
Delay Estimation in Fogs based on
Software-Defined Networking

Daniela M. Casas-Velasco∗
Email: danielac@lrc.ic.unicamp.br

William F. Villota-Jacome∗
Email: wfernando@lrc.ic.unicamp.br

Oscar M. Caicedo Rendon†
Email: omcaicedo@unicauca.edu.co

Nelson L. S. da Fonseca∗
Email: nfonseca@ic.unicamp.br

∗Institute of Computing, University of Campinas, Brazil
†Telematics Engineering Group, University of Cauca, Colombia

Abstract—Fog computing brings the advantages and power of
cloud computing to the edge of the network. Software-Defined
Networking (SDN) has been considered as a feasible solution
to cope with the complexity of the orchestration of fog devices.
Nevertheless, the use of an SDN controller introduces delays into
the transport of packet flows in the fog layer, which may impact
on the Quality of Service (QoS) of applications in the continuum
IoT-Fog-Cloud. In this paper, we propose a regression model
for predicting delay values in an SDN-based fog layer. To build
up the regression model, we constructed a dataset, performed
data cleaning, carried out feature selection, and applied different
Machine Learning (ML) techniques. Our evaluation results reveal
that the Random Forest (RF) technique overperforms Decision
Tree (DT) and Neural Network (NN) techniques on predicting
the delay in an SDN-based fog layer. Furthermore, the predicted
delay values reinforce that a fog layer based on SDN can support
different latency-sensitive applications.

Index Terms—Fog Computing, Software-Defined Networking,
Machine Learning, Internet of Things, Knowledge-Defined Net-
working, Quality of Service, Delay

I. INTRODUCTION

The ever-increasing number of mobile devices and the
exponential-raise of the number of Internet of Things (IoT)
devices have led to a significant growth in network traffic.
Handling such increase and yet meeting the Quality of Service
(QoS) requirements of delay-sensitive applications is a chal-
lenging task. Fog computing helps to meet delay requirements
by bringing the cloud to the network edge. Notwithstanding,
the design and operation of a fog is an inherently complex
problem due to [1]: the necessary interaction between fog
resources and cloud servers (i.e., service synchronization and
orchestration); the intermittent connectivity between mobile
devices and the fog; and the service-centric approach of fog
which is designed to focus on services rather than on the
location of devices.

Software-Defined Networking (SDN) is a candidate to deal
with such a complex design problem due to its features of pro-
grammability and centralized control. Indeed, these features
make fog layers more flexible, scalable, efficient, and adapt-
able [1]. However, an SDN-based fog layer can add delay to
end-to-end communications since, by default, the first packets
of a flow are forwarded to and processed by an SDN controller.

Such an increase in delay (communication and processing)
may compromise the meeting of QoS requirements of delay-
sensitive applications (e.g., Industries 4.0 and Autonomous
Vehicles) [2].

Some papers [3]–[7] have considered the delay in service
provisioning to enhance the QoS provisioning in fog comput-
ing, but these papers have not considered fog layers based
on SDN. Other papers discuss the introduction of SDN in
fog computing. In [8], the authors manage a wireless fog
infrastructure by using a hybrid SDN controller. The work
in [9] proposes an SDN-based scheme for supporting multi-
domain fog/cloud services. The work in [10] defines a frame-
work that improves the resilience of networks by including
fog nodes integrated to SDN. The work in [11] explores how
a control topology impact on real-time services in a fog-cloud
environment. Despite these contributions, to the best of our
knowledge, up to now, no other work has investigated the
impact of the delay introduced by the use of SDN in the
fog on the QoS provisioning to fog applications. We argue
that an accurate delay estimation is fundamental to meet the
QoS requirements of delay-sensitive applications in the IoT-
Fog-Cloud continuum. In this regard, recent investigations
[12], [13] indicate that the delay estimation can be carried
out by Machine Learning (ML) techniques. In fact, these
investigations introduce accurate models that contribute to the
QoS provisioning.

In this paper, we present a predictive model that allows
estimating the delay introduced by SDN in the fog layer. Our
solution follows the Knowledge-Defined Networking (KDN)
paradigm [12], which is an emerging paradigm that applies
ML to the management of SDNs. Also, we define a regression
model to predict the delay in an SDN-based fog layer. Our
prediction model can be used to determine the impact of the
delay on the delay-sensitive applications, which is fundamental
to solutions intended to improve the performance of applica-
tions in the IoT-Fog-Cloud continuum. Our solution includes
three steps from the Cross-Industry Standard Process for Data
Mining (CRISP-DM) methodology [14]: building up a dataset
from an emulated SDN-based fog layer, data cleaning and
feature selection to the created dataset, and foreseeing the

978-1-7281-0962-6/19/$31.00 ©2019 IEEE

delay. To sum up, the contributions of this paper are: i) a
dataset to model the delay of a fog layer based on SDN, ii)
a regression model that allows predicting the delay in the fog
layer; and iii) the evaluation of different regression techniques
disclosing that Random Forest (RF) is the algorithm that most
accurately predicts the delay in an SDN-based fog layer. Our
evaluation results corroborate that different delay requirements
can be supported in an IoT-Fog-Cloud continuum.

The remainder of this paper is organized as follows. In
Section II, we present the related work. In Section III, we
introduce the model to predict the delay in an SDN-based
fog layer. In Section IV, we present the delay predictions. In
Section V, we present some conclusions and implications for
future work.

II. RELATED WORK

Several investigations have addressed QoS provisioning in
fog computing. The work in [3] introduces a mathematical
model to study the processing and communication delays
in the fog. In [4], the authors investigated the performance
of IoT on fogs, using metrics such as power consumption
and service latency. The work in [5] proposed a workload
allocation model for evaluating the trade-off between power
consumption and delay in a cloud-fog computing system. The
approach in [6] studies the network components that introduce
delay and develops a delay estimation framework for fog-
based IoT applications by using predictive algorithms. The
mentioned investigations [3]–[6] propose mathematical models
that are based on assumptions about the operation of systems.
Such assumptions may not capture the dynamics of the fog
layer.

Some investigations deal with the relationship between
SDN and fog computing. The proposal in [9] introduces an
SDN-based network slicing scheme to support multi-domain
services in a fog-cloud environment. The work in [8] proposes
a solution for managing wireless fog infrastructure by em-
ploying an SDN meta-controller layer that allows adding new
controllers at runtime in failure or overhead cases. In [10],
the authors introduce a framework to improve the resilience
of networks by employing SDN. Fog nodes are used as
local decision-making elements interacting with SDN to push
updates about the flow table throughout the network. The work
in [11] explores how a control topology impact on real-time
services in a fog-cloud environment by assessing the tradeoff
between the number of control layers and the management
capacity of controllers.

To the best of our knowledge, so far, no other work has
investigated the impact of using SDN on the delays in a fog. In
this paper, we argue that an accurate delay estimation is crucial
to meet the QoS requirements of delay-sensitive applications
located on the IoT-Fog-Cloud continuum. Actually, recent
investigations [12], [13] have suggested the estimation of
network delay by the employment of ML techniques.

Furthermore, potential QoS degradation problems can be
addressed by analyzing the delay patterns in the fog layer

[15] and a precise estimation of the delay is a fundamental
step towards a solution to these problems.

III. REGRESSION MODEL TO PREDICT THE DELAY IN AN
SDN-BASED FOG LAYER

In this section, we introduce our regression model for
predicting the delay in an SDN-based fog layer by presenting:
the motivation, the methodology, the data understanding, the
data preparation, and the construction of the model.

A. Motivation

Let us consider an IoT scenario that requires deploying
services by guaranteeing QoS agreements that attend delay-
sensitive applications. In particular, an SDN controller has
been deployed in the the fog layer to deal with the re-
quirements of such IoT applications. The SDN controller is
in charge of distributing the network traffic in the IoT-Fog-
Cloud continuum according to the QoS requirements of each
application. In this scenario, two additional delay components
are introduced. First, a delay is introduced by the SDN
controller when there is no rule established to forward/route
a particular flow. This new flow is forwarded to be handled
by the controller. Second, a processing delay caused by the
application (running on the top of the SDN controller) that
deals with the first flow coming from the data plane. These
two delay components (communication and processing) can
strongly affect the QoS provisioning.

In this paper, we argue that modelling and characterizing
the delay in an SDN-based fog layer can facilitate the QoS
provisioning. The knowledge discovered can be used to au-
tomatically improve the network via the the SDN controller.
In this way, the controller can take advantage of the delay
estimation to make decisions about whether the processing of
the applications in the fog layer is feasible or not.

Furthermore, the delay model can be used as a baseline
for tuning the parameters of routing and flow classification
(mice/elephants) algorithms that also impact on QoS provi-
sioning.

B. Methodology

We followed the CRISP-DM methodology [14] to build up
a regression model intended to estimate delay values in SDN-
based fogs. In particular, we carried out three CRISP-DM
steps: Data Understanding, Data Preparation, and Modelling.
Data Understanding generates, gathers, and defines the set of
data and the set of classes related to delay forecasting. This
step is essential since datasets vary not only from one problem
to another but also from one period of time to another. Data
Preparation aims at building the final dataset by cleaning data
and selecting appropriate attributes that reduce the computa-
tional overhead and yet increase accuracy to estimate the delay.
Modelling refers to the application of different ML techniques
to predict the delay. In this step, we assess several candidate
algorithms to choose the one that best foresees the delay in a
fog layer based on SDN.

Fig. 1: Test environment for dataset construction

By following this methodology, first, we do not need to
make constraining assumptions (e.g., link speeds and traffic
model) that are usually required in traditional network mod-
elling. Moreover, SDN provides a global control to manage
large (physical/virtual) networks which is a facilitating envi-
ronment to the methodology employed. Second, we consider
the delay estimation as a regression problem since our goal is
to map a set of new input data that characterizes an SDN-based
fog layer onto a set of continuous-valued output [16].

C. Data understanding

This step constructs an initial dataset that represents
flow/packet features in an SDN-based fog layer. To construct
this initial dataset, we performed the following activities: i)
designed an experimental scenario to emulate a fog layer based
on SDN in an IoT-based context, ii) deployed the experimental
scenario; and iii) generated network traffic to fill the dataset
with data.

As depicted in Fig. 1, we designed the experimental scenario
by defining a fog layer and an IoT layer. To emulate the fog
layer based on SDN, we relied on the three architectural SDN
planes and defined the IoT layer as hosts that represent IoT-
based devices generating traffic. The fog layer followed a fat-
tree topology [17] with an SDN controller, two core switches
and four edge switches. In this scenario, the fog layer was
enabled to receive and send traffic from and to the IoT layer
that consisted of 16 hosts (i.e., four per edge switch).

To deploy the experimental scenario, for the SDN Control
Plane, we run a Ryu SDN controller [18] in a Virtual Machine
(VM) with Linux Ubuntu Server 18.04. For the SDN Appli-
cation Plane, we deployed a simple switch SDN application
(i.e., Spanning Tree Protocol) in order to handle the core and
edge switches. For the SDN Data Plane, we deployed the fat-

tree topology composed by two core switches and four edge
switches with link speed and delay of 100Mb and 10ms,
respectively. We emulated the data plane in a VM with Ubuntu
Server 14.04 by using Mininet 2.2.2 [19]. We used the D-ITG
generator [20] to generate the traffic from the IoT layer.

Once we deployed the experimental scenario, we generated
and collected data from the SDN-based fog layer by sending
traffic to the hosts located in the IoT layer. In particular,
to generate and collect such data, we used the ITGSend
and ITGRecv commands of D-ITG. These commands allow
emulating different traffic (e.g., UDP, Telnet, and DNS). The
result was an initial dataset (or raw dataset) with two general
traffic features (i.e., Source IP and Destination IP) and four
QoS performance features (i.e., bitrate, jitter, packet loss, and
time), and a target which is the delay. The initial dataset
included a total of 190429 instances. An instance is a pair
of input variables (i.e., the six features) and output variables
(i.e., the delay).

D. Data Preparation

This step builds up the final dataset. We performed the
following activities: i) explored and cleaned the data (i.e.,
remove or add instances); and ii) selected the relevant data
for delay prediction (i.e., identify and discard irrelevant and
redundant features). We carried out the above activities by
using the Weka data mining tool since it offers a compre-
hensive collection of ML algorithms and data pre-processing
procedures [21].

1) Data cleaning: This activity involves the selection of
clean subsets of data, and the use of procedures to improve
data quality concerning well-known issues such as outliers,
noise, inconsistency, and incompleteness [22]. For this clea-
ning, first, we got rid of 162 instances in the final dataset
because of inconsistent delay information such as negative
values. Second, we took out 2061 instances since the bitrate or
time values were 0, such instances presented lack of response
in the data collection or faulty in their measurement. Finally,
we removed 23489 instances because they were outliers, in-
stances that deviate so much from the other instances. We used
the Weka InterquartileRange filter to identify such outliers.
Summarizing, after performing the cleaning step, we obtained
a dataset composed of a total of 166930 instances.

2) Feature selection: This activity targets to reduce the
dimension of dense dataset by identifying irrelevant or redun-
dant features. We performed this feature selection to mainly
avoid two issues. First, the increase of computational cost
with extremely low accuracy gain, introduced by irrelevant
features. Second, the over-fitting (i.e., a ML model that fits the
training data but does not generalize well to predict new data)
introduced by redundant features. For the feature selection, we
ignored header information (i.e., Source IP and Destination
IP) since it does not describe the delay of packets. We only
considered performance information (i.e., time, jitter, packet
loss, bitrate, and delay features) to let the learned model to
fit unknown packets suitably. Ignoring header information,
that has a typical structure and inconsistent values, allows

Fig. 2: Feature selection test

obtaining a model that is independent of IP addressing and
network topologies and with a high modelling generalization.

For the feature selection, we evaluated just the four per-
formance features by the correlation attributes ranking. This
ranking was computed using the CorrelationAttributeEval
and ReliefFAttributeEval functions offered by Weka. These
functions rank the features according to the worthiness of
an attribute by measuring the correlation between it and the
target class and they also consider the value of the given
attribute for the nearest instance and the target class. As a
result, the ranking output disclosed that jitter is the most
correlated feature to our target class (i.e., delay). To select a
proper feature combination in the dataset that allows building
a more accurate ML-based model, we always maintained the
jitter as a feature. Thus, we defined four possible datasets: (i)
dataset with all features (i.e., time, jitter, packet loss, bitrate,
and delay), (ii) dataset without bitrate, (iii) dataset without
packet loss; and (iv) dataset without time.

To select the features of the final dataset and measure
its suitability for creating the delay prediction model based
on ML, we employed the convention error metrics used in
regression problems namely, Mean Absolute Error (MAE) and
Mean Squared Error (MSE) [16]. Most of the investigations
related to network traffic prediction evaluate their regression
models with these metrics [23]–[25]. MAE is the average of
the absolute error between the actual and predicted values.
MSE is the average of the squares of the error between
the actual and predicted values. MAE is simpler and easier
to interpret than MSE. However, MSE is more useful for
heavily penalizing large errors. In this work, we used Root
Mean Squared Error (RMSE) that represents the standard
deviation of the error between the actual and the predicted
values. It is important to highlight that we considered a 95%
confidence interval in the RMSE measurement. However, since
we intend to show the evolution of RMSE as the number of
instances increases in the dataset, such confidence interval is
not depicted in the figures for the sake of visual interpretation.

Ten ML regression algorithms were applied to the four
datasets to measure the corresponding RMSE. These algo-

rithms are: Linear Regression (LR) [23], three DTs [26], [27],
and six variations of Multilayer Perceptron (MLP) [28]. The
LR is a basic regression that calculates coefficients for a line
or hyperplane that best fits the training data; we set it to
use a ridge regularization technique in order to reduce the
complexity of the learned model. The DTs algorithms operate
by breaking a dataset into smaller subsets from which they
build a decision tree cumulatively. The first decision node in
a tree is the best prediction called root node. In particular,
the three DTs algorithms that we evaluated are: the RF [26],
REPTree (RT), and Bagging (BG) [27]. The MLP is a neural
network with processing neurons organized into layers that
approximate a function that best fits the real value output. For
this algorithm, we considered six variations in its configuration
(i.e., one, two and three hidden layers, each case with two and
three neurons).

Fig. 2 shows the RMSE obtained by each ML algorithm
in the four datasets. The dataset with the smallest RMSE
value is the one with all the performance features. Notably,
the mean RMSE value for such dataset is a 0.04%, 2.48%,
and 4.96% smaller than the mean RMSE values obtained for
the datasets without packet loss, bitrate and time, respectively.
In Fig. 2, we only include the results from the MLP algorithm
configured with three hidden layers and three neurons (MLP
(3,3)), since among the considered configurations it is the one
which produces the smallest RMSE value.

E. Modelling

This subsection presents the selection, assessment, and
modelling performed for finding the ML algorithm to be used
to construct the regression model. From the ten algorithms
used in the Feature selection activity, we chose the top five
algorithms with the smaller RMSE values when applied to the
dataset composed by all the features. These algorithms are:
LR, RT, RF, BG and MLP (3,3).

Before assessing the algorithms for training the dataset, it
is not possible to know which algorithm provides the most
accurate prediction of the delay. In this regard, in the assessing
activities, we evaluated the algorithms for the dataset with all
features by using cross-validation. Cross-validation allowed us
to analyze the RMSE behavior when the number of instances
increases from 1250, 12500, 25000, 50000, 75000, 100000,
125000, 150000, to 166930. The cross-validation is typically
set with k-fold = 10 to avoid under-fitting [29]. We executed
ten times each test by choosing random instances for obtaining
a total of 100 RMSE values.

Fig. 3 depicts the mean of RMSE obtained from the
executions of each algorithm with several datasets including
25000, 75000, 150000, and 166930 instances. Results revealed
that the RF DT algorithm presents the smallest value of
RMSE as the number of instances increases. In particular, the
RMSE produced by RF was 20.17%, 18.94%, 5.85%, and
0.54% smaller than those produced by MLP, LR, RT, and
BG, respectively. We highlight that DT algorithms produce
the lowest RMSE values since these algorithms can model
complex relationships between variables without needing to

25000 75000 125000 166930
Number of instances

1.0

1.2

1.4

1.6

1.8

2.0

2.2
RM
SE
 (m
s)

LR
MLP (3,3)
RF
BG
RT

Fig. 3: RMSE Evaluation

make strong modelling assumptions. Furthermore, unlike MLP
and LR, DTs can identify relevant independent variables
with the built tree and operate well when considering many
potential variables to construct a proper prediction model with
a low error [28].

The above results indicate that for our final dataset, RF is
the algorithm that best predicts the delay produced by an SDN-
based fog layer. This is explained by the fact that the RF takes
a set of decision trees, with high-variance, to build a model
with low variance by finding the average output given by most
of the individual trees. As a consequence, in the modelling step
we construct the delay regression model by using the training
dataset jointly with RF.

IV. DELAY PREDICTION

In this section, we present the results of using our model
to predict the delay in an SDN-based fog layer by randomly
taking instances from the built dataset. In such instances, the
delay values are removed. After predicting the delay, we can
compare both actual and predicted values from the model.

For the sake of readability, Fig. 4 depicts only the predict-
ing results employing 50 instances. We represent the actual
delay values with cross points and the predicted delay values
obtained by our model with square points. The difference
between both predicted and actual delay values is low. Specif-
ically, we obtained an RMSE value of 0.8227ms which
confirms that, from the algorithms assessed in the modelling
step, the RF is the most appropriate for predicting delays in a
fog layer based on SDN.

In addition to the delay prediction and in order to illustrate
the importance of our data-driven model, we characterized the
delay in the SDN-based fog layer by identifying some groups
of the most recurrent values. We processed the predicted delay
values with a ML clustering algorithm that, first, divides the
data into groups of elements with common characteristics
[16]. Second, it allows identifying the most recurrent predicted
delay values. In particular, we used the K-means algorithm
[30] that takes a statistical vector (i.e., the delay predicted
values) as an input to distribute them into clusters, where each
value belongs to the nearest cluster.

Fig. 4: Actual and predicted delay

Cluster Mean Delay (ms) Number of instances Percentage

1 0.48 117297 70.26

2 2.09 41429 24.81

3 5.26 7358 4.4

4 20.09 754 0.45

5 49.67 92 0.05

TABLE I: K-means clustering for the delay

To correctly choose the number of clusters and deter-
mine their consistency within our data-driven delay prediction
model, we used the silhouette validation method. This method
provides a measure value (i.e., ranging from -1 to 1) indicating
how similar an instance is to its cluster compared to the other
ones. In this sense, values ranging in: 0.71 to 1 mean that
a strong structure has been found; 0.51 to 0.7 a reasonable
structure has been found; 0.26 to 0.5 the structure is weak and
could be artificial; < 0.25 no substantial structure has been
found [31]. We validated different numbers of clusters (i.e.,
from 2 to 10) with silhouette. The higher value obtained by
silhouette was 0.7243 for the 2-clusters structure. However, as
the main purpose is to obtain some well-defined value ranges
for identifying supported delay-sensitive services, we selected
the 5-cluster structure which still has an acceptable silhouette
value of 0.5622 meaning that it is a reasonable structure.

Table I shows the K-means results when clustering the total
instances (166930) of the predicted delay values in 5 clusters.
Such values demonstrate that the delay in an SDN-based fog
layer mainly varies from 0.48ms to 2.09ms (i.e., clusters 1
and 2) which represents the 95.07% of the total predicted
values. The remaining 4.93% belongs to cluster 3, 4, and 5
reaching a maximum mean delay of 49.67ms. These results
indicate that the increase in delay due to the introduction of
SDN in fog layers is negligible for real-time applications.
Specifically, the SDN-based fog layer can correctly deploy
IoT-based applications in areas such as factory automation,
smart grids, and Intelligent Transport Systems (ITS) which
their required delay ranges from 0.25ms to 10ms, 3ms to
20ms, and 10ms to 100ms, respectively [32].

V. CONCLUSIONS

In this paper, we introduced a procedure for estimating the
delay in an SDN-based fog layer. We built a dataset that repre-
sents a fog layer based on SDN, performed data cleaning and
feature selection, and carried out predictions using different
ML regression algorithms. Our evaluation results corroborated
that for our dataset the used DT algorithms (i.e., RT, BG,
and RF) outperform the LR and MLP (3,3) considering
the RMSE as a metric for comparison. This happens since
the DT algorithms have the capacity of identifying relevant
independent variables during the construction of the tree for
the prediction model with a low error. As the RF produced
the smallest RMSE, we used RF to train and create the data-
driven delay regression model. Such a model predicts delay
values from 0.48ms to 2.09ms corroborating that the SDN-
based fog layer can support delay-sensitive applications. In
particular, such a fog layer can support IoT-based applications
in areas such as factory automation, ITS, and smart grids. The
dataset and the model serve as a basis for future models of
SDN-based fog layers, since they provide information about
the impact of using SDN in the fog on QoS provisioning. The
datasets used and the delay model are available on github [33].

As future work, we intend to consider variation of the RF
configuration parameters (e.g., number of trees) for enhancing
performance. Also, we plan to develop an end-to-end schedul-
ing model for addressing the QoS problem in fog computing.

ACKNOWLEDGMENT

The authors would like to thank CAPES, CNPQ, Sao Paulo
Research Foundation (FAPESP) under grant #15/24494-8, and
the University of Cauca.

REFERENCES

[1] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2359–2391, October 2017.

[2] M. Y. Arslan, K. Sundaresan, and S. Rangarajan, “Software-defined
networking in cellular radio access networks: potential and challenges,”
IEEE Communications Magazine, vol. 53, no. 1, pp. 150–156, 2015.

[3] K. Intharawijitr, K. Iida, and H. Koga, “Analysis of fog model consid-
ering computing and communication latency in 5g cellular networks,”
in PerCom Workshops. IEEE, March 2016, pp. 1–4.

[4] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of internet of things,” IEEE Transactions
on Cloud Computing, vol. 6, no. 1, pp. 46–59, January 2018.

[5] R. Deng, R. Lu, C. Lai, and T. H. Luan, “Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,” in ICC.
IEEE, June 2015, pp. 3909–3914.

[6] J. Li, T. Zhang, J. Jin, Y. Yang, D. Yuan, and L. Gao, “Latency estimation
for fog-based internet of things,” in ITNAC, November 2017, pp. 1–6.

[7] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, October 2017.

[8] A. Hakiri, B. Sellami, P. Patil, P. Berthou, and A. Gokhale, “Managing
wireless fog networks using software-defined networking,” in AICCSA,
October 2017, pp. 1149–1156.

[9] R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo, “A scalable sdn slicing
scheme for multi-domain fog/cloud services,” in 2017 IEEE Conference
on Network Softwarization (NetSoft), July 2017, pp. 1–6.

[10] A. Modarresi, S. Gangadhar, and J. P. Sterbenz, “A framework for
improving network resilience using sdn and fog nodes,” in RNDM.
IEEE, September 2017, pp. 1–7.

[11] V. B. Souza, A. Gmez, X. Masip-Bruin, E. Marn-Tordera, and J. Garcia,
“Towards a fog-to-cloud control topology for qos-aware end-to-end
communication,” in IWQoS. IEEE/ACM, June 2017, pp. 1–5.

[12] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón,
M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett
et al., “Knowledge-defined networking,” ACM SIGCOMM Computer
Communication Review, vol. 47, no. 3, pp. 2–10, September 2017.

[13] A. Mestres, E. Alarcón, Y. Ji, and A. Cabellos-Aparicio, “Understanding
the modeling of computer network delays using neural networks,” in
proceedings Big-DAMA. AC12M, August 2018, pp. 46–52.

[14] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer,
and R. Wirth, “Crisp-dm 1.0 step-by-step data mining guide,” SPSS inc,
vol. 16, 2000.

[15] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo, “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158–165, January 2018.

[16] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. C. Rendon, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9, pp.
1–99, June 2018.

[17] Y. Li and D. Pan, “Openflow based load balancing for fat-tree networks
with multipath support,” in ICC, 2013, pp. 1–5.

[18] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu, and E. C.
Popovici, “A comparison between several software defined networking
controllers,” in TELSIKS. IEEE, October 2015, pp. 223–226.

[19] R. L. S. de Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in IEEE, June 2014, pp. 1–6.

[20] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, October 2012.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, November 2009.

[22] D. C. Corrales, A. Ledezma, and J. C. Corrales, “A conceptual
framework for data quality in knowledge discovery tasks (fdq-kdt): A
proposal,” Journal of computers, vol. 10, no. 6, pp. 396–405, November
2015.

[23] Y. Zhu, G. Zhang, and J. Qiu, “Network traffic prediction based on
particle swarm bp neural network,” JNW, vol. 8, no. 11, pp. 2685–2691,
2013.

[24] S. Chabaa, A. Zeroual, and J. Antari, “Identification and prediction of
internet traffic using artificial neural networks,” Journal of Intelligent
Learning Systems and Applications, vol. 2, no. 03, p. 147, October 2010.

[25] P. Bermolen and D. Rossi, “Support vector regression for link load
prediction,” Computer Networks, vol. 53, no. 2, pp. 191–201, February
2009.

[26] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, October 2001.

[27] Y. Zhao and Y. Zhang, “Comparison of decision tree methods for finding
active objects,” Advances in Space Research, vol. 41, no. 12, pp. 1955–
1959, 2008.

[28] R. Arora, “Comparative analysis of classification algorithms on different
datasets using weka,” International Journal of Computer Applications,
vol. 54, no. 13, 2012.

[29] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, June 2013, vol. 112.

[30] Z. Fan and R. Liu, “Investigation of machine learning based network
traffic classification,” in ISWCS. IEEE, August 2017, pp. 1–6.

[31] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, November 1987.

[32] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann,
A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency
critical iot applications in 5g: Perspective on the design of radio interface
and network architecture,” IEEE Communications Magazine, vol. 55, pp.
70–78, January 2017.

[33] D. Casas-Velasco, W. Villota-Jacome, N. Fonseca, and
O. Caicedo. (2018) Regression model for the estimation
of the delay in sdn-based fogs. [Online]. Available:
https://github.com/Fernandovj/delayRegressionModel

