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Cellular networks are rapidly evolving towards the fourth generation, thus providing a glo-
bal infrastructure for wideband mobile network access. Currently, most of the energy con-
sumption of such technology is by cellular base stations, which are not energy efficient—at
least in terms of the transmission energy to ‘‘from-the-socket’’ energy consumption ratio.
This paper addresses the problem of energy efficiency in cellular networks by taking
advantage of the principles of cognitive networking, which promotes the creation of intel-
ligent networks capable of self-configuration with minimal human intervention. In partic-
ular, this paper uses the concept of fuzzy cognitive maps to decide upon opportunistic
traffic and user reallocations between radio network equipment operating in different
spectrum bands to enable power saving modes by some subsets of the radio network
equipment, and to utilize spectrum of more appropriate propagation characteristics to save
transmission energy. The feasibility and performance of the proposed approach is investi-
gated through simulations. Significant energy savings of some 25–30% are shown over a
72-h period, and blocking rate under the concept is shown to remain reasonable albeit
exhibiting a high variance.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Global emissions of greenhouse gases (GHGs) represent
a footprint on the world of the development of humanity,
especially after industrialization. The ICT sector itself
roughly accounts for 2% of today’s global carbon footprint
[1], but figures are expected to significantly increase in
forthcoming years, with forecasts predicting levels in
2020 around three times what they were in 2002. How-
ever, ICT is also forecast to contribute, both directly and
indirectly, to reducing global emissions of about five times
its own footprint, potentially leading to approximately
€600 billion savings [2] in energy costs.

The most significant direct effect is that the telecom
infrastructure is expected to grow significantly, ultimately
being responsible for 13% of the total sector footprint. Con-
sidering also that power generation in ICT is acknowledged
to be one of the main causes behind the increase of man-
made greenhouse gases, it is evident the importance of en-
ergy optimization in the telecom infrastructure.

In current cellular networks, base stations are usually
kept powered on and operating all day long, pursuing the
vision of an ‘‘always-on’’ network. As power consumption
in such networks is mainly due to base stations, which
account for almost 80% of the total [3], it is no wonder that
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several research efforts have tried to intervene directly on
the functioning of transceivers, at different levels of details.

Most of the works in the literature address the problem
of energy consumption from a static point of view, by apply-
ing static optimization algorithms[3–5]. While this ap-
proach works fine in quasi-static or highly predictable
scenarios, the same may not hold in cases where the envi-
ronment is subject to dynamic changes or in cases of emerg-
ing and differentiated usage of the communication
infrastructure. For example, even if it is known that the
average number of users in a cell follows a predictable pat-
tern, the actual number may be markedly different from the
mean, thereby reducing the effectiveness of energy saving
mechanisms implementing a static approach. In line with
such considerations, the paper aims to explore the possibil-
ity of developing dynamic energy-reduction schemes.

In this context, the cognitive networking paradigm rep-
resents a potential approach to pursuing the objective of
energy efficiency. Cognitive networking is a relatively re-
cent research field, stemming from cognitive radio tech-
nology. It aims to extend the principles underlying
cognitive radios and apply them to the whole communica-
tion protocol stack according to a network-wide perspec-
tive [6].

Works in this area are traditionally targeted at reducing
management complexity or optimizing Quality-of-Service-
related metrics. In this article, we propose to adapt cogni-
tive networking principles to address the problem of en-
ergy saving in cellular networks. More precisely, we
employ a mathematical tool called Fuzzy Cognitive Maps
(FCMs) to analyze causal relationships between energy
consumption in base stations and other variables charac-
terizing the cell, in order to identify the most appropriate
run-time decisions to reduce energy consumption while
maintaining a suitable performance level. It should be
noted that a dynamic approach such as the one proposed
in this paper can, in principle, substitute ‘‘static’’ schemes,
but can also be used in conjunction to them.

The rest of the paper is structured as follows. In Sec-
tion 2 we review related works. Section 3 is devoted to
the description of the proposed cognitive architecture,
which is analyzed in detail in Section 4. We validate our
scheme through simulations: the simulation scenario to-
gether with the details of simulations are described in Sec-
tion 5, while results are presented and discussed in
Section 6. A discussion of real-world implementation of
the proposed system is presented in Section 7, and our
concluding remarks are offered in Section 8.
2. Related works

As mentioned in the introductory section, several works
try to cope with the problem of energy consumption by
turning on and off network components—base stations,
radio modules, parts of the network itself.

For instance, Tipper et al. [4] observe that powering
down transceivers may not be convenient in certain sce-
narios, e.g. for security reasons or because it does not com-
ply with regulatory constraints, and advance the idea to
dim cellular networks. Specifically, they propose to lower
base stations transmission power, diminish the number
of frequency slots available, and reduce high data rate ser-
vices so as to achieve, in order, coverage, frequency, and
service dimming.

Other works aim to reduce energy consumption by
turning on and switching off base-station based on the
traffic load of a cell [5,7]. Such approach is based on the
observation that the traffic load in real-world cellular net-
works alternates busy periods with quiet periods in a peri-
odic fashion, to the point that it can be approximated with
a sinusoid [8]: during low-peak traffic periods the system
is underutilized and energy can be saved by switching off
inactive base stations, provided that coverage is guaran-
teed by neighboring cells. This scheme is shown to poten-
tially reduce energy consumption of about 25–30% [7].

Following an even finer degree of control, Saker et al.
illustrate a scheme to save energy by reducing the number
of active transceivers based on the current traffic load [3].
Results show that by implementing sleep modes in a
mixed 2G/3G network, it is possible to save up to 66% of
the power used in a traditional network, still being able
to retain a blocking rate as low as 0.2%.

Our work differs from [5,7,9] in that it focuses on a sin-
gle base station, rather than multiple base stations in a net-
work. We also avoid putting to sleep a base station in its
entirety. Instead, we allow a finer degree of control by acti-
vating or deactivating subsets of the transceiving modules
that compose the base station. Similarly to [4], we consider
powering off radio modules at the higher frequencies if the
number of customers is small enough to exclusively fit the
lower band. However, we assume that radio coverage re-
mains unchanged as we do not allow transmission power
to be dimmed. Instead we allow the base station to switch
operational mode, from omni-directional to tri-sectorized
and viceversa, depending on the context. In general, differ-
ently from all the mentioned approaches, our scheme aims
to independently adapt to the context variations, using
minimal a priori information, while also discovering
cause-effect relationships among the variables constituting
the problem.

Only a few works exist that merge together the cognitive
networking paradigm and green communications. One such
example is the architecture developed within the End-to-
End Efficiency (E3) European project [10]. Although the E3

architecture aims primarily to maximize spectrum and
radio resources utilization while reducing configuration
complexity, it can in principle optimize the power con-
sumption thanks to long- and short-term decisions taken
by different modules (Dynamic Self-Organizing Network
Planning and Management module and Self-x for Radio Ac-
cess Networks module) to be installed in the network.

However, rather than with respected to the E3 architec-
ture, it is more appropriate to position our approach with
respect to the reasoning techniques employed in the ap-
proaches advanced by the cognitive networking research
community. Examples of reasoning formalisms proposed
thus far in the literature include neural networks [11],
Bayesian and Markov networks [12], and optimization
algorithms in general [6].

The work carried out in this paper is also different from
what presented in [13]. Simulations in the cited paper
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assume that operations related to energy saving automat-
ically take place every time a user terminal joins or leaves a
cell. In this paper we introduce augmented reasoning capa-
bilities for the base station, so that more refined decisions
can be taken, by considering not only terminals joining or
leaving the cell, but also others, such as blocking rate and
signal to noise interference.

We use Fuzzy Cognitive Maps (FCMs), a tool that makes
reasoning to be based on cause-effect dependencies and
that already yielded encouraging results [14]. FCMs are
graphically represented through directed labeled graphs,
in which edges are causal relationships that tie together
two variables (technically referred to as ‘‘concepts’’). This
is an advantage over neural networks, which also can be
seen are a directed graph of different variables: the confor-
mation of the edges in an FCM reflects the real dependen-
cies between the variables, whilst that of a neural network
does not necessarily show it [15].

Bayesian networks, which are as well capable of repre-
senting cause–effect relationships among variables of a gi-
ven problem, and Markov networks share a common major
limitation: the difficulty to deal with causality loops.
Bayesian networks are based on directed acyclic graphs
and cannot be applied to such problems at all. Markov net-
works can employ approximate algorithms when causality
loops are present, yet are not guaranteed to converge. On
the contrary, the inference process in FCMs works inde-
pendently from the presence of loops in the structure.

A more detailed description of FCMs will be provided in
Section 4.
3. The proposed energy-efficient architecture

This section describes the architecture proposed by the
authors. For clarity, Section 3.1 describes the main mod-
ules of the proposed cognitive architecture, while
Section 3.2 explores into more detail the employed energy
saving mechanisms.
3.1. The proposed architecture

Though the approach we propose can in principle be ap-
plied to any network, we focus on the Universal Terrestrial
Radio Access Network (UTRAN), and use parameters that
refer to the High Speed Downlink Packet Access (HSDPA)
protocol.

A UTRAN is composed of two types of element: the
Radio Network Controller (RNC) and the Node B. The RNC
is in charge of controlling the Nodes B that are linked to
it and managing the available radio resources. Examples
of functions carried out by the RNC are handover control,
admission control and power control. The Node B, also re-
ferred to as base station,1 acts as a transceiver and allows
the terminals (User Equipments, technically) to access the
core network. It performs low level functions such as signal
processing, modulation, and diversity combination.
1 The terms ‘‘Node B’’ and ‘‘base station’’ will be used interchangeably
throughout the remainder of the text.
The cognitive cycle Fig. 1 is an abstraction that repre-
sents the fundamental activities to be carried out by a cog-
nitive entity [16]. The environment is sensed, and the
information collected enables the cognitive entity to rea-
son, i.e. to assess the possible actions that can be taken
(plan) and finalize a decision (decide). Finally, action takes
place, and the environment is again sensed so as to evalu-
ate what effects are produced.

Fig. 2 analyzes how such steps can be embedded in the
UTRAN. As Node B acts as an interface between the termi-
nals and the network, it is the appropriate device to per-
form environmental monitoring. Reasoning and learning,
however, are best allocated at the RNC level. The main rea-
son is that a single RNC can potentially drive multiple base
stations and can thus aim at global optimization, which
would otherwise be not feasible. Ultimately, actions can
be undertaken only by Node B, properly instructed by the
corresponding RNC. According to our model a new instance
of the reasoning formalism is created in the RNC for each
Node B driven by it. Although it would be more correct
to refer to the pair Node B/RNC, we will mention almost
exclusively Node B as the cognitive system in the remain-
der of the paper.

Actions, in the problem posed in this paper, deal with
energy saving and are analyzed in detail in Section 3.2,
whereas the definition of a reasoning entity suitable for
installation on the RNC is described in Section 4. In partic-
ular, Section 4.1 describes how the information collected
by sensing modules and the actions of acting modules
can be transformed into concepts that can be used in the
reasoning formalism.
3.2. Energy saving mechanisms

The energy saving techniques considered in this work
are applicable to scenarios in which networks operate in
different frequency bands covering the same geographical
area. Such scenarios are almost routinely the case in many
areas around the world, and their proliferation is likely to
increase in the future with new technologies and addi-
Fig. 1. The cognition loop (adapted from [16]). Highlighted, the direct
connection that the acting and sensing stages share with the surrounding
environment.



Fig. 2. How the proposed architecture fits in a UTRAN. Node B monitors the environment and sends the data to the Radio Network Controller (RNC), which
upon reasoning and learning, drives the acting modules in Node B, thereby closing the cognitive loop. For every Node B an instance of the cognitive
formalism is present in the RNC.
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tional bands, such as the earmarked IMT-Advanced bands,
coming into operation [30].

In this context, two energy saving techniques are inves-
tigated. Both are based on the dynamic redistribution of
traffic load or users between bands, but aim at achieving
different effects [17]. The first aims to allow radio network
equipment in the bands that the users originated from to
be switched off or put into stand-by mode. The second,
aims to optimize propagation characteristics for the given
scenario, dependent on traffic load, shadowing, and other
factors.

Said objectives are not conflicting with each other. As
the following subsections show, the techniques presented
operate on slightly different aspects – one aims at using
space in a single band or sector and the other aims at
employing lower frequencies – and for this reason they
can run in parallel.

3.2.1. Opportunistic reallocation to power down radio
network equipment

Two scenarios are considered: (i) the opportunistic real-
location of all traffic load or users from a band to another
band, in order to allow the band that the users or traffic
load originated from to be entirely switched off and (ii)
the opportunistic reallocation of a sufficient number of
users or traffic load to allow the cell to operate in omnidi-
rectional mode instead of sectorized mode, while still ade-
quately carrying all offered traffic. Power consumption
dependence on transmission power is limited in most
radio base stations, so any increase in required transmis-
sion power due to, e.g., a reduction in antenna gain in
omnidirectional mode, is not likely to have a very signifi-
cant effect on overall power consumption. Given this,
switching off the largest number of radio chains possible,
for the sectorization switching example through reducing
sectors from, e.g., three (sectorized) to one (omnidirec-
tional), is usually considered a reasonable approach to
achieve energy saving. Besides, though not investigated
in this paper, it is inherently clear that entirely opportunis-
tic switching off the cell is also a good solution, should
appropriate measures be taken to avoid any negative con-
sequences of such an action: in fact, switching off a base
station leads to the maximum possible energy saving but,
at the same time, does not allow any terminal to connect
to the network. Connectivity, in such case, may be granted
by neighboring cells, coordinating with one another to pro-
vide coverage yet minimizing interference.

This particular solution is clearly suited to locations and
times where the deployed networks’ capacity is higher than
traffic load. In many cases, it is necessary to deploy a consid-
erably large network capacity to cover the peak hour load
for example, but at other times all such capacity might
not be needed. In such cases, the extra capacity could be
switched off in order to save energy. This paper considers
such capacity being provided across multiple bands, and
theorizes the ability to re-allocate users between bands to
allow network equipment to be switched off.

3.2.2. Opportunistic reallocation to improve propagation
This solution is based on the ability to opportunistically

re-allocate users or traffic loads to lower frequency spec-
trum to improve propagation, hence reducing necessary
transmission power. This, however, will often have the
negative effect of increasing inter-cell interference in fre-
quency reuse scenarios, if the density of base stations is
high.

Such a possibility can nevertheless be mitigated by con-
sidering some specific factors when finding the optimal
spectrum available to perform the re-allocation. Such
factors are, for instance, the traffic area-density, required
base station density and propagation distance, and the
frequency-dependent propagation characteristics in the
locality. It is noted that in a number of cases the final result
may still be the same, i.e., that it is preferable to allocate to
the lower frequency spectrum opportunistically, when
possible.

This solution is applicable like in the previous case at
times when spectral capacity is in excess. Such cases might
be operable in non-busy periods or office hours in a busi-
ness district scenario, or at vacation times.

4. Embedding fuzzy cognitive maps in radio network
controllers

Devised in the 1980s as a mathematical tool to help ex-
perts discover causal implications in social science prob-
lems [18], Fuzzy Cognitive Maps (FCMs) have been
applied to different domains, from the simulation of virtual
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worlds [19] to the creation of medical decision support
systems [20].

Nodes in such a graph are called concepts and can
potentially represent any variable that characterizes the
system that is being modeled, such as for instance ‘‘the
amount of users in a cell at a given time’’ or ‘‘the energy
consumed by the base station’’. The labeled edges express
the strength of the causal relationship binding together
two concepts. As an example, with reference to Fig. 3, the
causal relationship between concepts b and c is strong
and positive, with b being the cause and c the effect. To
make a more concrete example, suppose that b and c rep-
resent the already mentioned concepts, i.e. ‘‘the amount of
users in a cell at a given time’’ and ‘‘the consumed energy
consumed by the base station’’, respectively. According to
the model, if the number of users increases, the consumed
energy is expected to increase as well. In other words, the
variation of the number of users in the cell is said to cause
the amount of energy consumed to vary a lot.

In their simplest form, concepts take values in the binary
discrete set {0, 1}. Zero conveys the idea that the concept in
question is inactive (or low or off, depending on the concept
nature). Conversely, a value of one means that the concept is
active. Examples of concepts that fit this mapping include
‘‘the use of packet fragmentation’’, for, in a network it can
be said that there is congestion (1) or not (0).

It should be noted, though, that other sets, such as
{�1, 1} and {�1, 0, 1}, are commonly chosen. Whereas a
null value practically absorbs any causal implication be-
tween two concepts, the effect of a negative value is to in-
vert causality – which is what actually happens in some
situations. An example for the former category is the clas-
sic Transmission Control Protocol (TCP) congestion win-
dow mechanism, which traditionally either increases or
decreases, depending on network conditions. Clearly, this
behavior can be well mapped on the domain {�1, 1}. How-
ever, if we suppose that we create an algorithm for which
the congestion window can also maintain its size, then a
more apt domain would be {�1, 0, 1}.

Finally, continuous intervals are valid concept domains,
as well. However, they are not a popular choice, for the
inference process in such case can lead to chaotic behavior,
thus not converging to any solution.

As for edge labels, typical values lie in the continuous
real interval [�1; +1]. The closer to the boundaries the va-
lue is, the stronger the causal implication is: positive or
negative, depending on the boundary it approaches,
whether the right one or the left one.
Fig. 3. Fuzzy cognitive
The inference process is computationally lightweight
and, most importantly, guaranteed to converge in a finite
number of steps, provided that concepts are mapped on dis-
crete sets. For instance, an FCM with n distinct, binary con-
cepts converges to a solution in no more than 2n steps [21].

The process involves repeated multiplications between
the vector of all concepts and the adjacency matrix of the
FCM studied. The vector used in the multiplication is re-
ferred to as the system state and represents the current
state of the system. In a system having n distinct concepts,
the state is a vector of dimension n. The system state deter-
mines which concepts are active/inactive—or increasing/
constant/decreasing, depending on the choice made for
the mapping domain. The multiplication operation uses
the state vector as a stimulus, and makes it propagate
throughout the network, flowing from causes to effects.
Clearly, the vector-by-matrix multiplication might result
in values lying outside the original domain. For this reason,
a non-linear operation, such as a threshold, is usually
needed to map the result onto the mapping domain cho-
sen[19]. An example of the inference process is shown in
Fig. 4 where the FCM is the same given in Fig. 3.

We propose to equip base stations with such cognitive
capabilities, in order to save energy while adapting to the
changing environment.

According to the procedure originally described by the
authors in [22], we will define in the following sections a
proper FCM for the problem of energy saving in cellular
networks.

4.1. Identification of the concepts characterizing the problem

As outlined in [22], the first step towards the definition
of a FCM involves the identification of the concepts that
will compose the system state.

With reference to Fig. 5, we can define a set C of all the
concepts that characterize the system under study. We can
think of such concepts as belonging to different sets:

� Set A comprises all concepts on which the reasoning
entity has direct control.
� Set Q collects all concepts that the reasoning entity can-

not control directly but that are interesting because
they give feedback on the achieved performance.
� Set E collects all concepts on which the reasoning entity

has no direct control nor carry relevant information
regarding the performance.
map example.



Fig. 4. FCM inference process example. As can be seen, the reasoning process results into the fixed point (0, 1, 1) in one iteration. Concepts mapped to the
{0, 1} domain and threshold set to 0.

Fig. 5. Relations among the concept sets and the FCM.
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As an example, let us consider a generic wireless net-
work. Transmitting stations might enable packet fragmenta-
tion to hinder data corruption due to channel noise, which
otherwise would reduce the throughput. The key concepts
in such scenario can be ‘‘fragmentation’’, ‘‘noise’’, and
‘‘throughput’’. According to our framework, fragmentation
can be directly controlled and belongs to set A. Throughput
and noise cannot be controlled, but while the former is a rel-
evant performance metric and would belong to set Q, the
latter is not and would therefore be put in set E.

This toy example clearly shows that not necessarily all
the variables have to be taken into account in the definition
of the system state. Indeed, as can be seen in Fig. 5, S # C,
meaning that some variables may not be considered,
depending on the problem formulation. With respect to
the toy example we devised, we do not consider the jitter
experienced by stations (2Q), as we are not interested in it.

Once concepts are found and classified, it is possible to
create the system state vector, s = (a, q, e), where:

v ¼ ðv i; . . . ;vnV Þ v i 2 V 8ðv ;VÞ
2 fða;AÞ; ðq;QÞ; ðe; EÞg ð1Þ

The FCM needs to converge to a solution state s⁄ =
(a⁄, q, e) by finding a vector a⁄ such that the constraints ex-
pressed by q are satisfied before environmental conditions
e change.

It should be noted that elements in set E are important
although they cannot be directly controlled by the system
nor do they provide any information directly related to the
performance of the system. In fact, they might have rela-
tionships with concepts in the other sets, which must be
taken into account to be, eventually, exploited.

For the problem considered in the paper of energy sav-
ing in cellular base stations, we selected the following
concepts:

� Concepts in S \ A: the use of higher frequencies (hi), the
use of tri-sectorized operational mode (tri).
� Concepts in S \ Q: the energy consumption (en), the

blocking rate (br), the Signal to Interference-plus-Noise
Ratio (snr).
� Concepts in S \ E: the amount of voice users (v), the

amount of users browsing the web (h), the amount of
users that transfer data (f).

4.2. Definition of concept domains

The second step in defining the FCM involves the iden-
tification of concept domains and the pre-processing oper-
ations needed to perform the mapping operation.

The number of steps needed to make the reasoning
process converge depends on the domains on which the
concepts are mapped and the number of concepts them-
selves [21]. More precisely, the inference process reaches
a solution within lc steps, l being the number of levels of
concept domains and c being the number of concepts. For
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this reason, we considered appropriate to adopt binary sets
as the domains for all concepts.

In particular, we have opted for the {�1, 1} domain as
the domain for all concepts except the blocking rate, for
which we used the binary set {0, 1}. This choice has been
made to highlight the fact that a low blocking rate (0)
should not be able to influence or, better, cause any other
concept. Avoiding the use of zero in all other cases means
that any variation can, at least in principle, entail some
change in the other concepts.

It should be noted that only concepts in S \ A can be
naturally mapped on such interval. Pre-processing opera-
tions are needed in order to map all other concepts. The
identification of optimal values for the pre-processing
stage depends on the problem under analysis and is a step
that must be taken into account for the correct outcome of
the operations. The following paragraphs are devoted to
explain such operations in detail. When applicable, param-
eters representing variable names used in the simulating
program are reported in parenthesis, using a
mono-spaced font. Values used are reported in Table 1.

4.2.1. Raw data averages
A collection period (DELTA_PERIOD) is defined during

which raw measurements for each of the variables in S \
(E [ C) are acquired. After this period, if the number of
samples collected is greater or equal than a target value,
first and second order statistics are computed.

If the number of samples is lower, the sensor is polled at
small regular intervals (GRACE_PERIOD), until the mini-
mum number of samples is reached. This procedure en-
sures that a minimum number of collected samples, so as
to reduce the chance of spurious variations.

4.2.2. Control chart
To distinguish significant changes from random varia-

tions, an approach based on exponential weighted moving
average (EWMA) control charts is used [23].

Each sensor draws a control chart in which the Center
Line is set to l̂, i.e. an EWMA-based prediction (weighting
coefficient b) of the actual mean value l:

l̂ ¼ blþ ð1� bÞl̂ b 2 ð0; 1� ð2Þ

Upper and Lower Control Limits (UCLs and LCLs, respec-
tively) are updated only when the controlled value ðl̂Þ
crosses either boundary. They are bounded to the standard
deviation (r) by the following formulae:

UCL ¼ l̂þ Cr �

ffiffiffiffiffiffiffiffiffiffiffiffi
b

2� b

s
and LCL ¼ l̂� Cr �

ffiffiffiffiffiffiffiffiffiffiffiffi
b

2� b

s
ð3Þ

where b is the same value used as a weighting coefficient in the
EWMA-based prediction and C is a real parameter in (0, +1].
Table 1
Parameters utilized for the validation. Unity of measurement appears next
to the value, surrounded by square brackets.

Parameter name Value

DELTA_PERIOD 180 [s]
GRACE_PERIOD 5 [s]
HYSTERESIS threshold ± 5%
4.2.3. Discretization
When a variation in a variable has been confirmed by the

control chart, the predicted mean is mapped on the contin-
uous set [�1, 1] by means of a linear transformation. Given xi

the input value of a generic variable, its output xo will be:

xo ¼
2 � xi � xmin � xmax

ðxmin � xmaxÞ
ð4Þ

In Eq. (4) xmin and xmax denote the minimum and maximum
value that xi can reach. As these values may not be known
beforehand, if the input value is less than the current min-
imum or greater than the maximum, the output value will
be set to the �1 or +1 and the relative limit updated.

4.2.4. Adaptive threshold and hysteresis
The resulting value is ultimately controlled against a

threshold, in order to convert the continuous value to
either element of the discrete set {�1, 1}. Such a threshold
is set to the immediately older value recorded.

Choosing a static threshold is not an optimal solution: if
the variable varies around a specific value which is not
close to the chosen threshold, no variation will ever be
registered and the system could possible settle to a
sub-optimal point. The implementation of an adaptive
threshold reduces the likelihood of such an event.

The drawback, however, is that even small variations
around the threshold are perceived as radical changes. To
counteract this side-effect we have introduced hysteresis
(HYSTERESIS).

4.3. Definition and update of the fuzzy cognitive map

The third and last step is about embedding of any a pri-
ori knowledge of the problem to the FCM. Let us denote by
fij the edge of the FCM that departs from i and arrives to j, i,
and j being generic concepts in S.

1. We assume that concepts in the same set are causally
independent from one another. Considering the set
S [ Q as an example, this means that, for instance, the
variation of the number of users that browse the web
has no causal implication to (and from) the variation
of the number of the users that place voice calls. This
means that no edges arrive or depart from concepts that
belong to the same class:
fij ¼ fji ¼ 0 8i; j 2 fS \ Vg; V 2 fA;Q ; Eg ð5Þ
2. Concepts in the action set are not directly caused by any
other concept. Instead they are triggered by the reason-
ing process. This translates into the fact that no edges
point to any action concept, that is:
fia ¼ 0 8a 2 fS \ Ag; 8i 2 fS \ Vg; V 2 fQ ; Eg
ð6Þ
3. Similarly, we state that concepts related to quality met-
rics do not cause any variation in the concepts related
to the environment. As an example, users will decide
to call, browse the web and download files ignoring
channel conditions (Signal to Interference and Noise
Ratio (SINR), blocking rate and energy consumed by
the base station). Mathematically:
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fqe ¼ 0 8q 2 fS \ Qg; 8e 2 fS \ Eg ð7Þ
4. We also know that both actions increase the number of
frequency slots available, and, as a direct consequence,
reduce the blocking rate. Therefore we may want to
embed such information, by properly setting fhi,br and
ftri,br.

The resulting FCM is as follows:

F ¼

0 0 0 0 0 fv;en fv;br fv ;snr

0 0 0 0 0 fh;en fh;br fh;snr

0 0 0 0 0 ff ;en ff ;br ff ;snr

fhi;v fhi;h fhi;f 0 0 fhi;en fhi;br fhi;snr

ftri;v ftri;h ftri;f 0 0 ftri;en ftri;br ftri;snr

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð8Þ

In order to keep the FCM updated a learning algorithm
has to be employed. Learning algorithms emulate human
learning: just like human beings infer causality between
two events when they perceive concomitant variations
that respect a chronological order, learning rules for FCMs
modify the labels of the edges that connect two concepts
that experienced some change in a relatively short period
of time.

If a concept experiences a positive variation and soon
after another concept experiences a positive variation as
well, it can be assumed that the two concepts are bounded
by a positive causal relationship. The same holds if both
variations experienced are negative. Conversely, if they un-
dergo alternate variations (positive the first and negative
the second, or viceversa), it can be inferred that there is a
negative causal relationship that connects the two
concepts.

A popular learning rule is known as Differential Heb-
bian Learning (DHL) which updates the edges in an FCM
proportionally to the value of variations of the concepts
[24]. Mathematically, if we denote by f t

ij a generic edge at
time t and by _Ci the variation of concept i at time t, the
DHL rule states that:

f t
ij ¼ f t�1

ij þ g �f t�1
ij þ _Ct

i
_Ct

j

� �
ð9Þ

The parameter g 2 (0; 1] is known as ‘‘learning rate’’
[19] and its purpose is to lower the responsiveness of the
algorithm, which otherwise could produce too abrupt
updates.

A peculiar property of DHL is that it accounts less for
the causal history of an edge. As can be seen in Fig. 6a, vari-
ations are assigned different levels of importance depend-
ing on how many variations of the same type happened
immediately before. Even if many variations in a row take
place, all sharing the same polarity, it takes only a few
steps for the edge to change value (and sign).

Instead, in order to consider all variations of the same
importance, we modified the DHL rule to devise a Linear
Learning (LL) rule. According to such rule, edges are
updated based only on the polarity of the variation,
that is:
f t
ij ¼ f t�1

ij þ g � sgn _Ct
i
_Ct

j

� �
ð10Þ

where sgn denotes the sign operator. Clipping is done to
prevent edge values fall off of the [�1; 1] interval, as also
shown in Fig. 6b.
5. Simulation scenario

The simulation scenario is populated by seven base sta-
tions arranged according to the traditional honeycomb
structure, as shown in Fig. 7. In the simulator, however,
cells are represented by circular areas, which obviously
overlap to some extent to one another. This means that
on average the number of terminals per unit of space will
be twice as much as in non-overlapping areas. Due to the
symmetry of the structure, the central base station experi-
ences a more uniform load, when compared to the outer
base stations. In order to lessen the likelihood of biasing
the results, we focus on the central base station.

The cell in the center is served by a base station that is
equipped with cognitive capabilities. Such cognitive capa-
bilities are based on the FCM designed in Section 4, and al-
low the base station to reason about the environment to
reduce energy consumption while monitoring the blocking
rate. All other base stations in the network do not employ
any cognitive scheme and maintain all radio modules en-
abled at all times.

The simulating platform focuses on the periods of active
communications between the base stations and the user
terminals associated to it, so that it is possible to monitor
energy consumption.

Terminals are static during their communications and
are distributed over the coverage area of a base station fol-
lowing a uniform random distribution. Associations and
deassociations to/from a base station follow a Poisson pro-
cess, with parameters k and l, respectively. Both k and l
depend on the type of communication occurring: voice
call, web browsing, data transfer. Therefore, we define both
parameters for each traffic category, resulting in six
parameters: kv, lv, kh, lh, and kf, lf.

Each base station has a peak busy load of 50 users,
weighted by the data shown in Fig. 8 in order to reflect
real-world situations. Weights reflect the actual hourly
load measured in a Vodafone 3G cell in London and were
obtained via internal communication within the UK’s Mo-
bile VCE Core 5 Green Radio research program.

Voice traffic is modeled after the well-known Brady six-
state model [25]. In our case, we restricted our attention to
a subset of the six states of the original model, focusing
only on the states for which there is a transmission from
the base station to the terminal, i.e. when the other end
of the communication is active. We assumed an average
duration of calls of one minute, resulting in a lv of 1/60.

Web traffic has been modeled as a continuous repeti-
tion of two states: a downloading period to retrieve a page
from the web, and a waiting period, to parse and read the
page [26,13]. The download time depends on the size of
the web page and eventual embedded objects. Object sizes
follow a truncated lognormal distribution, while the num-
ber of the embedded objects in a web page follows a



Fig. 6. Lagged-coordinated plot of the evolution of an FCM edge when updated by (a) Differential Hebbian Learning and (b) Linear Learning. Starting point is
(0, 0). The sequence of variations is as follows: 2 positive, 10 negative, and 3 positive. Learning rate g set to 0.25.

Fig. 7. Layout of the simulated scenario. The coverage radius r is set to
600 m in the simulations.

Fig. 8. Hourly variation of traffic load as a percentage of busy hour load
over a typical day for a mobile network operator in London, UK.
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truncated Pareto distribution. Reading and parsing times
can be found by sampling an exponential distribution.
Assuming that a web session for a mobile user lasts, on
average, five minutes, we fixed lw to a value of 1/300.

The model for FTP sessions is similar to that for web
sessions, except for the fact that there is no parsing time
[27,13]. The download time exclusively depends on the
size of the object to be transferred, which follows a Pareto
distribution. Reading time is again modeled by an expo-
nential random variable. Considering that a mobile user
is not likely to make extensive use of FTP, we hypothesize
an average session duration of two minutes, equivalent to
a lf of 1/120.

In the simulations we fix the composition of traffic as
follows: 50% voice traffic (av), 40% web browsing (ah) and
10% FTP traffic (af). Traffic categories are independent from
one another. By approximating each type of traffic as an
M/M/1 it is possible to find the relative birth rates as:
Table 2
k ¼ Ntaili i 2 v ;h; f ð11Þ

Simulation configuration parameters. d is the distance in km.

Parameter Value

System configuration Broadly reflecting HSDPA Rel. 5
Spectral efficiency 0.8 b/s/Hz
Bandwidth per HSDPA band 5 MHz
Channel path loss models [28] 2 GHz: 128.1 + 37.6 � log(d)

5 GHz: 141.52 + 28 � log(d)
HSDPA pilot power 20% of cell power budget
where Nt is the number of users in a cell at a given hour t.
The environment broadly reflects that of an HSDPA net-

work. The main parameters that characterize the system
are reported in Table 2.

Base stations all operate on two bands, centered at
2 GHz and 5 GHz, and are characterized by a coverage ra-
dius of 600 m. The from-the-socket power PM is computed
according to a well known linear function of the transmis-
sion power Ptx [29], namely:

PM ¼ a � Ptx þ b ð12Þ

According to internal documentation within the Mobile
VCE Green Radio research program, it has been shown that
an HSDPA base stations consumes 857 W at 100% trans-
mission power and 561 W at 20% transmission power.
Constants a and b have been computed by regression and
are equal to 9.25 from-the-socket Watts per transmission
Watt and 487 Watts, respectively.

Regarding user capacity, a base station can accommo-
date at most 22 users per band when operating in omnidi-
rectional mode and up to 15 users per band per sector
when operating in tri-sectorized mode.



Traditional
Cognitive

Window avg,
All time avg,

Fig. 9. (a) Consumed energy in traditional and cognitive base stations,
and (b) energy saved by employing the cognitive scheme over a period of
72 h. (c) Example of the evolution of the blocking rate.

Fig. 10. Evolution of the action concepts: (a) use of higher frequencies
(hi) and (b) use of tri-sectorized mode (tri).
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6. Results

Simulation time covers three days, starting from mid-
night. As we intend to simulate three consecutive working
days, the hourly variation reported in Fig. 8 does not
change from day to day.

The dashed line in Fig. 9a represents the energy con-
sumption by a traditional base station, i.e. when all six
modules are always on. As can be expected, the curve is
a linear function of the time, showing no change in the
behavior of the base station. The behavior of the cognitive
base station is represented by the solid line, which resem-
bles a piecewise linear function. The curve reveals that at
times when the user load is low, it is possible to save en-
ergy by switching off part of the radio modules. Con-
versely, when there is a high user load all radio modules
must be kept active and no energy saving is possible. Such
periods are the intervals in which the solid curve runs in
parallel with the dashed curve, i.e. from hour 18 to 28,
from hour 42 to 50, and from hour 60 to 72.

Fig. 9b shows the difference between the energy con-
sumed by a traditional base station and the cognitive base
station. The periods in which energy saving is not possible
can be recognized more clearly. By analyzing the slopes, it
can be observed that our scheme saves slightly more than
250 MJ over the investigated 72-h duration (3.5 MJ/h or al-
most 1 kW), equivalent to approximately 27% saving over
the traditional case. In the busy periods in which all radio
modules must remain active, energy saving is negligible.
However, in quiet periods in which it is possible to employ
power saving modes, this saving can be as much as 50% of
the total energy consumption of the traditional system
(6.25 MJ/h or 1.7 kW).

Inevitably, there is a trade-off between energy saving
and blocking rate. As the thin line in Fig. 9c indicates, the
blocking rate tends to increase when a subset of the trans-
ceivers is turned off. High peaks of the blocking rate can be
registered by averaging the value using a window equal to



Fig. 11. Example of evolution of the causal relationships: (a) between hi (use of higher frequencies) and the quality-related concepts and (b) between tri
(use of tri-sectorized mode) and the quality-related concepts.
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the collection period (180 s). However, it should be noted
that it may be that only a few users try and join the network
during such intervals, thereby the difference between local
maxima and following minima is often pronounced. The
thick curve represents the all-time average, in which the
blocking rate remains below 5% throughout the simulation.

Fig. 10 reproduces the behavior of the radio modules in the
cognitive base station. In such graphs, the step curves are
either high or low, symbolizing the use or not, in order, of
the extra capacity. Fig. 10a shows the use of the higher band,
whereas Fig. 10b shows the use of the tri-sectorized mode.
The oscillations during the low-activity periods hint at the fact
that an even greater saving could be, in principle, possible.

For the sake of clarity, we also report the causal rela-
tionships between the action concepts and the quality-re-
lated concepts (Fig. 11). It can be noticed that the cause-
effect relation between any action concept and the block-
ing rate is negative and approaches the lower bound
(�1). This means that using the higher band in conjunction
with the lower band and using the tri-sectorized mode
causes the blocking rate to decrease. A similar effect hap-
pens with energy: turning on the radio modules causes
the consumption of energy to rise (positive cause–effect
relation). The relation with the SINR is less clear. Whereas
the employment of tri-sectorized mode seems to increase
the SINR, when turning on the higher band it an increase
in the SINR may not follow. This could be explained by
the fact that, although it is true that switching on more
radio modules increases the available capacity and should
lower the interference, it is likewise true that interference
depends also on the activity in the neighboring cells, which
is neither modeled in our system, nor it can be controlled.
7. Discussion

For a real-world implementation of the architecture
proposed we should focus on two main aspects, namely
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(i) the cost of collecting all the cognitive information and
(ii) the extension of the algorithm to include multiple cells.

To better analyze the first point, let us investigate the
concept categories as we have defined in Section 4.1. It
should be noted that all action-related concepts are private
to a cognitive base station and, therefore, they are inher-
ently known by it. Clearly, there is no cost associated with
their retrieval. The same applies to the concepts linked to
the quality of service. At any time, the cognitive base sta-
tion has access to all measurements related to energy con-
sumption, blocking rate, and SINR. In particular, the latter
concept refers to the ratio measured at the base station le-
vel. Finally, it is sensible to assume that the cognitive base
stations know (or can compute) also the concepts pertain-
ing to the environmental class, i.e., the number of users
connected and the type of traffic they generate. For this
category, there is a cost to be paid for the information re-
trieval (statistics computation, traffic analysis, etc.). How-
ever, it is minimal and its impact on the overall cost is
negligible.

On the other hand, it is possible (and worth investigat-
ing) to include in the reasoning process external measure-
ments, such as the quality experienced by the terminals
(the so-called Quality of Experience), or in a more futuristic
scenario, actions that take place at the terminal. In this
case, the presence of a signaling protocol must be envi-
sioned, so that the information (knowledge and com-
mands) can flow between remote entities. Such a
protocol clearly increases the complexity, hence the cost,
of the overall architecture but can potentially lead to im-
proved performance levels.

As for the second point, the algorithm, as presented in
this work, has been simulated on a single cell system.
However, in order for it to be implemented in the real
world, it is mandatory to consider systems composed of
multiple cells.

Interestingly, the devised framework is particularly
scalable. In fact, FCMs can easily be merged with one an-
other[24] and lend themselves nicely to create a distrib-
uted reasoning system.

However, attention must be paid at the potential pitfalls
when developing such a combined scheme. Indeed, it is not
obvious that merging the knowledge accumulated by dif-
ferent reasoning systems will lead to a greater perfor-
mance level.

For instance, let us imagine a scenario in which there
are two neighboring cognitive base stations and any termi-
nal can connect to either one, indifferently. In this scenario,
it is possible that one base station learns that the blocking
probability tends to remain low, though most of its radio
modules are turned off. The first issue here is that, appar-
ently the first station that acquires such a knowledge is
more likely do develop a selfish behavior (at the expenses
of the other). The second issue lies in the knowledge ex-
change. After merging knowledge, it may happen that the
other base station learns that most radio modules can be
safely turned off, which is obviously wrong.

This plain scenario tells us that several are the factors
that should be thought of before considering a network-
wide implementation of the scheme offered. Solutions
may range from the specification of overarching common
goals, to the application of game-theoretic models, from
reputation-based systems, to the definition of ad hoc rules.
No matter the choice, it is worth bearing in mind that every
solution might hinder scalability in the long run.

8. Conclusions

As the ICT sector is partly responsible with the increase
in the global carbon footprint, methods are being devel-
oped to reduce the amount of energy consumed in the area
of telecommunications.

We have described how this problem can be tackled by
exploiting the cognitive networking vision, according to
which networks should be able to self-configure in view
of a specific goal, limiting the need of human intervention.
Specifically, we have proposed a novel dynamic scheme to
perform energy saving in HSDPA base station by driving
the selection of the active transceivers.

Results demonstrate that the usage of fuzzy cognitive
maps for reasoning and decision-making enables to save
a relevant amount of energy in operation under realistic
traffic patterns. As a consequence, the proposed architec-
ture seems suitable to support dynamic configuration of
cellular base stations. Clearly, the achieved savings corre-
spond to an increase in the blocking probability. The iden-
tification of a refined methodology to enable a more
flexible trade-off between energy saving and blocking rate
will be subject of further investigation on the topic, as well
as a generalization of the proposed architecture to enable
collaboration among several neighboring base stations.
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