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Simulation

• Emulation – hardware/firmware simulation

• Monte-carlo simulation – static simulation, 
typically for evaluation of numerical 
expressionsexpressions

• Discrete event simulation – dynamic 
system, synthetic load

• Trace driven simulation – dynamic systems, 
traces of real data as input



Networks & Queues



Queuing

Telephone

Computer

Computer



Measures of Interest

• Waiting time in the queue

• Waiting time in the system

• Queue length distribution

• Server utilization

• Overflow probability



Discrete Event Simulation

• Represents the stochastic nature of the 
system being modeled

• Driven by the occurrence of events

• Statistical experiment



Discrete Event Simulation



Events

• State Variables – Define the state of 
the system
– Example: length of the queue– Example: length of the queue

• Event: change in the system
– Examples: arrival of a client, departure 
of a client



Discrete Events

• Occurance of event – needs to reflect 
the changes in the system due to the the changes in the system due to the 
occurance of that event



Discrete Events

• Primary event – an event which 
occurrence is scheduled at a certain 
timetime

• Conditional event � an event 
triggered by a certain condition 
becoming true



Discrete Event Simulation

• The future event list (FEL) …
– Controls the simulation

– Contains all future events that are scheduled

– Is ordered by increasing time of event notice– Is ordered by increasing time of event notice

– Contains only primary events

• Example FEL for some simulation time t≤T1:

(t1, Event1) (t2, Event2) (t3, Event3) (t4, Event4)

t1≤ t2≤ t3≤ t4



Discrete Event Simulation

• Operations on the FEL:
– Insert an event into FEL (at appropriate 
position)

– Remove first event from FEL for processing
– Delete an event from the FEL– Delete an event from the FEL

• The FEL is thus usually stored as a linked 
list

• The simulator spends a lot of time 
processing the FEL
– Efficiency is thus very important!



DES

FEL

empty?

yes

nono

Remove and process 

first primary event

Conditional

event enabled? noyes

Process 

conditional event



DES

• Simulation clock � register virtual 
time, not real timetime, not real time

• Can simulate one century in a second



DES

Simulation 
clock: t2

(t2, Arrival) (t3, Service complete)



Book Keeping

• Procedures that collect information 
(logs)  about the dynamics of the 
simulated system to generate reports simulated system to generate reports 

• Can collect information at the 
occurance of every event or every 
fixed number of events



Simulating a Queue

Simulation clock:

Arrival Customer Begin Service Service

interval arrives service duration complete

15

interval arrives service duration complete

5 5 5 2 7

1 6 7 4 11

3 9 11 3 14

3 12 14 1 15



Computing Statistics

Average waiting time for a customer: (0+1+2+2)/4=1.25

Arrival Customer Begin Service Service

interval arrives service duration completeinterval arrives service duration complete

5 5 ←0→ 5 2 7

1 6 ←1→ 7 4 11

3 9 ←2→ 11 3 14

3 12 ←2→ 14 1 15



Computing Statistics

P(customer has to wait): =3/4=0.75

Arrival Customer Begin Service Service

interval arrives service duration completeinterval arrives service duration complete

5 5 5 2 7

1 6 ←W→ 7 4 11

3 9 ←W→ 11 3 14

3 12 ←W→ 14 1 15



Computing Statistics

P(Server busy): 10/15=0.66

Arrival Customer Begin Service Service

interval arrives service duration completeinterval arrives service duration complete

5 5 5 2 7

1 6 7 4 11

3 9 11 3 14

3 12 14 1 15



Computing Statistics

Average queue length: =(1*1+2*1+2*1)/15=0.33

Arrival Customer Begin Service Service

interval arrives service duration completeinterval arrives service duration complete

5 5 0→ 5 2 7

1 0→ 6 1→ 7 4 11

3 0→ 9 1→ 11 3 14

3 0→ 12 1→ 14 1 0→ 15



How To Generate A Random 
Variable?
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Random Number Generator

• Efficiently computable;

• The period (cycle length) should be 
large;

• The period (cycle length) should be 
large;

• The successful values should be 
independent and uniformly 
distributed;



How To Generate A Random 
Variable?

• Linear congruential method

• Xn+1 = (a Xn + b) modulo m



Random Variable Generation

• Let X0 = a = b = 7, and m = 10
• This gives the pseudo-random 
sequence {7,6,9,0,7,6,9,0,…}

• What went wrong?
sequence {7,6,9,0,7,6,9,0,…}

• What went wrong?
• The choice of the values is critical to 
the performance of the algorithm

• Also demonstrates that these 
methods always “get into a loop”



Linear Congruential Method

• a, b and m affect the period and 
autocorrelation

• Value depend on the size of memory 
word

• Value depend on the size of memory 
word

• The modulus m should be large – the 
period can never be more than m

• For efficiency m should be power of 2
– mod m can be obtained by truncation



Linear Congruential Method

• If b is non-zero, the maximum possible 
period m is obtained if and only if:

– m and b are relatively prime, i.e., has non 
common factor rather than 1

– Every prime number that is a factor of m 
should be a factor of a-1



Linear Congruential Method

• If m is a multiple of 4, a-1 should be a 
multiple of 4;

• All conditions are met if: 
– m = 2k, a = 4c + 1
– c, b and k are positive integer



Multiplicative Congruential 
Method

• b=0 period reduced, faster

Xn =  a Xn-1 modulo mXn =  a Xn-1 modulo m

• m = 2k – maximum period 2k-2

• m prime number – with proper 
multiplier a maximum period m-1 



Unix

• m= 248

• a = 0x5DEECE66D

• b = 0xB• b = 0xB

• errand48(), lrand48(), nrand48(), 

mrand48(), jrand48()



Period 



Seeds

• Initial value – right choice to 
maximize period lengthmaximize period length

• Depends on a, b and m



Seeds



Multiple Streams of 
Random Number

• Avoid correlation of events

• Single queue: Different streams for 
arrival and service timearrival and service time

• Multiple queues: multiple streams

• Do not subdivide a stream

• Do not generate successive seeds to 
initially feed multiple streams



Multiple Streams of 
Random Number

• Use non-overlaping treams

• Reuse successive seeds in different 
replications

• Don’t use random seeds• Don’t use random seeds



Table of Seeds



Random Number Generators

• Tausworthe Generator

• Extended Fibonacci Generator• Extended Fibonacci Generator

• Combined generator



Random Variate Generation

• We have a sequence of pseudo-random uniform 
variates. How do we generate variates from 
different distributions?

• Random behavior can be programmed so that the • Random behavior can be programmed so that the 
random variables appear to have been drawn from 
a particular probability distribution

• If f(x) is the desired pdf, then consider the CDF

• This is non-decreasing and lies between 0 and 1
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Random Variate Generation

• Given a sequence of random numbers ri

distributed over the same range (0,1)

• Let each value of ri be a value of the 
function F (x)

• Let each value of ri be a value of the 
function Fx(x)

• Then the corresponding value xi is uniquely 
determined

• The sequence xi is randomly distributed and 
has the probability density function f(x)



Random Variate Generation



Random Variate Generation



Method of Inverse

• For the exponential distribution

• For positive x
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Method of Inverse

• Note that ri has the same distribution as 1-ri

so we would in reality use

• Other random variates can be derivated in a 

similar fashion.
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Method of Inverse



Method of Inverse



Rejection-acceptance



Rejection-acceptance



Rejection-acceptance



Composition



Composition



Convolution

• Random variable is given by the sun of 
independent random variable

• Examples: erlang, binomial, chi-square



Convolution

• Example: Erlang random variable is the 
sum of independent exponentially 
distributed random variables

Step1: Generate U1, U2, …Uk independent and 
uniformly distributed between 0 and 1

Step2: Compute X= –λ-1 ln(U1 U2…Uk)
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Convolution



Characterization

• Algorithm tailored to the variate by 
drawing from transformation, etc

• Example: Poisson can be generated by • Example: Poisson can be generated by 
continuosly generating exponential 
distribution until exceeds a certain 
value



Characterization

• Pollar Method – exact for Normal 
distribution

• Generate U1 and U2 independent 
uniformly distributed

• Generate U1 and U2 independent 
uniformly distributed

• Step1: V1 = 2U1 -1 and V2 = 2U2 -1
• Step 2: If (S =V1

2 + V2
2) >= 1 

• reject U1 and U2 repeat Step1
• Otherwise X1 = V1 [(-2lnS)/S]1/2



Random Variate Generation



Random Variate Generation



Steady State Distribution



Transient Removal

• Identifying the end of transient state

• Long runs

• Proper initialization• Proper initialization

• Truncations

• Initial data collection

• Moving average of independent replication

• Batch means



Transient Removal
Long Runs

� To neutralize the transient effects

�Waste of resources�Waste of resources

• Proper initialization – choice of a 
initial state that reduces transients 
effects



Transient Removal
Truncation

• Low variability in steady state

• Plots  max-min n – j (j = 1, 2..) 
observations

• When (j+1)th observation is neither the • When (j+1)th observation is neither the 
minimum nor the maximum – transient 
ended



Truncation



Transient Removal
Deletion  of Initial Observation

• No change on average value – steady state

• Produce several replications• Produce several replications

• Compute the mean

• Delete j observation and check whether 
the sample mean was achieved. When found 
such j the duration of transient is 
determined



Transient Removal
Deletion  of Initial Observation



Transient Removal
Moving average independent 

replication

• Similar to initial deletion method but 
the mean is computed over moving the mean is computed over moving 
time interval instead of overall mean



Transient Removal
Moving average independent 

replication



Transient Removal
Batch Mean

• Take a long simulation run
• Divide the observation into intervals• Divide the observation into intervals
• Compute the mean of this intervals
• Try different sizes of batches
• When variance of batch mean starts 
to decrease – found the size of 
transient



Transient Removal
Batch Mean



Simulation: A Statistical 
Experiment



Simulation: A Statistical 
Experiment

• “Any estimate will be a random variable. 
Consequently a fixed, deterministic 
quantity must be estimated by a random 
quantity”quantity”

• “The experimenter must generate from the 

simulation not only an estimate but also enough 

information about the probability distribution so 

that reasonable confidence on the unknown value 

can be achieved”



Statistical Analysis of Results

• Given that each independent replication of 
a simulation experiment will yield a 
different outcome…

• To make a statement the about accuracy • To make a statement the about accuracy 
we have to estimate the distribution of the 
estimator

• Need to determine that the distribution 
becomes asymptotically centered around 
the true value



Statistical Analysis of Results

• Cannot be established with certainty 
in the case of a finite simulation

• The usual method used to estimate 
variability is to produce “confidence 
interval” estimates



Confidence Interval



Confidence Intervals

• Given some point estimate p a we produce a 
confidence interval (p-δ, p+δ)

• The “true” value is estimated to be 
contained within the interval with some 

• The “true” value is estimated to be 
contained within the interval with some 
chosen probability, e.g. 0.9

• The value δ depends on the confidence level 
– the greater the confidence, the larger the 
value of δ



The central circle has a radiu of 20 cm, only 5% of the 
arrows are thrown out of the circle

An observer does not know where 
the circle is centered



The observer draws a circle around each point 
on the board made by the arrow. 

After drawing several circle the position of the target point laysAfter drawing several circle the position of the target point lays
In the intersection of all circles



Confidence Intervals

• Let x1, x2, …, xn be the values of a random sample 

from a population determined by the random 

variable X

• Let the mean of X be µ=E(X) and variance σ2• Let the mean of X be µ=E(X) and variance σ2

• Assume: either X is normally distributed or n is 

large

• Then: by the law of large numbers, X≈normally 

distributed



Central Limit Theorem

• The sum of a large number of independent
observations from any distribution tends
to have a normal distribution:

)/,(~ nNx σµ

Standard deviation



Central Limit Theorem



Confidence Intervals

• Then, given σ the 100(1-α)% confidence interval 
is given by

where
δ±x

where

(2)

• zα is defined to be the largest value of z such that 
P(Z>z)=α and Z is the standard normal random 
variable

n

z
σ

αδ
2/

=



Confidence Interval

( )nszxnszx /,/ 2/12/1 αα −− +−



Confidence Intervals

• Can be taken from tables of the normal 

distribution

• For example, for a 95% confidence interval 

α=0.05 and zα/2=z0.025=1.96



Confidence level = 95%, α = 0.05 and p = 1 – α/2



Example

• = 3,90; s=0,95 e n=32.

• Confidence level of 90%

• Confidence level of 95%
)17,4;62,3(32/)95,0)(645,1(90,3 == m

x

• Confidence level of 95%

• Confidence level of 99%
)23,4;57,3(32/)95,0)(960,1(90,3 == m

)33,4;46,3(32/)95,0)(576,2(90,3 == m



Using Student`s T

• When we know neither µ nor σ we can use the 

observed sample mean x and sample standard 

deviation s

• If n is large then we simply use s for σ in Equation • If n is large then we simply use s for σ in Equation 

(2).

• If n is small and X is normally distributed then we 

may use

n

t
s2/αδ =



Using Student`s T
• The ratio                for samples from normal 

populations follows a t (n-1) distribution

• t is defined by P(T>t )=α/2

( )









−

n
S

x µ

• tα/2 is defined by P(T>tα/2)=α/2

• T has a Student-t distribution with n-1 degrees of 
freedom

• This is the more frequently used formula in simulation 
models



t Student



t(n-1) Density Function



Confidence Interval
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Confidence Interval





Confidence Interval
Variance Estimation
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Confidence Interval
Variance Estimation
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Independent Replications

• Generate several sample paths for the 
model which are statistically independent 
and identically distributed.

• Reset the model performance measures at • Reset the model performance measures at 
the beginning of each replication,

• Use a different random number seed for 
each independent replication



Independent Replications

• Distributions of the performance 
measures can then be assumed to 
have finite mean and variancehave finite mean and variance

• With sufficient replications the 
average over the replications can be 
assumed to have a Normal 
distribution



Confidence Interval
Single run

• Sequence of output are correlated

• Many correlated observations must be 
taken to give the variance reduction taken to give the variance reduction 
achieved by one independent 
observation
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Confidence Interval
Single run

• Batch means

• Regenerative Method

• Spectral Method



Batch Means

Lkfork ≥≈0)(ρ Lkfork ≥≈0)(ρ

LN 5≥



Batch Means

• Divide data in batches (sub-sample) and 
compute the mean of each batch

• The confidence interval is computed in the 
same way as in the independent replication same way as in the independent replication 
method, except that samples are the batch 
means instead of means from different 
replications

• Discard lower amount of data than the 
replication method



Batch Means



Batch Means



Regenerative Method

• Points of regeneration – no memory

• Tour - each period of regeneration• Tour - each period of regeneration

• Compute the desired value by taking 
the mean of the values obtained in 
each tour



Regenerative Method



Spectral Method

• Compute the correlation between 
runs

• Does not assume independent runs

• Confidence interval takes into 
account correlation between runs



Analysis of output data



Trace Driven Simulation

• Trace – time ordered record of 
events on a system

– Example : sequence of packets 
transmitted in a link

• Trace-driven simulation – trace input



Trace Driven Simulation

• Easy validation

• Accurate workload• Accurate workload

• Less randomness 

• Allow better understanding of  
complexity of real system



Trace Driven Simulation

• Representativiness

• Finiteness (huge amount of data)• Finiteness (huge amount of data)

• Difficult to collect data

• Difficult to change input parameters 



Multiprocessed Simulation

• Work on a single simulation run

• Distributed Simulation

• Parallel Simulation
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