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Abstract Ingress nodes in optical burst switching (OBS)
networks are responsible for assembling burst from incoming
packets and forwarding these bursts into the OBS network
core. Changes in the statistical characteristics of a traffic
stream at an ingress switch can affect the capacity of the
network to provide quality of service. Therefore, the statisti-
cal characteristics of the output flow of an ingress node must
be known for appropriate network dimensioning. This paper
evaluates the impact of burst assembly mechanisms on the
scaling properties of multifractal traffic flows. Results show
that the factor most relevant in determining the nature of
the output traffic flow is the relationship between the cut-off
time scale of the input traffic and the time scale of assem-
bly threshold. Moreover, a procedure for the detection of the
cut-off scale of incoming traffic is introduced.
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1 Introduction

In optical burst switching (OBS) networks, packets are aggre-
gated at the edge nodes of the network to form transmission
units called bursts. A signalling packet is transmitted ahead
of each burst to reserve resources for that burst; hence, the
edge node does not need to wait for a set-up confirmation to
start transmitting the burst. In fact, it transmits a burst some
time after sending the set-up request message in the hope that
the message will reach the destination. Should the set-up fail,
the burst will be discarded at the node where reservation was
not possible.

OBS networks are potentially able to cope with bursty
traffic in a cost-effective way. However, their performance
depends on the actual traffic carried. Poorly dimensioned
networks involve a high blocking probability. Therefore, it
is of paramount importance to understand the characteristics
of the traffic injected into the core of an OBS network by an
ingress node.

Previous research [1–3] has investigated the interaction
between monofractal traffic and burst assembly algorithms
employed in OBS networks. IP flows can be modelled by
either a monofractal or multifractal processes, depending on
the specific network characteristics. In other words, some IP
flowscanbemodelledbymonofractal processes,while others
call for more complex multifractal modelling. There is no
definite model that should be used for all network scenarios
[4–7]. The best model can only be identified by measuring
the characteristics of a specific flow.

The employment of a monofractal model to represent a
multifractal traffic stream can result in the underutilization of
network resources since it tends to overestimate multifractal
behaviour. Such overestimation is due to the use of a single
parameter, the Hurst parameter, to describe burstiness of the
traffic. This parameter, which is a constant value, is a global
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measure of explosiveness and is unable to capture the activity
on small time scales of multifractal traffic [4,5].

An accurate description of the burstiness of a traffic stream
is essential for the characterization of the traffic, since this
indicates the demands of resources to support that stream.
Moreover, long-range dependencies influence the duration
of contention periods, which can lead to high blocking prob-
ability values. Thus, understanding the nature of changes in
scaling is most relevant for the proper dimensioning of OBS
networks.

This paper addresses the issue of the transformation of
scaling traffic at ingress nodes of OBS networks. It sheds
some light onwhether the scaling characteristics of an incom-
ing traffic flow is maintained in the outgoing flow of an
ingress node. Policies based on time and on the amount of
traffic are considered in the present study. Simulation using
real network traffic was carried out, and the results indi-
cate that the nature of the outgoing flow of an ingress node
depends on the relationship between the cut-off time scale
of the incoming traffic and the time scale of the assembly
process.Moreover, a procedurewas introduced to identify the
cut-off scale, a procedure, which allows the automatic identi-
fication of the traffic parameters necessary for burst assembly.

The rest of this paper is organized as follows. Section 2 dis-
cusses the relationship between the burst assembly process
and traffic scale changes. Section 3 provides some con-
cepts involved in traffic scaling. Section 4 presents a method
for automatic detection of the cut-off time scale. Section 5
presents burst assembly policies aimed at promoting traffic
scale changes. Section 6 presents numerical examples of the
proposed burst assembly policies, and finally, Section 7 con-
cludes the paper.

2 Analysis of the relation between traffic scaling
changes and the burst assembly process

Whenever a traffic stream goes through a network node, the
statistical characteristics of that stream may change due to
buffering and traffic aggregation. In OBS networks, burst
assembly mechanisms at ingress nodes are responsible for
the transformation of the statistics of the incoming traffic.
In order to verify the occurrence of such transformations,
the relationship between the burst assembly process and the
changes in the traffic statistics was investigated.

2.1 Burst assembly process in OBS networks

An ingressOBSnode contains a set of queues to store packets
incoming from its input ports, with the number of queues
depending on the burst assembly criteria adopted. Figure 1
exemplifies the architecture of a basic OBS node with a two-
queue ingress node.

The burst assembly mechanism at the ingress node mon-
itors these queues, and whenever the assembly criterion is
satisfied, a burst is assembled and scheduled for transmission.
For each burst assembled, a reservation request packet (con-
trol packet) specifies the source, the destination, the duration
and the wavelength on which the burst should be transmit-
ted. Once the burst is scheduled for transmission, this request
packet is transmitted and, some time later, the actual burst is
transmitted.

Various criteria have been defined for burst assembly [1,
8–11], mostly based on either time [1] or byte counting
[10]. In a time-based algorithm, once the first packet arrives
in a queue i , a queue timer starts ticking. When the timer
reaches a predefined threshold value ti , a burst is created by
gathering all the packets stored in that queue, and the burst
is scheduled for transmission as discussed above. Typical
assembly threshold values for mechanisms based on time
vary from 1 [12]–600ms [13] (Table 1).

Byte counting-based algorithms employ a byte counter, bi
at each input queue i , and this counter is updated as packets
are added or removed from the queue.Whenever a predefined
threshold for the amount of traffic is reached, a burst is created
and scheduled for transmission.

In operational networks, the threshold for burst assembly
depends on the delay requirement of the associated class of
service (CoS). The stricter the requirements, the shorter is
threshold for the burst assembly.

Criteria based on service classes have also been proposed.
In [13], the criteria depend on the CoS, the maximum
burst size and the maximum burst assembly time (i.e. max-
imum queuing delay for the head-of-the-line packet). In the
proposal presented in [14], packets are gathered in bursts
according to a descending order of priority with priority cri-
teria depending on the number of CoS, themaximumnumber
of packets of each CoS that can be included in each burst,
and the maximum assembly time for bursts.

2.2 Assessment of the impact of burst assembly
parameters on traffic scaling network traffic scaling

The aggregation of IP packets done by burst assembly algo-
rithms employed at edge nodes can change the time scale
on which those packets are transmitted. To evaluate these
changes, a careful analysis was conducted, and all the results
obtained are shown in this section.

Simulation were conducted using the Network Simulator
2 (NS-2) to evaluate the changes in the statistical charac-
teristics of the traffic passing through an ingress OBS node.
The OBS module defined in [15] was used in the simula-
tions. After that, the set of tools proposed in [16] was used to
analyse the resulting traffic. The following sections describe
themethodology employed and some findings regarding traf-
fic scale changes.
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Fig. 1 An example of OBS
network architecture
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2.2.1 The methodology for traffic scaling evaluation

Since the seminal work of Leland et al. [17], various stud-
ies have shown that network traffic is characterized by scale
invariance, or scaling, which means that there is no spe-
cific time scale the “burstiness” of a traffic stream can be
characterized. Hence, an accurate description of the network
traffic must account for a variety of time scales. Such traf-
fic is characterized by long-range dependency (LRD), which
implies that the auto-correlation of the traffic decays very
slowly, or hyperbolically; moreover, this auto-correlation is
non-summable across the different time scales.Most network
traffic is characterized by LRD, which impacts critically on
the dimensioning and performance of queues, since packet
loss does not decrease substantially with an increase in buffer
size. Various types of network traffic can bemodelled by self-
similar or (mono) fractal processes such as local area network
traffic and some wide area network traffic. Scaling of such
monofractal traffic is measured by a single constant value:
the Hurst parameter.

Multifractal (multiscaling) processes are also used for
modelling network traffic. These processes have richer scal-
ing behaviour which are associated with non-uniform local

Table 1 Typical threshold values for Burst assembly [13]

Class of
service

Minimum size
(KB)

Maximum size
(KB)

ti (ms)

EF 5 5 4.8

AF 30 50 55

BE 125 125 600

variability, i.e these processes exhibit nonlinear behaviour at
different moments. In addition to long-range dependencies,
multifractal traffic has a high level of activity on small time
scales, which differs significantly from that of monofractal
traffic with the same scales. The burstiness on small scales
diverges from that on larger scales. In these processes, the
local regularity of sample paths can usually be described
by the Holder exponent function, a generalization of the
Hurst parameter. Moreover, the incremental process cannot
be described by a gaussian distribution as in monoscaling
traffic.

Some wide area network traffic can be modelled as multi-
fractal traffic as will be shown in the next section. The use of
a monoscaling process [18] to model such multiscale traffic
would lead to misleading results since such a model tends
to overestimate the bandwidth needed by the traffic consid-
erably. IP traffic will present different behaviours depending
on the magnitude of the time scale on which it is observed.
On large time scales (above hundred of milliseconds), the
IP traffic presents self-similar behaviour which can be accu-
rately modelled by monofractal process [16]. On small time
scales, the traffic can present multiscaling behaviour that is
not well captured by the monofractal process, and must be
modelled more precisely by multifractal process.

The scaleΔ∗, which separates those two regimes, is called
the cut-off time scale [19]. Its identification plays an impor-
tant role in the traffic modelling process, since it allows the
determination of a range of scales in which the traffic will
behave in either a monofractal or multifractal way. It can
thus be viewed as an additional parameter help in the scal-
ing characterization of network traffic, as will be discussed
bellow.
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The tools used for the traffic analysis [16] are based on
wavelet transformation, and they have been largely employed
on the literature to characterize the aforementioned traffic
regimes.

Such tools are based on the fact that any self-similar (or
monofractal) q order process X(t) has statistical moments
defined by [16]:

E |X (t)|q = E |X (1)|q .|t |qH (1)

where H is the Hurst parameter. This structure restricts the
burstiness of a process to a uniform pattern across different
time scales.

On the other hand, the statistical moments of a multiscal-
ing (multifractal) process are defined as [16]:

E |X (t)|q = E |X (1)|q .|t |ζ(q) (2)

where ζ(q) is the scaling function.
In the wavelet domain, the relationship established in Eq.

2 is defined as:

E |dX ( j, k)|q ≈ 2 jζ(q) j → −∞ (3)

where dX ( j, k) is the series of increments (details) obtained
by the decomposition of the process X (t) using the discrete
wavelet transform. The scaling function, ζ(q), is defined as:

ζ(q) = αq − q

2
(4)

where αq is the scaling exponent, which has its value bound
by the burstiness of the traffic. For multifractal processes, it
varies at different statistical moments (q).

Abry et al. [16] describe a method called Multiscale
Diagram (MD) used to determine the occurrence of mul-
tifractality in a process. This method consists of verifying
the behaviour of the function ζ(q) at different moments. A
multifractal process is characterized by a nonlinear function,
whereas a monofractal one reveals linear behaviour.

Estimating the values of the function ζ(q) requires the
determination of the scaling exponent αq , as defined in Eq. 4.
The Logscale Diagram (LD)method is used to determine αq ,
which is defined as the inclination of the curve that is close
to the curve generated by the relation between μ j and 2 j on
a logarithmic scale. The value of μ j is given by:

μ j = 1

n j

n j∑

k=1

|dX ( j, k)|q ≈ E |dX ( j, k)|q (5)

where n j is the number of details dX ( j, .), on time scale
j , generated by the decomposition of X (t) using discrete
wavelet transform.

Multifractality can also be detected by using aLinearMul-
tiscale Diagram (LMD) method, which plots hq = ζq/q
against q. In such a diagram, monofractal behaviour is
revealed by a horizontal alignment, whereas multifractal
behaviour is reflected by a non-horizontal alignment.

Veitch et al. [20] showed that the information in various
papers in the literature is misleading due to the overstatement
of the multiscaling nature of some of the traffic, resulting
from the misuse of tools for identifying scaling and the
misidentification of the proper scale for analysis. To avoid
such overestimation, in this paper we have carefully followed
the steps proposed in [20], which are as follows:

1. Define the proper process based on an analysis of the
traffic traces.

2. Set up the signal analysis tool accordingly.
3. Determine the relevant time scales.

Four processes are considered for the calculation of the
discrete wavelet transform by Veitch et al. in [20] although
the arrival time point process, X (t), is the most studied in
the literature. Therefore, this was the one selected for the
signal analysis tool. The byte arrival process,W (t), has been
mentioned as an alternative process, since studies have shown
results similar to those given by the arrival point process.
In the present study, we define and analyse the byte arrival
process from the evaluated traffic traces.

A signal analysis tool based on wavelet discrete trans-
form was used to carry the studies presented in [20]. Aware
of the limitations of this tool, essentially the computation of
the confidence interval in a non-Gaussian context, in [20],
the authors have emphasized the fine tunings necessary to
obtain precise results. These include (1) turning on the non-
Gaussian signal option since traffic in small time scale does
not, by definition, show Gaussianity and (2) modifying the
hard codes of the analysis tools the confidence interval can
be estimated from the signal. These tunings have been imple-
mented in the mentioned tool.

Finally, relevant time scales of the traffic traces have been
identified by [20]. Three time scales have been considered
to be relevant in [20]: the j IAT, j∗∗, and j∗. The first, the
“Inter-Arrival Time” scale, identifies the scale of isolation of
individual packets. The second, the “breakup” scale, defines
the start of scaling region, and the third, the “biscaling knee”
scale, defines the possible regime changes, with multifractal
on the left and monofractal on the right. In the present study,
all three scales were considered (Table 2).

Based on the aforementioned guidelines, the multiscaling
behaviour was investigated for all the traces considered in
the present paper. Figure 2 summarizes the analysis for trace
BWY-1069762448, and Table 2 summarizes the information
contained in these traces specially the values for the time
scales j IAT, j∗∗, and j∗.
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Table 2 Traces used in the investigation [21]

Trace Date Start time Duration (s) Rate (MBps) j IAT (ms) j∗∗ j∗

ANL-1111548257 03/22/05 20:11 90 2.30 1 (0.091342) 1 4

BWY-1069762448 11/25/03 04:49 90 0.08 4 (0.441773) 4 9

IPLS-CLEV-090000-0 14/08/02 09:00 90 412.131 1 (0.014292) 1 8

IPLS-CLEV-090000-1 14/08/02 09:00 90 457.852 3 (0.012235) 3 8

IPLS-CLEV-091000-0 14/08/02 09:10 90 363.754 1 (0.039280) 1 6

MEM-1111247410 03/19/05 07:56 90 2.63 1 (0.082378) 1 5

MEM-1111679715 22/03/05 14:10 90 4.42 5 (0.014003) 5 9

MEM-1112013766 03/28/05 04:49 90 1.87 1 (0.056090) 1 5

MEM-1053844177 05/24/03 23:54 90 2.65 2 (0.097299) 2 6

TXS-1113503155 04/14/05 11:31 90 6.8 4 (0.079272) 1 4

20040601-193121-0 06/01/04 19:00 90 770.00 3 (0.009230) 3 7

20040601-193121-1 06/01/04 19:00 90 1.648 3 (0.004532) 3 8

20040601-194000-1 06/01/04 20:00 90 828.616 5 (0.007238) 5 9
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Fig. 2 qth order Logscale Diagrams for UDP flow of trace BWY-1069762448
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Table 3 Scaling characteristics of real traffic traces used in the paper

Trace Δ∗ (ms) ti > Δ∗ (ms) ti < Δ∗ (ms) Mean value of
Holder exponent

Var C. I.

ANL-1111548257 2.7 3 1 0.726 0.03 (0.719, 0.733)

BWY-1069762448 250 400 100 0.681 0.0023 (0.678,0.683)

MEM-1111247410 3.3 4 1 0.695 0.0085 (0.685, 0.705)

MEM-1111679715 5.4 6 3 0.758 0.008 (0.727, 0.789)

MEM-1112013766 3.0 4 1 0.72 0.009 (0.715, 0.725)

MEM-1053844177 6.7 7 6 0.687 0.007 (0.684, 0.692)

TXS-1113503155 1.3 2 1 0.89 0.0408 (0.86, 0.92)

IPLS-CLEV-090000-0 3 4 1 0.83 0.0400 (0. 80, 0.86)

IPLS-CLEV-090000-1 2.8 4 1 0.792 0.007 (0.791, 0.793)

IPLS-CLEV-091000-0 3.2 4 1 0.675 0.001 (0.672, 0.678)

20040601-193121-0 1.6 2 1 0.683 0.0014 (0.674, 0.692)

20040601-193121-1 1.3 2 1 0.689 0.0021 (0.676, 0.702)

20040601-194000-1 1.3 2 1 0.622 0.0027 (0.621, 0.623)

Multiscaling involves the manifestation of a single under-
lying scaling phenomenon, represented by a number of
scaling exponents {αq}, which constitute the slope of the
straight lines in the q-LD (LD) for the same range of scales.
Hence, a signal involving multiscaling provides evidence of
multifractality [20]. Looking for these evidences, in Fig. 2,
we show the Logscale Diagrams q = [1, 2, 3, 4, 5, 6] have
twin scaling regimes: at fine scales, [ j∗∗, j∗] = [4, 9] and
coarse scales, [ j∗∗, j∗] = [9, 15]. Therefore, the data exhibit
multiscaling in each scale range.

Since the biscaling identified in the LD analysis means
there are twin scaling regimes, we must study the scal-
ing properties on the identified scale ranges defined by the
breakup and knee scales. We thus plot the LMD of the traces
in Table 2. For coarse (large) scales, a clearly horizontal hq
functions emerges, suggesting the adequacy of a single value
to describe it.Monofractalmodels shouldbeused to represent
the traffic dynamics over such scales. On the other hand, for
fine (small) scales, all the hqs values reveal a non-horizontal
shape suggests that multifractal models will be required.

The Holder exponents for the traces used were computed
according to the procedure in [22]. Table 3 displays the mean
and the variance of this exponent, as well as the confidence
interval used to compute the mean value. These values will
be compared with those of the output traffic.

2.2.2 Evidences of the impact of burst assembly parameters
on traffic scaling changes

The next two subsections evaluate the influence of time
threshold values and the byte counter threshold on the
scaling properties of the outgoing traffic. Due to space
limitations, results will be presented only for the trace BWY-
1069762448.

2.2.2.1 The impact of time threshold values on the time scale
of the outgoing traffic Two scenarios are presented in this
section to verify the relationship between the time threshold
value and the cut-off time scale of the input traffic. In the
first scenario, ti is greater than the cut-off time scale value
(Δ∗) of the input traffic traces. In the second scenario, ti is
smaller.

Figure 3 shows the MD and the LMDs for the output
traffic when ti > Δ∗ resulting from the transformation of
the input traffic in the trace BWY-1069762448. The linear
behaviour of the curves in the MD indicates that the out-
put traffic is monofractal since the cascading function ζ(q)

reveals a linear behaviour at various statistical moments q.
This can be confirmed by the LMD, which shows a horizon-
tal alignment for the two traces. Therefore, assembling bursts
on time scales greater than the cut-off time scale of a multi-
fractal input traffic changes the scaling characteristics from
multifractal to monofractal. The second column of Table 5
shows the Hurst parameter (Ht ) of the monofractal output
traffic when time-based policies are employed.

Figure 4 shows the results for ti < Δ∗. The curves of
this MD do not present a linear behaviour indicating multi-
fractality. Multiscaling can also be perceived in the curves
of the LMD. None of them has horizontal alignment. There-
fore, assembling bursts on time scales smaller than the cut-off
scale maintains multiscaling characteristics.

2.2.2.2The impact of the amount of traffic on the nature of
the scaling of the output traffic As shown in the previous
section, the nature of the output traffic at an ingress node
depends on the relationship between the time threshold for
burst assembly and the cut-off time scale of the input traffic.
However, since most assembly algorithms use a byte counter
as a trigger for assembling bursts, the relationship between

123



Photon Netw Commun

0 1 2 3 4 5 6
−8
−7
−6
−5
−4
−3
−2
−1
0

Multiscale Diagram:  (j
1
,j

2
) = (13,  16)

q

ζ q

1 2 3 4 5 6
−1.56
−1.54
−1.52

−1.5
−1.48
−1.46
−1.44
−1.42

−1.4
−1.38
−1.36

Linear Multiscale Diagram:  h
q
=ζ

q
 / q

q

h q

(a) (b)

Fig. 3 Trace BWY-1069762448 analysis with ti > Δ∗, a Multiscale Diagram of the output traffic, b Linear Multiscale Diagram of the output
traffic

0 1 2 3 4 5 6

−3

−2.5

−2

−1.5

−1

−0.5

0

q

ζ q

Multiscale Diagram:  (j
1
,j

2
) = (9,  12)

1 2 3 4 5 6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Linear Multiscale Diagram:  hq=ζq / q

q

h q

(a) (b)

Fig. 4 Trace BWY-1069762448 analysis with ti < Δ∗, a Multiscale Diagram of the transformed output traffic, b Linear Multiscale Diagram of
the output traffic

the number of bytes (bi ) for the threshold and the cut-off time
scale was also investigated.

To investigate a potential relationship between the byte
counter and its time cut-off scale, the byte counter was
divided by the mean arrival rate so that the corresponding
time scale could be identified. This time scale was then com-
pared to that of the cut-off scale of the input traffic.

Investigations were conducted setting thresholds that led
to assembly time scale smaller than the cut-off time scale as
well as larger than that. The chosen threshold values, 1 and
125KB, were obtained from previous research [12,13].

The trace BWY-1069762448 has a mean arrival rate (λ)
of 0.0829944Mbps, which results in assembly time scales
(ti ) of 150ms when a byte counter threshold value of 1KB
is used.

This value is below the input traffic cut-off time scale
Δ∗. Moreover, the byte counter threshold of 125KB gives
assembly time scales of 12 s, which is above the cut-off time
scale of the trace.

Figure 5 shows the results of the analysis of the traffic
resulting from the burst assembly process with bi/λ > Δ∗.
The MDs show similar behaviours, with the cascading func-
tion ζ(q) presenting a linear behaviour. Monofractality is
confirmed by the horizontal alignment of the LMD. This
linear behaviour of the cascading function indicates the
occurrence of monofractal nature in the traffic.

Thus, assembling bursts with byte counter threshold
greater than the product between the input flow mean arrival
rate and its cut-off time scale transforms multifractal traffic
into monofractal traffic. The third column of Table 5 shows
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Fig. 6 Trace BWY-1069762448 analysis with bi/λ < Δ∗, aMultiscale Diagram of the transformed output traffic, bMultiscale Diagram of original
input traffic

the Hurst parameter (Hv) for outgoing monofractal traffic
when byte counting-based policies are employed.

Figure 6 provides an analysis of the traffic resulting from
a burst assembly with bi/λ < Δ∗. Again, in the MD,
the absence of linear behaviour indicates the presence of
multifractality in the traffic. Moreover, the LMDs show a
non-horizontal alignment.

2.2.3 The smoothing effect of burst assembly policies

In order to evaluate the smoothing effect of different
assembly policies, the scaling characteristics of the output
processes produced by these policies are compared.

Table 4 presents the mean, the variance of the Holder
exponent values of multifractal output traffic. The subscripts
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Table 4 Holder exponent of
multifractal output traffic

Trace Meant Vart C.I.t Meanv Varv C.I.v

ANL-1111548257 0.546 0.008 (0.544, 0.548) 0.603 0.016 (0.583, 0.623)

BWY-1069762448 0.581 0.003 (0.578, 0.584) 0.593 0.008 (0.585, 0.601)

IPLS-CLEV-090000-0 0.752 0.012 (0.743, 0.761) 0.774 0.008 (0.759, 0.789)

IPLS-CLEV-090000-1 0.743 0.010 (0.730, 0.756) 0.749 0.008 (0.739, 0.759)

IPLS-CLEV-091000-0 0.663 0.010 (0.658, 0.668) 0.665 0.008 (0.660, 0.670)

MEM-1111247410 0.601 0.006 (0.592,0.61) 0.653 0.002 (0.652, 0.654)

MEM-1111679715 0.598 0.008 (0.587, 0.609) 0.632 0.004 (0.63, 0.634)

MEM-1112013766 0.601 0.009 (0.598, 0.604) 0.622 0.004 (0.62, 0.624)

TXS-1113503155 0.655 0.010 (0.642,0.668) 0.732 0.008 (0.717, 0.745)

20040601-193121-0 0.653 0.010 (0.647, 0.659) 0.661 0.008 (0.655, 0.667)

20040601-193121-1 0.672 0.010 (0.659, 0.684) 0.674 0.008 (0.661, 0.687)

20040601-194000-1 0.589 0.010 (0.572, 0.606) 0.609 0.008 (0.596, 0.524)

Table 5 Hurst parameter of the monofractal output traffic

Trace Ht Hv

ANL-1111548257 0.598 0.639

BWY-1069762448 0.551 0.562

IPLS-CLEV-090000-0 0.722 0.747

IPLS-CLEV-090000-1 0.698 0.717

IPLS-CLEV-091000-0 0.623 0.629

MEM-1111247410 0.669 0.682

MEM-1111679715 0.595 0.687

MEM-1112013766 0.629 0.675

TXS-1113503155 0.672 0.797

20040601-193121-0 0.645 0.658

20040601-193121-1 0.672 0.680

20040601-194000-1 0.586 0.601

t and v denote time-based policies and byte counting-
based policies, respectively. When comparing to the mean
and to the variance of the input traffic, it is clear that the
assembly process smoothes the input traffic. Both the mean
and the variance of the Holder exponent values decreased.
Lower mean values imply that the burstiness on small scales
decreased. Moreover, lower variance values imply that the
variability of the burstiness on these scales also decreased.
Comparing the two different policies, it can be seen that the
mean value of the Holder exponent of the traffic produced by
time-based policies is lower than the traffic produced by byte
counting-based policies, which indicates smoother activities
on small time scales.

Table 5 provides the Hurst parameter value of the out-
put traffic generated by the assembly policy based on time
and that based on byte counter. The Hurst parameter was
computed using the A–V estimator available at [23]. The
threshold for the time-based policywas computed as the ratio

between the byte counter threshold and the mean arrival rate
so that both policies assemble burst on the same time scale.

It can be seen that policies based on byte counting pro-
duce monofractal traffic with higher Hurst parameter values
than do the policies based on time. An explanation for those
higher values is that policies based on byte counting produce
longer bursts than do policies based on time. Under policies
based on time, some packets are carried in different bursts,
whereas under policies based on byte counting, these packet
are carried in the same burst. Consequently, longer periods
of activity and silence were produced by policies based on
byte counting, leading to stronger long-range dependencies.

2.2.4 Impact of traffic changes in the network dimensioning

In the previous subsections, the impact of the burst assembly
process on the statistical properties of the carried traffic was
shown . Another important but complementary question that
arises is: What is the impact of such changes on network
resource dimensioning?

To answer this question, simulations were carried out. The
objective of this simulation is to show how traffic changes
could impact on the network dimensioning. To do that, this
impact in terms of blocking probability was measured. The
scenario used in the simulations is depicted in Fig. 7. The fig-
ure shows an OBS network composed by three edge nodes
(two ingress nodes and one egress node) and one core node.
The idea is to have a simple topology in which the phenom-
enon of interest can be isolated, eliminating the occurence
of losses due to bad routing strategies or different channel
scheduling strategies [24].

The distance between nodes is 1000Km, and each link
connecting the network nodes has a single fibre with 16 data
channels and two control channels operating at 10Gbps. The
channel scheduling algorithm used by the core node was the
LAUC-VF (Latest Available Unused Channel with Void Fill-
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Fig. 7 Scenario adopted in the evaluation of the impact of traffic scal-
ing in the network dimensioning

ing) [25], which schedules the requests in the channel that
minimizes the gap between the arriving request and the end-
ing of last reservation, if there are available voids or in the
nearest horizon. To produce multiscaling and monoscaling
traffic, assembly parameters were the same used in previ-
ous sections, i.e. 1 (multiscaling) and 150ms (monoscaling)
for time-based assembly algorithms and 1 (multiscaling) and
150KB (monoscaling) for byte counting-based ones. The
processing time of the control packet was set up to 50us.
The ingress nodes are fed with multifractal traffic generated
from traffic traces presented in Table 2.

The idea was to measure the impact of changes in statis-
tical properties of traffic on the network dimensioning. For
this end, wemeasure the blocking probability (BP), the num-
ber of additional channels (compared to the number used to
measure the blocking probability) so that the network has
blocking probability equal to zero (C).

Results are shown in Table 6. Regardless the adopted burst
assembly policy, if the outgoing traffic remains multifractal,
the blocking probability is higher than itwould be if the traffic
characteristics were changed to monofractal. It occurs due to
the high frequency of burst and control packets generated by
the networkwhen the traffic remainsmultifractal, demanding
more resources.

Moreover, the traffic-based policy leads to higher block-
ing probability values than time-based policies, because the
former, as pointed out in Sect. 2, produces a more explosive
traffic contributing to longer periods of contention.

3 Identification of traffic scaling regimes

The analysis presented in Sect. 2 showed that the set up of
the parameter of the assemblymechanism has great influence
on the change in the traffic scaling. Moreover the cut-off

time scale has also a great influence. Thus, it is necessary
to determine how to estimate the cut-off time scale. Since
it represents the transition scale between the monofractal
and multifractal regimes, it is necessary to characterize such
regimes before presenting the estimation of the cut-off itself.
This section presents the concepts related to the identification
of such scaling regimes.

3.1 Characterization of multifractal scaling

Let X (t) be the traffic arrival process defined as the total
amount of traffic that arrives in the interval [0, t). The asso-
ciated increment process XΔ(i) is defined by:

XΔ(i) = X (iΔ) − X ((i − 1)Δ) (6)

Their statistical moments behave as:

∑

i

XΔ(i)q ∼ c(q)Δ−τ(q) Δ → 0 (7)

If τ(q) is a linear function of q, the process is monoscaling;
otherwise, it is multiscaling.

Taking the logarithm in Eq. 7, it follows that:

log

(
∑

i

XΔ(i)q) ≈ −τ(q) log(Δ) + log(c(q)

)
, (8)

which shows that log(
∑

i XΔ(i)q) depend linearly on log(Δ)

and that −τ(q) the slope of the curve obtained.
To evaluate the function τ(q), we use the function partition

sum. For the traffic arrival process X (i), 1 ≤ i ≤ N defined
in the interval [0, T ] and the scale δ = T/N , the partition
sum is given by:

∑

i

XΔ(i)q =
N/Δ∑

k=1

(
XΔ
k

)q
(9)

where N is the number of aggregation scales and

XΔ
k =

Δ∑

l=1

X (k − 1)Δ + l (10)

is the process obtained by aggregating arrivals on a time scale
δ = TΔ/N .

Aggregating the process X (i) using the partition sum
function for a certain qi and varying Δ, we obtain a set
of points in the plain log(Δ)x log(

∑
i XΔ(i)q). Thus, the

function τ(qi ) can be obtained using linear regression on
the points of the plane log(Δ)x log(

∑
i XΔ(i)q). Finally, the

function τ(q) can be built by interpolating the values of τ(qi )
in different statistical moments.
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Table 6 Blocking probability
and demand for additional
channels

Assembly policy Byte counting based Time based

Scaling Multi Mono Multi Mono

Trace BP (%) C BP (%) C PB (%) C PB (%) C

ANL-1111548257 4 1 0 0 2 1 0 0

BWY-1069762448 6 1 0 0 3 1 0 0

MEM-1111247410 2 1 0 0 1 1 0 0

MEM-1111679715 1 1 0 0 2 1 0 0

MEM-1112013766 3 1 0 0 1.3 1 0 0

TXS-1113503155 0 0 0 0 0.1 1 0 0

Mean 2.66 1 0 0 1.56 1 0 0

3.2 Characterization of monofractal scaling

Consider a process Y (t) and its associated stationary incre-
mental process YΔ(i) = Y (iΔ)−Y ((i − 1)Δ). Assume that
Y (t) is H-self-similar, i.e.

Y (Ci)
d=CHY (i)

Let

YΔ
k = 1

Δ

Δ∑

l=1

Y (k − 1)Δ + l = 1

Δ
Y

Δ

k

Then [26]:

YΔ(i)
d= Δ1−HYΔ

k (11)

As proposed in [27], a test of the self-similar characteristic
of a traffic streamcan be done by the analysis of the behaviour
of its statistical moments.

Let:

E|YΔ|q = 1

N/Δ

N/Δ∑

k=1

|YΔ
k |q

In analogy to multifractal analysis presented in Sect. 3.1, we
have:

∑

i

YΔ(i)q =
N/Δ∑

k=1

|YΔ

k |q = Δq−1N · E|YΔ|q

If YΔ(i) is self-similar (Eq. 11) [26]:

log

(
∑

i

YΔ(i)q
)

≈ γ (q) log(Δ) + const (12)

which shows that log(
∑

i XΔ(i)q) depends linearly on the
log(Δ) and γ (q) is linear in q such that:

γ (q) = qH − 1. (13)

Thus, the self-similar test proposed by Taqqu et al. [27]
determines whether there exists a value of γ such that the
Eq. 12 is valid. If γ depends linearly on q, then the traffic is
self-similar.

3.3 Identification of the cut-off time scale

As discussed in Sect. 3.1 and 3.2, different scaling regimes
can be visually observed in the log–log plot of the aggregated
incremental process XΔ(i) as a function of the aggregation
interval Δ.

On large time scales, the traffic is modelled by monoscal-
ing (self-similar) process according to Eq. 11. This makes
the log–log plot looks linear according to Eq. 12. The slope
of the lines is then given by Eq. 13.

On small time scales, the traffic is modelled by multi-
scaling process (Eq. 7). The log–log plot in such scales can
also be linear. However, it is possible to observe a change in
the slope of the curves due to the presence of different scal-
ing regimes (monoscaling and multiscaling). Consequently,
different coefficients (τ(q) and γ (q)) lead to the change in
the slope of the curves formed in each regime. The cut-off
time scale is defined as the maximum inflexion point, which
differentiates the slopes of the curves, among all statistical
moment [19].

Such analysis was conducted for all traffic traces used in
this paper. Figure 8 illustrates the results obtained from the
evaluation of this relation for the trace BWY-1069762448.
The time scales Δ indicate the number of realizations of
the original process X(t) that is used to generate a single
realization of the aggregated process X (Δ)(t). The curves
have different slopes in different magnitudes of time scale.
The cut-off scale for this example is approximately 300ms.
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Fig. 8 Cut-Off scale of traffic trace BWY-1069762448

4 Non-visual identification of the scaling
characteristic of network traffic

As stated before, the detection of the traffic scaling character-
istic is done through visual inspection of diagrams [19,23],
which can lead to misleading results since the derivative of
the function τ(q) can vary over a small range, making the
plot look linear. To overcome such problem, in this section, it
is proposed a method based on least square regression model
to identifying the cut-off time scale of a multifractal flow.

4.1 Automatic detection of the cut-off scale

As discussed previously, the cut-off scale determines the
aggregation scale beyond which the traffic flow presents
monoscaling characteristics. It means that, beyond the cut-
off scale, the points (xi , yi ) where xi = log(Δ∗) and yi =
log(

∑
i XΔ(i)q) are linearly disposed according to the rela-

tion presented in Eq. 8. In addition, the slope of the curves is
given by the function τ(q).

Now consider the set of ordered pairs

{(x1, y1), (x2, y2), . . . , (xn, yn)}.

It is known that the points {(xΔ	, yΔ	), ..., (xn, yn)} are lin-
early disposed, where (xΔ	, yΔ	) represents the cut-off scale.
Moreover, the points {(x1, y1), ..., (xΔ	−1, yΔ	−1)} are either
linearly arranged in a regime driven by Eq. 12 which slope
is given by γ (q) or arranged in a nonlinear fashion.

Given a set of n points, {(x1, y1), (x2, y2), ..., (xn, yn)},
the quality of a linear regression model is measured by the
coefficient of determination, R2 which is a measure of the
proportion of the variability of a variable that is explained
by the variability of another one. In a perfect correlation,
R2 = 1. The coefficient of determination is given by the
following expression:

R2 =
((∑n

i=1 y
2
i

) − n ȳ2
) − ∑n

i=1 y
2
i − b0

∑n
i=1 yi − b1

∑n
i=1 xi yi(∑n

i=1 y
2
i

) − n ȳ2

(14)

with b0 = y − b1x and b1 =
∑

xy−nx y∑
x2−n(x)2

.
The proposed method to detect the cut-off scale consists

on observing the behaviour of the function formed by the
different values assumed by the coefficient of determina-
tion as new points (xi , yi ) are added to the regression. It is
known that either in monoscaling or in multiscaling regimes
the coefficient of determination is close to 1 since the points
are disposed linearly. The presence of an inflection point
(denoting the transition between multiscaling and monoscal-
ing regimes) causes an abrupt decrease in the coefficient of
determination value.

Algorithm 1 Compute-cut-off scale
INPUT
Set of n ordered pairs of numbers
OUTPUT
Cut-off scale Δ∗.
Compute Δ∗
1: M ← 0
2: for all ( qmin ≤ q ≤ qmax): do
3: S ← {}
4: i ← n
5: S ← ∪{(xi , yi )}
6: Compute R2 using S points
7: while ((i ≥ 1) ∧ (R2 ≥ δ)) do
8: i ← (i − 1)
9: S ← ∪{(xi , yi )}
10: Compute R2 using S points
11: if (R2 < δ) then
12: if (i ≥ M) then
13: M ← i
14: Δ∗ ← M
15: Return Δ∗

The proposed method works as follows: starting with the
point (xn, yn), the method incrementally recalculates the
value of the coefficient of determination as new points are
added to the set. Since the points of {(xΔ∗ , yΔ∗), ..., (xn, yn)}
are linearly disposed, it is expected that the value of R2 to be
close to 1, since the regression will have good quality. On the
other hand, as the points belonging to the nonlinear region
are added to the set, the value of R2 deteriorates. The method
is formally presented in Algorithm 1.

As input, the algorithm receives, for each statistical
moment q (qmax means the maximum allowed value of q), a
set S of n points (corresponding to the number of aggregation
scales to which the X (t) process was subject). As output, the
algorithm returns the approximate value of Δ∗.

The value of R2 is computed over a set of points belonging
to S. As new points are added to the set, R2 is recalculated.
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Fig. 9 Coefficient of determination for different scales

This process is repeated until the value of R2 becomes lower
than a threshold δ.

The algorithm keeps also the variable M , which stores the
maximumvalue (among all statisticalmoments q) of the time
scale in which the linear regression is no longer acceptable,
corresponding in this way, to the cut-off time scale.

Figure 9 illustrates the procedure showing the coefficient
of determination of the linear regression applied over the
curves.

4.2 Computational complexity

The following two theorems establish the computational
complexity of the proposed procedure. The complexity of the
estimation of the cut-off scale depends on both the complex-
ity of traffic aggregation on different scales and the proposed
procedure.

To aggregate the arriving process X (t) ∈ [0, t), on differ-
ent time scalesΔ ∈ [Δmin,Δmax], it is necessary to compute
Eq. 10 for each statistical moment qmin ≤ q ≤ qmax.

Theorem 1 The execution time of the aggregation procedure
is a linear function of the number of aggregating point n of
the process X (t).

Proof To compute Eq. 10 for fixed values of Δ and q, a total
of NΔ

Δ
interactions are necessary. Let |M | be the number of

statistical moments and |E | the number of scales onto which
the process will be aggregated. The aggregation is pursued

(|M |) · (|E |) · n = O(n)

times, leading to a linear execution time. 
�
After aggregating the process X (t) onto different time

scales, the procedure compute-cut-off scale is executed. Let
S = {(x1, y1), (x2, y2), ..., (xn, yn)} xi = log(Δ) e yi =

log(
∑

i XΔ(i)q), the set of points resulting from the aggre-
gation procedure. Theorem 2 establishes the time complexity
of the procedure compute-cut-off scale.

Theorem 2 The execution time of the algorithm compute-
cut-off scale is a linear function of n, the number of points of
set S.

Proof The compute-cut-off procedure starts with a set of
points and progressively adds at most n points at each step
until the value of the coefficient of determination differs by
δ to the unit value. By using the partial sums of yi ’s and
xi ’s corresponding to the S′ with j points, it is possible to
compute the coefficient of determination for a set S′′ with
j + 1 points. Therefore, for each additional point added to
the set, it is necessary to update the partial sums which is
repeated at most n times. The algorithm compute-cut-off is
executed for all statistical moments. The execution time is,
therefore,

(|M |) · n = O(n)

where |M | is the number of moments employed. 
�

5 Burst assembly policies for traffic changing

In Sect. 2, it was shown that the traffic characteristic can
be changed depending on the set up of the burst assembly
parameters.

Let b be the burst size threshold used by the byte counting-
based assembly algorithm and λ the mean packet arrival rate
(in terms of bytes per second), we have:

b = t · λ (15)

Using the previous discussion and Eq. 15, one can conclude
that if:

b

λ
> Δ	 (16)

the traffic has its multiscaling characteristics changed to
monoscale.

Therefore, the burst assembly can be done by adjusting the
parameters t and b to the calculated values of Δ	 and λ, thus
guaranteeing the traffic transformation. For the computation
of Δ	, the proposed method (Algorithm 1) can be used to
obtain the arrival rate from service-level agreement (SLA).

The problem is more challenging if delay requirements
are added to the burst assembly process, i.e. if the assembly
time has to be lower than the cut-off time scale. In this case,
simply adjusting t or b to a value higher than the cut-off scale
may cause a negative effect on the QoS provisioning to the
applications.
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Consider a set C of classes of service, each having a dif-
ferent maximum tolerable end-to-end delay for class i , Di ,
which can be expressed as:

Di ≥ αi + Ti + di (b) (17)

where Ti is the offset time of class i , di is a factor that consid-
ers the propagation and transmission delays of a burst with
size b belonging to class i and finally αi is the maximum
assembly time. Let ti be assembly time, bi the byte counter
threshold and λi the mean packet arrival rate (expressed in
bytes per second) of class i . Thus,αi = ti orαi = bi

λi
depend-

ing on the employed burst assembly algorithm.
Again, if the assembly time of all classes of service is

longer than the cut-off time scale, the assembler can adjust ti
or bi to induce the production of monoscaling traffic. How-
ever, if there is any class with assembly time shorter than the
cut-off time scale, traffic transformation is only possible by
employing different burst assembly techniques.

Considering an OBS network in which the burst size is
restricted to the range [s : S], where s is the minimum burst
size and S is maximum burst size, it is possible to determine
by using Eq. 16, values of λi , Δ∗.

We propose different policies that transform the scaling of
a traffic flow and yet guarantees delay requirements. Criteria
used by different policies differ by how the priority level of
a service class is considered as well as the backlog of a class
at the assembler.

Notation will be introduced for describing the proposed
policies (Table 7). Let C be the set of CoS each with its own
end-to-end delay requirement Di , and C′ a subset of C, the
set of classes with enqueued packets and let pi be the priority
level of class i such that p0 > p1 > · · · > pn . Let Qi be

Table 7 Table of symbols used in the algorithms

Symbol Meaning

Δ	 Cut-off time scale

ti Assembly timer

bi Bytes threshold

λi IP packet arrival rate of class i

β Minimum burst size

C Number of classes of service

C′ Non-empty classes of service

R Assembled burst

Qi Assembly queue of class i

max_unused(C′) Function that selects the class
with highest priority

head(Qi ) Function that takes the first
packet in the i th assembly
queue

X Surplus of burst R

the queue of packets of class i and |R| size of the burst being
assembled and β the required minimum burst size. Finally, it
is assumed that the cut-off time scale (Δ	) of the multifractal
flow and the mean packet arrival rate of class i are known,
thenceforth, β can be determined.

The Round Fit policy (Algorithm 2) creates a burst with
packets of class i . If the size of the resulting burst is smaller
than β, the burst is filled with packets of lower priority
classes to reach the required minimum size (β). The policy
is depicted in Fig. 10a.

Algorithm 2 Round Fit (RF)
INPUT
Cut-off scale Δ∗, ti (or bi ) and λi
OUTPUT
Burst with size β

Round Fit
1: Calculate β according to Eq. 16
2: while Qi �= 0 do
3: R ← R ∪ head(Qi )

4: if |R| < β then
5: j ← (i + 1)mod|C′|
6: while |R| < β do
7: while Q j do
8: R ← R ∪ head(Q j )

9: j ← (i + 1)mod|C′|

The RF algorithm works as follows: In Line 1, the min-
imum burst size is determined using Eq. 16. In Lines 2–3,
packets belonging to the i th class are added to the burst.
Line 4 verifies if the minimum burst size was reached. If
not, packets from other classes are added to the burst in a
round robin fashion until the minimum burst size is achieved
(Lines 6–8).

The High Priority Fit (HPF) policy (Fig. 10b) is similar
to the RF policy except that it fills bursts smaller than the
minimum required size in a rounding robin fashion starting
from the highest priority class. Themain differences between
the HPF and the RF algorithm are that Line 5 is replaced by
j ← max_unused(C′) and Line 9, by j ← max_unused(C′).
In the Proportional Fit (PF) algorithm (Algorithm 3), the

space required to complete the minimum burst size divided
equally among all classes with queued packets.

The PF algorithm differs from the RF algorithm after Line
5. The remaining space burst is divided equally among all
other non-empty classes (Lines 5 and 6) and, starting from
the highest priority class (Line 7), packets from all classes
are added to the burst (Lines 9–14).

The Backlog Fit (BF) policy (Algorithm 4) uses the unfin-
ished work in each traffic class to define the contribution of
that class to the filling of a burst with minimum a size. The
process is carried out in a round robin fashion, starting with
the longest queue. By doing this, the policy prioritizes traffic
classes that have recently produced more traffic.
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Fig. 10 Burst assembly algorithms, a Round Fit, b High Priority First, c Proportional Fit, d Backlog

Algorithm 3 Proportional Fit(PF)
INPUT
Cut-off scale Δ, ti , bi ) and λi
OUTPUT
Burst with size β

Proportional Fit
1: Calculate β according to Eq. 16
2: while Qi �= 0 do
3: R ← R ∪ head(Qi )

4: if |R| < β then
5: X ← (β − |R|)
6: F ← �X/(C′ − 1)�
7: j ← max_unused(C′)
8: l ← 0
9: while |R| < β do
10: while (Q j ) ∧ (l < F) do
11: R ← R ∪ head(Q j )

12: l + +
13: l ← 0
14: j ← max_unused(C′)

The main difference between the PF and BF algorithms
is that when the minimum burst size is not reached in the
BF algorithm (Line 4, the remaining buffer space is filled
by taking packets from all non-empty queues (Lines 5–14),
proportionally to queue occupancy (Lines 9–14).

6 Performance evaluation

To illustrate the benefits of adopting burst assembly policies
driven by traffic scaling changes, simulations using the NS-2

Algorithm 4 Backlog Fit
INPUT
Cut-off scale Δ, ti , (or bi ) and λi
OUTPUT
Burst with size β

Backlog Fit
1: Calculate β according to Eq. 16
2: while Qi �= 0 do
3: R ← R ∪ head(Qi )

4: if |R| < β then
5: X ← (β − |R|)
6: j ← max_unused(C′)
7: l ← 0
8: while |R| < β do
9: Fi ← � |Q j |∑

i |Qi � · X
10: while (Q j ) ∧ (l < Fi ) do
11: R ← R ∪ head(Q j )

12: l + +
13: l ← 0
14: j ← max_unused(C′)

tool were carried out. First, changes in scaling brought about
by the burst assembly were investigated, and then the impact
of burst assembly policies on provision of QoSwas assessed.

6.1 Traffic scaling changes

In the first set of simulations, an edge node with a buffer size
of 32MB, which can serve five traffic classes was simulated.
Real network traces showing multifractal scaling were used
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Table 8 Scaling characteristics of real traffic traces used in the evaluation of the proposed burst assembly policies

Trace λ (Mbps) Δ∗ (ms) β (KB) Holder exponent Var C. I.

IPLS-CLEV-090000-0 412.131 3 205 0.83 0.0400 (0. 80, 0.86)

IPLS-CLEV-090000-1 457.852 2.8 230 0.792 0.007 (0.791, 0.793)

IPLS-CLEV-091000-0 363.754 3.2 180 0.675 0.001 (0.672, 0.678)

20040601-193121-0 770.00 1.6 200 0.683 0.0014 (0.674, 0.692)

20040601-193121-1 1.648 1.3 410 0.689 0.0021 (0.676, 0.702)

20040601-194000-1 828.616 1.3 210 0.622 0.0027 (0.621, 0.623)

to feed the traffic classes. Moreover, the minimum burst size
(β) necessary to ensure β/λ > Δ	 was derived for each trace
(Table 8).

The assembly time ti of each CoS i was adjusted to 1ms,
below the cut-off time scale of all traces used. Moreover, to
ensure that burst assembly was triggered by the timeout, the
byte counter (bi ) of each class was adjusted to 32MB.

Figure 11 shows the cascading function of the ingress traf-
fic when the BF burst assembly policy was employed. The
scaling behaviour was scrutinized on large time scale (32,
1024ms). The linear behaviour of the cascading function
suggested that the traffic injected into the network core was
monofractal. Similar behaviour was found when the other
three policies were applied for the same network scenario.

Although the scaling property of traffic was not altered by
the assembly policy, it did smooth the burstiness during the
process. Considering the Hurst parameters, (Table 9), and the
corresponding average Holder exponent, (Table 8), it is clear
that the burst assembling changed the variability of traffic
under fractal assumptions.

Furthermore, the queuing delay, i.e. the delay introduced
due to the burst assembly policies, was measured for all of
the policies (Table 8) and none of them surpassed the estab-
lished upper bound, i.e. one millisecond. In fact, the PF and
BR decrease the delay. Both policies serve packets from all
queues, taking fewer packets fromeach class. This holds their
timer trigger, reducing the gap between assembling events.
Moreover, the policies RF and HPF serve traffic from class
i (the class with an expired timer) and use the neighbouring
classes to complete the burst payload. By doing so, traffic
classes in the vicinity will have their timers restarted and
packets are thus delayed until their predefined assembling
threshold, as can be seen in Table 8.

Finally, the PF andBFpolicies produce throughput greater
than that given by the RF and HPF policies (Table 8). The
first two policies fill the burst payload with packets from
all classes, even though their timers are still running. These
opportunistic transmissions open a space for the accommo-
dation of incoming traffic in the current time window that
would be served only in further assembling cycles. Hence,
for the same assembling period, the PF and BF policies are
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Fig. 11 Multiscale and Linear Multiscale Diagrams of the output traf-
fic generated by the BF policy, a Multiscale Diagram of the traffic
generated by the BF policy, b Linear Multiscale Diagram of the traffic
generated by the BF policy

able to send more traffic than do the RF and HPF policies.
Since fewer classes are served, more packets from each class
are transmitted in each cycle, resetting their timers. There-
fore, packets from those classes will be served again in the
next one millisecond cycle.
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Table 9 Hurst parameter, Assembly delay and throughput for the trace
IPLS-CLEV-090000-0

Algorithm H Assembly delay (s) Throughput (Mbps)

RF 0.745 0.001 410.41

HPF 0.728 0.001 410.41

PF 0.751 0.00098 412.02

BF 0.781 0.000993 411.99

6.2 Assessing policy performance under heavy traffic
load

In the previous section, the proposed policies were eval-
uated considering only the ability to make changes in
traffic scaling. An additional question that needs to be
answered is how these policies impact the QoS provided. To
assess this impact, simulations were employed with a sce-
nario in which an increase in packet arrival rate could be
controlled.

To generate synthetic traffic with monofractal charac-
teristics, the traffic was generated by multiplexing several
ON–OFF Pareto distributed sources implemented in the
OBS-ns module [28]. The ON and OFF periods were set up
with the same mean duration of 100ms. Additionally, when
the sources were in the ON state, they transmitted with rate
of 50Mbps. The assembly delay experienced by IP packets
and the average throughput were measured as a function of
the number of classes of service supported.

Figure 12 shows the average throughput as a function of
the number of classes of service.All policies reacted similarly
to the traffic load by improving the average throughput of the
system. When queues are under heavy traffic, policies could
fill the burst being assembled. Even if a class runs out of
packets a policy can take packets from other classes. The RF
and HPF revealed similar results. Since the networking set-

Fig. 12 Throughput as a function of the number of classes of service

up is a heavy traffic scenario, the burst filling dynamic does
not distinguish between high and low priority packets, which
means that in the burst assembly process, either a high or low
priority packets can be selected. Compared to RF and HPF,
the BF and PF policies, on the other hand, produced greater
throughput for heavy traffic load.

There was an increase in the throughput produced by all
of the algorithms evaluated, since as the number of classes
of service supported increases, the number of options avail-
able to the algorithm to fill a minimum size burst increases.
Therefore, if a given class does not have any packet available
for transmission, the algorithm can take packets from other
classes.

The results of the RF andHPF policies were also very sim-
ilar. This is due to the fact that these two classes have the same
packet arrival rate. Thus, it makes no difference wherever the
bursts are filled using packets from the highest priority class
or from any other. The second best algorithm was the BF
algorithm, while the highest throughput was obtained by the
PF algorithm.

The BF and PF algorithms both revealed better perfor-
mance than did the RF andHPF policies due to the difference
in their operation. The RF and HPF policies select all the
packets belonging to class i (restarting its timer) as well as
packets from the subsequent class ( j). Thus, class j timer
will also be restarted. Consequently, the classes i and j will
only send packets inside bursts of a neighbouring class or
when their timer has expired.

On the other hand, in the BF and PF algorithms, when
a timeout expires for class i , all the packets of class i are
put in the burst (timer is restarted), but only a fraction of the
packets belonging to other classes is used; the timer of these
classes thus continues running, which allows a new burst to
be sent as soon as a timeout occurs. Since some packets of
class j were already sent in the burst of class i , fewer packets

Fig. 13 Burst assembly delay as a function of the number of classes
of service
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from this class are added to the burst, leaving space for more
packets from the other classes. This results in a continuous
transmission of bursts sending data.

A similar argument can be used to explain the lower
assembly delay of BF and PF algorithms, as presented in
Fig. 13. Since the timers of piggybacked classes are not
restarted, the assembly period is lower than that of the HPF
and RF policies.

7 Conclusions

This paper has investigated the effect of burst assembly cri-
teria on the scaling of outgoing flows of multifractal flows.
Results derived via simulation have revealed that the assem-
bly mechanisms smooths the burstiness of the input traffic.
Both the mean and the variance of the Holder exponents of
themultifractal output traffic are lower than those of the input
traffic. Moreover, assembly time thresholds greater than the
cut-off time scale of the input flow produce monofractal out-
put flows, whereas lower values produce multifractal output
flows. For policies based on byte counting, if the threshold
is greater than the product between the input traffic mean
arrival rate and its cut-off time scale, the resulting flow will
be monofractal. Otherwise, it will be multifractal.

Furthermore, policies based on byte counting lead to
monofractal output traffic with larger Hurst parameters
than that produced by time-based policies. Moreover, byte
counting-based policies produced multifractal output traffic
with higher Holder exponents than that produced by time-
based policies.

Therefore, the use of time-based policies in ingress OBS
switches is recommended rather than those based on byte
counting, since the former produce smoother traffic with
weaker long-range dependencies; consequently, the traffic
injected into the network requires fewer network resources.
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