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Abstract: In the fog computing paradigm, fog nodes are placed on the network edge to meet end-user
demands with low latency, providing the possibility of new applications. Although the role of the
cloud remains unchanged, a new network infrastructure for fog nodes must be created. The design of
such an infrastructure must consider user mobility, which causes variations in workload demand over
time in different regions. Properly deciding on the location of fog nodes is important to reduce the
costs associated with their deployment and maintenance. To meet these demands, this paper discusses
the problem of locating fog nodes and proposes a solution which considers time-varying demands,
with two classes of workload in terms of latency. The solution was modeled as a mixed-integer
linear programming formulation with multiple criteria. An evaluation with real data showed that an
improvement in end-user service can be obtained in conjunction with the minimization of the costs
by deploying fewer servers in the infrastructure. Furthermore, results show that costs can be further
reduced if a limited blocking of requests is tolerated.
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1. Introduction

The world has witnessed a massive growth in the number of devices connected to the Internet.
The number of devices has already exceeded the world population [1], and it is expected to be from
two to three orders of magnitude greater in the near future [2]. The Internet of Things (IoT) includes
both user-dependent devices, such as smartphones and tablets, and user-independent devices, such
as sensors and actuators. User-dependent devices can be mobile and can be connected to different
networks at different times. Moreover, some services and applications used on these devices are
latency sensitive, such as augmented reality applications.

Data generated by IoT devices have commonly been processed in cloud data centers [3], which
provide computing and storage capabilities for resource-limited IoT devices. However, data centers
are typically far from end users, which can lead to considerable delay in the processing of the IoT
data and make certain applications unfeasible. One proposal to make such applications feasible is
fog computing.

Fog computing was designed to support delay-sensitive applications as well as mobility
by providing computing, networking, and storage capabilities at the edge of the network [4].
Fog computing fills the gap in service provisioning for latency-sensitive applications not considered
by cloud computing. The fog is close to end users and processing on its devices allows the reduction
of delays to only a few milliseconds. Moreover, fog is a distributed architecture, not centralized as is
cloud computing. Fog computing was designed to complement the cloud, but not to replace it.

A fog-cloud infrastructure is useful in the execution of mobile applications consisting of tasks
with different latency requirements [5]. One example is the augmented reality application in [6].
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This application is divided into four tasks, and two of them should be processed in the fog due to
their strict latency requirements. The fog enables novel applications, and it can also enhance the
performance of typical cloud applications. In this example, the other two tasks with flexible latency
requirements can also be processed in the fog rather than the cloud, thus reducing the total delay.

Fog nodes are the basic units for fog computing, and can be a network device which uses
processing capabilities, dedicated servers, or computational servers to coordinate underlying
devices [7]. A fog is usually composed of several levels of fog nodes, and the processing of a given
application may be more adequate for a specific layer as a consequence of its requirements, such as
latency, security, mobility, and scalability [5].

The number of levels in a hierarchical fog and the position of the nodes depend on the architecture
involved. In the architecture described in [8], fog nodes are created near base stations in 5G networks,
while, in the architecture described in [9], end users can provide residential fog devices and receive
incentives to share the nodes. Previous papers [4,7–9] have discussed the role of fog nodes in the
architecture and their connection to other network elements, but have not discussed the impact of
the creation of fog nodes on different physical locations. The location of the fog problem consists
in deciding where fog nodes should be placed given a set of potential locations and the devices
available for deployment. The solution to the problem is crucial for fog providers. Indeed, the location
decision affects both users and the provider. Wrong decisions can jeopardize user access: if the delay
in accessing the fog impacts the application, user expectations will not be fulfilled. Moreover, the
deployment of servers influences the costs of fog providers, reckless decisions can guarantee user
satisfaction, but at a high deployment cost.

This paper proposes a solution for the fog node location problem. The problem is formulated as a
mixed-integer linear programming (MILP) model which considers various inherent aspects of a fog-cloud
system. To evaluate different classes of service, the model considers two types of demands: strict (which
can only be processed in a fog node) and flexible (which can be hosted either in the fog or in the cloud).
By considering these two types of workload, the solution attempts to serve requests which are dependent
on the fog while improving the latency experienced by flexible applications. The solution was designed as
a multicriteria optimization problem, focusing on the service of all demands at a reduced cost. Moreover,
the demand of workload to be processed varies with time. A multi-level programming approach was
employed to select a solution from the Pareto front, ordering the multiple objectives in a hierarchical
manner. By evaluating variable demands, the solution captures the mobility of users.

Real data representing workload variation in geographical cells in a metropolitan area inhabited
by mobile users were employed as the input to the problem formulation. Solutions were obtained
using the hierarchical order of the objectives and variations allowing degradation in the objective
functions were evaluated; this showed that reducing the quality of service in the service provisioning
at a certain extent can lead to big savings in infrastructure costs.

This paper is organized as follows. Section 2 reviews related work on fog computing and facility
location. Section 3 introduces the system model as well as the location problem. Section 4 presents the
proposed solution and its mathematical formulation. Section 5 presents an evaluation of the solution
and discusses related issues. Finally, Section 6 concludes the paper.

2. Related work

This section first reviews work on fog computing [4,8–12], and then presents papers dealing
with the location problem [13–20]. Proposals for fog computing architectures are discussed in [4,8,9].
The main effort in this direction has been the OpenFog Consortium, which is in charge of defining
an open and interoperable architecture for fog computing that organizes fog nodes in hierarchical
layers [4]. The TelcoFog architecture [8] also considers layers, but it recommends that fog nodes
powered with computational and storage resources should always be deployed next to cellular base
stations. Another proposal [9] is a user-participatory architecture in which fog nodes are installed
and owned by end users and leased to the provider to make the infrastructure scalable. These
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proposals [4,8,9] discuss the architectures of fog, but they do not specify the physical location of the
fog nodes, even though this would impact on the service provided.

Another major issue in fog design is the definition of resource allocation mechanisms to manage
fog resources [10–12]. A solution to support the QoS requirements of applications was proposed by
Souza et al. [10] with a mechanism considering one cloud and two fog layers to reduce latency. Other
proposals [11,12] decide on which layer (fog or cloud) a task from an application should be instantiated.
The mechanism in [11] considers the history of previous arrivals to avoid overusage of fog nodes, thus
achieving a good use of fog resources. The mechanism in [12] favors the creation of tasks in distant
layers as long as the required latency is supported, but allows tasks to be rearranged in order to reduce
the number of active nodes. Such mechanisms depend on the creation of fog nodes, but their location
must be determined in advance.

Despite the proposals for fog architectures [4,8,9] and the allocation mechanisms for fog
computing [10–12], the literature lacks solutions for deciding on the location of fog facilities. Some
papers have addressed this problem for cloud data centers [13–15] and cloudlets [16,17]. Larumbe and
Sansò presented solutions [13,14] to select the location of a data center in a backbone network. In [13,14],
a MILP formulation and a scalable tabu search algorithm are employed, respectively, to decide on the
location of data centers to minimize delay, energy consumption, costs and the emission of greenhouse
gases. The solution proposed by Covas, Silva and Dias [15] also considers a multiple criteria decision
that quantifies the social, economic, and environmental impact of candidate location for the data
center. Their proposal employs the method ELECTRIC TRI to classify all criteria; the solution was
validated with a local provider. These solutions for cloud data centers cannot be applied for the facility
location for fog computing since cloud data centers are centralized, while fog nodes are distributed,
the decision must thus consider other aspects.

The placement of cloudlets has been explored in previous papers [16,17]. Jia et al. [16] determined
the location of cloudlets to reduce the delay of user tasks. Fan and Ansari [17] included the cloudlet cost
in the decision. Using an optimization model, they showed that their solution can reduce deployment
cost as long as additional delays are acceptable. Since these papers do not consider the existence of the
cloud, they fail to consider various applications with different latency requirements.

Previous work on the facility location problem in contexts [18–20] other than clouds and cloudlets
are reviewed here since they share some characteristics with the problem discussed in this paper. There
have been few approaches to the facility location problem in relation to the time axis. One approach is
that in multi-period [18]. In such a problem, facilities are created in different time slots. Clients can
choose any facility, but, once they initiate service at a given facility, they cannot change this facility.
This solution, however, does not cover the node location problem in fog, since it considers neither
localized demands nor limited capacity facilities.

Oliveira and Viana [19] presented a solution for WiFi hotspot location that maximizes the offloaded
traffic for the limited number of deployed hotspots. The solution employs a time varying graph which
relates mobile users and points of interest in a metropolitan area. Based on this graph, points of
interest are selected for the deployment of hotspots. Results show that a small number of hotspots are
sufficient to provide adequate offloading. The proposal in the present paper considers time-varying
traffic demands but also analyzes various classes of requests.

Planning a fog infrastructure requires knowledge about the demand in different regions in order
to establish fog nodes. One example is provided by the cellular network data that Telecom Italia
collected in the region of Milan and Trentino in Italy in 2013 [21]. This dataset contains user demands
by network cell and aggregated in 10-minute intervals during a two-month period. Given the reduced
window interval and the separation into several non-overlapping areas, this dataset was capable of
capturing information on user demands and their mobility, presenting user demands as a function of
time. Using this dataset, Chen et al. [20] studied the problem of clustering base stations to share Cloud
Radio Access Network (C-RAN) resources. The solution aims at clustering neighbor base stations with
complementary traffic patterns, so that the workload processed in the C-RAN is balanced, requiring
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fewer resources. Results show that this clustering scheme reduces deployment costs as well as energy
consumption. The work proposed in this paper also employs this dataset [21].

This paper introduces a formulation for the problem of locating fog nodes taking into
consideration human mobility [20,21] and the location problem [13–19]. Demands variable over
time are employed to capture user mobility. Furthermore, different types of workload are taken into
account, an issue which is relevant in the interaction between the fog and the cloud.

3. System Model

This section details the model for the system considered in this paper as well as the fog node
location problem. The system is composed of a cloud and various fog nodes, hierarchically organized
in three layers: cloud, fog, and end-user devices. The cloud can be accessed by any device. The fog
layer is formed by fog nodes, with each fog node having a limited area of coverage. A fog node is a
small facility which hosts dedicated servers capable of processing end-user workload. Compared to
the cloud, fog node resources are limited. End-user devices are in the lowest layer. User devices can
move along the lowest level. These devices run several types of applications with different latency
requirements. A user can access either the closest fog node (as long as this fog node covers the user) or
the cloud. The decision of where to process user workloads depends on the workload itself. In this
paper, the workloads are classified into two classes: fog (strict latency) and cloud (flexible latency)
workloads. The former represents workloads which can only be hosted in a nearby fog node due to
the latency requirements, while the latter can be processed in either the fog or the cloud.

Supporting client applications (workload) requires making the decision about the location of
the fog nodes. To make these decisions, the selection of potential locations for receiving dedicated
servers is necessary. Then, the selection of fog node locations can be made on the basis of the history of
demands in these locations.

Each fog node is characterized by its location and the number of servers. The greater is the
number of servers, the larger is the capacity of the fog node. To increase the total workload processed,
strict latency workload should be first assigned for execution on fog servers. The remaining capacity
of the fog nodes can then be used to process flexible latency workload. Executing flexible latency
workload in the fog can reduce the latency for this type of load, thus enhancing user experience.
Moreover, reducing the demands on the cloud allows the turning off of servers in the data center to
save energy [22].

The system considered in this paper assumes that both strict and flexible workloads vary over
time. Without loss of generality, a discrete-time model has been adopted. Figure 1a illustrates the
node location problem. This figure presents a segment of a city, divided into seven areas, identified by
letters A–G, with end users served by five base stations (BS). Regions A and D are served by the same
BS, another BS processes the requests made in Regions E and G, and the remaining regions are each
served by an individual BS. A cellphone represents a request and the color associated with it identifies
the type of request (strict or flexible). BSs are considered to be possible locations for hosting a fog node.
Suppose that the provider can employ up to four servers, and each server can host two requests at the
same time. One possible solution for this scenario is shown in Figure 1b. Three fog nodes have been
created, one with two servers in the BS in Region D, and two nodes with a single server in Regions C
and G. The fog node in D can serve both strict and flexible requests in its coverage area. The fog node
in C serves strict requests in its area, as well as a flexible request, which could not be served using the
cloud resources. In Region B, strict requests are blocked, since no fog node is available.

This example provides a snapshot of user positions. In the problem considered in this paper, end
users can change their position dynamically, thus leading to different occupation of devices over time
in each region. Consequently, the deployed infrastructure must be efficient for the service over time,
not only during a specific time interval.
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Figure 1. Example of fog location decision making: (a) possible locations and available number of
servers; and (b) fog nodes decided and requests served by them.

4. Fog Location Model

The solution proposed for the fog node location problem is given by a multicriteria mixed-integer
linear programming formulation. The goal is to process most of the strict workload in the fog nodes
using the minimum number of servers possible to reduce the overall cost. Moreover, the unused capacity
of fog nodes should be used for the processing of flexible latency workload to further reduce the latency
of users with this type of workload. In this section, the formulation of the optimization problem is
presented first in Section 4.1, followed by the explanation of the selection of a Pareto-optimal solution in
Section 4.2, and, finally, a numerical example is given to illustrate the proposed model in Section 4.3.

4.1. Mathematical Model

The notation used in the model is presented in Table 1. The provider budget constraint is given
by N, the maximum number of dedicated servers to be employed in the fog nodes, each of them with
capacity R. L and T are the location and time interval sets, respectively. flt and clt are also part of the
input and represent, respectively, the strict latency and flexible latency workload demands at location
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l and time t. The solution consists of αl , the number of dedicated servers deployed at each location.
Additionally, variables fflt, cflt, and cclt indicate where each demand is processed (fog or cloud) for all
locations and time periods.

Table 1. Notation used in the Fog Location Problem formulation.

Input Parameters

Notation Description

N Maximum number of servers to be deployed
R Capacity of a single server
L Number of locations where a fog node can be created, L ∈ N+

L Set of all locations where a fog node can be created: L = {1, 2, . . . , L}
T Total number of discrete time intervals, T ∈ N+

T Set of all discrete time intervals: T = {1, 2, . . . , T}
flt Strict workload at location l ∈ L at time t ∈ T

clt Flexible workload at location l ∈ L at time t ∈ T

Decision variables

Notation Description

αl The number of servers created at location l ∈ L. If αl = 0, no fog node is created at location l
fflt Strict workload originating at location l ∈ L at time t ∈ T and hosted by the local fog node
cflt Flexible workload originating at location l ∈ L at time t ∈ T and hosted by the local fog node
cclt Flexible workload originating at location l ∈ L at time t ∈ T and hosted by the cloud

The multi-objective formulation has three objective functions:

maximize ∑
l∈L

∑
t∈T

( fflt) (1)

minimize ∑
l∈L

αl (2)

maximize ∑
l∈L

∑
t∈T

(cflt) (3)

The constraints of the problem are the following:

∑
l∈L

αl ≤ N (4)

fflt + cflt ≤ αl · R, l ∈ L, t ∈ T (5)

fflt ≤ flt, l ∈ L, t ∈ T (6)

cflt + cclt = clt, l ∈ L, t ∈ T (7)

cflt ≥ 0, l ∈ L, t ∈ T (8)

fflt ≥ 0, l ∈ L, t ∈ T (9)

αl ≥ 0, l ∈ L (10)

Equation (1) maximizes the processing of workload of the strict type on the fog nodes, i.e.,
it guarantees the maximum number of users for each time slot. To achieve this goal, the number of fog
nodes at each location is determined using the minimum possible number of servers with Equation (2).
Moreover, Equation (3) ensures that servers are deployed to locations where the remaining capacity
can be used to boost the processing of flexible latency workload in the fog.

The constraints of the model are explained by the following. The constraint in Equation (4)
limits the number of deployed servers to the total number of available devices N. The constraint
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in Equation (5) guarantees that the workload hosted in each fog node (sum of strict and flexible
workload) is never greater than its capacity (number of servers multiplied by the capacity of a single
server). The constraint in Equation (6) limits the strict latency workload processed at a fog node to the
demand at that location. The constraint in Equation (7) guarantees that all flexible latency demand is
met, whether at a local fog node or in the cloud. Finally, the constraints in Equations (8)–(10) set the
minimum values for the decision variables.

4.2. Multicriteria Decision

The presented model is multicriterial, so that all possible solutions are the elements of a Pareto
front. However, a single solution must be selected for the location problem. The multi-level
programming approach was used to obtain the solution to the multicriteria formulation proposed in
this paper. In this subsection, other approaches to solve multicriteria models are reviewed, and then
the multi-level programming applied to the proposed formulation is explained.

There are various techniques for choosing a single solution from the Pareto front, such as
scalarization, the ε-constraints method, goal programming, and multi-level programming [23]. Using
scalarization, weights are assigned to each objective, and they are combined into a single objective. Such
a solution is useful to evaluate trade-offs with different priorities for each objective. The ε-constraints
method favors the main objective function, and the remaining objectives become constraints limited to
given target values. Goal programming aims at finding values given by the user for each objective
rather than optimizing them individually. Finally, under multi-level programming, the objectives are
hierarchically ordered and sequentially optimized, so that neither an assignment of weights to the
objectives nor changes in the constraints are necessary. The approach used by multi-level programming
is explained as follows. The candidate solutions that optimize the first objective function are selected,
giving, as a result, a subset of the Pareto front. Among the candidate solutions from this subset,
the second objective is optimized, and so on, until all objectives have been evaluated. Employing
multi-level programming is thus useful whenever objectives can be hierarchically organized.

In the fog node location problem, the service of end users is essential. Once this is achieved, the
provider costs should be reduced and the usage of the remaining servers optimized. As a consequence
of this order of priorities, the problem is appropriate to be solved using multi-level programming, which
is the approach used in this paper, considering Equation (1) to be the main objective, followed by the
objectives defined in Equations (2) and (3). Other methods can be employed for the solution, but they
do not take into consideration the hierarchy between the objectives, either favoring a single objective
or a trade-off, which do not make them adequate for the problem in this paper. However, to evaluate
multiple solutions, degradation in some of the objectives is evaluated, as explained in Section 5.2.

4.3. Numerical Example

To numerically illustrate the proposed MILP model, consider the example displayed in Figure 2a,b,
which shows a snapshot of users’ position at time slot 1 and 2, respectively, for a small region of a
city. There are three locations (1, 2 and 3) served by base stations; such BSs are candidates for the
deployment of fog nodes. Eleven users, identified by letters A–K, execute four different applications
in their smartphone. Users A, D, H, and J play a real-time game, while Users C, F, and G execute an
augmented reality application, both applications require a fog node due to the low latency constraints.
The remaining users execute applications which can be either processed in the fog or in the cloud due
to their flexible latency requirements: Users B, I, and K share files in a P2P network while User E takes
photos and then processes and stores them externally. Users that share files can take advantage of
the fog by sharing files between them without the delay imposed by the cloud; in this case, the fog
node coordinates the operations. For User E, the presence of a fog node allows the image processing in
the fog, which reduces the transmission of large raw files to the cloud. Although the flexible latency
applications can be boosted with a fog node, their processing can be realized by the cloud. Additionally,
this example presents mobility: from time slot 1 to 2, User A goes from Location 1 to 2; User E from 2
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to 3; Users D, G, and I leave the displayed area; and the new User K arrives in Location 3 at the second
time slot.
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Figure 2. Numerical example of fog location decision making: (a) input at the first time slot; (b) input
at the second time slot; (c) solution for N = 1 at the first time slot; (d) solution for N = 1 at the second
time slot; (e) solution for N = 4 at the first time slot; (f) solution for N = 4 at the second time slot;
(g) solution for N = 2 at the first time slot; and (h) solution for N = 2 at the second time slot.
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The presented scenario can be mapped into the input of the fog node location problem. There are
three base stations in Figure 2, thus L = 3 and L = {1, 2, 3}, and only two time slots are considered, so
that T = 2 and T = {1, 2}. Suppose that each fog server can host up to three requests at the same time
(R = 2). Considering the requests displayed in Figure 2a,b, the strict and flexible workloads assume
the following values: f11 = 2, f21 = 3, f31 = 2, f12 = 1, f22 = 2, f32 = 1, c11 = 1, c21 = 1, c31 = 1,
c12 = 1, c22 = 0, and c32 = 2. All these values are used as input to the problem. The values of N are
varied to exemplify the priority of each objective in the multi-level programming approach.

The main goal of the formulation is to serve all strict workload (the objective function in
Equation (1)). To illustrate that, consider N = 1, i.e., only one fog node with a single server can
be deployed. In this case, a fog node is created at Location 2 (α1 = α3 = 0 and α2 = 1) since it produces
5 for Equation (1). If α1 = 1 or α3 = 1, the produced values (3 in both cases) would not be optimal.
The solution for N = 1 is displayed in Figure 2c,d.

The effect of the objective function in Equation (2) is noticed for N = 4. In this case, all locations
can be covered by fog nodes with a single server (α1 = α2 = α3 = 1), case in which no strict application
is blocked and the value obtained for Equation (1) is 11. The addition of the fourth server in any fog
node does not increase the value of Equation (1), thus the objective function in Equation (2) limits the
employed servers to 3 to avoid extra costs with the infrastructure deployment. The scenario described
in this paragraph is illustrated in Figure 2e,f.

Finally, a practical example of the effect of the objective function in Equation (3) happens for
N = 2 (Figure 2g,h). As discussed earlier, the most demanded fog node is the one in Location 2
(α2 = 1), thus, when there is an extra server available, the decision is which of the other locations
should host a fog node, α1 = 1 or α3 = 1. Either option produces the same value for Equations (1)
and (2): 8 and 2, respectively. Therefore, the objective function in Equation (3) is evaluated. If α1 = 1,
then Equation (3) assumes the value 2, while α3 = 1 leads to the value 3. Thus, the fog node is deployed
in Location 3, allowing Users E, I, and K to use the fog instead of the cloud, improving the latency of
the delivered service.

5. Performance Evaluation

The mixed-integer linear programming model was coded using the Gurobi Optimizer solver.
The time-varying demands used as input to the problem were obtained from two datasets [21,24], as
explained in Section 5.1. Using the MILP model, solutions which provide alternative trade-offs were
also evaluated and are described in Section 5.2. Numerical results are discussed in Section 5.3.

5.1. Workload

The values of variables flt and clt (fog/strict and cloud/flexible workload demands) were taken
from the dataset in [21]. Every time a mobile user required services from a telecommunications
provider, a Call Detail Record was recorded in the metropolitan area of Milan during a two-month
period. The geographical area was divided into a 100 × 100 grid, in which each cell has information
on the Short Message Service (SMS) messages received and sent, phone calls made and received,
and Internet usage. These data were aggregated into 10-minute intervals. In this paper, the Internet
usage information models the workload demands since it represents a variety of mobile applications,
different from calls and SMS. This dataset was chosen since it provides real records of a city accounting
for user mobility.

In the dataset [21], demands are separated into geographical cells, but users actually request
services from a base station, which may not be in the cell area. Correspondingly, some base stations
serve a larger number of cells (larger areas). The set of locations L is, therefore, the set of areas
covered by the antennas, the location of which was determined by the OpenCellId project [24], an
open database containing information about base stations worldwide collected by mobile users.
This database has comprehensive data and has been employed in previous work reported in the
literature [25]. The location of all base stations was obtained by filtering the existing base stations in
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the period of the Milan dataset [21]. The workload of each cell was mapped to the closest base station,
as in [20]. In the case of multiple base stations inside a cell, the workload is equally balanced on these
BSs. Thus, L is the set of base stations obtained from the OpenCellId project, and the workload of
each cell from [21] is associated with the closest base station to define the values of flt and clt. In this
paper, a complete fog-cloud infrastructure is designed, so that all locations in L are considered, thus
evaluating the complete metropolitan area of Milan. Although the solution can be evaluated on a
smaller scale, results are presented for all locations.

The input to the problem consisted of N, R, L, T, flt, and clt. The capacity R of a server was fixed,
and N was varied to evaluate solutions obtained under different budget constraints. The number of
locations in L was determined using the OpenCellId dataset as explained above. Since the dataset [21]
has data for two months, T was also varied to evaluate the solution under different lengths of planning
intervals, from 1 h to 24 h. The proportion of fog and cloud requests was varied using three scenarios,
namely P25, P50, and P75. In P25, 25% of the workload for an antenna was strict and 75% flexible.
In the P50 scenario, the proportion was 50% for each type of request, and, in P75, the workload is 75%
strict and 25% flexible. Table 2 summarizes the input values and the adopted scenarios.

Table 2. Adopted values of input and scenarios.

Parameter Values

N 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048

R 1000

L L = {1, 2, ..., L}, L = 1150

T
T = {1, 2, ..., T}, each t ∈ T represents a ten minute interval.
T varies to represent 1 h, 3 h, 6 h, 12 h, and 24 h intervals

flt and clt, l ∈ L, t ∈ T Aggregated workload of cells for each base station

Proportion between strict
and flexible workloads

P25: 25% of strict and 75% of flexible latency workload
P50: 50% of strict and 50% of flexible latency workload
P75: 75% of strict and 25% of flexible latency workload

5.2. Multi-Objective Solutions Allowing Degradation

The MILP model presented in Section 4 was coded using the multi-level programming approach;
the solution was identified by OPT. Employing only OPT leads to a single solution for the problem.
However, a fog provider can accept decreasing performance for one of the objectives if significant
improvements are obtained for the other objectives, i.e., if an advantageous trade-off, for the multiple
objectives, is achieved. Various solutions were evaluated that allowed degradation in some of the
objective functions.

These solutions differ from OPT since they allow degradation of either the objective function
in Equation (1) or the objective function in Equation (2). Solutions that allow degradation of the
objective function in Equation (1) are identified by STRX, where X is the percentage value that can be
degraded from the total served strict workload. By allowing degradation of the objective function in
Equation (1), these solutions can employ fewer servers, thus reducing deployment costs. Degradation
of the objective function in Equation (2) was also evaluated. SERX identifies the solutions that degrade
the number of employed servers, i.e., they allow an increase in the number of servers in X % in relation
to OPT to increase the amount of flexible workload processed in the fog. Since strict workloads are
blocked if not served in the fog, applying STRX has a great impact on end users, thus only up to 20%
of degradation was evaluated. Employing more servers, differently, does not prevent the execution of
strict workloads, thus, up to 30% of degradation was evaluated for SERX. Table 3 summarizes all the
solutions evaluated.
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Table 3. Solutions evaluated in this paper as well as objective function affected and level of
degradation allowed.

Objective Degraded Level of Degradation

OPT — —
STR5 Equation (1) 5%

STR10 Equation (1) 10%
STR15 Equation (1) 15%
STR20 Equation (1) 20%
SER5 Equation (2) 5%

SER10 Equation (2) 10%
SER15 Equation (2) 15%
SER20 Equation (2) 20%
SER25 Equation (2) 25%
SER30 Equation (2) 30%

5.3. Numerical Results

In this subsection, the performance of the proposed solution is assessed. This evaluation showed
how the solution improves fog service, reducing costs and dealing with the two types of workload.
Furthermore, several scenarios with different traffic patterns and budget constraints were used to
evaluate the efficiency of the solution under various conditions. First, the results produced by OPT
using different planning intervals are discussed. Then, the results obtained under degradation are
presented. Finally, different scenarios of traffic patterns (P25, P50, and P75) were evaluated. Three
metrics were considered: acceptance ratio of strict latency workload, acceptance ratio of flexible
latency workload in the fog, and the number of deployed servers. A 95% confidence interval is used
in the graphs. In this section, STRX is used to refer to all solutions that allow degradation of the
objective function in Equation (1) and SERX to all solutions that allow it for the objective function in
Equation (2). Graphs of the strict latency acceptance ratio are in a logarithmic scale.

OPT results are discussed for the P50 scenario in Figure 3. The larger is the number of available
servers, the larger is the number of servers utilized (Figure 3b). This is a result of the main goal of the
solution to serve the maximum number of strict workloads possible, which leads to more servers being
used in the solution. For 1 ≤ N ≤ 1024, the available servers cannot cope with the entire strict latency
workload since most of the available servers (N servers) are used. This causes the overlap of the curves
for all planning intervals. For N ≥ 2048, the available capacity is greater than the total demand, so the
entire demand is met (Figure 3a), requiring between 1480 and 1710 servers. The number of required
servers varies according to the planning interval: short planning intervals may not contain periods
during which a location is crowded. Consequently, for longer intervals, a large number of periods of
peak demand is present for several locations, which requires the deployment of a larger number of
servers. Results for N > 2048 are the same as those for N = 2048 since the multi-level programming
approach optimizes the entire served demand in Equation (1); hence a larger number of servers does
not lead to any improvement in the strict latency workload service.

The ratio between flexible requests served in the fog and the total flexible workload is shown in
Figure 3c. The extra capacity of fog nodes can be used to host the flexible workload, thus, when nearby
80% of the strict workload is served (N = 512), more than 30% of the flexible workload can be executed
in the fog, which improves the latency of end users as well as allows more flexibility in the energy
management of the cloud data center. OPT maximizes flexible requests utilization of fog nodes (the
objective function in Equation (3)) only after satisfying the objective functions in Equations (1) and (2).
As a result, no new fog servers will be deployed to host only flexible workloads. Thus, for N = 2048,
between 60% and 80% of the flexible workload is hosted in the fog and the remainder in the cloud. If
the order of objective functions in Equations (2) and (3) were reversed in the multi-level optimization,
flexible workload allocation would be prioritized in the fog, but at a higher server deployment cost
than that was in the original order.
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Figure 3. Results obtained for OPT under P50 scenario: (a) strict latency workload acceptance ratio;
(b) average number of servers employed; and (c) flexible latency workload acceptance ratio in the fog.
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The order of the curves changes in the interval 1024 ≤ N ≤ 2048 in Figure 3c due to the availability
of a larger number of servers for N = 2048 and longer planning intervals. For N ≤ 1024, the available
resources do not meet the full demands of the strict workload. Conversely, when N = 2048, all
strict workloads are processed, and powerful fog nodes tailored to the peak demands are produced.
Consequently, during periods when strict demands are low, fog servers are used to host the flexible
workload. Thus, solutions for larger planning intervals are capable of hosting more flexible workloads,
explaining the difference in the order of the curves in Figure 3c for N between 1024 and 2048.

In the remainder of this section, results for 24 h planning intervals are shown. Using a larger
interval results in more variation in demands in the considered locations. Hence, larger intervals
are useful in planning long-term infrastructures. A comparison of OPT and the solutions which
allow degradation in one of the objective functions is presented in Figure 4 for the P50 scenario. The
acceptance ratio of strict latency workloads is shown in Figure 4a. The curves for OPT and all solutions
that allow degradation in the objective function in Equation (2) overlap since it is optimized after the
objective function in Equation (1). Curves corresponding to STRX are parallel to OPT in the log scale
according to the allowed degradation, from 5% to 20%.

Figure 4b shows the number of employed servers as a function of N. SERX deploys a larger
number of servers than OPT and STRX. Since all servers are used for 1 ≤ N ≤ 1024, differences in the
values obtained by OPT and SERX appear only for N = 2048, when there is more capacity than that
required for the strict workloads. For SERX, extra servers are employed to host more flexible latency
workloads in the fog, as shown in Figure 4c. Notice, however, that an increase in the number of servers
less than 15% results in a minimal increase in the flexible latency service in the fog. This is due to the
distribution of demand across different locations. To explain this trend better, Figure 5 presents results
for flexible latency workload in the fog for all values of the planning intervals considered (1 h, 3 h, 6 h,
12 h, and 24 h) and N = 2048. For 1 h planning, an increase in the number of servers increases the
acceptance ratio of flexible workloads in the fog. However, results for longer intervals show that small
gains are obtained for degradation smaller than 15%. For small intervals, users are less mobile, which
makes demands more uniform over all locations. Longer intervals, however, present peak demand
periods on a larger number of locations. Thus, given that servers cannot be moved from one fog node
to another, serving the total flexible demand in the fog requires a larger number of servers in many fog
nodes, making the employment of SERX effective only when high degradation is allowed.

One important effect of STR5 is noticed for N = 2048, where it reduces more than 400 servers in
the solution in relation to OPT, which accounts to about 30% of savings in server costs (Figure 4b).
This is due to the fact that the removal of one or two servers from each fog node does not lead to great
blocking. Serving strict workloads is the main goal of optimization, hence most servers process mainly
this type of workload. However, to fully process the demand, a fog node may have servers that remain
idle or process only a small number of strict workloads. For example, during an interval facing peak
demand, a fog node may need five servers to process all the strict demand, while most of the time
only three or four servers would be sufficient. Thus, even if degradation in the objective function in
Equation (1) is small, high infrastructure costs can be avoided if the fog node capacity is not tailored to
the peak demands in the fog area. If the blocking of a small number of requests is acceptable, STRX
becomes a viable solution.

Results for P25 and P75 scenarios are presented, yet for OPT, STRX, and SERX solutions and
24 h planning intervals. These results for the acceptance of strict latency workload are displayed in
Figure 6. Results follow the same pattern of those under the P50 scenario. All solutions result in
greater acceptance of strict latency workload under P25 than for those of P50, and less than those of
P75. The former is explained by the reduction of the strict workload, making the available servers
sufficient for dealing with a larger part of the strict demand. The opposite situation happens when
there are more strict workloads, when the strict demands are harder to serve.
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Figure 4. Results obtained for all solutions under P50 scenario. (a) strict latency workload acceptance
ratio; (b) average number of servers employed; and (c) flexible latency workload acceptance ratio in
the fog.
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Figure 5. Flexible latency workload acceptance ratio in the fog for various planning intervals, N = 2048
and P50.
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Figure 6. Results for strict latency workload acceptance under P25 and P75 scenarios.



Sensors 2019, 19, 2445 16 of 20

The acceptance of flexible latency workloads in the fog and the number of employed servers
are shown in Figures 7 and 8, respectively, for both P25 and P75 scenarios. In the P25, there are less
strict workloads. Accordingly, the total number of employed servers is reduced (Figure 8a), which
also reduces the capacity available for hosting flexible workloads (Figure 7a). For P75, there is much
more strict workload, which requires about 1700 servers (Figure 8b). The reduced demand for flexible
latency workloads (Figure 7b) allows almost 100% processing of this demand in the fog nodes for OPT,
and the employment of SERX under these circumstances leads to few gains. Finally, applying STR5
instead of OPT leads to savings about 30% for both the P25 and P75, as shown for P50. When the strict
workload demand is high (P75), the absolute number of servers is higher, thus STR5 can reduce costs
considerably with the infrastructure.
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Figure 7. Results for flexible latency workload acceptance ratio under P25 and P75 scenarios.



Sensors 2019, 19, 2445 17 of 20

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

200

400

600

800

1000

1200

1400

1600
Se

rv
er

s u
se

d
OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(a) P25.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

500

1000

1500

2000

Se
rv

er
s u

se
d

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(b) P75.

Figure 8. Results for the average number of servers employed under P25 and P75 scenarios.

All results in this section were obtained using the Gurobi Optimizer solver. The execution time
depends on the input size, mainly affected by N and the planning interval length. Scenarios with the
largest inputs, high N and 24 h intervals, took less than 350 s, which is less than 1% of the planning
interval length. Therefore, the proposed solution is feasible and, in the case of changes of demands,
the location of fog nodes can be quickly recalculated.

This section has presented an evaluation of the results produced by the multicriteria optimization
formulation employing multi-level programming proposed. Solutions considered hierarchical
objectives with and without the allowance of degradation in one of the objective functions to optimize
the others. The deployment of a fog infrastructure requires an analysis of all locations. Moreover,
mobility of end users causes different regions to have demand peaks at different times, thus, in
addition to the locations, the variation of demands must also be considered in the choice of the
location. Given the priority of the multiple objectives, OPT represents the ideal solution. However,
results for the other solutions produce interesting results: if the provider accepts the blockage of some
users, the employment of STR5 leads to large savings with physical servers in the infrastructure,
which leads to a potentially useful trade-off between service and deployment costs for the provider.
The employment of SERX, on the other hand, is seldom useful since the number of servers in each
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fog node is fixed, although the demands are variable and distributed. All results can be obtained in a
reasonable time using the proposed formulation.

6. Conclusions

This paper has studied the problem of locating fog node facilities in a fog-cloud scenario.
The purpose is to decide on the locations where fog nodes should be deployed and the computing
capacity of each node. This decision should improve the services delivered to end users, guaranteeing
that most users who depend on the fog are served, and improving the network deployed to mitigate
provider costs.

The problem was solved using a multicriteria MILP model. Two types of workload were defined
to simulate different applications in a fog-cloud system with the evaluation using real data of user
mobility. A multi-level programming approach was employed to obtain the final solution, in which
the objectives were sequentially optimized.

The proposed MILP model was also evaluated when degradation is allowed of some of the
objective functions. The results show that, due to the distribution of demands in relation to time and
locations, infrastructure costs can be reduced if the provider is willing to accept the blockage of a limited
number of users: allowing a 5% degradation in the strict latency workload service leads to about 30%
savings in the number of servers for the infrastructure deployed. Furthermore, a substantial number of
servers is needed to increase the processing of flexible demands in the fog, which significantly raises
the deployment costs: allowing an increase of less than 15% in the number of servers has little effect on
the service of flexible workload demands in the fog. Results obtained with the proposed MILP model
can be quickly obtained, thus the solution can be recalculated when there are changes in the network.

One downside of the solution proposed in this paper is that it requires the previous workload
demands for all candidate locations, which cannot be assumed for all providers, especially if a
brand-new infrastructure is designed. Furthermore, the evaluation did not consider the deployment
of a network to serve, for instance, a whole country, thus the evaluation of other datasets and bigger
regional areas (states, provinces or countries) is a possibility for future work. Despite that, the solution
presented in this paper can be applied to a metropolitan area inhabited by millions of citizens.

The distribution of demands in each location over time is a challenge for the fog provider.
A solution to this problem in the context of C-RAN was to share resources of locations with
complementary traffic patterns [20]. Therefore, solutions in the context of fog computing able to
cope with this problem are recommended as future work. Another direction to extend this work is the
consideration of other criteria, such as the energy consumption in the infrastructure or that spent by
end users.
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