first packet is not included)
indicate a measurement, hence, numeric data, whereas the
5-tuple header contains two IP addresses in dotted-decimal
notation (i.e., categorical data) and three numeric codes (i.e.,
nominal data). However, the huge set of possible categories
for IP addresses (i.e., 232) hinders a real implementation.
To address this problem, the IP addresses were divided into
four octets, resulting in a total of 11 nominal features for
the 5-tuple header. To handle these 11 nominal features as
numeric data, a Numeric (Num) header type was defined.
These features were then transformed into binary digits (bits),
generating 104 features for the 5-tuple header. Considering
these binary features, two more header types were defined:
Binary-Numeric (BinNum) to treat binary features as numeric
data (i.e., a value between zero and one) and Binary-Nominal
(BinNom) to handle binary features as nominal data (i.e., zero
or one). Unless otherwise stated, the datasets with BinNom-
header were used.

B. Accuracy metrics

Metrics derived from the confusion matrix were used,
including the True Positive Rate (TPR) and the False Positive
Rate (FPR), thus avoiding the over-optimism of the conven-
tional accuracy metric caused by an imbalance of classes [17].
In the datasets, the imbalance between mice and elephants
depends on θL. For example, assuming θL = 100 kB, only
12% of flows above 10 kB in the UNI1 dataset represent
the elephant class (see Table I). The imbalance grows as θL
increases.

Recall that flows classified as elephants are forwarded to the
controller for further processing, thus introducing transmission
and processing delays. Therefore, NELLY aims at detecting
as many elephants while negatively affecting as few latency-
sensitive mice as possible. Considering elephants as the pos-
itive condition, the TPR describes the proportion of detected
elephants whereas the FPR provides the ratio of negatively
affected mice. Both TPR and FPR range between 0 and 1.
Furthermore, the Matthews Correlation Coefficient (MCC) was
used to analyze the balance between the TPR and the FPR.
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Table I
DETAILS OF PACKET TRACES AND IPV4 FLOWS OBTAINED USING THE 5-TUPLE HEADER AND θTO = 5 S

Packet traces [23] UNI1 UNI2
Duration 65 min 158 min
Packets 19.85 M 100 M
IPv4 % of total traffic 98.98% (mostly TCP) 99.9% (mostly UDP)
IPv4 flows 1.02 M (TCP and UDP) 1.04 M (mostly UDP)

Details of
IPv4 flows

Flow size % of IPv4 flows % of IPv4 traffic % of IPv4 flows % of IPv4 traffic
≥ 10 kB 7.16% 95.06% 5.91% 98.81%
≥ 100 kB 0.83% 83.71% 1.93% 96.86%
≥ 500 kB 0.14% 73.14% 0.76% 93.52%
≥ 1 MB 0.07% 69.52% 0.48% 90.83%
≥ 5 MB 0.01% 60.33% 0.17% 81.34%

The MCC takes all values from the confusion matrix to provide
a measure between 1 and -1. As the MCC gets closer to 1,
the difference of the TPR over the FPR increases, leading to
a more accurate classifier. An MCC between 0 and -1 means
that TPR ≤ FPR, which would be less accurate than a random
classifier. In our experiment, the MCC values were always
greater than 0, hence, we use a range between 0 and 1 to plot
TPR, FPR, and MCC in Figures 3 and 4.

The MCC metric is employed in the performance analysis
because it is recommended for imbalanced datasets (like UNI1
and UNI2) [25]. The MCC score is only high when the
classification algorithms are doing well in both the positive
and negative elements (i.e., elephants and mice, respectively).
The ROC curve has also proven to be useful for imbalanced
datasets but it is more appropriate to analyze classification
algorithms that output a real value [26]. Thus, we preferred
the MCC because the output of the incremental learning
classification algorithms employed in this paper is a single
class value (either mouse or elephant) rather than real value.

C. Experiment setup

Incremental learning algorithms are commonly evaluated
using the interleaved test-then-train approach [27]. This ap-
proach refers to going through each flow to classify it first by
working only with the online features and then use its actual
class for training the flow size classification model. However,
since flows start and end over time, some order of the flows
must be established. Moreover, under real conditions, some
flows start before a classified flow ends, whereas others end
before a new flow starts. Therefore, the flows are classified
at the start time and the model is trained at the end time, so
the performance evaluation will be based on more realistic
conditions.

The imbalance of classes in the UNI1 and UNI2 datasets
was addressed by training the flow size classification model
using inverse weights, as in [18], i.e., weights (between 0
and 1) inversely proportional to the ratio of training instances
previously encountered by the model for each class. If the
model is trained with a single weight (i.e., 1 by default in the
Massive Online Analysis (MOA) tool [27]), it would tend to
classify all flows as mice due to the imbalance of classes.

D. Performance analysis

To determine the consideration for the best performance of
NELLY, the UNI1 and UNI2 datasets were used with different

header types (i.e., Num, BinNum, and BinNom), as well
as 50 incremental learning classification algorithms available
in MOA. The performance evaluation included the accuracy
metrics (i.e., TPR, FPR, and MCC) and the classification time
per flow (TC). The algorithms were executed with their default
settings (except for the training weights) and without previous
model initialization.

For the sake of brevity, Table II presents ten algorithms,
namely, Adaptive Hoeffding Option Tree (AHOT), Adaptive
Random Forest (ARF), Hoeffding tree, k-Nearest Neighbors
(kNN) with Probabilistic Adaptive Windowing (PAW), Naive
Bayes (NB), Online Accuracy Updated Ensemble (OAUE),
OzaBag, Oza and Russell’s Bagging (OzaBag) and Boosting
(OzaBoost), Rule classifier with NB (Rule-NB), and Stochastic
Gradient Descent (SGD) for Support Vector Machines (SVM).
These algorithms were selected on the basis of the best
performance results between algorithms with a similar learning
approach. Furthermore, Table II includes only the best results
of each algorithm, taking into account both accuracy and
classification time for a specific header type. The BinNom
headers were found to enable the best performance of the
majority of the algorithms for the UNI1 and UNI2 datasets.
This was due to the fact that most algorithms achieved greater
accuracy using the BinNom headers than the Num headers
for a comparable classification time. The use of the BinNum
headers is strongly discouraged; although similar or slightly
better accuracy results were obtained, there was a significant
increase in the classification time (up to 4x).

The accuracy results show that no single algorithm achieves
the best values of the TPR and MCC for the UNI1 and UNI2
datasets. This is due to the fact that the flow size distribution
and the features of the elephant and mouse flows were specific
for each dataset. Therefore, the top five results were used to
analyze the accuracy performance. Regarding the TC , most
algorithms introduced a classification delay per flow shorter
than 17.5 µs, but this represents only a small percentage (7%)
of the Round-Trip Time (RTT) in DCNs (i.e., 250 µs in the
absence of queuing [28]).

Both Hoeffding tree and NB represent the state-of-the-art
in incremental learning algorithms. Their simplicity and low
computational cost enabled a very short delay (TC < 5 µs)
that accounts for only 2% of the RTT in DCNs. However,
only the Hoeffding tree represents a valid alternative for the
traffic similar to that of UNI1 because its TPR and MCC
were among the top five results for the UNI1 dataset. The
Hoeffding tree in MOA uses NB classifiers on the leaves
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Table II
PERFORMANCE OF NELLY WITH DIFFERENT INCREMENTAL LEARNING ALGORITHMS FOR CLASSIFYING FLOWS AS MICE AND ELEPHANTS

Algorithms
UNI1 UNI2

TPR(%) FPR(%) MCC TC (µs) Header
type TPR(%) FPR(%) MCC TC (µs) Header

type

AHOT 85.97 35.52 0.327 4.07 BinNom 60.16 28.58 0.304 10.17 BinNom
ARF 82.39 28.82 0.359 12.01 BinNom 68.65 21.33 0.460 17.39 BinNom
Hoeffding tree 86.79 36.38 0.326 3.18 BinNom 57.92 28.46 0.284 4.64 BinNom
kNN-PAW 25.30 2.99 0.311 473.1 Num 40.29 10.22 0.302 454.1 Num
NB 74.76 35.69 0.254 4.76 BinNom 49.74 23.18 0.267 4.82 BinNom
OAUE 86.79 33.63 0.347 25.58 BinNom 63.28 28.65 0.332 33.06 BinNom
OzaBag 87.78 37.11 0.327 23.98 BinNom 64.17 31.13 0.314 36.61 BinNom
OzaBoost 75.88 29.93 0.307 11.56 BinNom 64.62 32.22 0.307 16.82 BinNom
Rule-NB 74.44 33.77 0.267 18.47 BinNom 54.83 29.15 0.248 18.59 BinNom
SGD-SVM 16.76 10.21 0.067 0.81 Num 38.69 30.99 0.076 0.8 Num
In bold the top five results of TPR and MCC, and the TC results shorter than 17.5 µs, for both UNI1 and UNI2

(nodes), which improves the accuracy without compromising
the computational cost.

The ARF, OAUE, OzaBag, and OzaBoost are ensemble-
based algorithms that combine multiple Hoeffding trees (ten
in our evaluation) for improving the accuracy at the expense
of increasing the computational cost. The ARF and OzaBoost
algorithms introduced a TC shorter than 7% of the RTT in
DCNs. ARF provided the best MCC and a TPR among the
top five for the UNI1 and UNI2 datasets. OzaBoost can be
seen as an option for the traffic similar to that of UNI2 since it
was in the top five accuracy results only for the UNI2 dataset.
In contrast, although the OAUE and OzaBag algorithms also
provided good accuracy results (particularly for the UNI1
dataset), they introduced a TC twice longer than the TC of
ARF and OzaBoost. This long TC is because OAUE and
OzaBag rely on ensemble methods (block-weighting and bag-
ging, respectively) that demand more computation than those
used by ARF and OzaBoost (random forests and boosting,
respectively).

Similar to ARF, the AHOT algorithm figured in the top
five accuracy results for both datasets. Moreover, AHOT
only introduced a TC shorter than 2% (5 µs) and 4% (10
µs) of the RTT in DCNs for the UNI1 and UNI2 datasets,
respectively. AHOT is capable of improving the accuracy of
the Hoeffding tree algorithm without demanding too much
computation by providing an intermediate solution between
a single Hoeffding tree and an ensemble of Hoeffding trees.
AHOT uses additional option paths (five maximum in our
evaluation) to build a single structure that efficiently represents
multiple Hoeffding trees.

The implementations in MOA of the Rule-NB, SGD-SVM,
and kNN-PAW algorithms are strongly discouraged. The Rule-
NB presented accuracy results outside the top five for both
datasets and a TC slightly longer than 7% of the RTT in DCNs.
This is because rule-based algorithms focus on building more
interpretable models than does the Hoeffding tree algorithm,
which increases the computational cost but not necessarily
improves the accuracy. The SGD-SVM algorithm introduced
the shortest classification delay (TC < 1 µs) but it produced
the worst values in the TPR and MCC metrics. The reason
for these values is that MOA implements a very simple SGD-
SVM algorithm that uses a linear kernel which is not sufficient
to model different patterns in flows of packets. The kNN-PAW

provided the second-worst TPR for both datasets and a very
long classification delay (TC > 450 µs), which increased up
to 3,000 µs with the BinNum and BinNom headers (i.e., 12x
the RTT in DCNs). This long TC value is a consequence of
the computation of a distance metric by the algorithms based
on kNN every time the classification is performed.

In conclusion, NELLY achieves the best performance by us-
ing the BinNom headers along with the following incremental
learning algorithms:

• The ARF is good for any type of traffic and if the RTT
is flexible. It achieved the best MCC for the UNI1 and
UNI2 datasets, and it was also the fifth- and second-best
for the TPR while introduced a TC lesser than 7.5% of
the RTT in DCNs.

• The AHOT is good for any type of traffic and a strict
RTT. The TPR and MCC ranked among the top five for
both datasets while the TC was shorter than that of the
ARF, especially for the UNI1 dataset.

• The Hoeffding tree is good for traffic similar to that
of UNI1 and if the RTT is very strict. The TPR was
the second-best and the MCC was the fifth (quite close
to the AHOT) for the UNI1 dataset while introduced a
very short TC . When the RTT constraint takes precedence
over the accuracy, this would be a good option for traffic
similar to that of UNI2 because a very short TC was
maintained while provided the sixth-best TPR and MCC
for such traffic.

The accuracy of NELLY was also evaluated with the ARF
and AHOT algorithms for different values of θL since this
threshold may vary as a function of traffic and routing re-
quirements. Both ARF and AHOT ranked among the top five
in accuracy for both datasets with a TC shorter than 7.5% of
the RTT in DCNs. As shown in Fig. 3, the MCC results of
both algorithms were degraded as θL increased, especially for
the UNI1 dataset. This is because the difference between the
features of the elephants and mice becomes less significant as
θL increases. In contrast, the TPR remained very similar as
θL increased, except that the ARF suffered from a significant
reduction in the TPR for the UNI1 dataset. Therefore, the
AHOT was more robust to variations in θL for traffic similar to
that of UNI1, although the performance of both algorithms was
similar for the UNI2 dataset. Based on this summary, NELLY
with the AHOT algorithm enables a flexible configuration
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of θL while providing great elephant flows detection in data
centers regardless the type of traffic. For traffic similar to that
of UNI2, both ARF and AHOT represent valid alternatives
for the use of NELLY and the flexible configuration of θL
is possible since they perform similarly in terms of elephants
detection.
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Figure 3. Accuracy of NELLY with the ARF (left) and AHOT (right)
algorithms when varying the labeling threshold (θL) for the UNI1 (top) and
UNI2 (bottom) datasets.

Finally, the effect of the handling of different ranges of the
inverse weights in the two classes on the accuracy of NELLY
with the two algorithms (ARF and AHOT) was analyzed.
The weights of the mice were maintained between 0 and 1,
whereas the weights of the elephants ranged from 0 to WE ,
where WE varied from 1 to 5. Fig. 4 shows that both the
ARF and AHOT algorithms achieved a higher TPR for both
datasets as WE increased (up to 94% and 98% of elephants
detection, respectively). These results were expected since
establishing greater weights for the elephant class makes the
learning algorithms increment the influence of the features of
the elephant flows in the classification model. Moreover, the
trade-off between the TPR and FPR (i.e., MCC) remained
quite similar for UNI1-type traffic whereas that of UNI2
was degraded as WE increased. This is due to the greater
differences between the elephants and mice for the UNI1
dataset than for UNI2 when θL = 100 kB. Therefore, as WE

increased for the UNI2 dataset, the increment of mouse flows
wrongly classified as elephants (i.e., FPR) was greater than that
of elephant flows correctly classified (i.e., TPR). In conclusion,
NELLY supports a flexible configuration of inverse weights for
meeting different accuracy requirements.

IV. COMPARATIVE ANALYSIS

NELLY was compared with the Online Flow Size Prediction
(OFSP) [18], the Efficient Sampling and Classification Ap-
proach (ESCA) [19], FlowSeer [20], and Mahout [15]. OFSP,
ESCA, and FlowSeer incorporate ML at the controller-side
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Figure 4. Accuracy of NELLY with the ARF (left) and AHOT (right)
algorithms when varying the range for the inverse weights of elephant flows
(WE ) for the UNI1 (top) and UNI2 (bottom) datasets.

of SDDCNs for proactively detecting elephant flows, whereas
Mahout performs reactive detection at the server-side. The
results reported by each work for the UNI1 dataset were used
to compare them in relation to: learning approach, elephants
detection, false elephants, table occupancy, control overhead,
detection time, network modifications, and performance fac-
tors. The works involving Hedera [16] and DevoFlow [14]
were not considered. These approaches perform reactive flow
detection and their limitations hinder real implementation.
Hedera causes large control traffic overhead and has poor
scalability, whereas Devoflow requires custom-made switch
hardware and imposes a heavy burden on switches.

Learning approach. ML algorithms used for detecting
elephant flows can involve batch or incremental learning.
Batch learning refers to the use of training models based
on static datasets (i.e., all training data are simultaneously
available). However, batch learning requires the storage of
unprocessed data to cope with traffic variations in DCNs,
so the models must repeatedly work from scratch. This is
time-consuming and prone to outdated models. Conversely,
incremental learning continuously adapts the ML models on
the basis of streams of training data, enabling constantly
updated models and reducing time and memory requirements
[17], [21]. ESCA relies on batch learning whereas NELLY
and OFSP rely on incremental learning for detecting elephant
flows. FlowSeer is a mixed approach using batch learning
for the identification of potential elephants and incremental
learning for the classification of the potential ones. Mahout
has no learning approach, since it performs reactive elephants
detection.

Elephants detection. The main goal of flow detection
methods is to identify elephant flows (i.e., TPR). NELLY,
OFSP, and FlowSeer all proactively detected more than 95% of
elephant flows, whereas ESCA detected a maximum of 88.3%.
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Mahout provides perfect detection, although this is reactive.
False elephants. Mouse flows mistakenly identified as

elephants (i.e., FPR) are needlessly forwarded to and processed
by the controller. For achieving the highest elephants detection
rate, FlowSeer informed the controller of 29% of mice as
potential elephants, whereas OFSP and ESCA only reported
around 2%. NELLY yielded an FPR of 40%, but this was
computed using only 7% of the flows (i.e., θL ≥ 10 kB).
NELLY thus forwards only 2.5% of mice to the controller.
No mouse flow is reported to the controller by Mahout since
detection is reactive.

Table occupancy. Controller-side flow detection methods
install flow table entries in ToR switches for centrally collect-
ing flow data. The smaller the number of flow table entries, the
more efficient is the resource utilization. OFSP requires one
entry per flow, thus constraining its scalability because of the
limited memory in SDN switches. ESCA and FlowSeer install
wildcard entries for sampling packets of flows. They reported
236 and 50 flow table entries, respectively, for achieving their
highest detection rate in the UNI1 dataset. Conversely, NELLY
and Mahout do not require flow table entries for collecting data
since they operate at the server-side.

Control overhead. Flow detection methods require ToR
switches to send control packets to the controller, either for the
collection of flow data or for the reporting of detected elephant
flows. The smaller the control overhead, the lower are the link
utilization and the impact on the controller performance (since
it has to process fewer control packets). The overhead of this
control was computed by assuming no loss in the network
and a control packet of 64 bytes. OFSP collects information
from the first three packets of each flow, generating a control
overhead of 402 kbps. FlowSeer collects information from the
first five packets of sampled flows (i.e., 30% of the flow data)
and potential elephants, yielding a control overhead of 288
kbps. ESCA reduces the control overhead to 215 kbps by using
a sampling method that only reports information from the first
packet. In contrast, NELLY and Mahout merely require that
ToR switches send information of flows marked as elephants,
greatly reducing the control message overhead to 4.4 kbps and
1.1 kbps, respectively.

Detection time. Timely detection of elephant flows enables
the controller to make early decisions to improve routing.
OFSP, ESCA, FlowSeer, and NELLY enable a short detection
time by proactively detecting elephant flows. ESCA reported
a detection time of 1.98 s for achieving the highest detection
rate. OFSP and NELLY detect elephants in a shorter time since
they rely on the first N packets. On average, the detection
time was 0.5 s for OFSP (N = 3) and 0.8 s for NELLY
(N = 7). Further experimentation is needed to evaluate the
detection time of FlowSeer. Nevertheless, the detection time
of the latter would be slightly greater than for ESCA, since it
is also based on sampling and considers the first five packets
(ESCA considers only one packet). In contrast, Mahout relies
on a reactive mechanism that detects elephant flows after their
corresponding socket buffer in a server surpasses a certain
threshold. Assuming a small threshold of 100 kB, the average
detection time of Mahout is 3.8 s. However, unlike ML-
based flow detection methods, the detection time of Mahout

becomes longer as the threshold increases, which may cause
hot-spots before the traffic carried by elephant flows reaches
the threshold.

Network modifications. ESCA proposes a sampling
method that depends on non-existing SDN specifications,
hence, requiring custom-made switch hardware. In contrast,
OFSP, FlowSeer, NELLY, and Mahout rely on OpenFlow [29],
therefore enabling the use of commercial switches. Essentially,
NELLY and Mahout require the installation of additional
software in the servers, which need only to be done once
with further configuration possible on the basis of a policy
manager or autonomously. This installation can be carried out
by using DevOps automation tools, such as Puppet and Chef,
that support the distribution of software components to the
operating systems of servers [30]. Moreover, virtualization
platforms, such as VMWare and Xen, support software dis-
tribution to the servers as updates to the hypervisor without
interrupting running virtual machines (either by live-migration
or live-updating) [31].

Performance factors. Depending on the location of the flow
detection method, different factors may affect its performance.
Controller-side methods (i.e., OFSP, ESCA, and FlowSeer)
rely on the resources available at the controller and ToR
switches. The controller should be powerful enough for detect-
ing all the elephants and processing the control packets sent
by the ToR switches in the DCN. Similarly, the ToR switches
should have enough memory for installing the required flow
table entries. Moreover, the accuracy of the controller-side
methods can be negatively affected if the ToR switches drop
some of the first packets of the elephant flows. On the other
hand, NELLY and Mahout operate at the server-side, so they
depend on servers resources. As NELLY is based on ML,
it requires more resources than does Mahout. Both server-
side methods detect the elephants generated by each server
(i.e., distributed operation). Note that servers should be able
to monitor the first packets of the elephant flows for avoiding
a decrease in accuracy.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced NELLY to deal with the
inaccuracy, large overhead, and poor scalability of current flow
detection methods utilized in SDDCNs. NELLY is a novel flow
detection method based on incremental learning that operates
as a software component installed in every server of SDDCNs.
An extensive evaluation demonstrated the accuracy and speed
of NELLY, as well as its generation of low traffic overhead and
adaptation to varying traffic characteristics. NELLY performs
continuous learning and requires limited memory resources
when used with the ARF and AHOT algorithms. The evalua-
tion also corroborated the scalability of NELLY and the fact
that no modifications in SDN standards are required.

As future work, we intend to implement NELLY as an
in-kernel software component for evaluating its impact cost
to server resources, including processing and memory con-
sumption. Furthermore, we plan to evaluate NELLY in an
emulated SDDCN by installing the software component into
micro virtual machines connected to Open vSwitch instances.
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Finally, although this paper has proven that incremental
learning algorithms are efficient to detect elephant flows in
DCNs, there are still research challenges to be addressed. First,
there is no consistent and accepted method for defining the
threshold value that discriminates between mice and elephants
in DCNs. In this work, we evaluated different thresholds but
did not specify how to select the appropriate threshold value
for the traffic and routing requirements. Second, there is a
need to create publicly available IPv6 dataset to allow the
performance of ML-based elephant detection methods on such
data set.
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