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Abstract The Datagram Congestion Control Protocol (DCCP)
protocol was proposed to provide a great variety of functionality
to real-time applications. Its congestion control mechanisms were
de ned to be friendly to the TCP-Reno, which makes its operation
inappropriate to high speed networks. In this paper, a variant
of the DCCP, called FAST DCCP, is proposed to overcome such
de ciency. As evidenced by experimental evaluation as well as by
simulation, the new protocol scales with the increase of network
capacity.

I. INTRODUCTION

Recently, there has been a considerable increase of the use
of multimedia applications in the Internet. These applications
are delay sensitive and have minimum transmission rates re-
quirements. Although the User Data Protocol (UDP) is largely
used for the transport of delay sensitive media, UDP does
not support several functionalities desirable for multimedia
applications.

Moreover, the wide use of UDP by multimedia applications
has the potential of jeopardizing the bandwidth acquisition
by TCP senders, since UDP does not implement any kind
of congestion control mechanism. Besides that, some TCP
features such as connection establishment are valuable to
multimedia applications. Motivated by these issues, the IETF
has proposed a novel transport layer protocol, called Data-
gram Congestion Control Protocol (DCCP) [1]. It provides
connection establishment for unreliable data transfer as well
as congestion control mechanisms. Two different TCP-friendly
congestion control mechanism were proposed: the TCPLike
mechanism [2], which is similar to the window-based conges-
tion control mechanism implemented by TCP-Reno, and the
TCP-Friendly Rate Control (TFRC) [3], which implements a
rate-based congestion control type of mechanism.

Preliminary work evaluated the performance of DCCP in
wireless networks as well as in low speed networks [4] [7].
Recently, we analyzed its performance in high speed networks
and we made several recommendations for adapting it to this
type of networks [8]. Results derived both via simulation and
via experimental evaluation con rmed the lack of scalability
of its congestion control mechanism. For a link capacity of 1
Gbps, DCCP utilizes at most 60% of the available bandwidth.
This was expected since its congestion control mechanisms
are friendly to TCP-Reno, which is inef cient to operate in
high speed networks, motivating the creation of several TCP
variants [9], [10] for high speed networks. In line with that and
with the aim of making DCCP the choice of transport protocol
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for multimedia applications, it is of paramount importance to
make its operation ef cient in high speed networks.

This paper introduces a DCCP variant for high speed
networks called FAST DCCP. Modi cations in the TFRC
mechanism are proposed to promote scalability. This new
mechanism is called FAST TFRC. Both simulation using
the NS-2 network simulator and measurements of the FAST
DCCP protocol operation in the Linux operating system were
employed in the evaluation. Different scenarios were used for
the assessment of the scalability, convergence, fairness and
compatibility with the TCP-Reno. The evaluation conducted
follows the recommendations in [11] for the analysis of new
congestion control mechanisms for Internet protocols. It is the
authors’ best knowledge that this is the rst proposal of a
DCCP variant for high-speed networks. It is shown that the
FAST DCCP is scalable and also has several other desired
properties.

The remainder of this paper is organized as follows. In
Section II, the DCCP protocol is describe. In Section III,
the FAST DCCP protocol is introduced. In Section IV, the
properties evaluated in the analysis conducted are described. In
Section V, results are discussed and in Section VI conclusions
are drawn.

II. THE DCCP PROTOCOL

The DCCP protocol was designed to support multimedia
applications in the Internet, such as video streaming and voice
over IP. It provides congestion control mechanisms and packet
arrival acknowledgments (ACKs) for applications which do
not tolerate the overhead imposed by the TCP protocol. The
main features of DCCP are connection-oriented without reli-
able delivery, acknowledgment for packet arrival, handshake
for reliable connection establishment and termination and
TCP-Friendly congestion control mechanisms (wich can use
Explicit Congestion Noti cation).

The congestion control mechanisms supported by DCCP
are de ned by a Congestion Control Identi er (CCID), which
varies between 0 and 255. The CCIDs de ned initially for
DCCP are: 0 Reserved; 1  Unspeci ed and based on the
user; 2 TCP-Like; and 3  TFRC. The TFRC congestion
control (CCID 3) is recommended for applications that need
to transfer data at constant rates, for instance, voice over IP.

In the TFRC mechanism, the receiver measures the packet
loss and returns this information to the sender, which uses
these feedback to calculate the round-trip times (RTTs). The
packet loss information as well as the estimated round trip



times are used to adjust the transmission rate at the sender.
For that, the following ow equation, which is a simpli ed
version of the throughput equation of TCP-Reno, is employed.

S
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where X is the transmission rate in bytes/second; s is the
packet size in bytes; R is the estimated RTT in seconds; b is
the maximum number of packets acknowledged by a single
packet and set to 1; p is a value between 0 and 1 which is
de ned by the loss ratio, and t RT'O is the timeout of the TCP
retransmission in seconds.

The transmission rate of the senders are adjusted as a
function of the reception of acknowledgment packets. An
acknowledgment packet carries the following information: the
time stamp of the last data packet received, the time interval
between the arrival of the last packet and the sending of its
acknowledgment, and the estimated rate at which the receiver
has received packets after sending the last acknowledgment
packet.

A precise estimation of the loss ratio p is of paramount
importance to the TFRC; the receiver makes such estimation
by accounting the number of packets received. Each packet
transmitted has a sequence number, which is incremented
by one for each packet sent. The receiver maintains a data
structure for keeping the history of the packets received and
those lost. A lost packet is detected when at least three packets
with higher sequence numbers are received. To perform the
calculation of the loss ratio, it is necessary to determine the
mean interval between losses, which is done by considering
the n most recent loss events and assigning weights to them.
The computation of the weights of these events is de ned
in [3].

III. FAsT DCCP

As reported in [8], the major de ciency of the DCCP
protocol is the lack of scalability. To overcome such limitation,
the rate should be increased in a more aggressive fashion as
well as it should be decreased in a smoother way than as
in DCCP. The proposed changes aim to improve these two
rates and they were based in the operation of the FAST TCP
protocol [9].

In DCCP, the update on the transmission rate considers the
connection mean delay, (R), and the sample delay, (Rsample),
as follows [3]:

Riy1 = (09x R;) + (1-0.9) * Rsample 2)

Rsample = (tnow—trecvdata)—tdelay 3)

where tnow is the time at which the packet is received at the
sender; trecvdata is the timestamp of the packet last received
and tdelay is the elapsed time between the reception of the
last packet and the sending of its acknowledgement.

FAST TRFC introduces a multiplicative factor, «, for the
increase of the transmission rate when no loss occurs. This
multiplicative factor considers the ratio between the mean
delay and the sampled delay. If this ratio is greater than 1, it
means that there is available bandwidth in the network which
allows the increase of the transmission rate. A new value for
the transmission rate (X update) is computed as follows:

Xupdate = ((X x ) + X)); (4)

where X is the current transmission rate. Moreover, the new
value of X is compute as follows:

X = maz(Xupdate,2 x X,2 * Xrecv, s/R); 5)

where Xrecv is the transmission rate informed by the
receiver and s is the packet size de ned for the FAST DCCP
connection. Whenever o > 1, X = Xupdate

which is quite more aggressive than traditional TRFC that
updates the transmission rate according to [3]:

X = mazx(min(2 * X,2 % Xrecv)), s/R); (6)

The update of the transmission rate when loss occurs
impacts the capacity of acquisition of bandwidth in the long
run. FAST TRFC updates the rate according to:

X =mazx(Xcale,2 x Xrecv, s/t,bi); @)

where Xcalc is the rate given by Equation 1 and it is the
rate given by the periodic sending of a packet at intervals of
duration t,,bi, set to 64 seconds.

This is in major contrast to TRFC which updates the rate
in case of loss, as folllows [3]:

X = maz(min(Xcale,2 x Xrecv), s/tm,bi); (8)

So, rather than choosing the minimum value among those
computed by TRFC for the update of the transmission rate
(Xcale, 2% Xrecv), the new FAST TRFC takes the maximum
value, making it less conservative than traditional TRFC.

IV. EVALUATED METRICS

To evaluate the performance of the FAST DCCP protocol,
the following properties were evaluated in the experiments:
scalability, fairness, convergence and compatibility with TCP-
Reno, which is in accordance with the recommendation
in [11]. In this section, these metrics are described, as well
as their relevance to the protocol performance.

Scalability is the ability of the protocol to adapt itself to the
increasing availability of network resources. The experiments
assessed the scalability as a function of the link capacity. The
aim was to investigate whether the protocol can use ef ciently
the available bandwidth when the link capacity increases.
Scalability was also evaluated as a function of the number
of connections.

Fairness is the ability of the protocol to ensure an even
share of bandwidth among all connections. Fairness in this



paper is measured according to the Jain Fairness Index [12],
which varies between 0 and 1. Values closer to 0 indicate lack
of fairness and values closer to 1 represent a fair system.

Convergence is the duration required to reach fairness, i.e.,
an even share of bandwidth among all connections. Such prop-
erty is important to ensure that recently created connections
can fairly compete for resources with older ones. Moreover,
whenever existing connections are terminated, the bandwidth
released must be equally distributed among all other active
connections.

Compatibility with TCP-Reno is the ability to ensure that
the connections of a protocol behave fairly with existing TCP
connections, so that the connections of both protocols share
equally the available bandwidth.

V. PERFORMANCE EVALUATION

The scenarios and metrics employed to evaluate the FAST
DCCP protocol in high-speed networks were derived in [11].
The experiments employed the Dumbbell topology, illustred in
Figure 1, which contains a single bottleneck link comprised
by two routers. The number of connections varied according
to the scenario considered. The network simulator NS-2 [13],
version 2.31, was used for the simulation experiments. The
existing implementation of the DCCP protocol in the Linux
operating system, kernel version 2.6.20, was utilized for in-
corporating the changes that turns it into the FAST DCCP
variant.

Fig. 1: The Dumbbell topology.

In the simulation experiments with NS-2, the two routers
were established with the droptail queue management and
a buffer size of 2500 packets, which is similar to those of
real routers [14]. To avoid synchronization, the transmission
start time and the propagation delay for the connections
were randomized. The transmission start times varied in an
interval between 1 and 10s, while propagation delays varied
in an interval between 5 and 15ms. Background traf c was
introduced in order to reproduce aggregated traf c, as in real
network scenarios. The reverse direction background traf c
used 20%, 50% or 80% of the capacity of the bottleneck
link, and it was composed by 20% UDP traf ¢, 56% web
traf c and 24% FTP traf c. The traf c generated by the FAST
DCCP connections was of type CBR. Each connection had its
transmission rate equivalent to the bottleneck link capacity.

For the measurement experiments, two computers with
1Gbps Ethernet interface were interconnected by a switch

router of 1Gbps capacity per port. The ports were set up
with a static route in order to emulate two different routers,
since each port has a independent queue. The background
traf c distribution and the capacity constraints were obtained
by the use of the Linux module Traf ¢ Control (tc) [15]. The
generation and transmission of traf ¢ for the FAST DCCP
and for the TCP connections were accomplished by the tool
Iperf [16], which was con gured to reproduce CBR traf c and
to have transmission start times varying between 1 and 10s.

The graphics show average values obtained from the execu-
tion of several replications for each experiment. To calculate
the con dence interval with a con dence level of 95% the
method of independent replication was employed. The sim-
ulation time for all the experiments was 600s. Results are
compared to those derived in [8] to highlight the bene ts of
the adoption of the FAST DCCP protocol.

A. Scalability

Two different scenarios were created to evaluate the scala-
bility of the FAST DCCP protocol: one to assess the scalability
as a function of the link capacity and the other to assess the
scalability as a function of the number of connections.

In the rst scenario, the capacity of the bottleneck link
took values in the set [155Mbps, 622Mbps, 1Gbps] for the
measurement experiments. Moreover, in the simulation exper-
iments links with capacity of 2.5Gbps were also used. The
propagation delay was set to 100ms, and the number of FAST
DCCP connections was 16. Figures 2 and 3 present the link
utilization as a function of the link capacity, obtained from
simulation and measurement experiments, respectively. These
two gures show a similar behavior: FAST DCCP utilized
ef ciently the available bandwidth, occupying more than 90%
of different capacity values. Moreover, Figures 4 and 5 present
the results for the same experiment using DCCP [8]. As the
link capacity increases the utilization decreases to values lower
than 60% of the link capacity. These results demonstrates that
FAST DCCP is scalable as a function of the link capacity,
i.e., the new mechanism FAST TRFC is capable of ef ciently
utilizing high capacity channels.
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Fig. 2: Link utilization as a function of capacity (simulation).

In the second scenario, scalability is assessed as a function
of the number of connections. To accomplish that, the number
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Fig. 3: Link utilization as a function of capacity (measure-
ment).
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Fig. 4: Link utilization as a function of capacity (simulation).

of FAST DCCP connections varied in the set [21, 22, ...,2°]
(2 32) for the measurement experiments whereas it varied in
the set [2!,22, ..., 28] (2 256) for the simulation experiments.
The former employed a smaller number of connections due
to hardware limitations. The capacity of the bottleneck link
was set to 1Gbps and the propagation delay was set to 100ms.
Figures 6 and 7 show the link utilization as a function of the
number of connections, obtained, respectively, from simulation
and from measurement experiments. Similarly to DCCP [8],
FAST DCCP is scalable as a function of the number of
connections. Moreover, in this paper, we show that FAST
DCCP maintains the scalability as a function of the number of
connections for capacities higher than those DCCP is capable
to maintain.

B. Fairness

Two other scenarios were employed to evaluate the fairness
promoted by the FAST DCCP protocol. In both scenarios,
there are four FAST DCCP connections exchanging data
through the bottleneck link. The propagation delay is 100ms,
and the link capacity is 1Gbps. In the rst scenario, the FAST
DCCP connections are established simultaneously (¢ = 1s),
while in the second scenario, the FAST DCCP connections
start at random times (1s <= ¢t <= 10s). Figures 8 and 9
present fairness results for the rst and the second scenarios,
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respectively. Results from the simulation and the measurement
experiment are shown in both graphs. It can be noticed that
the values of Jain of Fairness Index are close to 0.9 in both
scenarios, regardless of the intensity of the background traf c,
which evinces that fairness was promoted, i.e., the FAST
DCCP protocol ensured an even share of bandwidth among
all connections. FAST DCCP promotes fairness similar to that
of traditional DCCP [8].

C. Convergence

Another scenario was employed to evaluate the convergence
to fairness. The bottleneck link was set to 1Gbps, two FAST
DCCP connections were employed, and the propagation delay
was set to 10ms. The second FAST DCCP connection trans-
mitted traf ¢ only at ¢ = 50s, which is long enough for the

st connection to allocate most of the available bandwidth of
the bottleneck link. Figure 10 shows the time taken to reach
equal share of bandwidth for both simulation and measurement
experiments, with different background traf c. It can be seen
that the convergence time was long in both cases, with values
varying between 100s and 135s. Such duration is much longer
than the average duration of typical Internet connections. Thus,
it can be said that, in despite of the high levels of fairness
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Fig. 6: Link utilization as a function of the number of DCCP
connections (simulation).



reached, TFRC cannot provide a rapid response for balancing
the shares of bandwidth among the existing connections.
Indeed, the convergence time of FAST TRFC is 7 % higher
than that of traditional TRFC. This nding is in accordance
with previous work [17], [18], which also indicated the high
response time of TFRC, being considerably slower than that
of TCP-Reno.

D. Compatibility with TCP-Reno

To evaluate the compatibility of the FAST DCCP protocol
with the TCP-Reno protocol, two other scenarios were created.
In the rst, two TCP-Reno connections were set, both com-
peting for the bottleneck link bandwidth and transmitting FTP
traf c. In the second scenario, a FAST DCCP connection and
a TCP-Reno connection were set, with the latter transmitting
the same FTP traf c¢ as in the previous scenario and both
competing for the bottleneck link bandwidth. The link capacity
was set to 1Gbps and the propagation delay was set to 10ms.
The aim of these scenarios is to evaluate whether the TCP-
Reno connection obtains the same link bandwidth in the
presence of FAST DCCP ow that it would obtain if it were
competing with another TCP-Reno ow.

Tables I and II present results derived in these experiments.
The link utilization, called, TCP-1 shows values when the
TCP ow competes with another TCP ow, whereas the link
utilization TCP-2 shows values of the TCP ow when it
competes with a FAST DCCP ow. The difference in the
values observed suggests that the FAST DCCP protocol is
not compatible with TCP-Reno when it employs the FAST
TFRC congestion control mechanism, since the TCP-2 values
indicate a lower link utilization than that of TCP-1. When
compared to DCCP, FAST DCCP has a higher degree of in-
compatibility with TCP-Reno. This is due to the fact that FAST
TRFC is more aggressive than traditional TRFC. Moreover,
such incompatibility is in line with those of TCP variants for
high speed networks such as [19] [21].

VI. CONCLUSION

The DCCP protocol was proposed to support real-time
applications currently supported by UDP but it incorporates
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Fig. 7: Link utilization as a function of the number of DCCP
connections (measurement).
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Fig. 8: Fairness: rst scenario (simulation and measurement).
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Fig. 9: Fairness: second scenario (simulation and measure-
ment).

TABLE I: Link utilization of the TCP connections (simula-
tion).

Background Traf ¢ (%)

0.2 0.5 0.8
Link utilization (%) | TCP-1 | 0.0152 | 0.0124 | 0.0061
TCP-2 | 0.0043 | 0.0031 | 0.0012

TABLE II: Link utilization of the TCP connections (measure-
ment).

Background Traf ¢ (%)

0.2 0.5 0.8
Link utilization (%) | TCP-1 | 0.3120 | 0.2210 | 0.1830
TCP-2 | 0.1225 | 0.0885 | 0.0523

a greater variety of non-existing functionality in the latter.
As any other protocol that adopts TCP-Reno friendly con-
gestion control mechanism, the DCCP does not scale with
the increase of available bandwidth, as reported in [8]. This
paper introduced a variant of DCCP called FAST DCCP which
congestion control mechanism is much more agressive than
that of TRFC in the absence of loss and smoother than that of
TRFC when loss occurs. As a result, the new protocol scales
with the increase of the available bandwidth. As TCP variants
for high speed networks, FAST DCCP is less friendly to TCP-
Reno than the DCCP protocol.

To speed up convergence to fairnes, recommendations made
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Fig. 10: Scenario of convergence (simulation and measure-
ment).

to DCCP in [17] and [18] should also be considered to the
FAST DCCP. Moreover, given such encouraging results found
in the present evaluation, the FAST DCCP is recommended for
the transport of real-time applications in high speed networks.
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