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Abstract
Telecommunication networks are built to carry “traffic” in the form of data being transmitted. Efforts in

network design, control or management require decisions and optimization actions that in turn require trafficmodels.
This is why the science and “art” of traffic modeling has been playing a crucial role in the area of communication
network design and operation. Traffic modeling has an analytical aspect, whereby suitable stochastic models are
devised, and attributed to different types of data sources and network types; and a computational aspect where
actual parameter values are estimated from measured data.

In this article, the most common models used in network traffic modeling are presented and basic concepts
on traffic characterization are provided. Models for individual traffic sources as well as for aggregates of sources
are also introduced. Finally, a brief discussion on the state-of-the art and on future trends is presented.
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1 Introduction

Traffic, that is, data being transmitted, is what telecommunication networks are built to carry. The fascinating

and unprecedented “Internet revolution” has led to an ever increasing need for larger amounts of data to be

transmitted, as well as fast increasing expectations in terms of the diversity and quality of the transmitted data.

Modern networks are expected to accommodate a very heterogeneous traffic mix including traditional telephone

calls, data services, world-wide web browsing, and video or other multimedia information. In this context, network

designers and telecommunication engineers are called upon to design, control and manage networks of increasing

transmission speed (“bandwidth”), size and complexity. Any effort in network design, control or management

requires decisions and optimization actions that in turn require accurate prediction of the performance of the

system under design or control. This is why the science and “art” of traffic modeling has been playing a crucial

role in the area of communication network design and operation [7].

The amount of traffic per unit time arriving at a network access point, the number of Internet access requests

in an hour or the traffic workload through an Internet provider’s nodes (“routers” or “switches”) is a real physical

quantity, despite the fact that it consists of bits and bytes and not of atoms or molecules. This physical quantity

is highly variable with time and space, and appears irregular or, random. Furthermore, network traffic usually

exhibits visual clusters of activity separated by less active intervals, what is described in the telecommunications

lingo, as bursty behavior. In order to predict the performance of networks carrying this variable and diverse traffic,
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researchers and telecommunication engineers utilize analysis (closed-form mathematics), numerical approximations,

computer simulation, experimentation with real systems (in the laboratory or in the field), and heuristic or ad hoc

projections based on past experience. All of the above require, to a larger or smaller degree, some representation

or abstraction of real-life network traffic, that is, traffic “models”.

Traffic modeling, has a theoretical/analytical aspect, whereby suitable stochastic models are devised in

the mathematical sense, and attributed to different types of data sources and network types. Each model has

a number of parameters that determine specific aspects such as mean value, higher moments, autocorrelation

function, marginal density, etc. Such models include [1]:

• Renewal models

• Markov and semi-Markov processes

• Autoregressive processes (AR, ARMA, and ARIMA)

• Specially invented processes like Transform-Expand-Sample (TES), SRP, DAR and other

• Long-range dependent, self-similar and multifractal processes

There are also key computational and statistical aspects to traffic modeling: After deciding on or hypothe-

sizing about a model (or model family) in the abstract, particular values have to be chosen for the parameters of the

model. This usually means performing matching or fitting where parameter values are estimated statistically from

the measured traffic data. Depending on the number of parameters involved, the type of model, and the nature

of the data, this task may be far from straightforward and quite time-consuming. The moments to be estimated

also depend on the type of network and traffic source, and represent an assumption in themselves. Typical traffic

sources include:

• Voice, very important for its dominant presence in telephone networks

• Video, especially digital, compressed video (e.g., MPEG)

• Data applications such as FTP, TELNET, SMTP, HTTP

• Traffic in local area and campus networks (LAN and MAN)

• Aggregated traffic on network “trunks” over wide area networks (WAN)

In this article, we present the most common stochastic processes used for traffic modeling, in Section 2.

Such processes can be used either to model the aggregate traffic of several sources (flows, connections, calls)

on a network link or can be used to model individual sources, such as the stream generated by a phone call.

Models for specific sources are introduced in Section 3. Some special aspects of traffic modeling related to network

performance, namely the concepts of effective bandwidths and envelope processes are discussed briefly in Section 4.

Finally, conclusions and some current open and challenging issues are discussed in Section 5.
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2 Traffic Models

2.1 General Background

Traffic modeling starts usually by a researcher or telecom engineer collecting samples of traffic during a period of

time (“traffic traces”) from a specific source and/or at a specific point in the network (e.g., access point, router

port or transmission link). Before stochastic modeling is applied, care must be taken to remove determinism and

identifying the “residual uncertainty” [16] so that what remains to be modeled is truly stochastic in nature, and

stationary (i.e., does not have fundamental properties that change with time of the day or month). At a second

step, the data is analyzed and a stochastic model is proposed so that a realization of the stochastic process matches

the data trace. A theoretical traffic model has to be checked against several data traces before one can be confident

of its accuracy. In what follows, we present stochastic processes commonly used to describe traffic streams.

Network traffic can be simple or compound. Simple traffic corresponds to single arrivals of discrete data

entities (e.g., “packets”) and is typically described as a point process [9], that is, a sequence of arrival instants

T1, T2, . . . , Tn, . . . ..., with T0 = 0. Point processes can be described equivalently by counting processes and inter-

arrival time processes. A counting process {N(t)}∞t=0 is a continuous-time, non-negative integer-valued stochastic

process, where N(t) is the number of traffic arrivals in the interval (0, t]. An interarrival time process is a real-valued

random sequence {An}∞n=1, where An = Tn − Tn−1 is the length of the time interval separating the n-th arrival

from the previous one.

Compound traffic consists of batch arrivals, that is, multiple units possibly arriving simultaneously at an

instant Tn. In the case of compound traffic, we also need to know the real-valued random sequence {Bn}∞n=1, where

Bn is the (random) number of units in the batch.

In some cases, it is more appropriate or convenient to assume that time is slotted, which leads to discrete-

time traffic models. This means that arrivals may take place only at integer times Tn and inter-arrival periods are

also integer valued. Furthermore, there are cases where the natural structure of the traffic is such that interarrival

times are deterministic or periodic, with only the amount of arriving workload changing from arrival to arrival (e.g.,

compressed video “frames”, arriving every 1/30th of a second).

A simple way to represent a stochastic process is to give the moments of the process. More particularly, the

first and the second moments which are called the mean, variance and autocovariance functions. The mean function

of the process is defined by µt = E(Xt). The variance function of the process is defined by σ2
t = E[(xt − µt)2] and

the autcovariance function between Xt1 and Xt2 is defined by γ(t1, t2) = E[(Xt1 − µt1)(Xt2 − µt2)].

Another topic that is very relevant in traffic modeling is that of traffic “burstiness”. Burstiness is present

in a traffic process if the interarrival times process {An} tends to give rise to runs for several short interarrival

times followed by relatively long ones. With typical network traffic exhibiting patterns and bursts that co-exist
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over many magnitudes of time scales (from minutes to hours to days) come the notion of time scale invariance.

Time scale refers to the change or immunity to change of the process structure upon scaling of the time axis. A

process {Xt} can be defined as scaling invariant if for some α ∈ [a, b] the process is equal in distribution to its

scaled version {Xαt}. If a traffic is not scale invariant then when studying its behavior as time scales increase, it

will show that the bursts and random fluctuations degenerate toward a white noise, non-bursty type of traffic.

The marginal distribution of a process {Xt} captures the steady state first order distribution of X and

is considered the primary characteristic in describing network traffic. Assuming that the process is Wide-Sense

Stationary (WSS), the marginal distribution becomes invariant to time and is then defined by the one dimensional

probability density function (PDF): fX(x) = fXt
(x) = d

dxPr[Xt ≤ x]. The PDF describes the probability that the

data will assume a value within some given range at any instant of time.

The autocorrelation function of a process {Xt} captures the second order measurement of the process and

it is used as a supplement to the marginal distribution. The autocorrelation function for network traffic describes

the general dependence of the values at another time. Assuming the process is WSS, then the autocorrelation

between the data values at times t and t+ k is defined as follows:

ρ(k) =
E[XtXt+k]− (E[Xt])2

E[(Xt − E[Xt])2]

where k is called the “lag”, the difference or distance between time points under consideration. If the autocorrelation

function ρ(k) of {Xk} is equal to zero for all values of k �= 0, then {Xk} is of the renewal type. Markov and other

short-range dependent (SRD) models have a correlation structure that is characterized by an exponential decay,

which leads to
∑

k ρ(k) < ∞.

On the other hand, many real traffic traces exhibit long-range dependence (LRD) and can be modeled by

self-similar and multifractal models later in this article. For these processes, the autocorrelation function decays

slowly (say, polynomially instead of exponentially) in a way that makes the autocorrelation non-summable, i.e.,
∑

k ρ(k) → ∞ [23].

2.2 Short Range Dependent Models

2.2.1 Renewal Models

Renewal models have been used for a long time due to their simplicity and tractability. For this type of traffic,

the inter-arrival times are independent and identically distributed (IID), with an arbitrary distribution. The major

modeling drawback of renewal processes is that the autocorrelation function of An is zero except for lag n = 0.

Hence, renewal models do not generally capture the behavior of high speed network traffic in an accurate manner.

Within the renewal family, Poisson models are the oldest and most widely used, having been historically

closely linked to traditional telephony and the work of A. K. Erlang. A Poisson process is a renewal process with
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exponentially distributed interarrival times with rate λ, i.e., P [An ≤ t] = 1 − e−λt. It is also a counting process

with P [N(t) = n] = (λt)ne−λt

n! , and independent numbers of arrivals in disjoint intervals. Poisson processes are very

appealing due to their attractive memory and aggregation properties.

2.2.2 Markov Models

Unlike renewal traffic models, Markov and Markov-renewal traffic models [7, 1] introduce dependence into the

random sequence An. Consequently, they can potentially capture traffic burstiness, due to non-zero autocorrelations

of An. Consider a Markov process M = {M(t)}∞t=0 with a discrete state space. M behaves as follows: it stays

in state i for an exponentially distributed holding time which depends on i alone; it then jumps to state j with

probability pij , such that the matrix P = [pij ] is a probability matrix. In a simple Markov traffic model, each

jump of the Markov process corresponds to an arrival, so interarrival times are exponentially distributed, and their

rate parameter depends on the state from which the jump occured. Arrivals may be single, a batch of units or a

continuous quantity.

Markov-modulated models constitute another important class of traffic models. Let M = {M(t)}∞t=0 be

a continuous-time Markov process, with state space of 1, 2, . . . ,m. Now assume that while M is in state k, the

probability law of traffic arrivals is completely determined by k. Thus, the probability law for arrivals is modulated

by the state of M . The modulating process can be more complicated than a Markov process (so the holding times

need not be restricted to exponential random variables), but such models are far less analytically tractable.

The most commonly used Markov-modulated model is the MMPP (Markov-Modulated Poisson Process)

model, which combines a modulating (Markov) process with a modulated Poisson process. In this case, while in

state k of M , arrivals occur according to a Poisson process of rate k. As a simple example, consider a two-state

MMPP model, where one state is an “on” state with a positive Poisson rate, and the other is an “off” state with a

rate of zero. Such models have been widely used to model voice traffic sources.

A semi-Markov process is a generalization of Markov processes, that allows the holding time to follow an

arbitrary probability distribution. This destroys the Markov property since times are not exponentially distributed,

however it allows for more general models of traffic. When values from a semi-Markov chain are generated, the next

state is chosen first, followed by a value for the holding time. If the holding times are ignored, then the sequence

of states will be a discrete time Markov chain, referred to as an embedded Markov chain.

2.2.3 Autoregressive Models

The autoregressive model of order p, AR(p), is a process {Xt} whose current value is expressed as a finite linear

combination of previous values of the process plus a white noise process εt: Xt = φ1Xt−1+φ2Xt−2+. . .+φpXt−p+εt

where φi are constants and Xt−i are past values of the process at time t − i. The recursive form of this model

makes it a popular modeling candidate as it makes it straightforward to generate an autocorrelated traffic sequence,
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e.g., variable-bit-rate (VBR) video traffic [1, 7]. However, autoregressive models cannot simultaneously match the

empirical marginal distribution of arbitrary traffic such as video.

Another model of the same family is the Autoregressive Moving Average model of order (p, q), denoted

by ARMA(p, q): Xt = φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + εt − θ1εt−1 − θ2εt−2 − . . . − θqεt−q. Due to the larger

number of parameters, ARMA models are more flexible than AR models and can be used in more cases. However,

estimation of its parameters is more involved.

2.2.4 TES: Transform-Expand-Sample

Transform-Expand-Sample (TES) models represent another important class of models appropriate for modeling

autocorrelated traffic streams. This family of models aims to capture both autocorrelation and marginal distribution

of the empirical traffic trace, in fact it was historically the first traffic model explicitly devised to accomplish exactly

this dual purpose and specifically for network traffic data. TES models capture stationary, correlated time series

and also allow one to generate synthetic streams of real-looking traffic streams to drive simulations of networks [7].

TES models include two types of TES processes: TES+ and TES−. TES+ produces sequences with positive

autocorrelation at lag 1, while TES− produces negative autocorrelation at lag 1. The TES+ process is more suitable

for modeling network traffic. To define the TES+ process, we first introduce a modulo-1 operation. The modulo-1

of a real number x, denoted by < x >, is defined as < x >= x− 
x�, where 
x� is the maximum integer less than

x. The recursive construction of the background TES+ process is defined by:

U+
n =

{
U+

0 n = 0
< U+

n−1 + Vn > n > 0

where {Vn} is a sequence of IID random variables referred to as innovations and U+
0 is uniformly distributed

on [0, 1) and independent of {Vn}. The resulting sequence {U+
n } has a [0, 1) uniform marginal distribution, and

autocorrelation function determined by the probability density function fV (t) of Vn. The choice of fV (t) determines

the correlation structure of the resulting process. From this background sequence the output process of the model

referred to as the foreground sequence, {X+
n } is created by “distorting” each U+

n by X+
n = F−1(U+

n ), where F is

the marginal distribution of the empirical data [9].

2.2.5 Other Short Range Dependent Models

Another interesting model is the Spatial Renewal Process (SRP). SRP efficiently models processes exhibiting

arbitrary marginal distribution and aperiodically decaying autocorrelation (see [20] and references therein).

A Discrete Autoregressive model of order p, denoted as DAR(p), generates a stationary sequence of discrete

random variables with an arbitrary probability distribution and with an auto-correlation structure similar to that

of an AR(p). DAR(1) is a special case of DAR(p) process: it has a smaller number of parameters than general

Markov chains, simpler parameter estimation, and can match arbitrary distributions. Moreover, the analytical

queuing performance is tractable ([1] and references therein).
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2.3 Long Range Dependent and Self-Similar Traffic Models

Measurements and statistical analysis of real traces performed during the 1990’s revealed that traffic exhibits large

irregularities (burstiness) both in terms of extreme variability of traffic intensities as well as persistent autocorre-

lation. Network traffic often looks extremely irregular at different time scales [12, 17] and such extreme behavior

is not exhibited by the traditional Poisson traffic which smoothes out when aggregated at coarser time scales. If

traffic were to follow a Poisson or Markov arrival process, it would have a characteristic burst length which would

tend to be smoothed by averaging over a long enough time scale. Instead, measurements of real traffic indicate

consistently that significant traffic burstiness is present on a wide range of time scales.

This behavior is reminiscent of and has been modeled according to self-similar processes. Self-similar or

fractal modeling has been used in a number of research areas such as hydrology, financial mathematics, telecommu-

nications, and chaotic dynamics [4, 24]. Internet traffic and more generally broadband network traffic, is an area

where fractal modeling has become popular more recently. Such modeling has also been related to the observation

of on-off traffic with “heavy tailed” distribution [23].

2.3.1 Heavy-Tailed ON-OFF Models

The fractal nature of network traffic is consistent with and predicted by the behavior of the individual connections

that produce the aggregate traffic stream. In WAN traffic, individual connections correspond to “sessions”, where

a session starts at a random point in time, generates packets or bytes for some time and then stops transmitting.

On the other hand, in LAN traffic, individual connections correspond to an individual source-destination pair.

Individual connections are generally described using simple traffic models such as ON-OFF sources.

Traditional ON-OFF models assume finite variance distributions for the duration of the ON and the OFF

periods. The aggregation of a large number of such processes results in processes with very small correlations. On

the other hand, a positive random variable Y is called heavy-tailed with tail index α, if it satisfies: P [Y > y] =

1 − F (y) ≈ cy−a, y → ∞, 0 < α < 2, where C > 0 is a finite constant independent of y. This distribution has

infinite variance. Furthermore, if 1 < α < 2, then it has a finite mean. The superposition of many such sources

was shown to produce aggregate traffic that exhibits long-range dependence and even self-similarity [12, 22].

2.3.2 Monofractal Models

Self-similarity in a process indicates that some aspect of the process is invariant under scale-changing transfor-

mations, such as “zooming” in or out. In network traffic, this is observed when traffic becomes bursty, exhibiting

significant variability, on many or all time scales. The appeal and modeling convenience of self-similar processes

lies in the fact that the degree of self-similarity of a series can be expressed using only one parameter. The Hurst

parameter, H, describes the speed of decay of the series autocorrelation function. For self-similar series the value

of H is between 0.5 and 1. The degree of self-similarity increases as the Hurst parameter approaches unity.
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Figure 1: The autocorrelation as a function of time for different value of H.

A process {Xk} whose autocorrelation function, ρ(k), takes the form ρ(k) ≈ ck−β , 0 < β < 1, for large

k and a constant c > 0, is said to be long-range dependent. This implies that the autocorrelation function decays

slowly and is not summable, thus
∑

k ρ(k) → ∞. Figure 1 shows the autocorrelation as a function of time for

streams with different H value. Note that for streams with greater H the autocorrelation decays slower as a

function of time.

In the case of traffic traces, self-similarity is used in the distributional sense: when viewed at varying

scales, the object’s distribution remains unchanged. Equivalence in distribution between X and Y is denoted by

X
d
= Y . We provide in the following certain common definitions of self-similar traffic processes, following [22]: Let

X = {Xt : t = 1, 2, 3, . . .} be a second-order stationary sequence with mean µ = E[Xt], variance σ2 = var(Xt),

and autocorrelation function r(k) = E[(Xt+k−µ)(Xt−µ)]
σ2 . Let X(m)(t) = 1

m (Xtm−m+1 + . . . +Xtm), m = 1, 2, 3, . . .,

be the corresponding aggregated sequence with level of aggregation m, obtained by dividing the original sequence

X into non-overlapping blocks of size m and averaging over each block. The index t labels the block. For each

m = 1, 2, 3, . . . let X(m) = {X(m)(k) : k = 1, 2, 3, . . .} denote the averaged process with autocorrelation function

r(m)(k).

• A process X is called exactly second-order self-similar with parameter H = 1− (β
2 ), 0 < β < 1 if its correlation

coefficient is r(k) = 1
2 [(k + 1)2−β − 2k2−β + (k − 1)2−β ], k = 1, 2, 3, . . ..

• A strict-sense stationary process X is called strictly self-similar with parameter H = 1 − (β
2 ), 0 < β < 1, if

X
d
= m1−HX(m). If X is strictly self-similar, then it is also exactly second order self-similar. The opposite is not

true, except for Gaussian processes.
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• A process X is called asymptotically second-order self-similar with parameter H = 1 − (β
2 ), 0 < β < 1, if

limm→∞r(m)(k) = 1
2δ

2(k2−β), k = 1, 2, 3, . . . where δ2(f(x)) = f(x+ 1
2 )− f(x− 1

2 ).

• A strict sense stationary process X is called strictly asymptotically self-similar if X(m) d
= X, m → ∞. Note that

a strictly asymptotically self-similar process is not necessarily asymptotically second-order self-similar.

2.3.3 Fractal Gaussian Noise and Fractal Brownian Motion

The Fractal Brownian Motion (FBM) is a self-similar process with Gaussian stationary increment [14]. The incre-

ment process is called Fractal Gaussian Noise and its autocorrelation function is invariant under aggregation and

is given by: r(k) = 1/2[|k + 1|2H − 2|k|2H + |k − 1|2H ]. The FBM process accurately models Ethernet, ATM and

FDDI traffic, as well as video sources. The aggregate of on-off sources with heavy tails tends to an FBM.

The analysis of a queuing system with FBM input is quite challenging. However, it becomes manageable

if the fractal Brownian traffic [15] process is used instead. The fractal Brownian traffic is defined as the fluid input

in time interval (s, t], and is given by A(s, t) = m(t − s) + σ(Zt − Zs) where m is the mean input rate, σ2 is the

variance of traffic in a time unit and Zx is a normalized fractal Brownian Motion, defined as a centered Gaussian

process with stationary increments and variance E[Z2
t ] = t2H .

2.3.4 Distorted Gaussian

The Distorted Gaussian (DGauss) model begins with a Gaussian process with a given autocorrelation structure and

maps it into an appropriate marginal distribution. Examples of this popular traffic generation technique include

the Autoregressive-To-Anything Process [20] and the self-similar traffic model in [8].

Many techniques exist to generate Gaussian time series (Gaussian in the marginal distribution) with a

wide range of autocorrelation decay characteristics. A background Gaussian process Zk is imparted with an

autocorrelation structure ρ′(t) and is run through a fitting function Xk = F−1
X (FN (Zk)) to map its values into an

appropriate distribution. Due to the background-foreground transformations, pre-compensation is applied to the

background autocorrelation ρ′ such that the resulting output autocorrelation ρ matches the desired specification [8].

2.3.5 Fractal Lévy Motion

In [11] the authors introduced, a teletraffic model which takes into account, in addition to the Hurst parameter

H ∈ [1/2, 1), the Lévy parameter α ∈ (1, 2]. This was the so-called fractional Lévy motion (fLm), mentioned by

Mandelbrot in [14]. Two important subclasses of Lévy motion exist: (i) the well-known ordinary Lévy motion (oLm),

an α-stable process (distributed in the sense of P. Lévy) with independent increments, which is a generalization of

the ordinary Brownian motion (the Wiener process), and (ii) the fractional Lévy motion, a self-similar and stable

distributed process, which generalizes the fractional Brownian motion (fBm), has stationary increments and an

infinite “span of interdependence”.
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Several self-similar stable motions have been proposed for traffic modeling. These processes combine, in a

natural way, both scaling behavior and extreme local irregularity.

2.4 Multifractal Models

Historically following self-similar models, researchers have been studying also the possibility of modeling network

traffic with multi fractal processes (see [16] and references within). It appears that even though measured network

traffic is consistent with asymptotic self-similarity, it also exhibits small time scaling features that differ from those

observed over larger time scale. This small-time scaling behavior has been related to communication protocol-

specific mechanisms and end-to-end congestion control algorithms that operate at those small time scales (less

than a few hundred milliseconds). Modeling network traffic with multifractals has the potential of capturing the

observed scaling phenomena at large as well as small time scales and thus to naturally extend and improve the

original self-similar models of measured traffic.

To quantify the local variations of traffic at a particular point in time t0, let Y = {Y (t), 0 < t < 1} denote

the traffic rate process representing the total number of packets or bytes sent over a link in an interval [t0, t0 + t].

The traffic has a local scaling component α(t0) at time t0 if the traffic rate process behaves like tα(t0) as t → 0. In

this context, α(t0) > 1 relates to instants with low intensity levels or small local variations, and α(t0) < 1 is found

in regions with high level of burstiness or local irregularities.

If α(t0) is constant for all t0, then the traffic is monofractal. Equivalently, if α(t0) = H for all t0, then the

traffic is exactly self similar, with Hurst parameter H. On the other hand, if α(t0) is not constant and varies with

time, the traffic is multifractal.

The multifractal appearance of WAN traffic is attributed to the existence of certain multiplicative mech-

anisms in the background. Multifractal processes are well modeled using multiplicative processes or “conservative

cascades”. The latter are a fragmentation mechanism, which preserves the mass of the initial set (or does so in

the expected value sense). The generator of the cascade is called the fragmentation rule and the mathematical

construct that describes the way mass is being redistributed is called the limiting object or multifractal. Modern

data networks together with their protocols and controls can be viewed as specifying the mechanisms and rules of a

process that fragments units of information at one layer in the networking hierarchy into smaller units at the next

layer, and so on.

Multifractal processes are a generalization of self-similar processes. Hence, self-similar processes are also

multifractal, but the reverse is not always true. This leads to the important modeling question: which of the two

type of models is more appropriate in a given case? A method for distinguishing between the two models was

proposed in [19]. Their conclusion was that traffic traces from environments were well modeled using self-similar

models and that more sophisticated models such as multifractals were not needed. On the other hand, in WAN
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environments, there were cases where self-similar models were not deemed adequate and where multifractal models

appeared to be more appropriate.

2.5 Fluid Traffic Models

In fluid traffic modeling, individual units such as packets, are not explicitly modeled. Instead, traffic is viewed as

a “stream of fluid” arriving at a certain rate that may be changing. Fluid models can simplify analysis due to

their lower “resolution” or level of detail. More importantly, fluid models can make network simulation much more

efficient, since the computer representation of the fluid traffic requires much fewer “events” (e.g., rate changes) that

need to be tracked.

In modern high speed networks such as Asynchronous Transfer Mode (ATM) networks, the size of individual

packets is often fixed and very small (e.g., 53 bytes), relative to the total transmission speed and aggregate volume

of information being transmitted (e.g., hundreds of megabits or gigabits per second). Therefore fluid modeling

may be appropriate in such cases and, in general, whenever individual packets can be thought of as effectively

insignificant with respect to the total traffic. The validity of this approximation depends very much on the time

scale involved as well as the point of interest inside the network (e.g., access points versus large routers in the

middle of the network).

Fluid models [9] typically assume that sources are bursty, commonly of the “on-off” type. In the “off”

state, there is no traffic arriving, while in the on state traffic arrives at a constant rate. To maintain analytical

tractability, the durations of “on” an off periods are assumed exponentially distributed and mutually independent

(that is,they form an alternating renewal process).

3 Source Models

In this section, the modeling of different type of traffic sources is discussed. The flow generated by some network

sources are regulated by the stack of protocols used in the network. Such type of sources is called elastic sources.

Sources whose flow do not depend on network protocol are called streaming sources. First, streaming multimedia

sources are introduced, followed by the modeling of elastic sources. At last, a discussion on a general characterization

of traffic streams, called effective bandwidth, is given.

3.1 Data

Data streams were traditionally modeled by Poisson processes. The rationality behind it was that the superposition

of several independent renewal processes tends to a Poisson process.

The nature of traffic changes as new applications becomes a significant part of the network traffic. SMTP,

e-mail, Telnet and FTP were responsible for most of the traffic in pre-web time. As the use of web services became
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predominant, Internet traffic presents new patterns. Most of today network traffic is based on TCP. Internet traffic

observed at long time scale exhibits self-similarity. However, at short time scales, typically shorter than a round

trip time, Internet traffic presents high variability. At short time scales, Internet traffic marginal distribution is

non-Gaussian and the scaling exponent of the variance is smaller than the asymptotic exponent. In other words,

at short time scales, Internet traffic exhibits multi-fractal scaling, with different moments of the traffic showing

scaling described by distinct exponents. However, at high frequencies it can be modeled as self-similar, level [5] [4].

Such behavior is originated by the complex interaction between network protocols which governs the network flow

and TCP sources.

3.2 Voice

The packet stream from a voice source can be characterized by an on/off model, i.e. during silent periods no packet

is generated and during “talkspurts” periods packets are generated either at exponentially distributed intervals or

at constant intervals depending whether compression algorithms are used or not. The residence time in each state

is exponentially distributed.

A popular approach to analyze a multiplexer fed by several on/off sources is to use Markov modulated

processes to mimic the superposition process. The arrival rates and the transition probabilities of the underlying

Markov chain are defined in a way that certain statistics of the Markov modulated process have the same numerical

value of the corresponding statistics of the superposition process. The advantage of adopting a two-state process is

to keep the complexity of both the matching procedure and the queuing solution low. In a two state MMPP there

are only four parameters to be determined: the arrival rate and the sojourn time in each state. Several procedures

are available to set these four parameters. Most of procedures consider two super-states: the underloaded and the

overloaded states [18]. In the overload state, the packet generation rate (due to the number of source in state on)

exceeds the server capacity, whereas in the underload state it is below the server capacity.

3.3 Video

The bit rate of a video stream depends not only on the coding algorithm, but also on the level of activity of a

scene. Whenever there is a scene change, a new scene has to be encoded, generating a high number of bits to be

transmitted, and, consequently high bit rates.

The MPEG coding scheme is widely used for several types of applications. MPEG streams consist of a

series of frames. In MPEG-2, there are three types of frames: Intracoded (I), Predictive (P) and Bidirectional (B).

A periodic sequence of I, B, P frames is called Group of Pictures (GOP). An MPEG transmission consists of one

GOP after the other. Typically I frames will have more bits than P and B frames, and B frames will have the least

number of bits. The size of I frames can be approximated by a Normal distribution, whereas the size of B and P

frames can be approximated either by a Gamma or by a lognormal distribution. Figure 3 illustrates the bit rate
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profile of a typical video stream. The high peaks correspond to scene changes, whereas the low peaks correspond

to the activity within a scene.

Video traffic exhibits long range dependencies [2] [8]. The repetitive pattern of GOPs introduces strong

periodic components in the autocorrelation function (ACF). Video streams are usually modeled either by a fractal

Brownian motion process or by a fractal ARIMA (0,d, 0) process, which are LRD processes. However, some

researchers advocate that, for finite buffer, long-term correlation have minor impact on queuing performance,

and, therefore, Markovian models should be used, since only short term correlations impact the performance.

The discrete first-order autoregressive model, DAR(1), is a popular Markovian process used for video modeling.

Actually, Markovian models give rise to ACF of the form ρ(k) ∼ e−βk(β > 0), whereas an LRD process exhibits

ACF of the form ρ(k) ∼ k−β = e−βlogk(β > 0) [10]. In fact, the performance of fractal models may be overly

sensitive to the buffer size, and, consequently, may underestimate the actual performance. On the other hand,

Markovian models provide good performance under heavy loads; however they perform poorly under light loads
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[10].

3.4 Elastic Sources

The amount of data an application can pump into the network is often regulated by the network protocols and their

congestion control mechanisms which probe the available bandwidth to determine the amount of data which can be

transmitted. Traffic sources whose transmission rate depend on network congestion status are called elastic sources.

Examples of elastic sources are the Available Bit Rate service (ABR) in ATM networks and the Transmission Control

Protocol (TCP), largely deployed in the Internet.

TCP congestion control mechanism is a window based one. Segments, packets in TCP language, are

transmitted and acknowledgments from the receiver are expected. Each segment has a sequence number, set at the

receiving end. Acknowledgments specify the sequence number of the acknowledged segment. Acknowldegements

are cumulative, i.e., an acknowledgment notifies the transmitter that all the segments with a lower sequence number

were properly received. The time from sending a packet to receiving its acknowledgment is called Round Trip Time

(RTT). TCP controls a connection rate by limiting the number of transmitted-but-yet-to-be-acknowledge segments.

In the beginning, the window size is set to one. Every time an acknowledgment is received, i.e., at every RTT, the

window size is doubled, and the window grows up to a threshold. After this threshold, the window is incremented

by one segment.

Whenever an acknowledgment does not arrive after a pre-defined interval, a timeout event occurs and

the threshold is set to one-half the current congestion window and the congestion window is set to one. If the

transmitter receives three consecutive acknowledgments for the same segment, it is assumed that the next segment

was lost and the window is set to one-half its current value.

The evolution of the window size between loss events can be analyzed in order to determine a TCP

connection throughput, i.e., the amount of data a TCP connection pumps into the network per unit of time by

observing the window size evolution between loss events. The distribution of interloss periods as well as the

distribution of the type of the loss event should be taken into consideration in this computation.

4 Effective Bandwidths and Envelope Processes

Most communications services are subject to performance constraints designed to guarantee a minimal quality of

service (QoS). Consider a general traffic stream offered to a deterministic server, and assume that some prescribed

parameterized performance constraints are required to hold. The effective bandwidth of the traffic stream corre-

sponds to the minimal deterministic service rate, required to meet these constraints. Queuing-oriented performance

constraints include bounds on such statistics as queuing delay quantiles or averages, server utilization, and overflow
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probabilities. The effective bandwidth concept serves as a compromise between two alternative bandwidth alloca-

tion schemes, representing a pessimistic and an optimistic outlook. The strict one allocates bandwidth based on

the stream peak rate, seeking to eliminate losses, whereas the lenient one allocates bandwidth based on the stream

average rate, merely seeking to guarantee stability.

Let us formally define effective bandwidth: Let X[0, t] be the workload that arrived during time interval

[0, t] for a traffic stream. Effective bandwidth of the traffic stream is defined as α(s) = limt→∞ 1
st logE(esX[0,t]),

which is a function of s > 0, the so-called space parameter. In the effective bandwidth theory, s is the asymptotic

exponential decay rate of queue size distribution tail probability with respect to queue size. That is, when the

service rate is α(s), the queue size distribution tail probability with respect to queue size is P (Q > B) ≈ exp(−sB),

where Q denotes the queue size. This is why s is called the space parameter.

The notion of effective bandwidth provides a useful tool for studying resource requirements of telecommu-

nications services and the impact of different management schemes on network performance. Estimates of effective

bandwidths are called empirical effective bandwidths, while the analytical form are called analytical effective band-

widths.

Envelope Processes

An envelope process is a function which provides a bound for the amount of work generated in a traffic stream

during a certain time interval. If A(t2 − t1) is the amount of bits generated during the interval t2 − t1, Â(t) is

an envelope process for A(t) if and only if Â(t2 − t1) > A(t2 − t1), for any t2 > t1. For any traffic stream, A(t),

there is a whole family of possible envelope processes, however the lowest bound is the one of interest. Envelope

processes are useful tools since, in general, they require a small number of parameters, i.e., they are a parsimonious

way of representing a stochastic process. However, dimensioning based on envelope processes may overestimate the

required resources. Moreover, envelope processes are not appropriate for the study of phenomena at the cell time

scale, such as cell discarding.

Network services can be either deterministic or statistical. Accordingly, deterministic and stochastic enve-

lope processes are defined. A deterministic envelope process is a strict upper bound on the amount of work arriving

during an interval for a traffic stream. A commonly used envelope process is
∫ t

0
A(t) < ρt+σ, where ρ is the source

mean arrival rate and σ is the maximum amount of work allowed in a burst [3]. ρt + σ is a model for the output

of a leaky bucket regulator where ρ is the leaky rate and σ the bucket size.

In a stochastic envelope process, the amount of work generated in a certain interval may surpass a deter-

ministic bound with a certain probability value. An accurate stochastic envelope process for a fractal Brownian

motion process is ρt + kσtH where ρ is the mean arrival rate, σ is the standard deviation and H is the Hurst

parameter [6]. Note that the amount of work is not a linear function of time, it has a tH which takes into account

long periods of arrivals.
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5 Conclusions

The aim of traffic modeling is to provide network designers with simple means to predict the network load, and

consequently, the network performance. Since the early days of telephony network engineers have been engaged

in understanding the nature of network traffic, and its impact on Quality of Service provisioning. Traffic models

mimic the traffic patterns observed in real networks. The suitability of a traffic model is related to the degree of

accuracy of the conclusions that can be drawn from studies using such a model. Therefore, there is no unique

model for a certain type of traffic, but models with different degrees of accuracy.

With the advent of integrated networks, Poisson models for traffic streams were replaced by more sophis-

ticated short range dependent models which considered the correlation pattern besides the mean arrival rate. By

1993, the seminal work of Leland et al. [12] demonstrated the fractal nature of LAN traffic. Several other works

followed showing that other types of traffic such as video traffic were also fractal. Recent studies have shown that

Internet traffic is not precisely fractal at small time scales, but can be represented well as fractal at larger time

scales. The understanding of the impact of multifractality on network performance is still an open problem.

Traffic patterns are influenced by several factors such as the nature of file size, human think time, protocol

fragmentation and congestion control mechanisms. New challenging problems in traffic modeling will certainly exist

when multimedia applications become a significant part of the whole network traffic.
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