
870 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Intelligent Routing Based on Reinforcement
Learning for Software-Defined Networking

Daniela M. Casas-Velasco, Graduate Student Member, IEEE,
Oscar Mauricio Caicedo Rendon , Senior Member, IEEE, and Nelson L. S. da Fonseca , Senior Member, IEEE

Abstract—Traditional routing protocols employ limited
information to make routing decisions, which can lead to a slow
adaptation to traffic variability, as well as restricted support
to the Quality of Service (QoS) requirements of applications.
This article introduces a novel approach for routing in Software-
defined networking (SDN), called Reinforcement Learning and
Software-Defined Networking Intelligent Routing (RSIR). RSIR
adds a Knowledge Plane to SDN and defines a routing algorithm
based on Reinforcement Learning (RL) that takes into account
link-state information to make routing decisions. This algorithm
capitalizes on the interaction with the environment, the intelli-
gence provided by RL and the global view and control of the
network furnished by SDN, to compute and install, in advance,
optimal routes in the forwarding devices. RSIR was extensively
evaluated by emulation using real traffic matrices. Results show
RSIR outperforms the Dijkstra’s algorithm in relation to the
stretch, link throughput, packet loss, and delay when avail-
able bandwidth, delay, and loss are considered individually or
jointly for the computation of optimal paths. The results demon-
strate that RSIR is an attractive solution for intelligent routing
in SDN.

Index Terms—Reinforcement learning, routing, Software-
defined networking, knowledge-defined networking.

I. INTRODUCTION

ROUTING determines the path taken by packets from a
source to a destination node [1]. Although traditional

Internet protocols, such as Open Shortest Path First (OSPF) [2]
and Routing Information Protocol (RIP) [3], have successfully
delivered best-effort traffic for several decades, the growth of
traffic and the diversification of the Quality of Service (QoS)
requirements of emerging Internet applications pose new chal-
lenges for the transport of the flows of packets generated
by these applications [4]. Moreover, traditional routing proto-
cols use limited information to make routing decisions, which

Manuscript received April 21, 2020; revised August 11, 2020 and
October 22, 2020; accepted November 2, 2020. Date of publication
November 10, 2020; date of current version March 11, 2021. The authors
would like to thank CAPES, the Sao Paulo Research Foundation (FAPESP)
under grant #19/03268-0 and 2015/24494-8. The associate editor coordi-
nating the review of this article and approving it for publication was
N. Zincir-Heywood. (Corresponding author: Nelson L. S. da Fonseca.)

Daniela M. Casas-Velasco and Nelson L. S. da Fonseca are with the Institute
of Computing, University of Campinas, Campinas 13083-852, Brazil (e-mail:
danielac@lrc.ic.unicamp.br; nfonseca@ic.unicamp.br).

Oscar Mauricio Caicedo Rendon is with the Department of Telematics,
Universidad del Cauca, Popayán 190002, Colombia (e-mail: omcaicedo@
unicauca.edu.co).

Digital Object Identifier 10.1109/TNSM.2020.3036911

can lead to a slow adaptation to dynamic traffic changes and
restricted support to diverse QoS requirements [5].

Software-defined networking (SDN) and Machine Learning
(ML) techniques have been envisioned to provide innovation
for routing protocols [6], [7], [8]. Several solutions [9]–[16]
have enhanced traditional routing protocols by leveraging
SDN features, such as programmability, global view, logically
centralized control, and decoupling of network control and
packet forwarding [17]. However, these do not fully exploit
knowledge about the network operation to accomplish intel-
ligent routing. Other approaches have attempted to improve
routing by using ML techniques [18]–[23]; however, dis-
tributed routing is typically assumed. This type of routing
increases signaling overhead and can contribute to the forma-
tion of congestion. Several other solutions [24]–[30] employ
both ML and SDN, but they depend on traditional routing
protocols.

In this article, we introduce a novel approach for routing in
SDN, called Reinforcement Learning and Software-Defined
Networking for Intelligent Routing (RSIR). RSIR adds a
Knowledge Plane and defines a routing algorithm based on
Reinforcement Learning (RL) that takes into account link-
state information to explore, learn, and exploit potential paths
for intelligent routing, even during dynamic traffic changes.
This algorithm capitalizes on interaction with the environ-
ment, the intelligence provided by RL, and the global view
and control of the network furnished by SDN. It computes
and installs, in advance, optimal routes in the routing tables
of the switches on the Data Plane. RSIR was extensively val-
idated using emulation and real traffic matrices. Results show
that RSIR outperforms the Dijkstra’s algorithm in relation to
stretch, link throughput, delay, and packet loss produced when
delay, loss, and available bandwidth are individually or jointly
used as cost to compute optimal paths. Results evince that
RSIR is a promising solution to replace traditional routing
protocols in SDN.

The contributions of this article are:
• An architecture that employs RL for achieving efficient

and intelligent routing in SDN;
• A proactive RL-based routing algorithm that considers

link-state metrics to explore, learn, and exploit potential
routes;

• A prototype of the proposed architecture.
The remainder of this article is organized as follows.

Section II describes the related work. Section III details
RSIR, and Section IV introduces the RSIR routing algorithm.
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TABLE I
ACRONYMS

TABLE II
RELATED WORK

Section V presents the RSIR prototype and the result of its
evaluation. Section VI presents conclusions and future work.
For the sake of readability, Table I presents the acronyms used
in this article.

II. RELATED WORK

This section brings up research on routing based on SDN,
and ML as well on these two techniques. Table II briefly sum-
marizes the description of the protocols reviewed, the type of
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routing employed, how SDN and ML are considered, and the
metrics evaluated. Next, we briefly describe these papers and
point out their main shortcomings.

In SDN, instead of flooding routing updates over the entire
network, information is sent to a centralized controller. Indeed,
the controller is the only device informed about route changes;
as a result, the signaling overhead and routing convergence
time are less affected than in traditional routing [31]. The
Control Plane provides a logically centralized control point
that can make decisions based on collected information and
deploy routing rules on the Data Plane. The work in [9]–[16]
proposed routing solutions based on SDN features, such as
programmability, global view, the decoupling of network traf-
fic and control, and logically centralized control. However,
these proposals use traditional distributed routing protocols
that do not learn from all potential features affecting network
congestion. Moreover, these proposals do not exploit intelli-
gent solutions based on ML techniques.

The work in [18]–[23] employed ML techniques, such as
RL and Neural Networks (NNs) to improve routing decisions.
However, these proposals do not exploit SDN features. They
deploy routing strategies in a distributed fashion in a way
that routing nodes turn themselves into a learning entity that
makes local routing decisions based on information learned
from the environment. However, these routing solutions
can generate signaling overhead and contribute to network
congestion.

The work in [24]–[30] introduced routing strategies that
encompass both ML and SDN. Network programmability pro-
vided by SDN allows the inclusion of ML techniques in the
routing solutions. This type of solution is based on traditional
routing protocols, either for deploying routing strategies or
training ML models. Such dependence makes the proposed
solutions prone to choose the same paths when similar con-
gestion patterns occur.

RSIR aims at addressing the shortcomings of the proposals
mentioned above. RSIR leverages the centralized, view, con-
trol, and programmability of SDN, as well as the cognitive
capabilities of RL. RSIR proactively defines and installs routes
based on decisions made by using link-state information with
no dependence on traditional routing protocols. Moreover,
it does not add any signaling overhead to the network
operation.

III. RSIR

This section presents an overview of RSIR, its architecture,
and components.

A. Overview

RSIR adds a Knowledge Plane, that employs RL, to
SDN for achieving intelligent routing. The addition of
a Knowledge Plane to a network was first proposed by
Clark et al. [32] in 2003 and later revisited by Mestres et al. in
2017, when they proposed the concept of knowledge-defined
networking (KDN) [33]. The Knowledge Plane is intended
to furnish descriptions (recognize-explain), recommendations
(recognize-explain-suggest), and automation (recognize-act) in

Fig. 1. RSIR architecture.

support of decision-making processes such as routing. KDN
involves ML [34], telemetry [35], network analytics [36], and
a Knowledge Plane [32] to enable intelligent SDN. In addition
to the Knowledge Plane, the KDN architecture includes the tra-
ditional SDN planes (i.e., Management, Application, Control,
and Data) [6], [37], [38]. The SDN planes support network
automated management and control, while the Knowledge
Plane obtains and transforms information into knowledge by
using ML techniques for improving network management and
operation.

RSIR was designed for routing the network traffic automati-
cally by using information about the network operation. RSIR
uses RL to find the best route for all the source-destination
pairs by employing just a few link-state metrics (i.e., avail-
able bandwidth, loss, and delay) as features of the RL process.
RSIR takes advantage of SDN planes to obtain a centralized
view and control. In this way, RSIR can adapt routes accord-
ing to dynamic traffic changes. Moreover, RSIR does not rely
on traditional routing protocols for calculating and deploy-
ing routing strategies as in [24]–[27], [29], [30], all of which
employ both SDN and ML.

Overall, RSIR operates as described in Figure 1, and the
explanation is detailed next. 1 The Control Plane collects
raw data about the network status by periodically querying the
Data Plane. 2 The Management Plane retrieves these data to
calculate and store link-state information. 3 The Knowledge
Plane recovers information from the Management Plane. 4
The RL-agent uses this information to explore-exploit all the
possible routes for each pair of nodes. It learns and calcu-
lates the best route according to the state of the links. 5
The Knowledge Plane stores the information about the routes
computed by the RL-agent. 6 The Control Plane retrieves
the route information to install paths in the flow tables of
switches before new traffic arrives (i.e., RSIR is proactive). In
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this way, the Data Plane can forward packets without consult-
ing the controller, eliminating the latency resulting from the
queries sent to the controller on a flow basis. RSIR reacts fast
to traffic changes, and it can make routing decisions based on
only three link metrics.

B. Architecture and Components

Figure 1 depicts the RSIR architecture intended to provide
intelligent routing in SDN. We then provide details about the
layers and components of RSIR.

1) The Data Plane: This plane includes the forwarding
devices and the links connecting them. These devices perform
a set of basic tasks, such as the forwarding of incoming pack-
ets to a specific port or the dropping of packets. The traffic
moves according to the path information installed in the flow
tables of the forwarding devices; these operate unaware of the
rest of the network and rely on the Control, Management, and
Knowledge Planes to populate and install their flow tables. The
Data Plane realizes the RSIR routing strategies and periodi-
cally provides network information by responding to queries
sent by the Control Plane.

2) The Control Plane: This plane builds up a global view
of the Data Plane by gathering information (per port or flow)
from the forwarding devices. It handles the correct installation
of the routing rules in the table of these devices at the Data
Plane. The Control Plane includes three modules: Topology
Discovery, Statistics, and Flow Installation modules.

The Topology Discovery module sends feature-request mes-
sages to the forwarding devices (i.e., a switch) on the Data
Plane, which answers back by sending feature-reply messages
containing feature information, such as the id, number of ports,
and the state of the ports. With the received information, this
module infers the topology by relating the port of each switch
to the ports of the neighboring switches, and the hosts con-
nected to the ports at each switch. Topology information is
available during execution as a collection of tuples (i.e., switch
id, port id, neighbor switch id, neighbor port id) associated
with the network links.

The Statistics module sends request-state messages to
each forwarding device on the Data Plane at every t sec-
onds. This module receives the request-stats reply mes-
sages asynchronously. Finally, this module maintains statistical
information during execution time for processing by the
Management Plane, and periodically sends messages to keep
the global view of the network updated.

The Flow Installation module operates proactively by pop-
ulating the flow tables of switches ahead of time for all traffic
matches; a Southbound Interface (SBI) such as OpenFlow can
perform the installation. The installation of the paths (as flow
entries) in the flow tables influences the forwarding of traffic
in the Data Plane [39]. A misleading flow entry may cause
the sending of traffic to highly utilized paths, and, as a result,
the occurrence of network congestion may occur.

3) The Management Plane: This plane ensures the cor-
rect operation and performance of the network in the long
term. It contains the Data Processing module and the Network
Information Data Repository. The Data Processing module

retrieves and uses raw data gathered by the Control Plane
(via Statistics and Topology Discovery modules) to calculate
the link available bandwidth, delay, and packet loss ratio.
These metrics characterize the link-state for the selection of
routes.

The Network Information Data Repository stores the metrics
calculated by the Data Processing module. This repository
contains a set of entries that represents the source-destination
pairs and the corresponding tuples of metrics. An example
of an entry in this repository would be as follows: (source
= n1, destination = n2, av_bw = 100 Kbps, delay = 1.3 ms,
loss = 0.5%). The link-state information is an input to the
Knowledge Plane.

4) The Knowledge Plane: This plane learns the network
behavior and employs intelligence to the computation of paths.
It interacts with the Management and Control Planes for
retrieving link-state information and installing the computed
routes. This Plane contains the Route Data Repository and the
RL-agent. The Route Data Repository contains a set of entries
with information about the path for all source-destination pairs.
Each entry is a tuple of source, destination, and best path. An
example of an entry in this repository would be as follows:
(src = n8, dst = n14, route = [n8,n5,n16,n14]).

The RL-agent fills the Route Data Repository by computing
the most-rewarding route for each source-destination pair. In
particular, the RL-agent uses a Q-learning algorithm to learn
the routing policy. The action-state value function Qt (St ,At )
that estimates rewards for each action-state pair determines
the routing policy. The RL-agent explores all possible action-
states for a source to reach its destination while updating the
value function and obtaining the corresponding reward. This
reward indicates the impact of executing an action At (i.e.,
choosing a neighbor node as next hop) at the state St (i.e.,
source node) on the available link bandwidth, delay, and packet
loss ratio. Section IV defines the operation of the RL-based
routing.

The knowledge Plane can be deployed either on top of the
Control Plane, as is the Application Plane in the standard-
ized SDN [40], or separately [32], [33]. Both deployments are
feasible, since the Knowledge Plane communicates with the
Control Plane via Northbound Interfaces (NBIs). RSIR uses
a separate Knowledge Plane to avoid overloading the Control
Plane with RL tasks.

5) Flow Handling Proactive Process: This process involves
a proactive path computation and the installation of flows (see
Figure 2). The Statistics module gathers raw data about the
network and passes them on to the Data Processing module.
This latter module obtains link-state information by processing
port information and stores it in the Network Information Data
Repository. The Knowledge Plane then receives link-state
information. The RL-agent uses this information to explore
and learn the best routes for all pairs of nodes. The rout-
ing decision is made available in the Route Data Repository.
The Flow Installation module of the Control Plane reads
the routing decision from the Route Data Repository on the
Knowledge Plane. For each pair of nodes, the Flow Installation
module receives the location of the source-destination hosts
from the Topology Discovery module. It then reads the
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Fig. 2. Proactive flow handling process.

information about the chosen path and host locations to write
the flow entries in the flow table of the corresponding switch.

6) The Topology Change Handling Process: This process is
evoked whenever there is a change in the network topology.
It involves three tasks: detection of topology changes, cal-
culation of routes, and installation of routes. The Topology
Discovery module performs the detection of topology changes
(due to the addition or failure of either a node or a link) by
periodically gathering information about the topology at each
Change Detection Time (tchad ). The RL-agent uses a period,
called Learning Time (tlear ), to calculate routes by running
Algorithm 1 (see Section IV). The Flow Installation mod-
ule uses another period (Installation Time (tinst )), to update
the forwarding tables for all switches on the Data Plane.
The duration of tinst depends on the number of forwarding
tables, and the number of flow entries to be updated. The
total time required to recover from a topology change is, thus,
tchad + tlear + tinst .

IV. RSIR ROUTING

The RL-agent uses the Q-learning technique to define the
routes to be followed by flows. Q-learning is a model-free
technique and, thus does not require knowledge about the
underlying reward resulting from taking a specific action in
a particular state [41]. The Q-learning technique (RL-agent)
approximates the optimal action-value function Qt (St ,At )
named as Q-function by visiting all action-states and updat-
ing the value in consideration of a pre-defined number of
independent episodes [42]. A learning episode comprises a
sequence of steps taken in the transition from an initial state
to a target state (i.e., a source and destination node).Each
step consists of selecting and performing an action, changing
the state (i.e., moving from one to another), and receiving a
reward. The updated Q-function value is the underlying reward
for the execution of action At in the state St , which provides
an optimal reward. Next, we provide details about the RL-
agent, the RL-based routing algorithm, and its computational
complexity.

A. Reinforcement Learning Agent

1) The Reward Function: The reward function, defined
in Equation (1), is used to find the best routing options on

the basis of the three mentioned features gathered by the
Knowledge Plane from the Management Plane. The reward is
inversely proportional to the available link bandwidth bwalink
and directly proportional to the link delay dlink and the link
packet loss ratio llink . The values β1, β2 and, β3 ∈ [0, 1] are
tunable parameters useful for providing a weight value for a
specific metric in the calculation of the reward.

R = β1 · 1

bwalink
+ β2 · dlink + β3 · llink (1)

We normalized Equation (1) to avoid one of the link-state
metrics having a greater influence than the others during the
learning process of the RL-agent. Since the metrics considered
in Equation (1) are in different units, the factors were normal-
ized using the Min-Max technique [43]. This normalization
technique involves re-scaling the range of the metrics to a
range with values in an arbitrary interval: [a, b]. Equation (2)
shows the normalized version of the reward function, where
ˆbwa , d̂ , and l̂ are the normalized values of the link available

bandwidth, delay, and loss ratio, respectively.

R̂ = β1 · 1

ˆbwa
+ β2 · d̂ + β3 · l̂ (2)

Each normalized value (i.e., ˆbwa , d̂ , and l̂ ) was obtained
by employing Equation (3). In this equation, xi is a value to
be normalized, and X represents the set of values used in the
normalization.

x̂i = a +
(xi −min(X )) · (b − a)

max (X )−min(X )
(3)

2) The State Space (S): Each state in the State Space cor-
responds to a switch on the Data Plane, and a transition from
one state to another corresponds to a link connecting the two
corresponding switches. Therefore, the topology of the State
Space is a graph corresponding to the topology of the switches
on the Data Plane. The cardinality of the set of states in the
State Space is |S = {si}| ≡ N , where N is the number of
switches on the Data Plane. The Topology Discovery module
builds a topology map with nodes corresponding to states in
the State Space and, then, passes that map to the RL-agent.

3) The Action Space: This corresponds to the set of all
actions, A, that can be taken on the states of the State Space.
For each state, si ∈ S , the RL-agent can take one of a set
of actions; each action leads to the transition to another state
sj ∈ S . The neighboring states of a state si correspond to
the neighboring switches of that associated to the state si .
Therefore, the number of potential actions when on a state,
si , is the node degree of that state dr(si ) and the cardinality
of A is |A| ≡∑

si∈S dr(si ).
4) The Optimal Policy: This policy is designed to minimize

the reward value in the Q-learning routing process. In this
way, the RL-agent learns to avoid links with a high delay
and loss ratio as well as prioritizing links with large available
bandwidth when choosing a path. The agent approximates the
optimal Q-function Qt+1(St ,At ) by visiting all the pairs of
action-states. It updates and stores the Q-value in the Q-table
used to find the best path for a pair of nodes. The Q-value is
a measure of the overall expected reward when the RL-agent
is in a state St and performs action At .
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The RL-agent uses Equation (4) to update the Q-value. In
Equation (4), the expression between square brackets repre-
sents the updated value which is the difference between the
current estimate of the optimal Q-function Qt (St ,At ) for a
pair of state-action (St ,At ) and the new estimate. The updated
Q-value (Qt+1) depends on the previous value Qt that is influ-
enced by the result of (St ,At ,Rt ,St+1) and α. Rt is the
reward at time t and α ∈ [0, 1] being the learning rate that
determines the weight of the newly gained information in rela-
tion to the previous one. A factor α = 0 makes the RL-agent
unable to learn from the latest (St ,At ) pair, while a factor
α = 1 allows the agent to keep the learned information by
considering the immediate reward Rt for the pair (St ,At ).

Qt+1(St ,At ) = Qt (St ,At ) + α

×
[

Rt +min
A

Qt (St+1,A)−Qt (St ,At )

]

(4)

The Q-learning technique is both computationally and
memory-efficient in a typical SDN routing scenario. However,
if the state space and the action space are large, Q-learning
can take time and require more data to find the optimal policy
(i.e., converge).

5) Exploration and Exploitation Method: This method is
used by Q-learning to find the value of the Q-function. In Q-
learning, there is a trade-off between selecting the expected
optimal action (exploitation) and selecting a different action
in the hope it may yield a greater reward in the future (explo-
ration) [44]. Our approach uses the ε-greedy exploration and
exploitation method. ε-greedy takes an ε ∈ [0, 1] as a tunable
parameter which allows the agent to exploit with a probabil-
ity pr = ε and to explore with a probability pr = 1 − ε.
Therefore, this parameter determines how much the RL-agent
exploits and explores during the learning process.

The RL-agent uses Equation (5) to select the next action
at a specific state. At each step, it generates a random
value x ∈ [0, 1]. If x < ε, the agent exploits; otherwise,
it explores.

A =

{
min
A

Qt (St ,A), if x < ε

random action, otherwise.
(5)

B. RL-Based Routing Algorithm

The routing algorithm implements the learning process used
to find the best paths for all the pairs of nodes on the Data
Plane. Algorithm 1 receives as input the learning rate α,
the parameter ε (see Equation (5)), the number of learning
episodes, all pairs of source-destination nodes, and link-state
information. The output is the set of best-rewarding routing
paths for all pairs of nodes, given the state of the links. The
path is formed by the state-action pairs with the lowest values
in the Q-table.

Our routing algorithm finds the most-rewarding path for
every pair of nodes in the network. For each pair (src, dst),
the algorithm executes a Q-learning process by following the
steps defined in Lines 1 to 13. The RL-agent initializes the
Q-table Q(S,A) with zero (Line 2). The Q-learning process

Algorithm 1: Q-Learning Routing
Input :

Learning rate: α
Exploration and exploitation parameter: ε
Number of learning episodes: n
All pair of nodes (src, dst): Plist
Network link-state

1 foreach (src, dst) ∈ Plist do
2 Initialize Q: Q(S,A) = 0, ∀s ∈ S, ∀a ∈ A
3 for episode ← 1 to n do
4 Start in state St = src ∈ S;
5 while St+1 is not dst do
6 Select At for St with policy derived from Q

using ε-greedy exploration and exploitation
method;

7 Rt+1 ← R(St ,At ) // Agent gets the
reward from network link-state
and observes new state St+1;

8 Qt+1(St ,At ) = Qt (St ,At ) + α ·[

Rt +min
A

Qt (St+1,A)−Qt (St ,At )

]

// Update Q-function Eq. 4;
9 St ← St+1 // Move to the next

state;
10 end
11 end
12 Take Q table and find the path between src and dst

with state-action pairs that achieved the lowest
Q-values

13 end

14 Store the set of paths for all pair of nodes in the network
in the Routs Data Repository

then begins with node src as the initial state (Line 4). The
RL-agent goes through learning episodes to minimize the Q-
value by using the reward function. The agent attributes low
Q-values to paths formed by links with large available band-
width, short delays, and small packet loss. Then, the algorithm
goes through learning episodes (Line 3) until St becomes the
end state (i.e., node dst, Lines 5 to 9). First, the RL-agent
then selects the next node from the Action Space (selects At

for St ); the RL-agent chooses a node from the neighboring
nodes of the current one as next-hop by using the ε-greedy
exploration and exploitation method (Line 6). Next, the RL-
agent uses the network link-state information and the state
St to calculate the reward associated with the action At , and
observes the new state St+1. The reward is computed by using
Equation (1) (Line 7). After that, and considering the learning
rate, initial considerations, reward, and new state, the RL-
agent tunes the values of the Q-function by using Equation (4)
(Line 8). It then moves to the new state (Line 9), the episode
ends, and a new episode starts.

Finally, after the RL-agent has completed a transition, it
uses the resulting Q-table to compute the most-rewarding path
between the src and dst nodes, based on the state-action pairs
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Fig. 3. Test environment.

that achieved the lowest Q-values (Line 12). Once the RL-
agent finds the best path for all pairs of source-destination
nodes, it stores them in the Route Data Repository (Line 14).
The Flow Installation Module then retrieves these best paths
and installs them in the routing table of the switches.

The worst-case complexity of Algorithm 1 is derived next.
Lemma 1: In Q-learning algorithms with a state space

topology with a linear upper action bound b ∈ ℵ0 ⇐⇒
e ≤ bn for all n ∈ ℵ0, where e is the cardinality of the action
space and n the cardinality of the state space, the worst-case
complexity is O(n2)

Proof: see Page 103 in [45]
Theorem 1: The worst case complexity of Algorithm 1 is

O(N 2).
Proof: dr(si ) ≤ N − 1, for N ∈ ℵ0 =⇒ |A| ≤ N 2

The worst-case complexity of the Dijkstra’s algorithm is
also O(N 2) and its heap implementation O(Nlog N) [46]. In
Section V, it will be shown that RSIR routing has low overhead
as well as convergence time.

V. EVALUATION

This section presents the evaluation of RSIR. Sections V-A
and V-B show the test environment and the prototype of RSIR,
respectively, while Sections V-C and V-D discuss the gather-
ing of performance metrics and traffic generation, respectively.
Section V-E presents the set up of the learning parameters, and
Section V-F discusses the results.

A. Test Environment

Fig. 3 presents the test environment used for the evalua-
tion of RSIR. It includes a topology mirroring the GÉANT

Fig. 4. Prototype of RSIR.

topology [47] which is the European data network for the
research and educational community. GÉANT has 23 nodes
and 37 links. In tests, link capacity distribution follows the
2004 GÉANT topology which has 50% of the links with 10
Gbps, 40% with 2.5 Gbps, and 1% with 155 Mbps.

We built and deployed the GÉANT topology in Mininet
2.2.2 [48] by using a Python script. As Mininet is limited
to the resources of its host machine, we scaled the 10 Gpbs,
2.5 Gpbs, and 155 Mbps link capacities of GÉANT to 100
Mbps, 25 Mbps, and 1.55 Mbps, respectively. The traffic load
was also scaled to the same proportion. In our deployment,
each switch had a host that forwarded and received traffic. We
deployed the Data Plane over an Ubuntu Server 14.04 Virtual
Machine (VM) with 8 GB RAM and used Mininet with Open
vSwitches 2.3.1 and hosts.

B. Prototype

Fig. 4 presents the RSIR prototype. In the Control Plane,
we used a Python-based Ryu controller [49]. The Statistics,
Topology Discovery and Flow Installation modules were
developed and deployed using the Ryu Application Program
Interface (API), which allows querying and retrieving statis-
tics and features from the switches. For the Management and
Knowledge Planes, we developed the Data Processing mod-
ule and the RL-agent by using Python 2.7 with Pandas 0.22
library [50]. The Pandas library provides high-performance,
easy-to-use data structures, and data analysis tools for Python.
We used Comma-Separated Values (CSV) and JavaScript
Object Notation (JSON) files to store the link-state information
provided by the Management Plane and the routing paths cal-
culated by the RL-agent, respectively. The RSIR prototype, as
well as all test scripts, are available in [51].
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The Control, Management, and Knowledge Planes were run
on an Ubuntu 16.04 VM with a Core i5-4690 processor and
10 GB RAM. The Data Plane ran on an Ubuntu Server 14.04
VM with a Core i5-4690 processor and 4 GB RAM. The VMs
used for this prototype were hosted by an Ubuntu Desktop
16.04 with an Intel Core i5-4690 and 16 GB RAM. These
VMs communicated using the Transmission Control Protocol
(TCP). For the communication between the Control and the
Data Plane, we used Openflow1.3 as the protocol between
since it is the de-facto protocol used as SBI in SDN [15].

C. Performance Metrics

According to Table II, the performance metrics most com-
mon used to evaluate routing proposals are throughput, loss
ratio, and delay. In addition to these metrics, we compared the
stretch of the paths given by RSIR with those given by the
Dijkstra’s algorithm using different edge weights. The stretch
compares the length of an actual path to the theoretical shortest
path [52]. For computing the shortest path, we developed an
application that executes the Dijkstra’s algorithm with equal
edge weight values on the SDN controller.

We computed the link throughput and loss using the number
of packets that passed through the switch port connected to
the link. At each port, the SDN controller periodically samples
the number of bytes transmitted and received. By comparing
the retrieved values at two different instants, it is possible to
discover the instantaneous throughput. After sending a request-
stats to the Data Plane, at time t1, a reply message is received
containing the number of bytes received, bt1 . Then, after a
period p, another request-stats message is sent, and the number
of bytes received bt2 is retrieved from its reply message. The
expression used_bw = [(bt2 − bt1)/p] gives the instantaneous
throughput, where p is the duration of the sampling interval.

The computation of the loss ratio uses the request-stats
values in the reply messages; with the expression loss =
(btxt1 −brxt2)/btxt1 giving the instantaneous loss ratio. After
sending a request-stats to the Data Plane, at time t1, a reply
message is received containing the number of transmitted
bytes, btxt1 . Then, after a period p, another request-stats mes-
sage is sent, with the reply message received containing the
number of received bytes, brxt2 .

We computed the instantaneous delay by following the pro-
cess described in [53], which uses the messages of the Link
Layer Discovery Protocol (LLDP) [54] and the OpenFlow
messages [55]. The SDN controller, c0, sends an LLDP mes-
sage which goes through the path c0 − si − sj − c0, and
returns to c0; with si and sj being switches connected by the
link (si , sj ). The time elapsed between the transmission and
reception of the LLDP message is the difference between the
timestamp values in this message (dlldpcij ). The time taken by
the message to go from c0 to the si port (c0-si ) is estimated as
half the time that elapsed between the transmission and recep-
tion of the OpenFlow echo_request and echo_reply messages
sent by c0 to si . A similar procedure is used to estimate the
time elapsed by the message to go from sj to c0. The instan-
taneous delay in the link (si , sj ), dsi−sj , is then computed as
dsi−sj = dlldpcij − dc0−si − dc0−sj .

In a period of 10s, the Statistics module collects the statis-
tics; the Data Processing module computes the metrics that
characterize the link-state, the RL-agent computes the paths
according to Algorithm 1; and the Flow Installation Module
installs the computed paths in the flow tables of the switches.
The definition of the duration of the interval followed the
guidelines in [56].

The RL-based routing is compared to that suggested by the
different variations of the Dijkstra’s algorithm using the instan-
taneous delay (Dijkstradelay), instantaneous loss (Dijkstraloss),
and link available bandwidth (Dijkstrabw) as edge weights.
Moreover, we compare the results of RSIR with the rout-
ing derived by the Dijkstra’s algorithm that uses the value
given by Equation (1) (Dijkstracomp) as edge weight. Routing
determined by these variations of the Dijkstra’s algorithm was
subject to the same traffic scenario used for RSIR and executed
as an application on the SDN controller. In this way, these
algorithms could be compared under the same conditions.

D. Traffic Generation

The tool iperf3 [57] was used to generate traffic in the
Mininet-based emulation; scripts to run clients and servers
iperf3 on the hosts were developed. User Datagram Protocol
(UDP) traffic was generated since iperf3 allows specifying
a target transmission rate per connection. The experiment
involved the complete execution of the iperf3 scripts that
generated traffic specified by a traffic matrix. We used six-
teen publicly available intra-domain traffic matrices [58] for
the GÉANT topology to generate the traffic between pairs
of nodes. The matrix values offered the traffic of different
pairs at different times of the day for 4 months in 2006. We
tagged the employed traffic matrices with different hours of
the day and defined the peak hours as having high traffic inten-
sity (i.e., from 7:00h to 13:00h) since the traffic matrices are
anonymous.

E. Learning Parameters Setup

One important aspect when using an RL-solution is the
determination of the values for the learning rate α and explo-
ration ε (Equations 4 and 5). We employed the number of hops
along a path between a pair of source and destination nodes
as a parameter for comparison.

We ran the Q-learning algorithm (see Algorithm 1) to find
the potential paths between a pair of nodes by varying α and
ε. The chosen target pair was h23 (switch 23) and h8 (switch
8) since this pair is one of those further apart (see red switches
in Fig. 3). The shortest path found by the Dijkstra’s algorithm
had 5 hops when all the links had the same cost. For each ε
value (i,e., 0.8, 0.6, 0.4, and 0.2), five α values (i,e., 0.9, 0.7,
0.5, 0.3, and 0.1) were tested, with 300 episodes per test.

The evolution of the convergence to the shortest path as
a function of α and ε needs to be assessed. Fig. 5 presents
the number of hops of the paths found by the RL-agent for
different values of α and ε. Figs. 5(a) and 5(b) show that when
the ε value was close to 0, the RL-agent explored random
actions from the Action Space resulting in paths with many
hops.
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Fig. 5. Number of hops for different learning parameters (ε, α).

When ε values were close to 1 (Figs. 5(c) and 5(d)), the
RL-agent tended to exploit the knowledge previously gathered
instead of randomly exploring the Action Space. For ε = 0.6
and ε = 0.8, the RL-agent exploited, with a probability of
0.6 and 0.8, the best-known action during the learning pro-
cess. With a probability of exploitation value close to 1, the
RL-agent tended to find shorter paths along the sequence of
episodes, eventually finding the shortest path. For α = 0.9 and
α = 0.7, the RL-agent retained the information learned from
recent rewards. Based on these results, the most appropriate
values for the RL-agent parameters of RSIR were α = 0.9
and ε = 0.8. With these values (see Fig. 5(d)), the number of
hops of the path converged quickly to the shortest path.

F. Results and Analysis

In this section, we compare the mean stretch values aver-
age for all chosen paths, the mean link delay, loss ratio, and
throughput averaged over all the links in the network, (i.e.,
the mean of a mean link measure. For instance if the target
metric is delay, it is the mean of all mean link delay values)
given by RSIR to those given by variations in the Dijkstra’s
algorithm, namely, Dijkstradelay, Dijkstraloss, Dijkstrabw, and
Dijkstracomp. For each hour of the day, we collected and plot-
ted the mean values. The figures also show the traffic generated
per hour.

Fig. 6 shows the mean stretch calculated for all the paths
found by RSIR and the variations in the Dijkstra’s algorithm.
To compute the stretch, we compare the path length with the
shortest path given by the Dijkstra’s algorithm with equal
edge weights, which gave the shortest path as that with the

Fig. 6. Mean stretch throughout the day.

minimum number of hops. The results showed that the paths
chosen by RSIR have smaller stretch values than those pro-
duced by Dijkstradelay, Dijkstraloss, and Dijkstracomp. Indeed,
RSIR chooses a larger number of shorter paths than did
the three variations of the Dijkstra’s algorithm. RSIR indi-
cated paths with stretch values 14%, 16%, and 15% stretch
smaller than those obtained by the Dijkstradelay, Dijkstraloss,
and Dijkstracomp algorithms, respectively. Results also showed
that RSIR indicated paths with stretch values slightly higher
(<3%) than those produced by Dijkstrabw.

Fig. 7 depicts the mean link delay for the results of the
RSIR and those of the variations of the Dijkstra’s algo-
rithm. The mean link delay values produced by RSIR are,
on average, 35%, 50%, and 8% and, at most, 70%, 85%, and
30% lower than those given by the Dijkstradelay, Dijkstraloss,
and Dijkstrabw algorithms, respectively. The mean delay
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Fig. 7. Mean delay throughout of the day.

Fig. 8. Mean loss throughout the day.

values produced by RSIR are lower than those given by
Dijkstradelay, Dijkstraloss, and Dijkstrabw since RSIR usually
chooses shorter and less congested paths than those chosen by
the other three variations of the Dijkstra’s algorithm.

Fig. 8 depicts the mean link loss. The mean loss values pro-
duced by RSIR are, on average, 30% and, at most, 65% lower
than the loss ratio given by the four variations of the Dijkstra’s
algorithms. The mean loss values produced by RSIR are lower
than those provided by Dijkstradelay, Dijkstraloss, Dijkstrabw,
and Dijkstracomp since RSIR chooses shorter paths than do
the Dijkstra variations most of the time. Fig. 7 and Fig. 8
also show that the mean link delay values produced by RSIR
are slightly higher (<3%) than those given by Dijkstracomp,
but the mean loss values produced by RSIR are, on average,
10% and, at most, 50% lower than the loss ratio given by
Dijkstracomp. The Dijkstra’s algorithm variations select routes
usually longer and use, more frequently, low capacity links,
leading to traffic concentration and congestion on these links.

Fig. 9 shows the mean link throughput along the day.
RSIR produced a broader distribution of the flows over the
network and, therefore, used a higher number of paths less
utilized than do the Dijkstradelay, Dijkstraloss, Dijkstrabw, and
Dijkstracomp. The link throughput was consequently lower
than those produced by the four Dijkstra variations with,
although the mean delay and loss were lower, as previously
discussed. The link throughput was on average 4%, 21%, 3%,
17% and, at most, 12%, 27%, 15%, and 26% lower than those
produced by the Dijkstradelay, Dijkstraloss, Dijkstrabw, and
Dijkstracomp algorithms, respectively.

Fig. 9. Mean link throughput along the day.

The RL-agent computed all the routes for the GÉANT
network in 7.49 s, while the centralized variations of Dijkstra’s
algorithm calculated all the routes for the same network in 5s;
the difference (1.51 s) is about 30% of the time the Dijkstra’s
algorithm take but yet still a non-significant absolute value.

G. Topology Change Analysis

We assessed the reaction time for topological changes by
RSIR and compared this to those from the RIP and OSPF
protocols. The topology change handling process of RSIR
involved detecting the topology changes, calculating new
routes, and installing them (Section III-B6). In the case study,
we set tchad to 1 s. A lower value could have been set, but such
value would increase the traffic intensity between the switches
and the controller. The RL-agent computed all the routes for
the GÉANT network in 7.49 s (the average execution time of
Algorithm 1) and the Flow Installation module spent on aver-
age 1.6 s to update the flow entries (22) at each switch (23 in
total). Thus, RSIR took on average tchad+tlear+tinst = 10.6s
to handle a change in the network topology.

On the other hand, RIP would typically take 30 s to handle a
topological change. The lower response time of RSIR was due
to the adoption of a centralized controller with a global view
of the network, as well as the adoption of a link-state routing
approach. Moreover, the OSPF reaction to topological changes
depended mainly on the duration of the following intervals:
hello-interval, dead-interval, and spf-delay. The hello-interval
defines how often Hello Packets are transmitted and usually
takes 10 s (by default), ranging from 1 s to 255 s. These
packets allow routers running OSPF to recognize their neigh-
boring routers. The expiration of the dead-interval indicates
that a neighboring router is down, and it takes by defini-
tion the time equivalent to four hello intervals. The spf-delay
defines the time elapsed between the detection of a topological
change and the beginning of the calculation of new routes. This
value is, by default, 5 s. Considering a minimum hello-interval
= 1 s and an spf-delay = 1 s, in the GÉANT network, OSPF
reacts to topological changes in approximately 9 s (5 s + the
average execution time of the Dijkstra’s algorithm). This is
approximately the same time as the RSIR takes.

VI. CONCLUSION AND FUTURE WORK

This article has introduced RSIR, an approach based on
RL for intelligent and efficient routing in SDN. The RSIR
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algorithm considers metrics related to the state of the network
links and explores, learns, and exploits optimal routes, even
under traffic fluctuation. Comparison of the results given by
RSIR to those the Dijkstra’s algorithm using different edge
weights have shown that RSIR outperforms these algorithms.
This is due to the fact that RSIR produces a larger number of
shorter paths than do the other algorithms, and this avoids
traffic concentration and congestion. The variations of the
Dijkstra’s algorithm, on the other hand, produce longer paths,
which include low capacity links. The Dijkstraloss concentrates
traffic on a smaller number of paths and consequently produces
the largest mean delay and loss values. The minimization of
the reward function (Equation (1)) allows the RL-based agent
to learn, explore, and exploit the best paths for delivering the
offered load.

For future work, we plan to evaluate the impact of RSIR on
the throughput at the application layer as well as explore Deep
Reinforcement Learning (DRL) to enhance RSIR decisions,
especially for large networks. Moreover, we intend to take
advantage of traffic predictions in the selection of paths.
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