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AbstrAct
In fog computing, processing, network, and 

storage resources are placed close to end users 
to ensure low latency in comparison to the latency 
experienced when accessing the cloud. One lim-
itation of this solution, however, is that fog nodes 
are usually fixed, whereas demands are variable 
over time at all locations, which may result in either 
under- or overprovisioning. This limitation incurs 
high CAPEX and OPEX costs to cope with user 
demands. One approach to address this problem is 
to employ mobile fog nodes dispatched to various 
locations to cope with the variability in resource 
demand. This article aims to evaluate the use of 
unmanned aerial vehicles (UAVs) equipped with 
processing elements as an alternative to fixed 
nodes in a fog infrastructure to cope with the vari-
able workload in a metropolitan area. Although 
previous approaches considered UAVs as part 
of the network, they did not deploy multiple fog 
nodes mounted on battery-constrained UAVs. Spe-
cifically, we propose in this article a solution to the 
fog node location problem considering both fixed 
and mobile nodes to evaluate potential replace-
ments of fixed servers with UAVs. Experimental 
evaluation of the problem using data generated 
by real mobile users shows that UAVs can indeed 
replace parts of the fixed fog infrastructure.

IntroductIon
Cloud computing has facilitated the deployment 
of numerous online services as well as services 
to augment the capabilities of user devices [1]. 
Cloud computing relies on large data centers that 
host computing, network, and storage resources 
accessed on demand through the Internet. How-
ever, they are typically located in remote areas, 
making a variety of applications with strict latency 
requirements infeasible. One solution to alleviate 
this limitation is the employment of fog comput-
ing, an architecture to provide computing, stor-
age, and networking capabilities anywhere along 
the continuum between the cloud and the end 
users [2]. Fog nodes are usually deployed as fixed 
nodes in different locations to support the compu-
tational needs of local users [3] and support the 
strict latency requirements of applications. How-
ever, nodes in a fixed infrastructure may need to 
be over-dimensioned to cope with variable pro-
cessing demands.

Unmanned aerial vehicles (UAVs) have been 
employed for military applications, surveillance, 

and traffic analysis, to name a few. More recently, 
UAVs have been considered for integration into 
cellular networks to serve as base stations [4, 5], 
allowing providers to expand their coverage area 
in case of occasional demands or failure of the ter-
restrial infrastructure. The employment of UAVs as 
fog nodes is still its infancy. A few studies have con-
sidered such use [6, 7], but they have not modeled 
the limited autonomy of UAVs, which restricts their 
usability in real infrastructures. A detailed battery 
model for UAVs needs to be accounted for in the 
evaluation of their potentiality as processing nodes.

This article aims to assess the advantages of 
employing UAVs as fog nodes for dealing with 
variable workload demands generated by mobile 
users. From this perspective, this article studies the 
problem of where to locate UAVs as fog nodes 
(the fog node location problem) in a metropolitan 
area with the aim of offering cloud services at the 
edge. In contrast to previous approaches [8, 9], 
this article considers both fixed nodes and mobile 
UAV nodes. Fixed nodes are always available due 
to continuous energy supply, but once deployed, 
they cannot be migrated to another location easily. 
On the other hand, UAV nodes can fly between 
different locations to augment the processing 
capacity of fixed fog nodes, especially to process 
workload in excess of the capacity of fixed nodes. 
However, UAV nodes are mobile and operate on 
batteries, which limit the length of time they can 
process user workload. The consideration of both 
fixed and mobile nodes enables the deployment 
of an infrastructure capable of handling the vari-
abilities in workload demand; this helps reduce the 
underutilization of over-dimensioned fixed nodes 
for processing eventual peak demands.

An algorithm called UAV Fog Node Location 
(UFL) is introduced in this article to determine 
the best combination of fixed nodes and UAVs 
in an infrastructure. The UFL algorithm initially 
finds an exact solution to the fog node location 
problem considering only fixed nodes, and then 
attempts to replace underutilized servers in fixed 
nodes by UAVs, which can change their location 
to cope with processing demand at different loca-
tions. Simulations considering diverse demand 
patterns across a metropolitan area as well as real 
UAV characteristics such as cost, battery capaci-
ty, and processing capabilities [10] are employed 
to address the question: Are UAVs worth adopt-
ing to replace fixed nodes in a fog infrastructure? 
The wireless communication channel is considered 
ideal, so results are actually a bound on the value 
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of UAVs used as processing nodes. Results show 
that the current cost of UAVs is a limiting factor 
to their usage as fog nodes. In the future, howev-
er, and assuming that costs continue to decrease, 
UAVs could provide interesting solutions for opti-
mal infrastructure dimensioning. Results show that 
when UAV costs are the same as those of fixed 
nodes, UAV deployment is indeed advantageous. 
In this case, the coverage of several locations using 
UAVs reduces CAPEX and provides more flexibility 
in coping with unexpected and timely increases in 
processing demands.

The remainder of this article is structured as fol-
lows. First, previous work is reviewed. The problem 
in this article is presented, and the experimental 
setting and numerical results are then discussed. 
Finally, conclusions are drawn and future work sug-
gested.

uAVs As network edge elements
UAVs can be used to extend the communication 
network infrastructure as processing nodes at the 
edge of the network. One common question in 
this usage is where to position UAVs to achieve 
some target objectives. The facility location prob-
lem is a design problem in which a set of candi-
date locations that can host facilities is given as 
input, with the solution to the problem being the 
subset of locations for the deployment of these 
facilities.

Optimizing the location of edge facilities has 
been explored in previous work considering objec-
tives such as the cost of facilities [8, 11] and ener-
gy consumption [9]. In a cost-based formulation 
[8], a mixed-integer linear programming (MILP) 
model was used to obtain the best fog deploy-
ment to serve the largest workload at the lowest 
cost. Another approach [11] considered cloudlets 
in the deployment and proposed an MILP model 
to achieve a trade-off between deployment cost 
and latency experienced by end users. The results 
obtained by these studies concluded that infrastruc-
ture providers can reduce the deployment cost 
if some degradation in service can be tolerated 
[8, 11]. The solution in [9] optimizes the number 
of users served; the reduction in energy spent by 
mobile devices accessing the infrastructure is con-
sidered to be a secondary objective. Fog nodes are 
deployed in locations where they bring possible 
opportunities for maximum offloading with mini-
mal energy. A limitation in these approaches is that 
they consider only fixed fog nodes, but actually the 
demands on fog nodes are variable. Consequently, 
a large number of servers are underutilized most of 
the time in these nodes.

UAVs are expected to be part of future 6G net-
works, serving as base stations (BSs) [4, 5], pro-
cessing nodes [6, 7], and even as users [12]. The 
authors of [12] considered UAVs to be users of ter-
restrial BSs and optimized the trajectory followed 
by UAVs to minimize the task completion time 
while offloading workload to the ground BSs. The 
SkyCore architecture for LTE networks [4] propos-
es the use of unthetered UAVs as BSs, deployed 
jointly with ground stations. In the three-layer archi-
tecture envisioned in [5], UAVs provide coverage 
to ground users with resources located in satel-
lites, known as CubeSats, furnishing connectivity 
for ground users by connecting them to satellites.

The UAVFog architecture considered the use of 

drones as fog nodes [6]. The authors discussed the 
integration of UAVs with the cloud in monitoring 
applications, but they did not discuss the battery 
limitation of drones. The authors in [7] considered 
the employment of UAVs equipped with servers as 
processing nodes at the edge hovering at different 
areas to provide a processing capacity for mobile 
users. The study showed that the employment of 
UAVs significantly increased the number of users 
served in relation to those served in an infrastruc-
ture with only fixed nodes. One major drawback of 
this solution is the consideration of unlimited flight 
time. Although it is possible to extend UAV flight 
time by using solar power or tethered drones, such 
solutions cannot be generalized, since not all air-
craft can carry the solar panels. Moreover, tethered 
drones impose extremely limited mobility.

This article aims to investigate open questions 
in previous work. Previous solutions in [8, 9, 11] 
either suggest using underutilized servers or allow 
degradation in quality of service (QoS). In an 
attempt to overcome these limitations, we have 
investigated the employment of mobile nodes to 
extend the capacity of fixed servers, thus reducing 
resource underutilization. Previous work on the 
employment of UAVs in cellular networks [4, 5, 
12] did not explore the possibility of UAVs as pro-
cessing nodes.

Table 1 summarizes the work reported in this 
section, classifying each article according to the 
problem studied. Our present article considers 
the employment of UAVs as processing nodes 
and their battery capacity. Energy consumption is 
accounted for both processing and flying, constitut-
ing a more realistic scenario than those evaluated 
in previous work.

Fog node locAtIon Problem

system model
We consider a system in which mobile users in 
a metropolitan area request services at different 
locations, and the processing demand at these 
locations is a function of user mobility. Applica-
tions such as augmented reality and traffic naviga-
tion have strict latency requirements and cannot 
be processed in the cloud, and users need to con-
nect to a nearby fog node to offload the process-
ing of these applications. If there is no fog node 
available, requests are rejected (blocked) since 
they cannot be migrated to more distant nodes 
due to latency requirements.

A fog node is a small facility that has processing, 
storage, and networking capabilities. It can process 
workload offloaded by end users without the need 
to send it to the cloud through the Internet, thus 
considerably reducing the response time of appli-
cations. Fog nodes serve users in their coverage 
area, and nodes can have more than one compute 
server. However, not all servers of a node are con-
tinuously needed since the processing demand 
varies over time.

UAVs can travel from one node to the other 
to increase the processing capacity of a destina-
tion node. UAVs can land to process the work-
load instead of just hovering. When on the ground, 
UAVs have greater autonomy, since the energy 
consumption of a UAV is much lower than when 
hovering [10], with energy consumed only by com-
munication and processing.

UAVs can be used to 
extend the communi-
cation network infra-

structure as processing 
nodes at the edge 

of the network. One 
common question in 
these usages is where 

to position UAVs to 
achieve some target 

objectives. The facility 
location problem is 
a design problem in 

which a set of candi-
date locations that can 

host facilities is given as 
input, with the solution 

to the problem being 
the subset of locations 
for the deployment of 

these facilities.
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UAVs can be in one of four different states: 
turned off, standby, processing, and flying. UAVs 
are initially turned off, with their battery fully 
charged. When a UAV is turned off, it does not 
consume energy. When its service is needed, a 
UAV starts its operation and remains on until ser-
vice is no longer required. In the standby state, a 
UAV is on the ground but not processing, and its 
energy consumption is fixed; moreover, it can be 
quickly switched to the processing or flying state. 
In the processing state, the UAV is also on the 
ground, but it consumes energy for processing and 
data transmission. Finally, in the flying state, the 
UAV is moving between different locations; flights 
are allowed only to complement the capacity of a 
fog node at the destination. The flying state is the 
one that consumes the largest amount of energy, 
with consumption depending on the distance trav-
eled and the speed of traveling, both horizontally 
and vertically. The sum of the energy consumed by 
all operations must be lower than the UAV battery 
energy capacity, which demands a precise location 
plan to extend the drone operational time. Other 
sources of consumption such as environmental 
factors are not considered in this article.

Problem stAtement
The fog node location problem consists of decid-
ing on the locations where fog nodes should be 
deployed. The main input to this problem is the 
set of potential locations for hosting fog nodes, 
the workload demand, and the available budget 
for acquiring fixed and UAV fog nodes. The out-
put is the set of locations selected for the deploy-
ment of nodes as well as the number of servers 
at each node. Additionally, the number of UAVs 
and their flight plan should be determined. The 
primary goal is to process the maximum possible 
amount of workload, and the secondary goal is to 
reduce the infrastructure cost.

The location problem can be formulated as a 
mathematical programming model. In this model, 
goals (objectives) and constraints are given by lin-
ear equations, and decision variables are binary, 
integer, and real numbers. For instance, whether 
a UAV is active at a time interval is a binary deci-
sion, the number of fixed servers in a location is an 
integer variable, and the workload served in a loca-

tion at any time interval is a real variable. There-
fore, the problem can be formulated as a bi-criteria 
mixed-integer linear programming model. In the 
formulation, time is discretized, and the workload 
at each location is accounted for each time slot. 
The capacity and cost of fixed and UAV nodes are 
given. The energy spent in all states as well as the 
UAV battery capacity are provided as input to the 
optimization problem. The output is the workload 
processed at each location for every time slot, the 
number of fixed servers at each location, the num-
ber of UAVs employed, the state, and the location 
of all UAVs at every time slot.

Such deployment planning is a network design 
problem, and as such is typically solved offline. 
However, solving this problem optimally using 
existing solvers does not scale to large problem 
instances. The modeling of potential flight routes, 
the location of UAVs at every time interval, and the 
UAVs’ activity/inactivity periods lead to an expo-
nential growth in the number of constraints. To 
circumvent these limitations, a heuristic algorithm 
is proposed next.

uAV Fog node locAtIon AlgorIthm
We propose a heuristic algorithm called the UAV 
Fog Node Location (UFL) algorithm. Figure 1a 
shows its flowchart. The algorithm starts by solv-
ing the formulation with only fixed nodes, and the 
pre-defined budget limiting the number of servers 
and nodes that can be deployed. Based on the 
solution obtained, the algorithm identifies servers 
that can potentially be replaced by UAVs; these 
servers are typically underutilized and deployed 
only to deal with peak demands. The UFL algo-
rithm then attempts to use UAVs to cover several 
locations at different times to reduce the deploy-
ment cost. The algorithm considers the ratio 
between the cost of UAVs and the cost of fixed 
servers.

The first step of the algorithm considers only 
fixed nodes with the result obtained using an opti-
mization solver (Step 1). The next step is the iden-
tification of servers to be replaced (Step 2). For 
each fog node, the algorithm identifies if a server 
can be replaced by a UAV, a situation that arises 
if a server is not processing requests for all time 
intervals, the UAV processing capacity is greater 

TABLE 1. Comparison of related work. 

Reference Problem Criteria Solution UAV UAV battery

[8] Fog node location
Workload acceptance and 
deployment cost

MILP No —

[9] Fog node location
Workload acceptance and energy 
consumption

MILP and heuristic No —

[11] Cloudlet location Deployment cost and delay MILP No — 

[12] Trajectory optimization Completion time Heuristic Yes No

[4] UAV base stations User coverage Architecture and testbed Yes Yes

[5] UAV base stations User coverage Architecture Yes No

[6] UAV fog nodes User coverage Architecture Yes No

[7] Mobile server location Workload acceptance Heuristic Yes No

Our article Fog node location
Workload acceptance and 
deployment cost

Heuristic Yes Yes

The fog node location 
problem consists of 
deciding on the loca-
tions where fog nodes 
should be deployed. 
The main input to this 
problem is the set of 
potential locations for 
hosting fog nodes, the 
workload demand, and 
the available budget 
for acquiring fixed 
and UAV fog nodes. 
The output is the set 
of locations selected 
for the deployment of 
nodes as well as the 
number of servers at 
each node.
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than the offered workload, and the energy that will 
be consumed by the UAV is less than its available 
battery capacity. The energy needed is the sum of 
the energy spent in processing and that in standby 
in periods associated with the potential replace-
ment. The identified servers are then replaced by 
UAVs (Step 3).

To reduce the infrastructure cost (secondary 
objective), all pairs of UAVs are considered to be 
replaced by a single UAV (Step 4). Two UAVs can 
be replaced by a single one if three conditions are 
fulfilled. First, the two UAVs must be in processing 
state in different time periods. Second, the time for 
traveling between the two locations is less than the 
time elapsed between the end of the processing 
at the node from which the UAV departs and the 
beginning of processing at the destination node. 
Third, the UAV battery should be sufficient to sup-
port full operation, including the flight between the 
fixed fog nodes. If all conditions are met and after 
serving the workload at a location, a UAV can fly 
to another location to serve the workload at the 
new location.

The algorithm evaluates a potential reduction 
in the number of UAVs (Step 5). Such an evalua-
tion is carried out by considering a graph in which 

each UAV is a vertex, and each potential pair of 
locations for replacement is an edge of the graph. 
Then the algorithm finds maximal cliques, which 
determines the minimum number of UAVs to be 
deployed. If the solution still leaves a backlog of 
unprocessed workload and the number of UAVs 
has been reduced in the last step, the unused 
budget can be employed to further reduce the 
unserved workload (Step 6).

Figure 1b exemplifies the steps involved in 
planning fog nodes in five locations. The budget 
comprises six servers, and the solution obtained 
in Step 1 indicates fog nodes in locations A and B 
with two servers each due to their larger process-
ing demand; other locations have a low processing 
demand, with only one server in locations C and E. 
Four fixed servers are identified as being underused 
in Step 2, and are then replaced by UAVs (Step 3). 
In Step 4, the algorithm detects the pairs of servers 
that have complementary processing demands in 
time, and that the battery of a single UAV is ade-
quate to support the operation in both locations; 
the dashed lines indicate these pairs. Step 5 shows 
the graph of UAVs, which contains two maximal 
cliques. Locations A, B, and C can be served by 
a single UAV; that is, during a discretized time 

FIGURE 1. UFL algorithm: a) algorithm flowchart; b) example of execution.

Based on the solution 
obtained, the algorithm 

identifies servers that 
can potentially be 
replaced by UAVs; 

these servers are typi-
cally underutilized and 
deployed only to deal 

with peak demands. 
The UFL algorithm 

then attempts to use 
UAVs to cover several 

locations at different 
times to reduce the 

deployment cost. The 
algorithm considers the 
ratio between the cost 
of UAVs and the cost 

of fixed servers.
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interval, a UAV can either process the workload 
in one location or fly to another location to pro-
vide service at the destination. Since one UAV has 
replaced three fixed servers, an extra server can be 
deployed in location D, thus increasing the overall 
workload served (Step 6). The final solution has 
three fixed servers and two UAVs, thus employing 
fewer devices than the initial solution.

The UFL algorithm, as presented here, con-
siders that any fixed server can be replaced by a 
UAV server. If the price of a UAV is greater than 
that of a fixed server, the solution obtained may 
not always be worth adopting. As a consequence, 
alternative solutions should be obtained which con-
sider different ratios between the cost of a UAV 
node and that of a fixed node. Such an analysis 
facilitates long-term planning for the evaluation of 
the infrastructure, thus helping avoid unnecessary 
expenses in the deployment of the original infra-
structure.

eVAluAtIon oF the uFl AlgorIthm
To answer the question of whether UAVs are 
worth adopting for replacing fixed fog nodes, 
extensive simulations of the UFL algorithm involv-
ing realistic scenarios were carried out.

scenArIo And dAtA descrIPtIon
The parameter values defining the scenarios in 
the simulations are summarized in Table 2. The 
UAVs considered are multi-rotor drones that have 
the capacity to land in limited spaces. The charac-
teristics of the simulated UAVs are based on real 
drones described in previous work [4, 10]. In [10], 
the authors measured the energy consumption 

of an Intel AeroReady to Fly Drone and derived 
models to estimate the energy consumption for 
diverse operations. These models are used to sim-
ulate the energy consumption in vertical and hor-
izontal flights, as well as the energy consumed 
in the standby state. The energy for the process-
ing state is calculated as the energy in standby 
plus the energy spent by a Jetson TX2, a typical 
onboard computer for drones. The speed of the 
drone was based on the Intel AeroReady to Fly 
Drone. The energy spent during landing and take-
off (vertical operations) is taken into account in 
the computation of the energy consumed during 
a flight.

Since the UAV used in [10] does not have a 
powerful battery, the present evaluation also con-
siders different battery models [4]. Moreover, two 
other parameters were varied as a function of the 
fixed servers: the UAV processing capacity and 
UAV price.

The locations and the workload demands 
were based on real data made publicity available 
by Telecom Italia [13]. This data set was collect-
ed using call detail records (CDR) of mobile users 
between November and December 2013 in the 
metropolitan region of Milan, Italy. This article uses 
the CDR with information about Internet access to 
model the workload, since these records include 
various applications. The geographical area of the 
data set was represented as a 100  100 grid, with 
each cell having its own CDR information. The 
dataset contains CDRs aggregated in intervals of 
10-minute duration.

The cells identified in the dataset [13] cannot 
be used directly as the set of locations. Actually, 
users in the data set can request services from a 
BS that can be located in a different cell. Since the 
location of BSs was not included in the dataset 
[13], data from the OpenCellId project [14] were 
used to obtain the locations. The OpenCellId is a 
public database with location information of BSs 
worldwide collected by mobile users. The location 
of the BSs was obtained by filtering the existing BSs 
for the same period available in the Milan dataset 
[13]. The workload of each cell was mapped to the 
closest BS, as in [15]. In the case of multiple BSs 
in a cell, the workload is equally balanced among 
the BSs.

After processing the two databases, the set of 
locations is formed by the BSs from the OpenCellId 
project, with the workload for each location taken 
from the Milan dataset [13]. The geolocation of 
BSs is used to calculate the distance between loca-
tions, both horizontal and vertical. These data were 
used to calculate the time a UAV would need to 
travel and consequently, the energy required for 
these trips. The capacity of the server was 500 pro-
cessing units per time interval, and the duration of 
each interval was 10 minutes, which results in 144 
intervals in 24 hours. Time is discretized in inter-
vals of 10-minute duration, which allows capturing 
users’ mobility in a metropolitan area since users 
typically take more than 10 minutes to commute 
from one location to another. Moreover, 1150 
locations were considered.

numerIcAl eVAluAtIon
The UFL algorithm was coded in Python, and its 
first step (bi-criteria formulation for the deploy-
ment of fixed nodes only) was solved using the 

Equation for mean percentage difference between two schemes.

number of UAVs required by [7] – number of UAVs required by UFL
number of UAVs required by UFL

×100

TABLE 2. Parameters adopted in the UAV simula-
tions. H refers to the vertical distance traveled, 
either upward or downward.

Operation Energy consumption

Fly horizontally 245.2815 W

Fly vertically up
(–16.9396 H2 + 216.6944 H – 
157.9473) J

Fly vertically down (4.6817 H2 – 11.9708 H + 135.3118) J

Stand-by state 8.2637 W

Processing state 15.7637 W

Operation Speed 

Horizontal 10 m/s

Vertical up/down 1 m/s

Variable parameters Values 

Battery capacity
4500 mAh/14.8 V  
34200 mAh/22.8 V

Processing capacity 50 % and 100 % of a fixed server 

UAV price
1, 2, 3, and 4 times the price of a fixed 
server
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Gurobi Optimizer solver. The results produced 
by the UFL algorithm were compared to those 
obtained by the solver. Two metrics were evaluat-
ed related to the two objectives of the problem: 
the acceptance ratio of workload and the number 
of devices deployed (servers and UAVs). The first 
metric is the ratio between the workload served 
and the total workload requested by the end 
users. The second metric is the number of servers 
used for the solution using only fixed nodes, and 
the number of servers and UAVs employed com-
puted by the UFL algorithm. Sixty executions were 
carried out to derive each value with a 95 per-
cent confidence interval. The number of available 
servers for deployment (N) was varied from 1 to 
2048. UAVC denotes the ratio between the cost 
of a UAV and the cost of a fixed server. Similarly, 
UAVP is the ratio between the processing capacity 
of a UAV server and that of a fixed server.

The acceptance ratio using UAVs with the 
most powerful battery and the same capacity as 
a fixed server is shown in Fig. 2. The acceptance 
ratio increases until N = 1280, when servers are 
sufficient to deal with all the demand. The demand 
served depends predominantly on the fixed infra-
structure capacity due to the limited autonomy of 
UAVs to stay powered for long periods. Neverthe-
less, improvements were noticed when UAVs and 
fixed servers have the same cost and N ≥ 128 since 
UAVs could be widely deployed. In these cases, 
UAVs improved the acceptance of workload and, 
in some cases (N ≥ 1536), provided 100 percent 
acceptance of workload. Higher costs of UAVs 
limited their number considerably, and as a conse-
quence, the workload acceptance did not change 
in relation to deployment with only fixed nodes.

The results described below show the impact of 
the cost of UAVs, UAV processing capacity, and 
their autonomy on the deployment. Variations in 
these parameters do not make significant chang-
es in the workload acceptance when compared 
to those already shown (Fig. 2). This is due to the 
fact that the workload acceptance is predominant-
ly optimized by the fixed servers, with only slight 
improvements by the effect of using UAVs. In line 
with these results, only numbers of UAVs and serv-
ers are considered in the following experiments.

The number of employed devices is shown in 
Fig. 3 for an optimal deployment with only fixed 
nodes as well as for hybrid deployments (fixed 
servers and UAVs) obtained by the use of the UFL 
algorithm. Figure 3a shows the results for the great-

est battery capacity, with UAV cost and process-
ing capacity equal to those of fixed servers. For N 
< 128, almost all fixed servers in fog nodes were 
heavily used for long periods of time, so replacing 
servers with UAVs was not possible. When a larg-
er number of devices is available for deployment, 
a large number of fixed servers is replaced by 
UAVs, which shows that despite the large number 
of locations (1150), only about 200 fixed servers 
could not be replaced by aerial servers, that is, an 
infrastructure with only 20 percent of the locations 
being fixed nodes and UAVs serving the remaining 
80 percent of the locations.

Nowadays, a UAV’s cost is three to four times 
the cost of a traditional fixed server, and under 
these circumstances, the employment of several 
UAVs is not advantageous. Figure 3b shows the 
results for UAVs four times more expensive than 
a fixed server. For N ≤ 1280, the average number 
of employed UAVs is very close to zero. This low 
number of flying servers is due to the fact that 
using the same UAV to serve two different loca-
tions is not always possible because of the required 
flight time between the locations, which led to 
quickly drain of the UAV battery. As shown, the 
UAV price is decisive in being considered in large 
deployments.

The results considering UAV servers having 50 
percent of the capacity of a fixed server are shown 
in Fig. 3c. The greater the capacity, the larger the 
number of servers replaced by UAVs, since UAVs 
with limited processing capacity cannot always 
deal with the peak demands supported by a fixed 
server. The increase in the processing capacity and 
the increase in the number of UAVs is not linear: 
increasing the UAV processing capacity from 50 
to 100 percent leads to an increase of less than 
10 percent in the number of UAVs for N > 1280. 
This is explained by the pattern of the frequency of 
peak demands. Servers replaced by UAVs are sel-
dom used; therefore, they deal with rather sporadic 
demands. Given these low demands, UAVs with 
powerful computers are not required.

The final analysis concerns the battery capacity. 
Figure 3d shows the results for the UAVs with the 
smallest battery capacity. This type of battery has 
very limited autonomy, and thus is of little use in 
such an infrastructure. Only when all the demand 
was met (N ≥ 1536) can approximately 25 UAVs 
replace fixed servers. The problem is the autono-
my of the batteries, which prevents the replace-
ment of a single underloaded server with a UAV. 

FIGURE 2. Acceptance ratio for the 34,200 mAh/22.8 V battery and UAVP = 1.
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To further increase the number of UAVs, the bat-
tery life would have to be sufficient to maintain the 
UAVs being turned on for several hours, which is 
not a realistic assumption for battery-constrained 
UAVs. Technologies for charging batteries without 
interrupting the operation can help to extend UAV 
operation in fog infrastructures.

A comparison between the UFL algorithm and 
the dispatching scheme in [7] was carried out. 
Figure 4 depicts the mean percentage difference 
in the number of UAVs demanded by the two 
schemes; see the equation above. The scheme in 
[7] differs from UFL in three ways: first, it assumes 
unlimited energy; second, it can dispatch UAVs to 
process the workload at every time interval without 
evaluating future demands; and third, UAVs do not 
fly between different locations. We imposed bat-
tery limitation in the scheme in [7] for the sake of 
fair comparison. We denoted the original solution 
with battery limitation “single location.” We also 
implemented a version that allows a UAV to serve 
multiple locations, denoted “multiple locations.” 
UAVs are used in multiple locations if the battery 
can support the flight and the processing of the 
workload at the destination.

The results indicate that most fixed servers pro-
cess heavy loads in small infrastructures (N ≤ 32), 
which does not create opportunities for replacing 
fixed nodes with UAVs. For large infrastructures (N 
≥ 1536), the scheme in [7] requires a greater num-
ber of UAVs when compared to UFL. When UAVs 
have batteries with large capacity, the dispatching 
scheme employs up to 2 percent more UAVs to 
process the same workload. Moreover, for batter-
ies with small capacity, the scheme in [7] requires, 
on average, 7 percent more UAVs when they can 

serve only a single location and almost 11 percent 
when they can serve multiple locations. The battery 
capacity has an impact on the number of required 
UAVs, since flights consume large amounts of 
energy. Such consumption reduces the UAV oper-
ational time, especially with small battery capacity, 
preventing the processing of future workload, and 
consequently calls for more UAVs. The UFL algo-
rithm produces more efficient deployments due to 
its consideration of energy consumption and plan-
ning of UAVs’ trajectories.

The present findings have revealed advantag-
es and disadvantages in relation to the adoption 
of such hybrid infrastructures with both fixed 
and UAV nodes. One advantage is that hybrid 
infrastructures can simplify the deployment of 
fixed nodes where processing demands are low, 
thus reducing costs for deploying and maintain-
ing nodes with underused servers continuously 
turned on. However, as long as UAV prices are 
higher than those of traditional servers, their use 
will remain limited. With price reduction, UAVs in 
fog infrastructures may become much more wide-
spread.

conclusIons
This article has investigated the employment of 
unmanned aerial vehicles as fog nodes by solv-
ing a fog node location problem. By considering 
UAVs in this early stage, it is possible to plan the 
best deployment and avoid placing fixed servers 
in locations with low demand. This article has 
described the UFL algorithm, which first solves 
the problem optimally by considering only fixed 
servers, and then tries to replace underutilized 
servers with UAVs, which can potentially serve 

FIGURE 3. Number of servers and UAVs used for various scenarios: a) 34,200 mAh/22.8 V battery, UAVC = 1 and UAVP = 1; b) 
34,200 mAh/22.8 V battery, UAVC = 4 and UAVP = 1.]; c) 34,200 mAh/22.8 V battery, UAVC = 1 and UAVP = 0.50; d) 4500 
mAh/14.8 V battery, UAVC = 1 and UAVP = 1.



IEEE Wireless Communications • October 2021 8

more than one location. Results were obtained 
by varying different UAVs types and using a pub-
licly available dataset. The UFL algorithm can be 
used for long-term planning of large fog infra-
structures. Results show that a significant portion 
of the infrastructure could be replaced by UAVs 
depending on their price evolution. An additional 
benefit of using UAVs is the energy saved com-
pared to an infrastructure with only fixed servers 
constantly powered all the time. Our investigation 
has revealed that such a deployment depends on 
the prices of UAVs being close to that of tradi-
tional servers. Currently, UAVs cost three to four 
times more than traditional servers, but prices are 
expected to decrease in the future as a function 
of mass production and wide use of unmanned 
aircraft.

The findings in this article suggest opportuni-
ties for future investigation. Similar solutions can 
be evaluated for different scales of infrastructure, 
from small neighborhoods to wider areas. By using 
fixed wing drones, for example, long hours of flight 
can be achieved, but this would require logistics to 
allow landings and takeoffs. Second, the solution 
presented in this article could be adapted to a sce-
nario where the infrastructure already exists, and 
the UAVs are simply added to serve unforeseen 
and timely processing demands.
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