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Although most of the traffic carried over the Internet uses the Transmission Control Proto-
col (TCP) as the transport layer protocol, it is of paramount importance to develop models
for streams that use the User Datagram Protocol (UDP), since these streams are inelastic
and, consequently, they can jeopardize the acquisition of bandwidth by TCP streams. This
paper introduces a traffic model for UDP streams and its performance is compared to those
of other traffic models. The proposed model can be used to generate streams of aggregated
UDP sources in simulation experiments.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP), the two transport protocols most widely
used in the Internet, provide, respectively, connection and connectionless services at the transport layer. They differ in
various aspects. TCP furnishes reliable delivery services, with a transmission window governed by both flow control and con-
gestion control mechanisms which introduce processing overhead as well as limit the potential bandwidth a connection can
use. UDP, on the other hand, neither furnishes reliable data delivery nor has the mentioned overhead and limitation, so it is
more appropriate for real-time applications such as voice over IP and video on demand.

Although the deployment of real-time applications on the Internet has increased, roughly 80% of the traffic still uses TCP
as the transport protocol which justifies the large number of traffic models for TCP streams that has been proposed [1–3].
The proportion of UDP traffic in the Internet does not diminish the need for accurate models for such type of traffic given
that UDP does not reduce its transmission rate under congestion situations and consequently it can jeopardize the band-
width acquired by TCP streams under congestion. Understanding and being able to reproduce the behavior of UDP streams
at the packet level is a key for the assessment of the efficacy of congestion control mechanisms. Nonetheless, not too much
attention has been paid to such type of model, with the most popular models focusing on the behavior at the flow level [4,5].

Moreover, the scaling nature of Internet traffic has been subject to debate in recent years. Some authors advocate the use
of monoscaling models (monofractal, self-similar) while others prefer the use of multiscaling models (multifractal). The
authors of this paper analyzed a large number of IP, TCP and UDP traces to shed light on scaling nature of these types of traf-
fic [6]. Results suggest that TCP streams determine the scaling nature of IP flows as well as that UDP flows are multifractal
[6]. Such multifractal nature can be understood by the diversity of packet size transported by the UDP protocol ranging from
small packet such as those of VoIP to large ones generated by media streaming applications.

This paper proposes a traffic model for UDP streams, firstly introduced in [7], which reproduces the traffic at the packet
level as well as its scaling characteristics. The model is not oriented to the traffic generated by specific applications but rather
to the aggregation of the packets generated by applications which use UDP protocols at the transportation layer. This model
. All rights reserved.
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was based on the identification of marginal distributions existing in UDP flows, as well as the identification of those distri-
butions needing to be considered in greater detail. The model is a 4-state one and its accuracy is compared to that of other
multiscaling models proposed in the literature. It can be used to generate synthetic data for simulation experiments at low
computational cost. Besides providing an extensive evaluation of the proposed model and expanded comparison with related
models, this paper differs from [7] by the precise characterization of the multifractal nature of UDP traffic as well as by the
multifractal analysis of the traffic generated by the proposed model.

The following section reviews the concept of scaling in network traffic. Section 3 describes various distributions of UDP
traffic streams. Section 4 presents the construction of the model. Section 5 overviews two multifractal models commonly
used in the literature. Section 6 provides an analysis of its performance. Section 8 concludes the paper.

2. Scaling nature of network traffic

Since the seminal work of Leland et al. [8], several studies have shown that network traffic presents scale invariance, or
scaling, which is the absence of any specific time scale for which the ‘‘burstiness’’ of a traffic stream can be characterized.
Hence, an accurate description of traffic must account for a variety of time scales. Such traffic presents long range depen-
dency which implies that the auto-correlation of the traffic decays very slowly, or hyperbolically; moreover this auto-cor-
relation is non-summable across all time scales. LRD is characteristic of most network traffic and it impacts critically on
the dimensioning and performance of queues since the loss of packets does not decrease substantially with an increasing
buffer. Various types of network traffic can be modeled by self-similar or (mono) fractal processes such as local area network
traffic and some wide area network traffic. Scaling of such monofractal traffic is measured by a single constant value: the
Hurst parameter. Any self-similar (or monofractal) q order process XðtÞ has statistical moments defined by [9]:
EjXðtÞjq ¼ EjXð1Þjq � jtjqH ð1Þ
where H is the Hurst parameter. This structure restricts the burstiness of a process to a uniform pattern across different time
scales.

Multifractal processes have also been used for modeling network traffic. These processes have richer form of scaling
behavior which is associated with non-uniform local variability, i.e. these processes have non-linear behavior at different
moments. In addition to long range dependencies, multifractal traffic has a high level of activity on small time scales which
differs significantly from that of monofractal traffic on the same scales. Actually, the burstiness on small scales diverges from
those on larger scales. In these processes, the local regularity of sample paths are described by a collection of scaling expo-
nent, a generalization of the Hurst parameter. Moreover, the incremental process cannot be described by a gaussian distri-
bution as in monofractal traffic.

The statistical moments of a multifractal process are defined by [9]:
EjXðtÞjq ¼ EjXð1Þjq � jtjfðqÞ ð2Þ
where f(q) is the scaling function.
Some wide area network traffic can be modeled as multifractal traffic as will be shown in the next section. The use of a

monofractal process to model such multiscale traffic leads to misleading results since this can considerably overestimate the
bandwidth needed by the traffic [10].

In the wavelet domain, the relationship established in Eq. (2) is defined by:
EjdXðj; kÞjq � 2jfðqÞ j! �1 ð3Þ
where dX(j, k) is the series of increments (details) obtained by the decomposition of the process X(t) using the discrete wave-
let transform. The scaling function f(q) is defined by:
fðqÞ ¼ aq �
q
2

ð4Þ
where aq is the scaling exponent. This exponent has its value bound by the burstiness of the traffic. For multifractal pro-
cesses, it varies at different statistical moments (q).

Abry et al. [9] describe a method called Multiscale Diagram (MD) to determine the occurrence of multifractality in a pro-
cess. This method consists of verifying the behavior of the function f(q) at different moments. A non-linear function charac-
terizes a multifractal process whereas a linear behavior indicates that the process is monofractal.

Estimating the values of the function f(q) requires the determination of the scaling exponent aq, as defined in Eq. (4). To
determine aq, the Logscale Diagram (LD) method is used. In this method, aq is defined by the slope of the curve that is close to
the curve generated by the relation between Sq(j) and 2j on a logarithmic scale. Sq(j) is given by:
SqðjÞ ¼
1
nj

Xnj

k¼1

jdXðj; kÞjq � EjdXðj; kÞjq
where nj is the number of details dX(j, .), on time scale j, generated by the decomposition of X(t) using the discrete wavelet
transform.
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Multifractality can also be detected by the use of a Linear Multiscale Diagram (LMD) which plots hq = fq/q against q. In such
diagram, monofractality is revealed by horizontal alignment whereas a non-horizontal alignment reveals multifractality.

A multifractal process has non-uniform burstiness and its variations are not captured by a single constant value, such as
the Hurst parameter. Whenever the process has non-uniform burstiness the relation between the statistical moments and
time scales (D) on a logarithmic scale (Eq. (2)) is non-linear.

The aforementioned theory has been used to characterize the scaling of traffic streams in the literature. Before using it in
this paper, we address the issues raised in [11]. Several papers in the literature overstate the multiscaling nature of traffic
resulting in misuse of tools for identifying scaling as well as the misidentification of the proper scale for analysis. To avoid
such type of mistake, we followed the procedure described next [11]:

1. Define the right process from the analyzed traffic traces.
2. Tune the confidence interval estimation procedure implemented by the signal analysis tool.
3. Find the meaningful time scales.

Four processes were suggested by the Veitch et al. [11] for the analysis. The arrival time point process, X(t), is the most
used in the literature given the adequacy of the tools based on wavelet to analyze this type of process. Alternatively, the byte
arrival process, W(t) can be used since it leads to similar results than those when the arrival point process is used.

Veitch et al. [11] stressed the need for fine tuning the parameters of the tool for the derivation of confidence intervals in a
non-Gaussian context. They suggested to set the non-Gaussian option in the tool, since traffic on small time scale does not
show Gaussian behavior, which will empirically estimate the confidence intervals from the data. Such changes have been
implemented by the authors.

Veitch et al. [11] suggested the use of three time scales: the ‘‘Inter-Arrival Time’’ scale, jIAT, identifies the scale of isolation
of individual packets; the ‘‘breakup’’ scale, j⁄⁄, defines the start of scaling region and the third one, the ‘‘biscaling knee’’ scale,
j⁄, defines the possible regimes changes: multifractal on smaller scales and monofractal on larger scales. All the three scales
have been considered in the present analysis.

We investigated the existence of multiscaling pattern in all traces used in this work by looking carefully their logscale
diagrams. Table 1 gives information on the traces used, including the values of time scales jIAT, j⁄⁄, and j⁄. Moreover, results
for the trace BWY-1069762448 are presented in Fig. 1.

Multiscaling is detected, in general, by the existence of a collection of scaling exponents {aq} along the slope of straight
lines in a q-LD (Logscale Diagram) in the same range of scales. However, multiscaling shows only evidences of multifractality
[11]. Fig. 1 shows that in the range q 2 [1, 6], twin scales can be observed: at fine scales, [j⁄⁄, j⁄] = [4, 10] and at coarse scales,
[j⁄⁄, jmax] = [10, 15]. Therefore, the trace exhibits multiscaling in each scale range.

Since the biscaling identified in the Logscale diagram analysis is due to the existence of twin scaling regimes, we analyzed
the scaling properties in the range defined by the breakup and by the knee scales, see Table 2. Moreover, we analized the scaling
pattern by plotting the Linear Multiscale Diagram (LMD), c.f Fig. 2, of traces in Table 1. On coarse scales, the hq of functions all
traces show a clearly horizontal shape, suggesting scaling is described by a single value, i.e. monofractal models should repre-
sent the traffic dynamics over these scales. On the other hand, on fine (small) scales, all the hq’s functions show a non-horizontal
shape suggesting multifractality. By doing such analysis, we conclude that the traces used in this paper are indeed multiscaling.

3. Characterization of marginal distributions

The approach adopted for derivation of UDP traffic model presented here involves an initial identification of the distribu-
tions which best characterize the relevant marginal distributions of the UDP traffic streams. Some of these distributions are
bimodal such as the distribution of packet size. Rather than defining a special distribution to describe the bimodal shape of
some of the UDP stream distributions, we modeled the two distinct regions of the UDP stream distribution using two differ-
ent well known distribution. The marginal distributions of UDP streams worth modeling using two distinct regions were
identified as well as the cut off point that separated the two regions. After identifying the well known distribution for each
region of the UDP distribution, the model was derived and its effectiveness evaluated. Models with two, four, and eight states
were derived, but that with four states furnished the most precise results.

To characterize the distributions of UDP traffic streams, real network traces available publicly at http://www.nlanr.net
were employed. Table 1 shows the traces used. UDP packets were extracted from the IP traces to form the UDP stream asso-
ciated to the trace. The software Coralreef [12] was employed to process the traces. UDP constitute roughly 20% of the total
number of packets in the traces.
Table 1
Traces used in the investigation.

Trace Date Start time time (s) Rate (MBps) jIAT(ms) j⁄⁄ j⁄

BWY-1069762448 11/25/03 04:49 90 0.082994 4 (0.441773) 4 10
BWY-1069224416 11/18/03 23:43 90 0.224573 4 (0.260058) 6 10
UFL-1095079334 09/13/04 06:11 90 0.181745 4 (0.280426) 7 11

http://www.nlanr.net


Table 2
Scales defining biscaling regimes as measured from the traces. jmax is the coarser scale applied in
the analysis.

Trace Biscaling regimes

Fine scale Coarse scale

BWY-1069762448 [j⁄⁄, j⁄] = [4,10] [j⁄⁄, jmax] = [10,15]
BWY-1069224416 [j⁄⁄, j⁄] = [6,10] [j⁄⁄, jmax] = [10,16]
UFL-1095079334 [j⁄⁄, j⁄] = [7,11] [j⁄⁄, jmax] = [11,14]
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Fig. 1. qth order logscale diagrams for UDP flow of trace BWY-1069762448.
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The distribution that most influenced in the derivation of the model was that of packet size and that of the duration of the
bursts of packets. Packet interarrival time was also investigated, but produced no significant impact on the modeling of UDP
streams. The model for a UDP stream distribution was developed employing the SAS and MATLAB softwares. Hypothesis
were tested by applying the Kolmogorov–Smirnov test with an alpha level of 0.01. Various statistical distributions used
in the tests: Exponential, Beta, Gamma, Normal, Lognormal, Pareto and Weibull. Next, the characterization of UDP stream
distributions is described.

The next sub-sections analyzes the relevant distribution for the characterization of UDP streams. The trace BWY-
1069224416 will be used to illustrate the specific distributions adopted in the model.
3.1. Packet size distribution

Fig. 3 plots the distribution of packet size, which is clearly bimodal. Such a shape is due to the fact that different appli-
cation level protocols produce data protocol units of different sizes. Such a bimodal distribution cannot be described by any
of the distributions considered. Although a single bimodal distribution could have been derived for packet size, the decision
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Fig. 2. LMDs of UDP flow of traces BWY-1069762448(top), BWY-1069224416(middle), UFL-1095079334(bottom) over fine scales and coarse scales.
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was made to use different distributions for different ranges of packet size. The incorporation of two distinct distributions
rather than a single bimodal one involves defining different states in the traffic model. The packet size considered to divide
the two regions is 750 bytes, with modes of 120 and 1350 bytes.

Hypothesis tests indicate that the distribution which best characterizes the two regions is the Beta distribution (Fig. 4). In
the first region an inverted-J Beta distribution, i.e. a < 1 and b P 1, was used to characterize the packet size distribution. In
the second region, the packet distribution is characterized by a Unimodal Beta distribution, i.e. a, b > 1, with its peak at
1396.9.

3.2. Interarrival time distribution

The choice of using two unimodal distributions to characterize the bimodal distribution of the packet size led to the def-
inition of a model which involves states associated with the two regions of the distribution. The distributions of the packet
interarrival time are the ones of packet arrivals belonging to the burst in the same state. For these interarrival time



Fig. 3. The whole distribution for trace BWY-1069224416.
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distributions, burst of packets with size in the same region of the two packet size distribution were identified in the trace.
Arrivals of single packets were also accounted as bursts of size one.

The exponential and the Weibull distributions were the most significant ones for modeling the interarrival time of pack-
ets. Moreover, the Weibull distribution fits more precisely the sample distribution (Fig. 5). The Weibull distribution repro-
duces the behavior of the interarrival time of packets, including the peak values in both regions, the Exponential distribution
gives poor results, specially when modeling the interarrival time of packets in the second region (Fig. 5b). In the first region,
the Exponential distribution shows a better fitting. Actually, this distribution is very similar to that when the Weibull dis-
tribution is used. Such similarity is due to the fact that the Exponential distribution is a special case of the Weibull distri-
bution with the value of its shape parameter set to 1(one) [13]. In this example, the value of the shape parameter is equal
to 0.88, very close to one, which explains that close fitting (Fig. 5a).

3.3. Duration of bursts in packet distribution

The distributions of the duration of bursts of packets were broken down into two regions since this leads to more accurate
traffic models than would a single region used. This can be explained by the fact that the different application layer protocols
that generate different packet sizes tend to generate bursts of packets of distinct durations. The cut-off value for burst dura-
tion for all traces studied can be seen in Table 3.

Hypothesis tests have indicated that the Uniform distribution is the one which best characterizes the duration of bursts
shorter than those values presented in Table 3 for both regions, although the Weibull distribution is the most accurate dis-
tribution for bursts longer than the cut-off durations (Table 3).

Fig. 6 shows the fitting of the distributions when the burst duration is greater than the cut-off values. It can be seen that
the Weibull distribution models more precisely the sample distribution of UDP burst size than do the Exponential distribu-
tion for both regions. In the first region, the Exponential distribution and the Weibull distribution show a close fitting but
again setting the value of the shape parameter of the Weibull distribution is equal to 1.
4. Proposed traffic model

It was clear from the data obtained that both modes of packet size distribution need to be considered in the modeling
process, with the precise modeling of packet size constituted the initial step in the derivation of the model. States were de-
fined for the two regions of the packet size distribution (packets smaller and greater than 750 bytes). To refine the model,
various combinations of potential distributions for packet interarrival time and burst duration were then investigated, and
the resulting models tested. Both, single distributions and distributions by region were considered.



Fig. 4. Packet size distribution for trace BWY-1069224416.
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Since the size of UDP datagram depends on the application protocol using UDP, for instance datagram carrying DNS mes-
sages are small while those carrying RTP messages are typically large. Thus, diverse packet size are expected. The relevance
of the packet size to the derivation of the model was somehow predictable. Moreover, the duration of packet burst is tightly



Fig. 5. Interarrival time distribution for trace BWY-1069224416.
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Table 3
Cut-off values for burst durations of the traces studied.

Traces Cut-off values (in s)

First region Second region

BWY-1069762448 0.00128 0.00075
BWY-1069224416 0.00050 0.00018
UFL-1095079334 0.00075 0.00030
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coupled with the scaling properties of the traffic stream. It was also expected that the duration of packet bursts would be
quite relevant to the model.

The most precise model was one with four states involving two states for packet size mode and two associated to the
packet burst duration. The model is presented in Fig. 7; the definition of the states are:

� State 1 – burst of packets smaller than 750 bytes, with duration shorter than x seconds.
� State 2 – burst of packets smaller than 750 bytes, with duration longer than x seconds.
� State 3 – burst of packets larger than 750 bytes, with duration shorter than x seconds.
� State 4 – burst of packets larger than 750 bytes, with duration longer than x seconds.

For transitions (1;3), (3;1), (1;4), (4;1), (2;3), (3;2), (2;4) and (4;2), the transition rate between states is computed as:
ki; j ¼
Pi; j

residence time in state i
ð5Þ
where
Pi; 1 ¼
number of bursts with duration < x seconds of packets with less than 750 bytes

number of bursts of packets with less than 750 bytes

Pi; 2 ¼
number of bursts with duration > x seconds of packets with less than 750 bytes

number of burst of packets with less than 750 bytes

Pi; 3 ¼
number of bursts with duration < y seconds of packets with more than 750

number of bursts of packets with more than 750 bytes

Pi; 4 ¼
number of bursts with duration > y seconds of packets with more than 750

number of bursts of packets with more than 750 bytes
For other transitions, i.e. (1;2), (2;1), (3;4) and (4;3), the transition rate between states is equal to zero.
In this model, bursts containing packets smaller than 750 bytes alternate with bursts containing packets larger than 750

bytes.
Table 4 shows the value of the parameters for the beta distribution used to model the packet size of the original traces

used, and Table 5 shows the parameters of the distributions that capture the burst size durations. For the uniform distribu-
tion parameters a and b indicate the range of the distribution whereas for the Weibull distribution a provides the scale while
b gives the shape of the distribution.

The two models were derived and their performance compared to that of the proposed 4-state model, one with two state
and the other with eight states.

The states of the 2-state model correspond to the duration of a single burst; one state corresponds to the duration of those
bursts composed of packets smaller than 750 bytes, while the other is associated with bursts composed of packets larger
than this value. The difference between the 2-state model and 4-state one proposed here is that there is no specific division
of burst durations. In other words, the states of the 2-state model are derived by aggregating states of the 4-state model on
the basis of packet size.

For the derivation of the 8-state model, the packet interarrival time are classified in relation to a given threshold (Table 6
shows the threshold value for traces used). Each state of the 4-state model is thus divided into two according to packet inter-
arrival times, one longer than the threshold value and the other shorter.
5. Multifractal traffic models

This section describes two multiractal traffic models: the Markovian arrival process and the Multifractal wavelet model
which are used in this paper for comparison with the proposed model.

5.1. The Markovian arrival process model

Horvth and Telek [14] introduced a Markovian Arrival Process (MAP) model which is capable of generating multifractal
traffic based on multifractal formalism. This formalism makes it possible to derive a time series with target variance decay



Fig. 6. Burst size distribution for trace BWY-1069224416.
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Fig. 7. 4-State model.

Table 4
Beta distribution parameters used to characterize packet size.

Trace Pkt size < 750 bytes Pkt size > 750 bytes

BWY-1069762448 a = 1.97 b = 172.94 a = 63.39 b = 447.58
BWY-1069224416 a = 1.81 b = 143.49 a = 43.93 b = 301.72
UFL-1095079334 a = 1.44 b = 90.98 a = 25.96 b = 168.96

Table 5
Distribution parameters used to characterize burst duration.

Trace Distribution Pkt size < 750 bytes Pkt size > 750 bytes

BWY-1069762448 Uniform a = 0 b = 0.00128 a = 0 b = 0.00075
Exponential l = 0.016 l = 0.0010
Weibull a = 0.0117 b = 1.6389 a = 0.0016 b = 2.0478

BWY-1069224416 Uniform a = 0 b = 0.00050 a = 0 b = 0.00018
Exponential l = 0.0050 l = 0.0020
Weibull a = 0.0035 b = 0.9875 a = 0.0007 b = 1.4995

UFL-1095079334 Uniform a = 0 b = 0.00075 a = 0 b = 0.00030
Exponential l = 0.0048 l = 0.0014
Weibull a = 0.0022 b = 1.1830 a = 0.0012 b = 1.6009

Table 6
Threshold values for packet interarrival time of the traces studied.

Traces Threshold values (in s)

First region Second region

BWY-1069762448 0.00027 0.00015
BWY-1069224416 0.00010 0.00022
UFL-1095079334 0.00018 0.00018
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rates by controlling the second moment of the scaling coefficients. In other words, by keeping the traffic increments constant
across different time-scales, it is possible to generate time series with a multifractal scaling. A special MAP structure is de-
fined on the basis of a Markov Modulate Poisson Process (MMPP) with an associated Continuous Time Markov Chain (CTMC)
and a symmetric n-dimensional cube structure. The procedure of synthesis of this MAP model involves three steps:

1 Choose a time-unit such that the long term arrival intensity is one, and one-state MAP with an arrival rate equal to one
to represent the arrival rate on the largest time scale;

2 Increase by one the dimensions of the MMPP cube structure (generator), i.e. double the number of states at level n;
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3 For each level n > 0:
3.1 Re-define the time-scale as a multiple of cnk, c > 0, so that the time-scale set (1,1/k, . . . , 1/cn�1k) remains

unchanged, and;
3.2 Define the arrival rates that capture these changes in the arrival process. At time-scale 1/cnk, a new an variance

parameter should be linked to the arrival rates.

The MAP structure is defined in such a way that the arrival rates represent the variation in the arrival process on different
time scales. At level n, the MAP structure defined has n + 2 parameters and 2n states; n out of n + 2 parameters are related to
the variance of the arrival process (an’ parameters), and the other two are the time scale related parameters c and k.

A procedure used to derive the MAP parameters from data measurements is described which will allow the derivation of
two sequences (S and C), one for each of the traffic traces. These sequences record the interarrival time of packets, and the
number of packets that arrive during a time slots of 1s, respectively. Based on sequences S and C, the model is constructed as
follows:

1. Calculate the mean of S, i.e. E[iat].
2. Set T0 equal to the time instant t where the autocorrelation function of C is equal to zero.
3. Calculate the coarsest time scale TM based on E[iat] and;T0, i.e. TM = E[iat]⁄T0.
4. Calculate the finest time scale Tm based on TM and c, i.e. c equal to eight, n equal to four or five as the authors suggested.
5. Use the length of S to calculate the number of Haar wavelet coefficients that will be derived to TM. For TM = 215 the Haar

wavelet coefficients for 15 time scales are computed.
6. Use the downhill simplex method [15] calculate the variance parameters a1, a2, . . . , an. The variance parameters are

those obtained when the relative error of the second moment of the Haar wavelet coefficients is minimal.

5.2. The multifractal wavelet model

Riedi et al. [1] presented the Multifractal Wavelet Model (MWM), a model defined on the wavelet domain which aims at
reproducing the non-Gaussian behavior (the positiveness and the spikiness) and to capturing the Long Range Dependence
(LRD) and the correlation of events logged on data measurements. The first of the aims is achieved by defining the signal
content around the time instant 2�jk in a multiplicative structure, and decomposing and scaling the initial energy (signal).
More specifically, the wavelet coefficients Wj,k are defined using the multipliers Aj,k and Wavelet scaling coefficients Uj,k, i.e.
Wj,k = Aj,k ⁄ Uj,k. The multipliers Aj,k are symmetric random variables with values chosen in the interval [�1, 1]; the wavelet
scaling coefficient is a local mean energy value derived from the signal transformation using an Haar wavelet transform algo-
rithm. This transform algorithm computes the wavelet scaling coefficients as following:
Ujþ1;2k ¼ 2�1=2ðUj;k þWj;kÞ and

Ujþ1;2kþ1 ¼ 2�1=2ðUj;k �Wj;kÞ
from which we have the necessary and sufficient condition to the positiveness property, i.e. jWj,kj 6 Uj,k. The model spikiness
is a result of the random multiplicative structure, since random products can be occasionally extremely large [1].

The LRD and the correlation pattern are captured by controlling the wavelet energy decay rate over the scales:
nj ¼
varðWj�1;kÞ
varðWj;kÞ

for 1 6 j < n
where n is the higher resolution in the analysis.
Actually, nj can then be expressed as a function of the multipliers A(j), i.e.
nj ¼
E A2

ðj�1Þ

h i

E A2
ðjÞ

h i
1þ E A2

ðj�1Þ

h i� � ð6Þ
where EðA2
ð0ÞÞ ¼

EðW2
0;0Þ

EðU2
0;0Þ

. Therefore, it is possible to control the LRD and the correlation among events by defining proper pdfs for

the multipliers among the scales. A synthesis procedure to generate an MWM is involves three steps:

(1) Compute the coarsest scaling coefficient at time scale j = 0, i.e. U0,0;
(2) At scale j and for k = 0, . . . , 2j � 1, calculate the children scaling coefficients
Ujþ1;2k ¼
1þ Aj;kffiffiffi

2
p

� �
Uj;k

Ujþ1;2kþ1 ¼
1� Aj;kffiffiffi

2
p

� �
Uj;k
(3) Repeat step 2 until the finest scale j = n is reached.
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In Step 1, the coarsest scaling coefficient is computed under the Gaussianity assumption and a small value for the vari-
ance, thus reducing the chances of producing non-positive values.

A Haar wavelet transform algorithm with n levels can be used to derive the wavelet and scaling coefficients from N data
samples to fit the MWM to data measurements. dN2�ne coarsest-scale wavelet scaling coefficients are sufficient to estimate
the moments at scale zero (j = 0). These moments are used to calculate the level of energy in each scale j which is the var-
iance of the signal at scale j (see Eq. (6)).

Two marginal distributions, the symmetric Beta and point mass distributions can be applied to derive the multipliers Aj,k

since both distributions can be easily shaped by adequately fitting their parameters. The procedure supplied in [1] was used
to estimate the Beta distribution parameters and to generate the multipliers Aj,k in this paper.
6. Numerical results

To evaluate the effectiveness of the proposed model, simulation experiments were conducted using both synthetic traces
generated by the analytical models and real network traces (Table 1). The aim was to compare results produced using a spe-
cific model with those resulting by the use of real network trace.

For the models proposed in this paper, packets are generated according to the interarrival time and packet size distribu-
tion associated with each state, with the Weibull distribution used for modeling interarrival time. The traffic generator stays
in each state of the model (residence time) a random duration given by the distribution of the duration of the burst. The
parameters of the distribution were the ones obtained by the characterization shown in Tables 4 and 5.

Synthetic traces for the Multifractal Wavelet Model (MWM) were generated by using the tool available at [16] which pro-
duces a positive multifractal process with variance on different time scales that match the variance of the real network trace
(see Section 5 for details). The parameters of the MWM were computed using the functions train-beta-mwm [16] and the
values extracted from the real network trace. The tool was set to generate bytes in intervals of one millisecond to compose
the traces used.

To produce results for the MAP model with 16 and 32 states, the TANGRAM II software [17] was employed. Exact solu-
tions were obtained using the method block GTH. Parameters in this model were defined using the values obtained from the
real network traces, according to the procedure described in Section 5. The mean queue length obtained analytically was
multiplied by the mean packet size revealed in the traces. The utilization level varied with the experiment as well as service
rates.

Two set of experiments were conducted. For the first, a queue with an infinite buffer was simulated, and the mean queue
length collected as a function of the level of utilization. For the second group of experiments, finite queues were simulated
for different levels of utilization and the loss rate values were collected.

Fig. 8 shows the queue length as a function of the level of utilization obtained by varying the service rate. This shows that
both the MWM and MAP models underestimate the queue length, which can lead to misleading results when these models
are employed for dimensioning purposes. The 2-state model also underestimates the queue size, however the other models,
the 4-state and the 8-state models, overestimate the queue length. This overestimation is due to the fact that these two mod-
els generate bursts at higher frequency than that observed in real network traces. Moreover, these two models reproduce the
high order moments existing in real trace better than do the other models, leading to queue lengths closer to reality. The
queue length values produced by the 4-state model are closer than those furnished by the 8-state model, especially for high
levels of utilization.

One potential reason for the good performance of the model proposed in this paper is the characterization of the packet
size distribution as a bimodal distribution and the construction of the model based on this pattern. MWM and MAP models,
on the other hand, use unimodal distributions. Even if a U-shaped Beta distribution were used for the MWM modeling, it
would be difficult to fit such model to the traces since a U-shaped Beta distribution shows symmetry around its mean value,
a pattern not identified in the traces.

Figs. 9–11 plot the loss rate as a function of the buffer size for utilization levels of 0.7 and 0.9. The buffer size was varied
from 10+2 to 10+5 bytes. For small buffer sizes, all the models considered are equally good since higher order moments are
not considered. As the buffer size increases, however, the models perform quite different. The MWM and 2-state models
underestimate the loss rate as a consequence of queue length underestimation, and perform poorly for large buffer sizes
due to the lack of ability to capture the high order correlations existing in real traffic streams. Conversely, the models with
four and with eight states overestimate the loss rate which provides a more conservative estimation. The overestimation of
bandwidth needed to provide loss rate guarantees with these two models would not be very high since the overestimation of
the loss rate is not particularly high. Moreover, loss rate results from the 4-state model are much closer to those of the real
network trace than are those of the 8-state model. No significant difference was observed in the precision of these two mod-
els as a function of network utilization. However, the capacity for estimating the loss rate of the MWM model and that of the
two state one decrease for lower loads.

To evaluate the use of the efficiency of the four state model, the execution time to generate traces of different sizes was
measured and the time compared to that required by the MWM. Experiments were conducted in a computer with an
1.84 GHz AMD Athlon XP 2500 processor with and 1 Gb RAM memory. The execution time of the models with two and eight
states are not shown since the model with four states is the one of interest given its accuracy. Table 7 shows the execution



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3 x 104

Utilization

M
ea

n 
Q

ue
ue

 S
iz

e 
(b

yt
es

)
Trace BWY−1069224416

real trace
2−state model
4−state model
8−state model
MWM model 
32−state MAP model
16−state MAP model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Utilization

M
ea

n 
Q

ue
ue

 S
iz

e 
(b

yt
es

)

Trace BWY− 1069762448

real trace
2−state model
4−state model
8−state model
MWM model
32−state MAP model
16−state MAP model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Utilization

M
ea

n 
Q

ue
ue

 S
iz

e 
(b

yt
es

)

Trace UFL−1095079334

real trace
2−state model
4−state model
8−state model
MWM model
32−state MAP model
16−state MAP model

Fig. 8. Queue length as a function of the utilization level.
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time for the two models. The time taken by the generator of the 4-state model is typically one order of magnitude larger than
that required by the MWM model. Nonetheless, the time required by the 4-state model is still quite reasonable for simula-
tion studies, and its accuracy clearly compensates for the computational demands.

Another aspect which impacts on the usability of a model is the number of parameters involved. Table 8 shows the num-
ber of states and parameters required for each of the models studied. Note that although the MAP model requires few param-
eters, this may be the potential reason for its lack of accuracy, especially in the reproduction of the correlations existing in
real traffic streams.

An evaluation of the capability of the proposed model to mimic the scaling existing in real traffic traces was conducted.
The scaling pattern found in synthetic traces, generated by the 4-state model setting up according to the parameters
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Table 7
Execution time as a function of the trace size.

Number of
packets

Execution time 4-
state model

Execution time MWM
model

104 2.5730 s 0.2510 s
105 9.9060 s 0.8320 s
106 95.0150 s 3.8440 s
107 891.0620 s 45.6560 s

Table 8
Usability of the investigated models.

Model Number of states Number of parameters

4-state 4 12

MAP 16 16 6

MAP 32 32 7

MWM – 2 + log2N
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collected from real traces, was studied using the Linear Multiscale Diagram (LMD). Fig. 12 provides LMD diagrams for the
synthetic counterparts of the traces BWY-1069224416, BWY-1069762448 and UFL-1095079334, evaluated from their break-
up time-scales up to their biscaling knee time-scales, i.e. the multifractal cut-off time-scale, see Table 1 for more details.

The main conclusion is that the scaling function hq of the synthetic counterparts, generated by the 4-state model, of
all studied traces show a non-horizontal behavior as would be for LMD diagrams of any multifractal measure. The tied
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confidence intervals reinforce that and, hence, consider other possible pattern, i.e. a horizontal behavior and monofractal
measure, could emerge from the synthetic traces would be a mistaken.
7. Related work

There has been great interest in developing simple models for aggregated UDP traffic that can be used for traffic gener-
ation in simulations. Some of these works are briefly surveyed in this section.

In [18], a Hidden Markov model for Internet traffic sources at packet level was introduced. Experimental results show that
the model is able to estimate statistical parameters and produce synthetic traces. By exploiting temporal dependencies, the
model is able to perform short-term prediction. In [19], a Hidden Markov model was proposed for joint modeling of losses
and delays. The authors also analyzed the significance of hidden states automatically found by training algorithm to conges-
tion levels of the network.

In [20], a methodology to identify common traffic profiles from largely unstructured data files was introduced. The meth-
odology combines data mining and information theory to automatically find useful information. Results indicate the good
effectiveness of the methodology and its usefulness to network operators and security analysts.

In [21], it was shown that TCP self-clocking coupled with queuing in the bottleneck of the connection’s forward path can
create ON/OFF inter-arrival structures, and thus, strong correlations and burstiness. It is concluded that to reduce the sub-
RTT burstiness of Internet traffic pacing at the sources should be adopted.

In [22], two set of models were proposed. The first models the client behavior for TCP or UDP port and the second models
the aggregated traffic from TCP or UDP clients. The dataset used to create the models includes over 36 million TCP flows and
93 million UDP flows collected over a 1 year period. Empirical distributions were used to model five aspects. Data was col-
lected the open-source software NETI@home. Simulation results demonstrate the effectiveness of the proposed models.

Envelope processes [10,23] have been proposed to model aggregated traffic, however, they do not reproduce the traffic
behavior on a packet level time-scale.

The present paper differ from the surveyed work [18–22] by the generality of the data set collected in different points of
the Internet as well as by the simplicity of the proposed model.
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8. Conclusions

Although there has been an increasing use of the UDP protocols by real-time applications over the Internet, the great
majority of Internet traffic is carried by the TCP protocol. Nonetheless, it is highly important to have an accurate model
for UDP streams since the UDP protocol does not react to network congestion. This paper introduced a simple model com-
posed of four states that accurately reproduces the patterns existing in real UDP flows. The approach used was to character-
ize the marginal distributions of UDP flows so that the distributions and range of parameters used in the model can be
defined. The model was validated using simulation and compared to trace driven simulation. The model was also compared
to other models with different number of states as well as established models in the literature. It was shown that the pro-
posed model is quite accurate and its use is recommended to generate synthetic data in packet level simulation experiments.
Although the mix of Internet applications changes from time to time, the proposed model aggregated captures the two main
characteristics of UDP streams (packet size and burst duration). Therefore, its use is recommended for different network
scenario.
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