
Computer Networks 56 (2012) 3274–3286
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Optimal algorithms for the batch scheduling problem in OBS networks

Gustavo B. Figueiredo a, Eduardo Candido Xavier b, Nelson L.S. da Fonseca b,⇑
a Department of Computer Science, Federal University of Bahia, Brazil
b Institute of Computing, University of Campinas, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 August 2011
Received in revised form 16 April 2012
Accepted 11 June 2012
Available online 19 June 2012

Keywords:
OBS networks
Channel scheduling
Batch scheduling
1389-1286/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.comnet.2012.06.005

⇑ Corresponding author. Tel.: +55 19 37885878; fa
E-mail addresses: gustavo@dcc.ufba.br (G.B.

unicamp.br (E. Candido Xavier), nfonseca@ic.un
Fonseca).
This paper introduces optimal batch scheduling algorithms for the problem of scheduling
batches of bursts in optical burst switching networks. The problem is modelled as a job
scheduling problem with identical machines. The consideration of previously scheduled
bursts in the scheduling allows such modeling. Two optimal algorithms with polynomial
time complexity are derived and evaluated. Results show that the algorithm that allows
re-scheduling of previously scheduled bursts leads to preferred solutions.

Moreover, an extended version of the JET reservation protocol is proposed for efficient
handling of batches of bursts. Results obtained via simulation prove the superior perfor-
mance of the BATCHOPT algorithm.
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1. Introduction

In Optical Burst Switching (OBS) networks, packets are
aggregated at edge nodes to create transmission units
called bursts. A control packet is transmitted out-of-band,
ahead of the burst, so that bandwidth can be reserved for
the data burst. The control packet carries information
about the burst, such as size and offset time (defined as
the time interval separating the arrival of the control pack-
et and that of the data burst). A scheduling mechanism
then reserves bandwidth of the output channels of nodes
in the core network for incoming bursts, based on the
information carried by their control packets. Since the
nodes at the network border do not wait for the confirma-
tion of bandwidth reservation to transmit a burst, the
incoming burst will be discarded at a core node if band-
width has not been reserved. [16–23,25]

The Just-Enough-Time (JET) [1] is a commonly used
protocol for resource reservation in OBS networks. JET re-
serves the channel for the duration of the transmission of
a burst, starting at its expected arrival time (given by the
. All rights reserved.
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offset time minus the burst processing time). If this request
for bandwidth reservation is granted, a new offset time is
calculated, and this information is inserted into the control
packet being forwarded to the next hop in the route.

Since bursts have different offset times, they may arrive
in a different order than that of their control packets. This
can lead to fragmentation of the occupancy of the output
channels, since the occupancy pattern of output channels
typically alternates between periods of occupancy and per-
iod of idleness, called void intervals. These void intervals
can be used to accommodate the transmission of new
bursts. Indeed, a void interval, Ij, defined by its starting,
sj, and its ending time, ej, can be allocated to a burst with
an arrival time, t0, and departure time, t00 if and only if sj 6 t0

and t00 6 ej.
Most of the existing algorithms for burst scheduling

provide greedy processing to individual bursts [23,24,26–
28]. However, this approach can lead to the loss of bursts
which could be avoided if the arrival time were previously
known. One way of ameliorating this type of loss is to gath-
er reservation requests during a certain time interval, and
then schedule them as a batch of requests. The objective
of this process is to maximize the number of bursts
transmitted, i.e., to minimize the loss of bursts. For this
reason, the occupancy of the output channels by the
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bursts can be modeled as an interval graph [32] with the
solution of the burst assignment problem given by the
solution of the coloring of an interval graph problem.

Previous work [10,11] on batch scheduling in OBS net-
works have addressed the channel reservation problem
as a job scheduling problem with non-identical machines.
However, such modeling leads to an NP-hard problem. As
a consequence, heuristics have been proposed to solve
the problem. In this paper, we show how the problem of
batch scheduling in OBS networks can be formulated as a
job scheduling problem with identical machines. We, then,
introduce two optimal algorithms: one for networks with
no prioritized requests and which has linear time complex-
ity and the other for networks with prioritized requests
which involve polynomial time complexity. In addition to
low computational complexity, the results derived via sim-
ulation show that the proposed algorithms produce a low-
er probability of blocking than existing heuristics. These
algorithms differ in respect to the re-scheduling of
previously scheduled bursts. Moreover, the JET protocol
is extended to operate efficiently with batch scheduling
algorithms. Such an extension is compatible with the JET
protocol, since its operation is exactly that of the JET proto-
col for scheduling individual bursts.

This paper is organized as follows. Section 2 presents
concepts related to batch scheduling. Section 3 presents re-
lated background and notation. Section 4 reviews related
work. Section 5 presents the new optimum batch schedul-
ing algorithms. Section 6 presents an extended version of
the JET protocol. Section 7 presents numerical examples
and Section 8 draws some conclusions.

2. Batch scheduling in OBS networks

To minimize the chance of loss of burst, an algorithm
should allocate bandwidth for a burst so that the chances
of allocation to upcoming bursts is maximized. A channel
is considered available for accommodation of a burst if
there is a void large enough to accommodate the request.
If no such channel is available, the request will be lost.

The scheduling algorithms proposed in [29–31,20]
employ greedy strategies to reserve resources, but these
strategies use only the information on individual control
packets when they arrive without consideration of the
overall demand during intervals between control packet
arrivals.

Fig. 1a provides an example of a situation in which
greedy algorithms fail to allocate resources for bursts: Let
Fig. 1. Examples of how batch schedu
A, B and C be control packets arriving in this order and
let their corresponding bursts arrive in that same order.
These bursts can be accommodated only in channels 1
and 2 (dashed lines). Note that if channel 2 were used for
burst A and channel 1 for burst B (as could happen if the
algorithms proposed in [20,31,30] were used) there would
be no way to accommodate burst C. On the other hand if
channel 1 is used by burst A and channel 2 by bursts B
and C, the result is a no loss scenario. This example illus-
trates the failure of scheduling due to lack of knowledge
about future requests.

To decrease the loss of bursts, a new class of batch
scheduling algorithms were proposed in [10,11]. The idea
here is to group the largest possible number of control
packets and process them together. After gathering infor-
mation on the control packets, they are ordered and as-
signed to the channel with the smallest index value that
has available wavelength to accommodate the burst
(Fig. 1b). One main characteristic of the heuristics pre-
sented in [10,11] is that they collect requests arriving in
time intervals of a fixed duration before processing them.
This strategy, however, generates losses when the begin-
ning of batch processing succeeds a request starting time.
3. Background and notation

The batch scheduling problem in OBS networks (de-
noted BS-OBS) can be stated as follows: Let M be a set of
k channels, and let I be a batch of n requests formed by
control packets. On each channel mi 2M there can be pre-
viously scheduled requests and voids resulting from lack of
channel occupancy. These can be used to allocate the
requests in order to maximize the number of requests
granted. Each request in the control packet Jx =
(sx,ex,wx) 2 I is identified by a 3-tuple; the arrival time of
the burst, (sx), the finishing time of the burst, (ex) and the
request weight indicating the priority of the scheduling
burst, (wx). The objective is to find an allocation for a
subset of requests such that the sum of the weights of
the requests granted is maximized.

The offset time of a control packet (sx,ex,wx) arriving at
time t is given by sx � t. The control packet must be pro-
cessed during this offset time, otherwise its corresponding
burst will be lost.

Next, some definitions will be introduced to facilitate
the understanding of the mathematical formulation of
the BS-OBS problem.
ling can avoid losses of bursts.



Fig. 2. Example where heuristic in [10] is inadequate.
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Let G = (V,E) be a graph, where V(G) represents the set of
vertices of G and E(G) the set of edges. Given a vertex
u 2 V(G), we define the adjacency/neighborhood of u by Ad-
j(u) = {v 2 V(G); (u,v) 2 E(G)}. A subgraph H of G is a graph
such that V(H) # V(G) and E(H) # E(G). The degree of ver-
tex u in the graph G, denoted by d(ujG), is the size of the set
Adj(u). The subgraph H of G is induced by V(H) if for every
pair u,v 2 V(H) we have that (u,v) 2 E(H) if and only if
(u,v) 2 E(G). A clique of a graph G is a set C # V(G) such
that "u,v 2 C; (u,v) 2 E(G). A clique C is maximal if there
is no other clique C0 in G such that C � C0 [32].

The graph G is called an interval graph if there is a cor-
respondence/bijection between the set of vertices and a set
of intervals on the real line, such that there is an edge be-
tween two vertices if and only if the correspondent inter-
vals intersect, i.e., (u,v) 2 E(G), Iv \ Iu – ; [32]. Interval
graphs have several properties that can be used to solve
problems in combinatorics. The fact that interval graphs
can be recognizable and colorable in linear time [5,9] will
be explored in this paper.

Interval graphs are typically used in the solution of the
job scheduling problem, which can be stated as follows: let
I = {J1 = (s1,e1,w1), . . . , Jn = (sn,en,wn)} be a list of n jobs.
Moreover, there are k machines with the same processing
capacity that are used to process these jobs. Initially, all
machines are free starting at time 0. The problem is to se-
lect a sub-list I0 # I with maximum total weight such that
no pair of jobs allocated to the same machine intersect
their processing intervals.

This problem is known as the job scheduling problem
with identical machines (denoted by S-IM) since there is
no restriction on which machine each job can be pro-
cessed; otherwise it is called job scheduling problem with
non-identical machines (denoted by S-NIM). In S-NIM
problem, there are restrictions on the assignment of jobs
to machines, i.e., for each job Ji there is a list Ni of machines
on which that job cannot be scheduled. The solution of the
BS-OBS problem introduced here is based on an S-IM for-
mulation in which jobs are represented by the requests
for bandwidth allocation and machines are represented
by the output channels of core nodes.

4. Related work

In [10], four heuristics for the solution of the OBS sched-
uling problem were introduced. All the heuristics involved
time complexity O(nk log(N)), where n is the number of re-
quests being processed, k the number of channels and N
the number of previously allocated requests. In these heu-
ristics, requests are modeled as interval graphs G. They are
briefly described below:

Smallest Vertex Ordering (SLV): In SLV, requests are allo-
cated in the smallest last order, i.e., the first request allo-
cated is the one corresponding to vertex v1. The vertices
v1, . . . ,vn of a graph G are considered to be ordered in a
smallest last fashion if vi has the smallest degree in the
subgraph induced by the vertices v1, . . . ,vi. If a request can-
not be allocated in any channel, it is discarded and the pro-
cess is repeated for all other vertices on that ordering.

The idea behind the SLV algorithm is that if a graph has
only a few vertices with large degree, then if these requests
are allocated first, a small number of channels is used for
them. Nonetheless, SLV can generate great loss of requests
as reported in [10]. The problem with this heuristic is illus-
trated in Fig. 2. The requests are shown in Fig. 2a and the cor-
responding interval graph is presented in Fig. 2b. Vertex ‘‘A’’
is the one with the highest degree in the smallest last order-
ing, and consequently the first one to be processed. However,
scheduling ‘‘A’’ generates the loss of all the other requests.

Maximal Cliques First (MCF): The MCF heuristic com-
putes the order in which the requests are going to be pro-
cessed and also the requests that will be discarded. This
heuristic computes all the maximal cliques of G and then
sorts them chronologically. Let {C1,C2, . . . ,Cm,} be the set
of maximal cliques of G ordered in a way such that Ci � Cj

for i < j. The algorithm processes the requests of cliques in
increasing order. If the size of a clique Cj exceeds the num-
ber of channels k, then the jCjj � k requests with smallest
finishing time are discarded, since necessarily M � k re-
quests are discarded if there is a clique of size M in the
interval graph such that k < M.

This heuristic can also produce poor results. Consider-
ing the example presented in Fig. 2, when the heuristic
MCF is executed, the first clique to be processed (see
Fig. 2) is the clique with vertices ‘‘A’’ and ‘‘B’’. Since there
is only one channel, request ‘‘A’’ is scheduled and all the
remaining requests are discarded.

Smallest Start-time First Ordering (SSF): with this heuristic,
requests are ordered and processed according to their start-
ing time. Poor results can also be produced as illustrated by
the example in Fig. 2. In this example the first request to be
processed is request ‘‘A’’ and all other requests are discarded.

Largest Interval First Ordering (LIF): with this heuristic,
requests are ordered and processed in non-increasing or-
der of duration. Considering again the example presented
in Fig. 2, it is possible to see the poor behavior of this heu-
ristic. Once ‘‘A’’ is allocated, all other requests are dis-
carded. It is interesting to note that even when the total
length of the other requests is greater than the size of
‘‘A’’, all other requests are discarded.

These heuristics depend on the structure of the interval
graphs generated; for some graphs good solutions can be
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found, but not for others. Thus, the main problem with all
of the proposed approaches is that there is no guarantee
that the best solution will be achieved.

In [11], Charcranoon et al. present a heuristic that
schedules the maximum number of requests, considering
only one channel. This heuristic Max Stable Set algorithm
(Max-SS) [11] is presented next. It tries to find a maximum
independent set to maximize the number of disjoint re-
quests that can be scheduled on a channel. Max-SS finds
one independent set for each channel, with a time com-
plexity of O(n logn) which is the complexity needed to find
the maximum independent set in an interval graph.
Fig. 3. Batch scheduling with identical machines.
5. Optimum algorithms for the BS-OBS problem

The job scheduling formulation of the BS-OBS problem re-
lies on the list I of reservation requests as well as the list S of
requests already allocated to the channels. The problem is to
find a subset of requests of I with a maximum total weight
that can be scheduled on the channels, since two intersecting
requests cannot be scheduled on the same channel.

The heuristics in [10] were based on the formulation of
the job scheduling problem with non-identical machines.
Thus, if some incoming request intersects a request already
scheduled to a machine m, then the second request cannot
be scheduled for this machine.

In [12], it was introduced an optimal algorithm for the
job scheduling problem with non-identical machines
which has computational complexity of O(nk+1). However,
its computational complexity is prohibitive for the solution
of the BS-OBS problem because the exponential depen-
dency on the number of channels (k).

The approach proposed here is the formulation of the
BS-OBS problem as a job scheduling with identical ma-
chines problem. For that, instead of trying to accommodate
requests of I into the existing voids generated by previ-
ously allocated requests S, all requests in the set I [ S are
considered for scheduling. Moreover, all previous allocated
requests in S are rescheduled. In this way, the BS-OBS
problem can be formulated as a S-IM problem.

Fig. 3 illustrates this idea. At a given moment, channel 1
is reserved for the time period [6,11] and channel 2, for the
time period [2,7] and [11,15] then a set of incoming re-
quests A ([1,5]), B ([8,11]), C ([12,16]) and D ([5,9]) ar-
rived. These incoming requests are grouped with those
previously allocated in a single batch, and both channels
become elegible for allocation by any of the requests of this
newly formed batch.
5.1. Optimum algorithm with linear time complexity

A formulation for the batch scheduling problem with
linear time complexity is proposed here. The algorithm,
called GreedyOPT, is suitable for networks in which all re-
quests have the same priority. It involves two major steps.
In the first, the problem is transformed into a job schedul-
ing problem with identical machines, thus allowing the
employment of fast exact algorithms.

In the second step, the algorithm in [6], proposed for job
scheduling with identical machines, with time complexity
O(nmax{log(n),k}) is used. This algorithm process sequen-
tially the requests of the newly formed batch. It tries to
schedule the requests on one of the channels. If a given re-
quest cannot be scheduled, the algorithm tries to replace it
with one of the requests already scheduled that has latest
ending time. The correctness of the algorithm is given by
Theorem 1.

Theorem 1. If one of the requests in a set has its duration
shortened by the anticipation of its ending time, the number of
requests granted is equal to or higher than the number of
requests in the original allocation for that set of requests.
Proof. See p. 147 in [2]. h

GreedyOPT considers both the already allocated re-
quests and the incoming new ones for the new schedule.
GreedyOPT processes the new requests in chronological or-
der to accommodate them into one of the k channels. If this
is not possible, the requests already allocated but with a
data burst yet to arrive can be deallocated if a new assign-
ment decision will improve the burst loss ratio. A heap is
used to sort the requests, which leads to a O(S log(S)) com-
plexity for this step. The GreedyOPT is presented in
Algorithm 1.

Algorithm 1. GreedyOPT

INPUT
The set of the output channels of a node i, (k), a set of

new requests (I), and a set of requests already
allocated for which data bursts have not yet arrived
(S).

OUTPUT
A maximum cardinality set I0.
GreedyOPT
1: N jIj + jSj
2: Sort all the requests in I [ S in chronological order of

starting time
3: Add the requests sequentially into the set I0

4: If it is not feasible to allocate all the requests,
remove from I0 that request with latest ending time.
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The GreedyOPT algorithm optimally solves the batch
scheduling problem with identical machines when all re-

quests have the same priority. This is shown in Theorem 2.

3278 G.B. Figueiredo et al. / Comput
Theorem 2. Let t0 be the earliest time at which more than k
requests in J intersect each other and ey = maxj2Jej. Then, the
optimal schedule excludes this yth request.

Proof. See Proposition 1 in [6]. h

The next theorem establishes the computational com-
plexity of GreedyOPT.

Theorem 3. The computational complexity of the GreedyOPT
algorithm is O(Nlog(N) + Nk) = O(Nmax(log(N),k)), where k
is the number of output channels of an OBS node, n the
number of incoming requests, S the set of requests already
allocated with the data burst yet to arrive s = jSj, the
cardinality of the set S and N = n + s.
Proof. See Appendix A. h
5.2. Optimal algorithm with polynomial time for prioritized
requests

This section presents an algorithm with polynomial
time complexity, entitled BATCHOPT, for networks in
which requests have different priorities. As with the
GreedyOPT algorithm, it is implemented in two steps. In
the first step, the problem is transformed into a problem
of job scheduling with identical machines problem. In the
second step, an adaptation of the algorithm presented be-
low is used to schedule the requests.

Arkin and Silverberg [12] proposed an optimal algo-
rithm (denoted here AS) for the job scheduling problem
with identical machines which will be described next.
Our algorithm extends the AS algorithm to include the
set S of requests already scheduled in the solution.

AS builds an interval graph G considering incoming re-
quests and it computes all the maximal cliques of this
graph; it then sorts the cliques into an increasing order
for the starting time, C1, . . . ,Cr. Fig. 4 exemplifies this
construction.

A flow-graph G0 is then constructed as follows: first cre-
ate a vertex v0 and for each clique Cj (j = 1, . . . ,r) create a
vertex vj, then, create directed arcs (vj,vj�1) for each Cj, with
cost 0 and infinite capacity. Let M be the maximum size of
a clique among the cliques C1, . . . ,Cr. For each clique Cj, cre-
ate a directed arc (vj�1,vj) with cost 0 and capacity equal to
M � jCjjthat represents a dummy job. For each job Ji

belonging to cliques Cj, . . . ,Cj+l, create a directed arc
(vj�1,vj+l) with capacity 1 and cost wi. This arc represents
all cliques Ji belongs to (Cj to Cj+l). The aim is to find a flow
from v0 to vr in G0 of (M � k) units and with minimum cost.
In the solution to this minimum cost flow problem in G0,
the arcs along the flow correspond to jobs that must be dis-
carded whereas arcs with zero flow correspond to jobs that
should be scheduled.

Fig. 5 exemplifies the construction of the flow-graph G0

for the interval graph G in Fig. 4.
Four vertexes are created, an initial vertex, v0, and three
vertexes associated with cliques of the interval graph: v1

corresponding to C1, v2 corresponding to C2 and v3 corre-
sponding to C3. Then, it is created the bottom arcs (v3,v2),
(v2,v1), (v1,v0) with cost 0 and infinite capacity. The maxi-
mum size of a clique in this example is M = 3 (cliques C1

and C3). Notice that M = jC1j = jC3j. No dummy arc was cre-
ated for these cliques, since the capacity of the arcs should
be M � jC1j = M � jC3j = 0. It is created only one dummy arc
(v1,v2) for C2, with capacity 1 and cost 0. Then it is created
the arcs associated with jobs. Since job a belongs only to C1,
arc (v0,v1) with capacity 1 and cost wa is created. Similarly,
it is created arcs associated to jobs b, d, e, and f, since each
one of these jobs belongs to only one clique. The exception
is job c, that belongs to C1, C2 and C3, and in this case the arc
(v0,v3) is created, but also with capacity 1 and cost wc. The
construction of the flow graph finishes and the problem
that remains is to find a minimum cost flow from v0 to v3

with 3 � k units of flow.

Theorem 4. The algorithm AS [12] optimally solves the job
scheduling problem with identical machines.
Proof. See [12] for the proof. h

To include already scheduled jobs in the AS algorithm, it
is necessary to have a formulation that can be applied to
BS-OBS.

The set S of previously scheduled requests can be easily
introduced in the S-IM problem by assuming that they have
a weight of infinity for each request Ji 2 S. This guarantees
that the already scheduled requests will remain scheduled
in the final solution. The formulation of the proposed algo-
rithm, entitled BATCHOPT, considers both the requests to
be scheduled and those already scheduled in the search
for an optimal solution, as in [12]. The pseudo-code of the
BATCHOPT algorithm is presented next (Algorithm 2).

Algorithm 2. BATCHOPT
Input
k channels of a node i, a set I of requests and a set S of

previously scheduled requests that intersects with
some of the requests in I.

Output
A subset I0 # I of maximum weight with a feasible

schedule.
BATCHOPT
1: Set infinity weights for each request in S.
2: Construct an interval graph G representing I [ S.
3: Order the maximal cliques of G chronologically.
4: Construct a flow graph G0.
5: Compute a flow of size M � k and minimum cost.
6: Allocate all requests that correspond to arcs in G0

that have a flow equal to zero.

The optimality and feasibility of the schedule produced
by the algorithm can be proved using the following
theorem.
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Theorem 5. The BATCHOPT algorithm optimally solves the
OBS scheduling problem. Moreover, each request already
being scheduled remains scheduled on its previously sched-
uled channel.
Proof. See Appendix B. h

We now establish the time complexity of the proposed
algorithm.

Theorem 6. The BATCHOPT algorithm has time complexity
O(N2 log(N) + N), where N = jI [ Sj, i.e., N is the number of
requests in the batch plus the number of requests in S.
Proof. See Appendix B. h
Fig. 6. Example of data burst loss due to the use of fixed size acceptance
window.

Fig. 7. Time diagram of the JET-D reservation protocol.
6. Adaptation of the JET protocol

In this section, a variation of the JET protocol adapted
for batch scheduling is proposed.

The batch scheduling algorithms previously proposed
collect requests during a time window, called acceptance
window, and then employ various heuristics to schedule
the requests. It was assumed that each intermediary node
have a fixed acceptance window D used to gather requests
to form a batch. However, such an approach leads to
unnecessary loss of bursts, since the fact that requests
can arrive at a network node with different offset times
is ignored. Fig. 6 illustrates this type of loss. In this figure,
two control packets arrive during the fixed size time win-
dow. Burst A arrive at time tA and the burst B arrive at time
tB. While burst A will be processed by the batch scheduling
policy and will be potentially transmitted, burst B will not
be considered by the scheduling policy and it will be lost,
because it arrived during the fixed time window.

To overcome this problem, we propose an extension of
the JET protocol, called JET-D, which is employed jointly
with batch scheduling algorithms. In this variation, the
acceptance window is added to the offset time, as illus-
trated in Fig. 7. Furthermore, the instant of time that ends
the period for collecting requests and begins the process-
ing period, called the processing threshold, is determined
in a way that it occurs prior to the arrival of the next arriv-
ing burst, ensuring that all requests are processed before
the arrival of their burst.

In the JET protocol, the source node computes the offset
time based on the estimated processing time of all inter-
mediary nodes along the route to the destination node.
The offset time computed at the source node s with desti-
nation d, along a route with intermediary nodes H is

Ts
d ¼

X
i2H

Pi

 !
þ Pd;

where Pi is the estimated processing time at an intermedi-
ary node i and Pd is the processing time at the destination.

When an intermediary node i 2 H receives a control
packet, it processes the request. If the request is scheduled
then it computes a new offset time decreasing its process-
ing time, and sends this information in the control packet
to the next node in the route. Let Ti

d be the offset time of
the control packet received at time td by node i which
has d as a destination. Node i computes, at time ti, a new
offset time as:



Fig. 8. Topology used in the first simulation scenario.
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Tiþ1
d ¼ Ti

d � ðti � tdÞ:

The processing time (ti � td), at node i is then decreased.
A worst case estimation of the computation of the offset

time at the source node is assumed, which leads to an off-
set time at the source node computed os:

Ts
d ¼

X
i2I

Pi

 !
þ jIjDþ Pd:

Ts
d includes the value jIjD, which accounts for all accep-

tance time windows of all intermediary nodes. This offset
time should be enough to avoid losses, since no node can
take more time than (Pi + D) to process one control packet.
In general, the processing time of each node is of the order
of microseconds, and the acceptance window is of the or-
der of milliseconds. In this case, the processing times are
almost negligible, and an upper bound Pmax can be
established.

Since at any given OBS node there can be several control
packets from distinct source–destination pairs waiting to
be processed and these control packets can have different
offset times, it is important to ensure that each control
packet will be processed before the arrival of its corre-
sponding burst. Thus, a processing threshold (L) should
be determined by the data burst arriving first and this
should be computed for every arrival of a control packet.
The threshold is given by L = (tR + D) � d, where R is the
minr tr þ Ti

j þ D
n o

, d is the batch processing time, and tr

the arrival time of control packet r with offset time Ti
j at

node i on its way to node j. The request which determines
the processing threshold is the request for the burst which
arrives first.

It is important to note that the JET-D extension can be
used by batch scheduling algorithms, as well as by greedy
scheduling algorithms, by making D = 0.

When the processing threshold is reached, the batch is
processed. All bursts going to the same destination are
grouped and the information about the new batch goes
into the same control packet to decrease the overhead [8].

The inclusion of the acceptance window into the offset
time can increase the end-to-end delay experienced by the
packets assembled in a burst. However, this can be amelio-
rated if the maximum tolerable end-to-end delay is consid-
ered when computing the acceptance window as:

D ¼
D� Ts

j

H
; ð1Þ

where D is the maximum tolerable end-to-end delay, Ts
j

the offset time of a burst j at the network border and H
is the number of hops from source to destination.

An alternative way of reducing the introduction of delay
is to use prediction of burst size at the assembly edge node,
as proposed in [15,14].

7. Numerical examples

In this section, the proposed algorithms are compared to
existing algorithms, although the algorithm MAX-SS is not
considered since it considers only OBS networks with a single
data channel. To evaluate the performance of the algorithms,
simulations were carry out using the simulator OB2S (Optical
Burst Switching Simulator) [13]. The algorithms were
implemented in C, using the library available in [4].

Each simulation run consisted of the allocation of
10.000 requests to the available channels. Each experiment
was executed 20 times, with different seeds and the confi-
dence interval for the mean value was computed using a
confidence level of 95%.

Two distinct scenarios were considered in the simula-
tions: in the first scenario, the experiments reported in
[10] were reproduced in order to evaluate the performance
of the algorithms and compare the results with those in the
literature. In the second scenario, topologies of real net-
works with a more realistic set of parameters were em-
ployed. The results are reported in the following
subsections.
7.1. Topology with one bottleneck node

Fig. 8 shows the topology used in the first scenario. In
this topology, there is a single OBS node connected to four
sources and a single destination node. Each input link has
two wavelengths (one for data and one for control signal-
ing). The link connecting the OBS node to the destination
has five wavelengths (four for data and one for control sig-
naling). Each wavelength has 2.5 Gbps capacity (OC-48).

As in [10], we defined the constant s as the time re-
quired to transmit 1024 bits on one of the wavelengths,
i.e., s ¼ 1024

2377728000 ¼ 4:3e� 7 s. Bursts were generated
according to a Poisson distribution with mean size,
b ¼ 81920 bits. The offset time was generated according
to a uniform distribution in the interval [130s,150s]. The
acceptance window had an arbitrary value of 100s, which
was approximately 40 ls.

Fig. 9a and b plots the blocking probability as a function
of the load. For the sake of visual interpretation, the block-
ing probability values were plotted for different ranges of
loads in these two figures. The lowest blocking probability
is produced by the BATCHOPT algorithm, followed by the
GreedyOPT algorithm. Although both BATCHOPT and
GreedyOPT optimally schedule requests for a given batch,
only the BATCHOPT guarantees that requests already
scheduled in previous batches remain scheduled in the
current computation. As a consequence, only the new
requests which do not overlap with already scheduled
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Fig. 9. Blocking probability for each algorithm.

Fig. 10. Blocking probability as a function of the difference in offset time.

Fig. 11. Blocking probability as a function of the size of the acceptance
window.
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requests are added to the final solution. With GreedyOPT
algorithm, requests already scheduled in previous batches
may be dropped during the computation of future batches,
thus increasing the blocking probability.

Another experiment conducted using this simulation
scenario aimed to evaluate the effect of the offset range
in the probability of blocking. The offset range is defined
as the difference between the highest and lowest value of
the offset time, Tmax � Tmin. The value of Tmax was fixed at
200s and the value of Tmin was gradually increased. In this
experiment, the network load was of 99% of the link
capacity.

Fig. 10 shows that, as observed in the experiments re-
ported in [10], there is an increase in blocking probability
as the offset range is increased due to the retro-blocking
phenomenon of the JET signaling protocol, in which a res-
ervation request can be blocked by another reservation
starting after it.

Fig. 11 shows the blocking probability as a function of
the size of the acceptance window. In this experiment, as
in [10], the difference between the highest and lowest off-
set time is adjusted to 50s and the network load to 50s
with the acceptance window varying from 10s to 190s.

It can be seen that, except for the BATCHOPT and
GreedyOPT algorithms, the blocking probabilities produced
do not depend on the increasing size of the acceptance win-
dow. In fact, the success of allocation by heuristics depends
on the pattern of the starting and ending times of the re-
quests rather than the number of requests.

Under BATCHOPT and GreedyOPT, the blocking proba-
bility decreases as the acceptance window increases, since
increasing the acceptance window also increases the num-
ber of requests composing each batch. The optimal algo-
rithms schedule the maximum number of requests in
each batch resulting in lower blocking probabilities than
those given by heuristics.
7.2. Simulations using real network topologies

In these experiments, the simulations used real topol-
ogy networks such as NSFNet and Abilene, shown in
Fig. 12. Each link represents a fiber with 32 wavelengths
with 2.5 Gbps of capacity. The processing time for a control
packet and the time required to configure the switching
fabric was 50 ls. Each node at the edge can be either
source or destination; for each request, source and destina-
tion were drawn from a uniform distribution. Traffic was
generated according to a Poisson process, and the burst
size followed a negative exponential distribution.



(a) Backbone NSFNet (b) Backbone Abilene

Fig. 12. Real topologies used in the simulations.
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7.2.1. Comparison of grouping strategies
As previously discussed, the dimensioning of the accep-

tance window is challenging in complex topologies with
several source–destination pairs. The scheduling algorithm
used in these simulations was the BATCHOPT since it
produced the best results in the evaluation reported in
Section 7.1. This algorithm was employed with JET-D
strategy, as well as with the FIXED strategy proposed in [10].

Fig. 13 displays the blocking probability as a function of
the size of the acceptance window. While the acceptance
window is smaller than the smallest offset time, the
blocking probability produced by BATCHOPT is constant,
regardless of the grouping strategy adopted. When the
acceptance window becomes larger than the smallest off-
set time, the performance of FIXED deteriorates. Since the
acceptance window is larger than the smallest possible off-
set time, the bursts corresponding to the requests in the
batch arrive at the network nodes even before their
requests have been processed, causing burst loss.

7.2.2. Comparison of the batch scheduling algorithms
In this section, the two algorithms are evaluated using

topologies of real network. In these experiments, JET-D
was employed as grouping strategy.

First, the impact of the acceptance window size (D) was
evaluated. Each request had a unit cost and the network
load was 1000 Erlangs. Fig. 14 shows the blocking proba-
bility as a function of D and Fig. 15 shows the mean num-
ber of requests in each batch as a function of D. The
heuristics LIF, MCF, SSF and SLV were not sensitive to
Fig. 13. Blocking probability for the strategies of JET-D and FIXED as a
function of acceptance window size.
changes in the acceptance window size due to the fixed or-
der in which the requests were processed, since the accep-
tance of requests depends more on the adjacency structure
of the interval graph representing the requests than on the
number of requests processed.

Both, BATCHOPT and GreedyOPT can benefit from an in-
crease in the mean number of requests in each batch. The
larger the acceptance window for requests, the better is
the performance. This is due to the fact that when more re-
quests are processed at one time, more information about
the intersections between requests is available. The algo-
rithms can then make the best choice for scheduling the re-
quests in the batch.

In practice, the window size should be adjusted as a
function of the timing requirements of the traffic, given
by Eq. (1). In order to avoid impacting the performance of
applications with time constraints, D was set to 1ms [3,7].

Fig. 16 reveals the blocking probability as a function of
network load in a scenario where all requests have the
same priority. Increasing the network load also increases
the blocking probability. With the increase in network
load, the size of maximal cliques of the interval graph asso-
ciated with the requests increases, which explains the
growth in the blocking probability. This is a common
behavior in all algorithms evaluated. However, the in-
crease in blocking probability is less when the BATCHOPT
algorithm is used. Compared to the SLV algorithm (the
algorithm that produced the worst results), the BATCHOPT
algorithm produced gains of 42% in blocking probability.
Since all requests had the same priority, the algorithm al-
ways select the set of requests of maximum cardinality
Fig. 14. Blocking probability as a function of the window acceptance size.



Fig. 17. Blocking probability as a function of network load (considering
QoS).

Fig. 15. Average number of requests per batch as a function of acceptance
window size.
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and, thus, discards those with least number of request. The
gains in the blocking probability of LIF, MCF and SSF in
relation to SLV are 12%, 8% and 2%, respectively.

The algorithm that produced the second lowest block-
ing probability was GreedyOPT, with a gain of 35% when
compared to SLV. Although the GreedyOPT algorithm is
optimum it does not guarantee that already scheduled re-
quests remain scheduled, i.e. a requests already scheduled
can be blocked by those being processed in the current
batch.

Simulations considering requests with different priori-
ties (Quality of Service) were also conducted. In these sim-
ulations, five classes were considered with the class
associated with a request being randomly picked from a
uniform distribution. The weight of the classes involved
follow the pattern: w1 = 1, w2 = 2, w3 = 4, w4 = 8, w5 = 16,
where wi is the weight of class i.

Fig. 17 shows the blocking probability resulted from the
algorithms when the requests have different priorities.
Again, the algorithm that produced the lowest blocking
probability was BATCHOPT algorithm followed by Greedy-
OPT algorithm. Moreover, the difference in the blocking
probability among all evaluated algorithms is lower when
Fig. 16. Blocking probability as a function of the network load.
compared to Fig. 16. This happens because BATCHOPT and
GreedyOPT try to maximize the sum of weights of the re-
quests in the batch. Thus, while trying to do this, a higher
number of requests with low weight can be discarded by
those algorithms.

Fig. 18 shows the distribution of loss per class. Note that
BATCHOPT provides the lowest blocking probabilities for
the classes with higher priorities, concentrating most of
the losses in those with lowest priority. In other words,
BATCHOPT was capable of providing differentiated services
for distinct classes of service. This does not happen with
the other policies, which leads to an ‘‘almost uniform’’ dis-
tribution of losses.

The time for execution of the algorithms was also as-
sessed. Simulations were run on a Intel Pentium Core 2
Duo machine with 2.8 Ghz clock, 4 GB RAM, and OpenSuse
11.1 operating system. The execution time was measured
using the time command. Five sets of 500 requests were
randomly generated. Ten simulations were executed for
each set with the mean execution time for each set com-
puted as well as the overall mean execution time. Gain
was defined as the percentage difference in relation to
the lowest execution time. They are displayed in Table 1.
The slowest algorithm is the SLV algorithm while the SSF
is the fastest. GreedyOPT was at most 6% slower than
SSF. On an average it was 32% faster than LIF algorithm
and 3% slower than the SSF. BATCHOPT was at most 10%
slower than SSF. On an average it was 28% faster than LIF
algorithm and 7% slower than SSF.
8. Conclusions and future work

This paper has introduced two optimum algorithms for
the batch scheduling problem in OBS networks, they are
based on a formulation of the problem of scheduling jobs
with identical machines. Such a formulation considers
not only the unprocessed requests but also those sched-
uled in the problem formulation. Although GreedyOPT
has linear computational complexity, BATCHOPT produces
the lowest blocking probability ratio. The blocking ratio gi-
ven by these two algorithms are lower than those given by



Fig. 18. Blocking probability per class as a function of load.

Table 1
Relative gain in execution time.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Mean

Reference value 7.2 � 10�2 8.0 � 10�2 6.8 � 10�2 7.6 � 10�2 7.2 � 10�2 7.3 � 10�2

LIF 37% 27% 22% 40% 33% 32%
SSF 41% 30% 25% 42% 37% 35%
MCF 33% 26% 26% 34% 25% 28%
SLV 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
GreedyOPT 36% 27% 25% 40% 31% 32%
BATCHOPT 33% 25% 23% 36% 27% 28%
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other existing heuristics. The difference between the pro-
posed algorithms is that one (BATCHOPT) maintains the
original scheduling of the already scheduled requests
while the other (GreedyOPT) does not. Results derived
via simulation show that this proposed BATCHOPT sched-
uling algorithm outperforms those previously proposed
ones. BATCHOPT algorithm produces blocking probability
42% lower than that SLV, the algorithm with the highest
blocking probability, and 30% lower than LIF, the third low-
est blocking probability. Moreover, the BACTHOPT algo-
rithm is only 7% slower than the SSF algorithm, which is
the fastest heuristic. Besides that, BATCHOPT penalizes less
the high priority classes in prioritized networks than do
other existing heuristics. Furthermore, this paper has ex-
tended the JET reservation protocol for the consideration
the scheduling of bursts although it remains compatible
to the original JET.

The use of BATCHOPT is then recommended for net-
works which support prioritized traffic. However, if the
execution time is a critical requisite and the network does
not support prioritized traffic, GreedyOPT would be the
best option.

As future work, it might be interesting to investigate the
impact of different batch creation strategies as well as the
impact of acceptance window size for each class of service,
on the network performance. Another interesting point is
to investigate how to use the proposed optimal batch
scheduling algorithms jointly with proportional QoS poli-
cies in order to obtain an integrated solution for end-to-
end proportional QoS.
Appendix A

This appendix presents proofs related for the Greedy-
OPT algorithm.

Theorem 3. Let k be the number of output channels of an
OBS node, n the number of incoming requests, S the set of
requests already allocated but with data bursts yet to arrive,
and s = jSj, the cardinality of the set S. The computational
complexity of the GreedyOPT algorithm is O(Nlog(N) + N-
k) = O(Nmax(log(N),k)), where N = n + s.
Proof. It takes O(slog(s)) to determine which unprocessed
requests should be organized in a heap. It takes O(N log(N))
to order the requests, as well as O(Nk) to verify the
availability of a channel to accommodate the new request
(line 4 of the GreedyOPT). Therefore, the complexity of
GreedyOPT is O(s log(s) + N log(N) + Nk). Making s = N in
s log(s) 6 N log(N), the complexity of GreedyOPT is thus
O(2N log(N) + Nk) = O(N log(N) + Nk) = O(N(log(N) + k)). Con-
sidering the maximum value of the (log(N) + k), we have
O(Nmax(log(N),k)). h
Appendix B

This appendix provides proofs related to the BATCHOPT
algorithm.



G.B. Figueiredo et al. / Computer Networks 56 (2012) 3274–3286 3285
Theorem 5. The BATCHOPT algorithm optimally solves the
OBS scheduling problem. Moreover, each already scheduled
request remains scheduled on the scheduled channel.
Proof. Since each request in S has a weight equal to infin-
ity, and the algorithm computes a minimum cost flow, the
algorithm will not use any of the arcs corresponding to
requests in S. Therefore, the requests in S will necessarily
remain scheduled. Moreover, from the result of Theorem 4
it is known that among the requests in I, the algorithm will
schedule a subset I0 of requests of maximum weight.

Indeed, it is not necessary to change the channels for it is
assigned to requests that have already been scheduled.
Suppose the algorithm generates the schedule starting at
some time t. Let S0 # S be the set of requests with starting
time prior to t. This means that each request in S0 is already
scheduled, and the scheduled channel cannot be changed.
But notice that for the requests in SnS0 it is indeed possible to
change their channel without problems. The BATCHOPT
algorithm selects a set I0 of new requests such that for any
time t0 P t there are at most k requests from I0 [ S that will
be transmitted at time t0. The requests in I0 [ S can be sorted
by their starting times and scheduled in this order on an
available channel. This generates a feasible schedule since at
any time t0 there are at most k requests intersecting it, and
will thus be there an available channel each time a request is
assigned. Notice that the requests in S were previously
scheduled in a feasible schedule. Since the requests in S0

have the earliest starting times among the requests in S [ I0,
they are processed first so that each request in S0 can be
scheduled on the previously scheduled channel. h
Theorem 6. The BATCHOPT algorithm has time complexity
O(N2 log(N) + N), where N = jI [ Sj, i.e., N is the number of
requests in the batch plus the number of requests in S.
Proof. Let n be the size of the incoming batch (n = jIj) and
let and s be the size of previously scheduled requests that
intersects with I (s = jSj).

The time complexity to find the set S is O(s logs) if
previously scheduled requests are stored using a heap. The
AS algorithm has time complexity O(N2 logN) (see [12]),
and since N = s + n the overall complexity to find S and to
schedule I [ S is O(N2 logN). h
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