
tcplib: A Library of TCP Internetwork Traffic Characteristics

Peter B. Danzig Sugih Jamin

Computer Science Department, University of Southern California,
Los Angeles, California 90089-0781

traffic@excalibur.usc.edu

USC-CS-91-495

Abstract
This paper describes tcplib, a workload or source library for network

simulation. This paper motivates the need for tools like tcplib and discusses
how to incorporate it into a network simulator. Tcplib is available by
anonymous ftp1.

1. Introduction
When simulating computer networks, it is necessary to specify the traffic between network nodes. Typically,

simulation studies of wide-area TCP/IP networks model traffic as a combination of Poisson processes and maximal
rate streams—corresponding to TELNET traffic and large file transfers respectively. Such traffic models are justified
when the modeler wants to show, for example, that his flow control or gateway scheduling algorithm responds well
to worst case traffic or when essentially nothing is known about the real network traffic. Such traffic models do not
reveal how similarly robust algorithms respond to the common case load.

This paper describes tcplib, a library to help generate realistic TCP/IP network traffic. Tcplib is motivated by
our observation that present-day wide-area TCP/IP traffic cannot be accurately modeled with simple analytical
expressions, but instead requires a combination of detailed knowledge of the end-user applications responsible for
the traffic and certain measured probability distributions as reported in [Cáceres91] and [Danzig92]. We collected
three–day traces of wide area Internet traffic at UC Berkeley, University of Southern California, and Bell
Communications Research. Our study identified that out of more than 35 different application programs, FTP,
SMTP, NNTP, VMNET, TELNET, and RLOGIN are responsible for 96% of wide-area TCP/IP bytes. Two related
studies, one at University College London and the other at Lawrence Berkeley Laboratory, identified a subset of
these six applications as responsible for most of their wide–area TCP traffic [Crowcroft91] [Paxson91]. Tcplib
models five of these six applications. We excluded VMNET, an IBM mail exchange application, because it was
absent from three of the five traces. Furthermore, since TELNET and RLOGIN have essentially the same
characteristics, we have included in tcplib only routines describing TELNET’s. Additionally, we included
characteristics of phone conversations based on the study reported in [Brady65] and a distribution of conversations
composition breakdown derived from several stub-network traces. Table 1 lists the routine names included with
version 0.9 of tcplib.

2. How to Use the Library
We define a conversation as the set of TCP connections established by a particular application program.

Conversations are bidirectional. We differentiate between interactive and bulk-transfer conversations: the
transmission rate and packet size of interactive applications are limited by the users’ activity, whereas those of bulk-
transfer applications are limited by the network’s maximum transfer unit (MTU) and flow control. Thus for
interactive applications, we have the following characteristics: packet size, packet interarrival time, and duration of
conversation. Bulk-transfer applications are characterized by the total amount of bytes transferred.

Applications’ characteristics alone are not enough to drive a simulation; we also need to specify the arrival time
of each conversation. We will look at per application’s characteristics in this and the next section, deferring
discussion on arrival time to section 4. It should be noted that we use the Unix system library random number
generation routines drand48() and lrand48() in tcplib, thus the users should call the initialization routine srand48()
with the appropriate random number seed, before calling any of tcplib’s routines.

1The source library for TELNET, FTP, SMTP, and NNTP is available over anonymous ftp from jerico.usc.edu (128.125.51.6) in
directory ~ftp/pub/jamin/tcplib.

2

To simulate a TELNET conversation, we need to set up its source and destination. The source sends one-byte
packets at telnet_interarrival() time for telnet_duration() of the conversation. The destination waits for packets
from the source and sends response packets whose sizes are obtained from telnet_pktsize(). This is different from
the uniform, unidirectional model of TELNET sources used in previous simulation studies.

Application Type Routine Name

Interactive float telnet_duration()
float telnet_interarrival()
int telnet_pktsize()

float phone_talkspurt()
float phone_pause()

Bulk Transfer int ftp_nitems()
int nntp_nitems()

int ftp_itemsize()
int nntp_itemsize()
int smtp_itemsize()

int ftp_ctlsize()

Traffic Breakdown struct brkdn_dist *
brkdn_dist()

char*
next_app(struct brkdn_dist *brkdn_dist)

Table 1: Distribution functions included in version 0.9 of the traffic library.

To simulate an FTP conversation, we need to, once again, setup its source and destination. The source of an
FTP conversation models the number of items sent by calling ftp_nitems(). The size of each item is obtained from
ftp_itemsize(). Each item should be fragmented into network-MTU-size packets followed by a final smaller packet,
as needed. Currently we do not model the duration and number of control exchanges between items; however, the
sizes of packets sent during this period is available from ftp_ctlsize(). On receiving an FTP control packet, the
destination of the FTP conversation should response with control packets, also obtained from ftp_ctlsize(). Note that
our traces rarely found FTP conversations that both sent and received files, but the control channel handshaking does
make FTP conversations bidirectional.

An SMTP source sends a mail message after a series of address verification messages. Tcplib does not include
the distribution of the number of these messages. This may be added in a future release. The SMTP source calls the
routine smtp_itemsize() to pick an item size. The item size returned represents both the mail message and any
address verification messages. Because the response from the destination is negligible, tcplib does not model it.

NNTP sources are very similar to FTP sources. Unlike FTP however, NNTP conversations send items in both
directions. The current implementation of tcplib does not model the bidirectional nature of NNTP properly.
Furthermore, since we do not have the distribution of NNTP control packet sizes, we use packets with uniformly
distributed sizes smaller than NNTP_ARTICLE_SIZE. We define NNTP_ARTICLE_SIZE to be 250 bytes [Lapsley91].

Phone conversations share a lot of similarities with interactive applications. One party initializes the
conversation, then the two parties exchange data, interleaved with pauses, with an occasional cross-talk, and finally
the conversation is terminated. Tcplib provides the routine phone_talkspurt() and phone_pause() which return the
talkspurt and pause duration respectively. These numbers represent wall-clock time of talkspurts and pauses. In
using these routines, we need to multiply the values returned with the data rate of the specific voice-encoding
mechanism simulated (e.g. 64kbits/s). The talkspurts and pauses distribution used by tcplib were gathered from the
study reported in [Brady65].

3

3. Random Number Generation
Because curve fitting loses information and since it makes no difference to the simulator whether there exists an

analytical representation of the distributions, tcplib generates random numbers by the inverse transform method
[Jain91]. It inverts a piecewise linear representation of the measured distribution. Below, we briefly describe the
inverse transform method.

The inverse transform method maps uniformly distributed 0–1 random variates through the “y-axis” of the
cumulative probability distribution onto the “x-axis.” With distributions fitted to analytical expressions, the inverse
transform method involves inverting an equation. Consider, for example, generating an exponential random variate.
If µ is a 0–1 uniform random variate and l is the parameter of the exponential, then x=-log(1-µ)/l is an exponentially
distributed random variate. In our case, we built a histogram of the individual data points, and then summed the
histogram bin heights to create our distribution function. Hence, our distributions are represented by arrays rather
than expressions. An array index i corresponds to a particular value of the distribution. The contents of the array
element at index i, x[i], is the value of the cumulative distribution. Hence, to generate a random variate, we first
generate a 0–1 uniform random variate µ. We then perform a binary search on the array elements until we find the
element x[k] into which µ falls. Finally, we linearly interpolate between x(k) and x(k+1) to determine our random
variate x.

Another approach we could have adopted is to keep a sorted set of every single data point: instead of building a
histogram of the data points and search for the bin in which the random variate µ fell, we would create an array of
100 or 1000 elements, corresponding to 0.01-quantile and 0.001-quantile increments, indexed directly by µ. We
diecided against this approach because it takes more memory to implement than does the scheme described in the
previous paragraph.

4. Conversation Arrival Times and Traffic Breakdown
Given the characteristics that completely describe each application’s conversations, we now need to decide

when to start a new conversation. Molina showed in [Molina27] that phone conversations are served after an
exponentially distributed delay from the time of their arrivals. To the network, the interarrival times of phone
conversations are thus exponentially distributed. When simulating telephone conversations, a function similar to the
one in Fig. 1 could be used to determine the arrival time of the next conversation. Notice that the value of λ (mean
interarrival) in Figure 1 depends on the time-of-day and the activity level of the site simulated.

double
phone_interarrival()
{

return((-(double)λ) * log(drand48())));
}

Fig. 1: Exponential interarrival time.

Unfortunately, we do not have such a description for arrival times of data applications. Tcplib assumes an
exponential interarrival time for all conversations. For each arrival time, we then decide which application to assign
it to by calling the next_app() routine. Next_app() takes as an argument a traffic breakdown distribution obtained
from the routine brkdn_dist(). Brkdn_dist() takes the mean (η) and variance (σ 2) of each application’s probability of
occurrence and returns a traffic breakdown distribution. The mean and variance of an application’s occurrence
probability were calculated from its measured breakdown in our traces. In generating the traffic breakdown
distribution, brkdn_dist() uses the Ahrens method for generating random numbers distributed as a gamma
distribution of integer order r, the r-stage Erlangian distribution. Gamma distribution has a low enough coefficient
of variation to produce random numbers with variance matching our measurements. Equations 1 and 2 give the
gamma density function and the standard deviation of Erlangian distribution taken from [Press88] and [Kleinrock75]
respectively.

pr(x)dx =
xr-1e-x

Γ(r)
 dx, x > 0 (Eq. 1)

σErlang =
1

√ r
 ()1

η (Eq. 2)

4

5. Compiling tcplib
Recall that characterizing an application can require several distributions. For example, TELNET needs library

routines for TELNET conversation duration, packet interarrival time, and packet size (See Table 1). We collected all
the distribution needed to create the library from our trace of U.C. Berkeley traffic, and placed them in ASCII files.
You will find these files in directory data.

The program tcplibgenh reads each of the distribution files and translates them into initialized C language
arrays. These arrays contain the cumulative probability distribution for each application characteristic, as described
in the previous section. The arrays for each application are placed in a C language header file. For example, telnet.h
contains the initialized arrays for duration, packet interarrival time, and packet size.

As explained in the previous section, tcplib generates a uniform 0–1 random variate and finds the cumulative
distribution bin in which the variate falls. It then performs a linear interpolation between the lower and upper
bounds of the bin’s contents to find the value of the random variate.

The program tcplibgenc creates the procedures for generating application characteristics, the ones you link with.
Tcplibgenc also adds the names of these procedures to the file tcpapps.h.

Similarly, breakdown.c contains the program that reads in a set of traffic breakdown data, and generates
app_brkdn.h. App_brkdn.h contains an array with the mean and variance of each application’s breakdown.
Brkdn_dist.c contains the routine breakdown() which uses the array in app_brkdn.h to generate a stub network’s
traffic breakdown. Brkdn_dist.c also contains the routine next_app(), which takes a stub network’s traffic
breakdown and randomly generates the name of an application. To use the traffic breakdown routines in tcplib, you
need to include the file brkdn_dist.h in your source code.

6. Testing tcplib
To test the library we generated one thousand data points for each application characteristic. Figure 2 compares

the cumulative probability distribution of the generated data points with those from the original traces. The curves
match very well. Note that this does not test correlation in the random processes; this is another area for future
work.

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

10 100 1000
Control Packet Size (bytes)

measured

simulated

0

0.2

0.4

0.6

0.8

1

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

10 100 1000 104

Number of Items

measured

simulated

(a) FTP control packet sizes (b) Number of items sent per FTP conversation

5

0

0.2

0.4

0.6

0.8

1

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

100 104 106 108

Item Size (bytes)

measured

simulated

0

0.2

0.4

0.6

0.8

1

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

100 104 106

Item Size (bytes)

measured

simulated

(c) FTP item size (d) SMTP item size

0

0.2

0.4

0.6

0.8

1

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

10 100 1000 104

Number of Items

measured

simulated

0

0.2

0.4

0.6

0.8

1

100

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

1000 104 105

Item Size (bytes)

measured

simulated

(e) Number of items sent per NNTP conversation (f) NNTP item size

0

0.2

0.4

0.6

0.8

1

100

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

1000 104 105 106 107

Duration (ms)

measured

simulated

0

0.2

0.4

0.6

0.8

1

0.1 10

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

1000 105 107

Interarrival Time (ms)

measured

simulated

(g) Duration of TELNET conversations (h) Interarrival times of TELNET packets

6

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
1 10 100 1000 104

Packet Size (bytes)

measured
simulated

(i) TELNET packet sizes

0

0.2

0.4

0.6

0.8

1

10

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

100 1000 104

Talkspurts (ms)

measured

simulated

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

10 100 1000 104

Pauses (ms)

measured

simulated

(j) Phone talkspurts (k) Phone pauses

Fig. 2: Comparison of measured and simulated characteristics cumulative distribution.

6. Wide-Area Network Simulation
We have incorporated tcplib into the tcpsim network simulator. Tcpsim [McCanne91] is a successor to the

REAL network simulator [Keshav88]. Both tcpsim and REAL run on top of the discrete-event simulator NEST
[Dupuy90]. In this section we describe extensions and modifications we made to tcpsim to support our workload
model. We hope that in describing the changes we made to tcpsim to accommodate tcplib, we will give the readers
an inclination on how to incorporate tcplib into their simulators.

6.1. Representing Conversations and Conversation Arrivals
We modified tcpsim’s simulation description language to allow specification of stub-networks’ conversation

interarrival time. Given a stub-network’s conversations’ mean interarrival time, we use tcplib to generate
conversation arrival times. To each arriving conversation, we need to assign a simulator thread. Ideally, such
threads could be dynamically created and destroyed. Unfortunately, tcpsim only supports static allocation of
simulator threads. We therefore need to know the number of threads needed by each application. For this, we
added a “dry-run” mode to tcpsim. At the end of a dry-run, the modified tcpsim prints out the simulation topology
and the required number of threads per application for the specified simulation duration.

We observed that not all conversations of a given application overlap in simulation time. Thus we could specify
a number of thread less than the number of conversation arrivals. A thread that has finished simulating a
conversation could be assigned to the next conversation. This scheme works fine except when the gateway queueing
mechanism, such as Fair-Queueing [Demers89] or Virtual Clock [Zhang90], uses the conversation identification
(cid), which is associated with each thread, to regulate its use of the gateway’s buffer space. Since it is non-trivial to
modify tcpsim to generate a new cid for a given thread, we have run our simulations with the same number of

7

threads as the total number of conversations.2 As a thread finishes simulating a conversation, it is put to sleep by
scheduling it at a time later than the simulation duration. Because NEST uses a long-integer format for passing the
next run-time of a thread to the scheduler, we had problems with long-running simulations and had to modify the
scheduler to take an argument in the float format.3

Finally, we should also note the change we made to the configuration language to allow us to describe a number
of threads representing similar conversations in one specification.

6.2. Application-driven Data Transfer with Retransmission
The next modification we made to tcpsim regulates the sending of application data. Originally, the transport

layer of tcpsim calls the application layer for more data to send whenever the simulated network interface is free.
The data sizes of each application is fixed by a specification in the simulation configuration file at startup time. Our
changes allow each application to control its packet sizes and transmission times.

Since applications running under the original tcpsim are assumed to use one-size packets, tcpsim did not keep
transmitted packets around for retransmission. We, however, wanted the number of packets and bytes sent to
conform to our measured data, so we added a retransmission queue to tcpsim.

6.3. Bidirectionality of Data Flow
The final important change we made to tcpsim allows bidirectional traffic flow. In the original design of tcpsim,

only the source of a conversation runs a transport protocol. The destination of a conversation runs a sink routine
which does nothing but sends ACK packets. We incorporated the sink routine to the transport protocol and run the
same protocol on both the source and destination of a conversation. On receiving a packet, the transport protocol
sends an ACK packet back to the sender and interrupts the application layer, notifying it of an incoming packet. The
application layer might choose to transmit some data in response.

7. Limitations and Future Work
Tcplib needs to be extended in several ways. Most crucially, it needs a better model of conversation arrival

rates. In [Danzig92] we showed that these arrival rates are site dependent, hence this will require detailed study
from many Internet stub networks. Tcplib currently lacks several application specific details. It does not model the
interarrival time of FTP control packets. It does not model the distribution of number of request response
handshakes that occur during SMTP and NNTP conversations. It does not model TELNET packet sizes longer than
the network MTU. It does not model VMNET and other applications, such as video conferencing, that may
eventually consume significant wide–area network bandwidth.

The simulator also needs some major overhaul. Routing between nodes is currently determined statically at the
beginning of a simulation run. To study routing protocols, such as multi-path routing, it would be necessary to add
dynamic routing to the simulator. We need to modify tcpsim to support thread re-use and/or dynamic thread
creation. Tcpsim could also use some more extensible statistics gathering and tracing mechanisms. Currently it does
only a minimal amount of statistics gathering, preferring to print out event traces for later analysis. Considering the
amount of resident memory required to run the simulation, and the flexibility of not having to re-run the simulation
for every new set of statistics one becomes interested in, deferring statistics gathering to a later phase is a very good
decomposition. Unfortunately, simulation of 1000 seconds simulation time could easily produce a 150 megabyte
trace file. And finally, and most crucially, we need to replace the event generation mechanism used by NEST. NEST
uses the UNIX signal() system call to activate each and every event in the simulation, such that half of the
simulator’s running time is spent inside the UNIX kernel.

Despite its limitations, we believe that tcplib makes an important contribution to performance modeling of
TCP/IP internetworks. We are interested in your comments and bug reports.

2A newer version of tcpsim allows connection setup and teardown, which could potentially be used for thread recycling.
3This introduces undefined randomization to timing, a different encoding that doesn’t lose precision would be better.

8

References
[Brady65] Brady, P.T., “A Technique for Investigating On-Off Patterns of Speech,” The Bell System

Technical Journal, Jan ’65, pp. 1-22.
[Cáceres91] Cáceres, R., Danzig, P.B., Jamin, S., and Mitzel, D.J., “Characteristics of Wide-Area TCP/IP

Conversations,” Proc. of ACM SIGCOMM '91, pp. 101-112.
[Crowcroft91] Crowcroft, J., Traffic Analysis of Some UK-US Academic Network Data, University College

London Tech. Rep. RN/90/UK.
[Danzig92] Danzig, P.B., Jamin, S., Cáceres, R., Mitzel, D.J., Estrin, D., “An Empirical Workload Model for

Driving Wide-Area TCP/IP Network Simulations,” to appear in the Journal of Internetworking:
Practice and Experiences, 1992.

[Demers89] Demers, A., Keshav, S., and Shenker, S., “Analysis and Simulation of a Fair Queueing
Algorithm,” ACM SIGCOMM ’89, pp. 2-12.

[Dupuy90] Dupuy, A., et al., “NEST: A Network Simulation and Prototyping Testbed,” CACM 33:10, April
’90, pp. 63-74.

[Jain91] Jain, R., The Art of Computer Systems Performance Analysis, John Wiley & Sons, 1991.
[Keshav88] Keshav, S., REAL: a Network Simulator, UCB Tech. Report. UCB/CSD 88/472, 1988.
[Kleinrock75] Kleinrock, L., Queueing Systems, vol. 1, John Wiley & Sons, 1976.
[Lapsley91] Lapsley, P., E-mail communication, 1991.
[McCanne91] McCanne, S., unreleased code for tcpsim, 1991.
[Molina27] Molina, E.C., “Application of the Theory of Probabilities to Telephone Trunking Problems,” Bell

System Tech. Jl., 6, 1927, pp. 461-494.
[Paxson91] Paxson, V., Measurements and Models of Wide-Area TCP Conversations, Lawrence Berkeley Lab.

Tech. Rep. LBL-30840, 1991.
[Press88] Press, W.H., et al., Numerical Recipes in C, Cambridge University Press, 1988.
[Zhang90] Zhang, L., “Virtual Clock: A New Traffic Control Algorithm for Packet Switching Networks,”

Proc. of SIGCOMM ’90, pp. 19-29.

