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Abstract This paper presents the Topology-aware
Virtual Machine Placement algorithm, which aims at
placing groups of virtual machines in data centers. It
was designed to occupy small areas of the data center
network in order to consolidate the network flows pro-
duced by the virtual machines. Extensive simulation is
used to show that the proposed algorithm prevents the
formation of network bottlenecks, therefore accepting
more requests of allocation of virtual machines. More-
over, these advantages are obtained without compro-
mising energy efficiency. The energy consumption of
servers and switches are taken into account, and these
are switched off whenever idle.

Keywords Virtual machine · Data center ·
Consolidation · Virtual machine placement · Energy
consumption

1 Introduction

Recent advances in information technology have led to
the wide adoption of the cloud computing paradigm.
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(NIST) defines cloud computing as “a model for
enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing
resources that can be rapidly provisioned and released
with minimal management effort or service provider
interaction” [1]. In a pay-per-use fashion, users can
acquire computational resources dynamically and
promptly request and release resources according to
their needs.

In virtualized data centers, servers host full ma-
chines implemented in software, called virtualmachines
(VMs). Once a VM is instantiated, it can be used to
process the target workload, and, after processing this,
that virtual machine is released so that the server can
accommodate another VM.

Cloud users usually request a set of virtual ma-
chines rather than an individual one, especially for pro-
cessing computation-intensive applications. These VMs
can work in a cooperative manner to process the work-
load. Moreover, applications create flows not only be-
tween virtual machines but also onto the Internet. For
example, data-intensive scientific workflows running
on a cloud produce both inter VM flows and flows to
the Internet [2].

One strategy for decreasing the consumption of
resources by these flows is to place communicating
virtual machines close to each other, thus requiring
shorter paths for the flows from one to the other. The
shorter the paths, the lower is the number of switches
and links visited by these flows, decreasing the energy
consumption, which is a major issue in data center
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management. In 2010, the energy consumption of data
centers was about 1.5 % of all the energy consumed
in the world and this should increase as a consequence
of the increase in the adoption of cloud computing [3].
One approach for the reduction of energy consumption
is to use servers and switches in a low consumption
mode when they are idle [4].

One of the main issues in data center manage-
ment is the determination of the physical machine
(server) on which a virtual machine will be placed.
This decision is known as the virtual machine place-
ment problem. The solution to this problem is crucial
for the minimization of the resource consumption of
a request involving a group of communicating VMs.
Consolidating jobs and network flows on few network
equipment makes it possible for idle servers and
switches to be turned off and, therefore, to save energy.
The placement of a group of communicating VMs is
equivalent to the virtual network mapping (embedding)
problem, which is NP-hard and, therefore, requires
efficient heuristics to provide solutions in an accept-
able processing time.

In this paper, we present a novel algorithm for the
virtual machine placement problem. It aims at con-
solidating groups of communicating VMs in a small
area of the data center. The algorithm uses a recur-
sive approach which tries to find solutions using the
smallest possible area of the data center. The algo-
rithm is oriented towards hierarchical topologies such
as Fat-tree and it tries to find solutions at the lowest
possible level of hierarchical topologies. The energy
consumption of both servers and switches is consid-
ered in the criterion for the placement of VMs. The
algorithm has been extensively evaluated using simu-
lation. We employ the Fat-tree topology and show that,
in scenarios with heavy traffic between VMs, the pro-
posed algorithm uses network resources efficiently,
admitting a larger number of VMs than other algo-
rithms. Moreover, these advantages are obtained with-
out compromising energy efficiency. Results in this
paper revise results of a preliminary investigation [5]
and extend the study by considering diverse traffic
scenarios.

The rest of this paper is organized as follows. In
Section 2, we present related work on virtual machine
placement. In Section 3, we describe the proposed
algorithm. In Section 4, we present the evaluation of
the algorithm. Finally, in Section 5, we draw some
conclusions and suggest future work.

2 Related Work

Recently, the problem of virtual machine placement
in data centers has been studied in the literature [6–
16]. Algorithms for VM placement can have different
goals, such as energy efficiency and reduction of re-
sponse time. These strategies generally involve virtual
machine consolidation, which aims at concentrating
the workload on the smallest possible number of
servers, and network flows consolidation, which aims
at concentrating flows passing in a smaller number of
switches. This section reviews different strategies for
VM placement dealing with energy and networking
issues in virtualized data centers.

Considering the common three-tier data center
architecture [17], the authors in [6] propose an energy-
aware placement strategy, including both servers and
switches in the decision. The metric proposed favors
high server utilization and penalizes the selection of
underutilized servers and considers the load of queues
at the switches. This approach evaluates the trade-off
between load balancing of traffic and consolidation of
workloads, being particularly relevant in data centers
running data intensive jobs that impose low com-
putational loads. Their approach does not, however,
consider heavy internal traffic demands.

The algorithm in [6] was enhanced by selecting a
set of servers with high connectivity and then choos-
ing the server with the smallest available computing
capacity. Such change improves the energy efficiency
and prevents the formation of network congestion [7].

Multi-objective evolutionary algorithms were em-
ployed to solve the placement problem in [8]. The
objectives were the consolidation of VMs on a small
set of processors as well as the minimization of associ-
ated energy costs for servers and network equipment.
A Fat Tree topology and tiered applications, such
as a web server with an associated database, were
considered in the performance evaluation. The algo-
rithms are suitable for enhancement of the application
performance and energy consumption.

In [9], the data center is modelled as a set of serv-
ers, with algorithms for virtual machine placement
and migration designed to save energy without violat-
ing service-level agreements (SLA’s). The problem is
modeled as a bin-packing problem, and the proposed
solution is a variation of the best fit decreasing algo-
rithm. Results show potential energy savings without
a significant number of SLA violations. Although the
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authorsmanage to consolidate virtual machines on few
servers, they do not account for the impact of network
traffic, which may not be consolidated efficiently.

In [10], the virtual machine placement problem
is addressed. This approach also considers the data
center as a set of servers. In addition to traditional
approaches designed to reduce energy consumption, it
employs active cooling control and the authors con-
clude that the proposed algorithm performs well in
medium to large data centers. They conclude that
active cooling control results in relevant savings.

In [11], the authors use a multi-dimensional bin-
packing model for virtual machine placement. Each
computational resource (processor and disk) is a bin,
and a heuristic is proposed to achieve high server uti-
lization, based on the euclidean distance of the current
VM location. The numerical evaluation considers only
servers in the data center.

Algorithms for the placement of precedence-
constrained parallel virtual machines are introduced
in [12]. The authors propose reducing energy con-
sumption by consolidating virtual machines on the
available physical machines yet not degrading the
makespan. They assessed the scheduling proposed
using benchmarks of real-world distributed applica-
tions and achieved efficient results.

In [18], energy reduction is achieved by considering
only consolidation of network flows in a Fat Tree
topology. Correlated flows are identified and assigned
to network paths in a greedy way. Link rate adaptation
and the switching off of idle switches are the tech-
niques employed to save energy. Simulations, based on
real traces of Wikipedia, demonstrated relevant sav-
ings in the number of switches used and the algorithm
outperforms two others presented in the literature [19,
20].

Although energy consumption has been widely
used as a criterion for VM placement, some algo-
rithms do not adopt it [13–16]. In [13], the authors
proposed a virtual machine placement algorithm based
on tree-like topologies. It considers inter-VM traffic
and it views the data center as a set of servers and
switches. The placement decisions are based on net-
work graph cuts. However, the solution proposed was
not intended to be executed online.

In [14], the authors studied traffic patterns in a
production data center and proposed a traffic-aware
placement algorithm. Their strategy is based on the
knowledge of the network topology as well as on an

estimation of the traffic matrix. The algorithm sepa-
rates clusters of VMs and servers, and thenmatches these
clusters to minimize the communications between
VMs.

The work in [15] proposes a network-aware virtual
machine placement algorithm,which separates the data
center into partitions of servers and virtual machines
with these partitions mapped according to a bin-
packing problem. The algorithm does not consider
forwarding data center traffic to the Internet.

The authors of [16] proposed two VM placement
algorithms for thePortlandnetwork architecture. These
algorithms aim to allocate communicating virtual
machines in physical proximity to avoid the creation
of network bottlenecks. One algorithm was designed
for rapid placement of closely located VMs, while the
other tries to identify network regions that can best host
the VMs and then, using the first algorithm,maps these
VMs on the servers. Such an approach can reduce the
intensity of traffic in the links of top-level switches.

Other approaches for the migration of VMs take
advantage of the data center network topology [21,
22]. Migration algorithms can balance the load among
servers by transfering VMs from overloaded to under-
loaded servers while taking into consideration the
migration paths in the spanning tree of the network
topology [21]. These algorithms are formulated as a
packing integer program, with relaxation and rounding
techniques for fractional solutions tailored to unimod-
ular constraints. Such a solution relieves the load on
overloaded servers and yet satisfies edge constraints
of the spanning tree.

The S-CORE [22] VM live migration scheme
adopts a distributed approach for collecting informa-
tion about network flow for making decisions about
VM migration. S-CORE alleviates congestion from
the core layers of a data center in a three tier topology
and can be implemented as a plugin in Xen hypervisor.

The algorithm proposed in this paper considers an
arrival model for groups of virtual machines as well as
their pattern of communications. Moreover, the selec-
tion of paths is performed jointly with the decision
to mapping VMs onto servers, in a way to minimize
the use of switches needed in certain areas of the data
center.

Table 1 presents a comparison of the approaches
addressed and the algorithm proposed, in relation
to energy and network awareness, VM group-based
arrival process and both internal (between VMs) and
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Table 1 Comparison of related papers

Approach Network awareness Energy awareness Arrival in groups Internal traffic External traffic Flow path allocation

[6] Yes Yes No No Yes No

[7] Yes Yes No No Yes No

[8] Yes Yes Yes Yes Yes No

[9] No Yes No No No No

[10] No Yes No No No No

[11] No Yes No No No No

[12] No Yes Yes Yes No No

[18] Yes Yes No Yes Yes Yes

[13] Yes No No Yes No No

[14] Yes No No Yes No No

[15] Yes No No Yes No No

[16] Yes No Yes Yes No Yes

This paper Yes Yes Yes Yes Yes Yes

external (to the Internet) traffic. The proposed algo-
rithm has several of the features of other algorithms in
the literature and it is the only one to consider arrival
of groups of VMs and both internal and external traf-
fic to the data center, deciding on path allocation for
these network flows.

3 Proposed Algorithm

In this paper, the data center network is modeled as a
graph, with vertices representing servers and switches
and edges representing links. Requests for allocation
of groups of VMs are also modeled as a graph, with
vertices representing virtual machines and edges rep-
resenting the flow between pairs of VMs. The notation
presented in Table 2 will be used to present the
algorithm.

The topology of the data center network defines
the connectivity of servers and, consequently, the pat-
terns of communication. Communication between two
virtual machines placed on different servers can take
longer and consume more energy in less connected
data center networks. Most of the current data centers
topologies are hierarchical. They generally follow the
model proposed in [17], although other hierarchical
topologies (and, in some cases, recursive ones), such
as Fat-tree [23], BCube [24] and DCell [25] have been
proposed to enhance scalability.

The aim of the algorithm proposed here, entitled
Topology-aware Virtual Machine Placement (TAVMP),

is to position groups of communicating virtual
machines in small areas of a hierarchical data cen-
ter network so that few switches are needed to serve
the network flows. In order to achieve this goal, the
data center is divided in hierarchical areas containing
switches and servers.

In TAVMP, a parameter j ≥ 0 is used to describe
the level of an area in the hierarchical topology. For
example, the Fat-tree topology (Fig. 1) has three lev-
els. The racks are at level 0, POD’s (groups of racks)
at Level 1, and the whole data center (a set of POD’s),
at the highest level, Level 2.

TAVMP has a recursive approach and works as fol-
lows. It receives as input the VM group and the data
center topology and divides the topology into smaller
areas, using an auxiliary algorithm to find subgraphs
(SUB). Recursion is then performed for each area,
and, when the lowest level area is reached, the place-
ment decision is made, i.e., which servers will be used
to host the virtual machines, as well as the network
paths for the flows. This placement decision is made
by another algorithm, entitled Placement in Current
Area (PCA), which evaluates areas for placement of
groups of VMs. When the recursion finishes, there
may be various options for the placement of the VMs.
The area chosen is the one which involves the min-
imum power consumption. Furthermore, if none of
the areas are suitable for accommodating the group of
VMs due to lack of resources, PCA is then applied to
areas on the next higher level area and, if necessary,
on the data center level. When TAVMP decides on the
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Table 2 Notation used in this paper

Notation Description

D = (E,L) graph representing the data center

E = H ∪ S H is the set of servers/hosts and S is the set of switches

L links representing the physical connections

availableMIPS(h), h ∈ H available processing resources (in MIPS) of server h

availableRAM(h), h ∈ H available memory of server h

availableBW(l), l ∈ L available bandwidth in link l

paths(h1, h2, length) function that returns all the paths between servers h1

h1, h2 ∈ H, length ∈ N and h2 with length length

pathsPair(h1, h2,D) function that returns all the paths between servers h1

h1, h2 ∈ H and h2 in the area of the data center represented byD

pathsT oInternet (h) function that returns all the shortest paths between

h ∈ H server h and the switch connected to the Internet

G = (V,F) graph representing a VM group

V the set of virtual machines

F the set of network flows between the VMs

requestedMIPS(v), v ∈ V demanded processing resources (in MIPS) by virtual machine v

requestedRAM(v), v ∈ V demanded memory by virtual machine v

requestedBW(f ), f ∈ F demanded bandwidth by flow f

adj (v), v ∈ V the adjacent vertices of v, i.e., the VMs that are connected to v

f low(v1, v2), v1, v2 ∈ V function that returns the flow f ∈ F between v1 to v2

requestedBWInternet (v) requested bandwidth for the flow between v and the Internet.

v ∈ V The value is 0 if v does not communicate with the Internet

suitable(h, v) function that is true if the host h is suitable for the virtual

h ∈ H, v ∈ V machine v, i.e., if availableMIPS(h) and availableRAM(h) are,

respectively, greater or equals to

requestedMIPS(v) and requestedRAM(v)

host (v), v ∈ V function that returns the chosen host h ∈ H to place v

place(v, h), v ∈ V, function that chooses server h to host the VM v

h ∈ H

energy(v, h), v ∈ V, function that estimates the power increase for server h to host the VM

h ∈ H v according to the adopted energy model

final placement for the virtual machines of a group,
these VMs are instantiated and the flows are allocated,
updating the network status.

TAVMP is presented in Algorithm 1. The input is
the data center network, the virtual machine group
(request) and the highest level of the hierarchy. In
Line 1, subgraphs of the network representing areas
at a lower level are generated. All these subgraphs
are visited (Line 3) and recursion for each area is
conducted (Line 4). The area with the least power con-
sumption increase is selected (Line 5). If all attempts
to allocate VMs at the lower level fail, a new attempt
is made for the next higher level, as shown in Line 7.
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Fig. 1 Fat-tree architecture
divided into levels. Each
circle is a physical server,
and each rectangle a switch

Algorithm 2 presents the PCA algorithm. The input
to this algorithm is the graph representing an area in
the topology and the group of VMs. The idea is to
choose the servers with resources available to support
the computational demands of the VMs (Line 4), but
which will minimize the increase in total power con-
sumption. Moreover, these servers must be connected
by links with enough bandwidth to support the com-
munication demands for the group. In the beginning,
the algorithm marks all the virtual machines as unas-
signed. When a server is chosen to host a VM, it is
marked as assigned. One VM at a time is placed, and
all the servers are analyzed in order to find the one that
minimizes energy consumption.

The PCA algorithm not only places the VMs on
servers, but also decides the paths to accommodate
the flows. A path is chosen to minimize the number
of switches visited by a flow. This step considers both
the flows between VMs, Lines 5 to 8, and the flows
to the Internet, Lines 9 to 11. If the energy increase
caused by the choice of server and paths is the lowest
found for that area, that server is selected to host the
VM, which is then marked as assigned. Although in
Lines 14 and 15 a server is chosen to host a VM, this
designated hosting server can be changed in future
interactions if a more energy efficient placement is
found. The PCA algorithm succeeds if all the VMs
are placed (Line 16), otherwise, it fails. When suc-
cessfully, the overall power increase is calculated
(Line 17).

Algorithm3presents the SUB algorithm.SUB finds
subgraphs in the Fat-tree topology. However, TAVMP
may accept other topologies as long as SUB is
changed to divide the subgraphs representing areas
in the given topology. The input to SUB is the area
to be divided and its level, and its output is a set of
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subgraphs. If the algorithm is at the lowest level,
the SUB algorithm finishes (Line 3). Otherwise, the
algorithm builds new subgraphs using a server not rep-
resented in any generated subgraph (Line 6). In Line 8,
the paths between this server and the others in the
same subgraph are defined and then included in the
current subgraph (Line 10). For the Fat-tree topology,
the path length is 2j . For example, in Fig. 1, for j = 2,
the length is 4. If we choose the leftmost server, the
resulting paths would lead to the other three servers
of the first POD, including all the four switches. The
algorithm finishes when all the servers are represented
in some subgraph.

The computational complexity of the SUB algo-
rithm, paths, pathsPair and pathsToInternet depends on
the network topology. Nevertheless, for TAVMP, they
can be computed beforehand, since the data center
topology does not change over time. Thus, the compu-
tational complexity for such computation is O(1). The
complexity of TAVMP in conjunction with SUB will
be derived here. The recursion in TAVMP basically
iterates over all the data center servers. In the worst
case scenario, all the levels are analyzed. If J is the
number of topology levels, TAVMP iterates over all
servers J times. Each host is evaluated for each virtual
machine in the group. Finally, for each host, all the
flows from that VM are analyzed. For each VM, there
are at most |V| flows, which corresponds to the exis-
tence of flows to all the other VMs in the group as well
as to the Internet. Therefore, the complexity depends
on J ·|H| · |V| · |V|. Since the network topology is fixed

and J is a constant, the computational complexity of
TAVMP algorithm is O(|H||V|2).

4 Performance Evaluation

The performance of the TAVMP was compared to that
of the algorithm presented in [9], hereinafter called
the Power Aware Best Fit Decreasing algorithm
(PABFD), and to the performance of a Round Robin
algorithm (ROUND). PABFD is a well known energy-
aware algorithm found in the literature, and Round
Robin has been used to represent a typical load balanc-
ing strategy. The algorithm in [6] was not considered
since it considers queues at the switches and repre-
sents a different topology.

4.1 Simulation Settings

For the evaluation of the proposed algorithm, the
Cloudsim Simulator [26] was used to simulate the place-
ment of virtual machines. The simulator was extended
by including the data center network topology and
an energy consumption model. Results were obtained
performing 100 different executions for each point in
the graph and using a 95% confidence interval derived
by the independent replication method.

Fat-tree topology was used in the simulations as
in [23], with the only difference being that a switch,
entitled Internet switch, is connected to the core
switches, as illustrated in Fig. 1. All rack, aggregation
and core switches are commodity switches, each con-
taining forty-eight 1 Gigabit ethernet (GE) ports and
four 10 GE ports. The Internet switch contains 128 10
GE ports, and each core switch is connected to it.

Servers can be of two different types and four
different configurations of virtual machines were con-
sidered in order to simulate a realistic environment
(Table 3). The type of server and VM is uniformly
distributed among those described in Table 3. The
CPU usage of the VMs is taken from the data
set in [27].

In the simulations, different sizes of the data cen-
ter were evaluated by varying the Fat-tree parameter
K between 10 and 16. The numbers of machines and
switches (the Internet switch is ignored) for each value
of K are: for K = 10, there are 250 servers and 125
switches; for K = 12, 432 servers and 180 switches;
for K = 14, 686 servers and 245 switches; for
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Table 3 Configuration of VM and data center physical servers

Configuration MIPS RAM (Mb) CPU cores

Server Hp ProLiant Ml110 G4 Xeon 3040 1860 4096 2

Server Hp ProLiant Ml110 G5 Xeon 3075 2660 4096 2

VM Instance 1 2500 870 1

VM Instance 2 2000 1740 1

VM Instance 3 1000 1740 1

VM Instance 4 500 613 1

K = 16, 1024 servers and 320 switches. In each sim-
ulation, virtual machines are placed at the beginning
of the simulation, creating a data center occupancy of
50 %.

4.2 Energy Consumption Model

A wide range of factors influences the energy con-
sumption of data centers. The consumption of servers
and switches mainly depends on the CPU processing
and on the network load, respectively.

We adopt the server consumption model used
in [27]. Whenever a server is idle, its consumption is
about 70 % of the consumption under full load, a con-
sumption which can be described as linear in relation
to the CPU load. When no workload is being pro-
cessed, a server can be switched to a low consumption
mode, thus saving energy. Although a linear function
can be employed, we base our model on a real data
set of the SPEC power benchmark,1 interpolating the
measured power for each CPU usage level accord-
ing to the current processing load, which is associated
with the VM load hosted.

The energy model for switches [28] is calculated by
considering three components: the switch chassis, line
cards and ports. The following formula expresses this
model:

Pswitch = Pchassis + nlcPlc +
r∑

i=0

nri · Pri

Pswitch is the total power consumed by a switch.
Pchassis is the fixed power for maintaining it powered

1http://www.spec.org/power ssj2008/

on; Plc is the power consumed by each line card in use
and nlc is the number of line cards. Each ri is a poten-
tial transmission rate; nri and Pri are the number of
ports transmitting at rate ri and the power used by a
port transmitting at rate ri , respectively.

Table 4 shows the power consumption values
used in the paper. The network status is periodically
analyzed, and idle servers and switches are poweredoff.

4.3 Traffic Model

Considering the single arrival of a virtual machine
is not realistic because user perform computation by
requesting groups of virtual machines. For example,
in applications employing MapReduce, a group of vir-
tual machines is in charge of processing the same
workload, and the VMs communicate with each other,
creating flows in the data center network. Each group
has a variable number of VMs and each VM can pro-
duce network flows, either connecting a pair of virtual
machines or a virtual machine to the Internet.

According to [29], the VM arrival and departure
processes on different time scales exhibit self simi-
larity. We model them on a 1-minute time scale, as
suggested in [29], and use the generator described in
[30] to create the self similar series, using the param-
eters described in Table 5.

Since a group of VMs departs at the same time, we
match the generated number of VMs leaving the data
center (departure process) with a group of the same
size in execution to identify those leaving the data cen-
ter. For the inter VM traffic, we generate the values of
transmission rates according to the suggested in [13].
In each group, one VM has a flow directed to the
Internet and there is a pre-defined probability that two
VMs communicate. If there is a flow between a pair of

http://www.spec.org/power_{s}sj2008/
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Table 4 Power consumption of data center equipment

Switches Power Consumption (W)

Type of switch Pchassis Plc Pr

Rack, aggregation or core 146 Included in 0.42

Chassis

Internet 1558 1212 27

Servers Power Consumption (W)

CPU load (%)

Type of server 0 10 20 30 40 50 60 70 80 90 100

Hp ProLiant Ml110 86 89.4 92.6 96 99.5 102 106 108 112 114 117

G4 Xeon 3040

Hp ProLiant Ml110 93.7 97 101 105 110 116 121 125 129 133 135

G5 Xeon 3075

VMs, a Gaussian distribution is used to generate the
transmission rate. Table 5 summarizes the values used
for generating sizes of groups in the arriving/departing
series, as well as traffic demands. Six scenarios were
generated, identified by S and T: S is the size of the
groups (MG or LG) and T is the traffic demand (LT,
MT or HT).

4.4 Numerical Evaluation

In the simulation, the blocking ratio and energy effi-
ciency were assessed to evaluate the performance of

TAVMP. The blocking ratio is the percentage of VMs
that were not placed in relation to the total number
of requests for virtual machine allocations and occurs
whenever the algorithm can not find servers on which
to place group of VMs.

The blocking ratios produced by TAVMP, PABFD
and ROUND are displayed in Fig. 2. To facilitate the
visualization, Fig. 2a shows a range of blocking ratio
up to 10 %, while Fig. 2b and c use a range of 20 %
and 100 %, respectively. The Round Robin algorithm
does not lead to optimized solutions since it tends
to use as many different servers as possible to host

Table 5 Parameters used for the evaluated scenarios. M stands for mean, SD for standard deviation and H for the Hurst parameter

Parameter Model

Medium groups Self-similar series

(MG) M: 10; SD: 5; H: 0.7

Large groups Self-similar series

(LG) M: 20; SD: 10; H: 0.7

Low-intensive traffic Internet flow: Gaussian Pair flow: Gaussian

(LT) M: 2 Mbps; SD: 0.2 Mbps M: 5 Mbps; SD: 0.5 Mbps

Probability: 0.75

Medium-intensive traffic Internet flow: Gaussian Pair flow: Gaussian

(MT) M: 4 Mbps; SD: 0.4 Mbps M: 10 Mbps; SD: 1 Mbps

Probability: 0.75

High-intensive traffic Internet flow: Gaussian Pair flow: Gaussian

(HT) M: 10 Mbps; SD: 1 Mbps M: 25 Mbps; SD: 5 Mbps

Probability: 0.75
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(a) TAVMP (b) PABFD

(c) ROUND

Fig. 2 Blocking ratio produced by the evaluated algorithms as a function of the data center size for the Hurst (H) parameter equals
to 0.7

groups of virtual machines, placing them on different
areas of the data center and using many network links.

The algorithm PABFD provides a similar perfor-
mance when compared to TAVMP, except for the
LG-HT and MG-HT scenarios. A huge difference in
blocking occurs for the LG-HT scenario, since almost
all the virtual machines are blocked by PABFD, while
TAVMP manages to maintain the blocking ratio close
to 3% forK = 10 and below 1% forK between 12 and
16. These scenarios represent heavy network traffic.
Since TAVMP aims at restricting the area of the data
center, flows between pairs of virtual machines tend to
use fewer switches. Their links are thus seldom fully
occupied, allowing the network to servemore requests.

Energy efficiency is defined in this paper as the
total energy consumed in the data center, including
that by both physical servers and switches, divided by
the number of VMs accepted. The results for differ-
ent data center sizes and configurations are shown in
Fig. 3. The results given by ROUND are not shown
since its blocking ratio was unacceptable. The use of
LG-HT PABFD led to wide error bars due to the varia-
tion in the number of VMs accepted, as a consequence
of the arrival of large groups.

The MG-HT and LG-HT blocking ratios in Fig. 2b
and the energy efficiency in Fig. 3 are correlated. The
PABFD algorithm consolidates the virtual machines
on fewer servers; however, in the MG-HT and LG-HT
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(a) K = 10 (b) K = 12

(c) K = 14 (d) K = 16

Fig. 3 Energy per virtual machine for different sizes of data center

scenarios, it is not always possible due to the forma-
tion of network bottlenecks by the heavy traffic. Even
with processing resources available, virtual machines
may not be placed, thus causing blocking. This sit-
uation is less likely to occur when using TAVMP,
since communicating VMs are closer together and use
fewer network switches and less bandwidth, leaving
the remaining links available to host new requests. As
a result, for heavy traffic demands, TAVMP outper-
forms PABFD in almost all scenarios, specially when
large groups create several network flows.

The Hurst parameter of the arrival process was var-
ied to evaluate the impact of the arrival process self

similarity and the performance of the algorithms. An
increase in the Hurst parameter value implies longer
periods of consecutive arrivals of groups of VMs (in
a similar way, the increase of the H value of a packet
flow implies on longer bursts of packets) which yield
to higher blocking, especially for large groups of VMs
and small data centers.

Figures 2a, and 4a, b display the blocking ratio
for H equals to 0.7, 0.8, and 0.9, respectively, for
the TAVMP algorithm. For K = 10 and medium size
groups, the blocking ratio varied from 0.25 % to 4 %
while for LG-LT and LG-MT from 2 % to 13 % and
for LG-HT it varied from 3 % to 14 %. Such high
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(a) H = 0.8

(b) H = 0.9

Fig. 4 Blocking ratio produced by the algorithm TAVMP as a
function of the data center size for different values of the Hurst
(H) parameter

blocking when H = 0.9 can imply violation of ser-
vice level agreements, incurring in financial losses to
service providers. For data center size of K = 12 the
blocking ratio doubles for large groups of VMs and
quadruplicates for medium size groups.

Figure 5 shows the blocking ratio for the PABFD
algorithm and different values of the Hurst parameter.
The blocking ratio for LG-HT was close to 100 % and
it was not displayed in Fig. 5 for better visualization
of the other curves. The PABFD algorithm does not

(b) H = 0.9

(a) H = 0.8

Fig. 5 Blocking ratio produced by the algorithm PABFD as a
function of the data center size for different values of the Hurst
(H) parameter

minimize the path length between two communicat-
ing VMs, leading to a higher consumption of link and
switch resources as well as a faster exhaustion of avail-
able resources. As a consequence, the blocking ratio
of groups of VMs with high intensive traffic increases
considerably. While for large groups with intensive
traffic (LG-HT) the data center becomes inaccessible,
for medium groups and intensive traffic (MG-HT) the
blocking ratio reaches unacceptable values, such as
12%, 15%, and 18%, for H equals to 0.7, 0.8, and 0.9,
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(b) K = 16

(a) K = 14

Fig. 6 Energy per virtual machine for data center sizes K = 14
and K = 16 and H = 0.9

respectively. Such blocking ratio is much higher than
those produced by TAVMP algorithm, which were at
most 0.25 %, 1.5 % and 4 %, for H equals to 0.7, 0.8,
and 0.9, respectively.

The error bars for large groups in Figures 4 and 5
are wide. As mentioned earlier, this happens due to the
variation of virtual machine acceptance ratios of large
groups. The increase of the Hurst parameter does not
decrease the blocking ratio given by ROUND which
was close to 100 %.

Figure 6 shows the energy consumption per VM for
data center sizes K = 14 and K = 16, and H = 0.9.
A slight increase in energy consumption occurred and,
consequently, a slight decrease in energy efficiency.
This happens since long bursts of groups of VMs
tend to consume larger amounts of resources in short
period.

4.5 Time per request

In order to assess the scalability of the proposed algo-
rithm, we present an evaluation of execution time
of TAVMP for different sizes of data centers and
requests. In addition to the scenarios evaluated in the
previous subsection, we have included the scenario
of larger groups and data center. These scenarios are
shown in Table 6. The evaluation was performed using
a Hurst parameter value equal to 0.7 and HT traffic,
since other variation of traffic and Hurst parameter
does not significantly affect the execution time.

XG groups were assessed only for Fat-tree topol-
ogy with K = 40 given their large size. Results for the
time evaluation are presented in Fig. 7. The execution
time for data centers size up to K = 16 is negligible.
The execution time for the largest data center and
medium and large groups is less than 1 second, which
is quite acceptable. On the other hand, scenarios with
extra large groups tend to demand a few seconds more
to be processed. Such overhead is still acceptable,
since these large groups of tasks demand a longer pro-
cessing time, and the few additional seconds do not
impact significantly on the response time.

Groups with over 100 VMs require an execution
time of around 3 minutes, which is generally not
accepted, although, if such requests are not very fre-
quent, the algorithm can still be used. Therefore,
TAVMP is scalable and feasible for employment in
real data centers.

Table 6 Additional parameters used for the evaluation of
TAVMP time per request. M stands for mean, SD for standard
deviation and H for the Hurst parameter

Parameter Description

Extra large groups (XG) Self-similar series

M: 50; SD: 25; H: 0.7

Fat-tree 16000 servers

K = 40 2000 switches
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(c) K = 40

(a) K = 10 (b) K = 16

Fig. 7 TAVMP execution time for data center sizes K = 10, K = 16 and K = 40

5 Conclusion

This paper has introduced the Topology-aware Virtual
Machine Placement algorithm designed to consolidate
groups of communicating virtual machines in small
areas of the data center. Its performance was assessed
using simulations, and it was compared with two
other algorithms. Results show that the proposed algo-
rithm accepts more virtual machines without impact-
ing energy efficiency. This is due to the consolidation
of the flows in small areas, thus minimizing the use
of network resources and avoiding network bottle-
necks. The employment of the TAVMP algorithm
helps to reduce the blocking ratio of requests, which

is essential for cloud providers to provide high acces-
sibility in service-level agreements. The algorithm
presented does not consider different classes of ser-
vice. As a consequence, it accepts a higher number
of less demanding groups of virtual machines than
accepts more demanding groups. Moreover, the pro-
posed algorithm is scalable and can be used for large
data centers with thousands of servers and switches.

As future work, the TAVMP algorithm can be eval-
uated for other network topologies and traffic patterns.
We are currently working on extending TAVMP for
the problem of load balancing in federated data center
scenarios. In such a scenario, data centers are typically
heterogeneous and their cooling infrastructure plays
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an important role in energy efficient operations. The
employment of the Power Usage Effectiveness metric
(PUE), defined by the Green Grid consortium [31], is
quite useful in the evaluation of the possible impact
of virtual machine migration between data centers
can have on energy efficient operations. Furthermore,
TAVMP can be modified to adopt different policies for
the selection of network paths to help avoiding the for-
mation of bottlenecks. The design of novel algorithm
for the provisioning of differentiated services is also a
promising direction.
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