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Introduction

The Internet has experienced a fascinating evolution in the recent past, especially since the early days of the Web,
a fact well-documented not only in the trade journals, but also in the popular press. Unprecedented in its growth,
unparalleled in its heterogeneity, and unpredictable or even chaotic in the behavior of its tra�c, \the Internet is its
own revolution", as Anthony-Michael Rutkowski, former Executive Director of the Internet Society, likes to put it.
At the same time, folklore has it that mathematics lies at the heart of Internet operation. After all, the argument
goes, mathematics is the language of computers, and the Internet is currently connecting tens of millions of them, and
still doubling every year [Lo98]. Yet the Internet is a new world, one where engineering reality wins over tradition-
conscious mathematics and requires \paradigm shifts" that favor a combination of mathematical \beauty" and high
potential for contributing to pragmatic Internet engineering. In this article, we take a look at how the Internet di�ers
in fundamental ways from the conventional voice networks, how the (r)evolution of the Internet is impacting the
world of mathematics in the small as well as in the large|both on how mathematics is done, and, for understanding
the network itself, on what sort of mathematics is done|and why this, in turn, makes Internet engineering a gold
mine for new, exciting and challenging research opportunities in the mathematical sciences.1

Teletra�c Theory and Internet Engineering

The term \teletra�c theory" originally encompassed all mathematics applicable to the design, control and manage-
ment of the public switched telephone networks (PSTN): statistical inference, mathematical modeling, optimization,
queueing and performance analysis. Later, its practitioners would extend this to include data networks such as
the Internet, too. Internet engineering, an activity that includes the design, management, control and operations
of the global Internet, would thus become part of teletra�c theory, relying on the mathematical sciences for new
insights into and a basic understanding of modern data communications. However, from its early days, the Internet
emphasized engineering and experimentation and was less concerned with mathematics and theory. In fact, some in
the Internet community are quick to point out that today's Internet \works" because it ignored mathematics|in
particular, teletra�c theory|and herein lies an interesting tale.

Mathematics and POTS

For someone living in an industrialized country, what is the likelihood of not getting a dial-tone when trying to make
a phone call?2 Now, what about not being able to connect to a popular web server over the Internet : : :?

The answers to these questions range from once in a month or year in the �rst case, to once in an hour or day
in the second case. Indeed, traditional teletra�c theory|as applied to POTS (plain old telephone service)|has
arguably been one of the most successful applications of mathematical techniques in industry. It has led to �rst-
rate telephone networks, whose quality of service we fully rely on and take for granted. It has enabled enormous
e�ciencies in the deployment and day-to-day operations of telecommunications networks and has resulted in near-
universal telephony throughout the industrialized world. Among the main reasons for this tremendous success of
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V. Paxson's work was supported by the Director, O�ce of Energy Research, O�ce of Computational and Technology Research, Math-
ematical, Information, and Computational Sciences Division of the United States Department of Energy under Contract No. DE-AC03-
76SF00098. This paper appears in the Notices of the American Mathematical Society, 45(8), pp. 961{970, Sept. 1998.

1Note that this article is not intended to provide a comprehensive bibliographical guide to the latest developments and advances in
this area; for such a guide, the interested reader may want to consult, for example, the recent survey paper [WTE96].

2Here we mean a voice call. We address the interesting case of dialing up to an Internet Service Provider below.
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teletra�c theory and practice in traditional telephony are the highly static nature of conventional PSTNs and a
well-de�ned and ever-present notion of limited variability, a trademark of homogeneous systems where one can talk
about \typical" users and \generic" behavior and where averages describe system performance adequately. Another
important reason has been the special appeal of the most widely used models to the engineering community, mainly
because of their simplicity, physical interpretation, and practical relevance: they required only a few inputs that
could be readily estimated in practice.

The static nature of traditional PSTNs contributed to the popular belief in the existence of \universal laws"
governing voice networks, the most signi�cant of which is the presumed Poisson nature of call arrivals at links in the
network where tra�c is heavily aggregated, such as at inter-o�ce trunk groups. This law states that call arrivals are
mutually independent and that the call interarrival times are all exponentially distributed, with one and the same
parameter �.

Equivalently, if X = (Xk : k � 1) denotes the number of call arrivals in successive, non-overlapping time intervals
of length �t > 0, then X is the increment process of a Poisson process with parameter � if and only if the random
variables Xk are independent and identically distributed with

P [Xk = n] = e���t
(��t)n

n!
; n � 0: (1)

Tra�c models such as the Poisson process, whose full dynamics can be described with one or just a few parameters,
are termed parsimonious, a highly desirable property for reasons we develop later.

The Poisson law has remained valid for modeling purposes for at least �fty years. So has a related invariant of
POTS tra�c that speci�es that call \holding times" (durations) follow more or less an exponential distribution. Three
other important teletra�c laws are: growth rates are highly predictable, allowing for �ne-tuned short- and long-term
capacity planning; network controls and operations are fully centralized, so one can envision taking advantage of
information about the network's global state; and o�ered services are strictly regulated and monitored.

On the other hand, the static PSTN environment has resulted in a steady decline of the perceived importance
of continued measurements, and has emphasized instead the need for analytical techniques. While teletra�c theory
was originally based on empirical studies and on tra�c measurements that were collected laboriously from the public
telephone networks3, soon the belief in the Poisson process and the exponential distribution as \universal laws" for
POTS overcame the curiosity associated with collecting and analyzing more data. Moreover, new mathematical
results provided a sound physical basis for the observed Poisson nature of call arrivals on trunk groups. As an
example, the Palm-Khintchine theorem states that the superposition of many independent and properly normalized
renewal processes|each one describing the call arrivals on a single phone line|forms a Poisson process. The resulting
tra�c models were, in general, mathematically tractable and could be used to predict accurately many performance
measures of interest. Queueing theory was born. A faith in \true" tra�c models took over, the need for further
tra�c measurements was glossed over, and the main focus shifted to turning queueing theory into a full-edged
mathematical discipline.

Ironically, the complacency engendered by this mathematical elegance and (particularly) success has recently
been rocked by changes in the \static" world of telephony. Fifty-year-old patterns of telephone use, the bedrock of
the teletra�c modeling success story, now have been greatly undermined by two major new uses of the telephone
network. These changes began with the advent of FAXes in the 1980s and have continued and become more drastic
with the popularity of the Web.

The key change is that telephone calls used for FAX transmission and Internet access have statistical character-
istics dramatically di�erent from a typical voice call. They tend to be signi�cantly longer and much more variable
in their duration than a voice call, and their numbers have recently increased dramatically, especially in terms of
Internet access calls. Both types of calls are now playing havoc with the existing PSTN engineering infrastructure
designed to deal with voice calls only. In some places, call \blocking" has increased to unacceptable levels, especially
during late evening hours (popular with Web surfers), and ad-hoc engineering methods have become necessary to
prevent temporarily Internet access calls from saturating access to the public telephone network. Clearly, theory no
longer meets reality and as a result, capacity planning becomes dicey and inexact, and concentrated, industry-wide
e�orts for o�-loading Internet tra�c from the PSTN are under way.

Goodbye Poisson

One might expect that the voice network modeling success story would enjoy another triumph when applied to data
networks, and indeed this has been attempted. But in fact much of the voice tra�c modeling has proven nothing

3Pioneering work by Erlang, Palm, Wilkinson and others, over half a century ago.

2



short of disastrous when applied to data networks, for the simple but profound reason that the rules all change when
it is computers and not humans doing the talking.

Voice tra�c has the property that it is relatively homogeneous and predictable, and, from a signaling perspective,
spans long time scales. Consequently, many concurrent voice connections can be easily \multiplexed" to share a
common (expensive) wire or \link," by allocating a �xed amount of the link's capacity to each connection. When a
new call request arrives, it is easy to determine whether a given link has su�cient capacity to carry the additional
load. As a result, voice networks have been engineered in a circuit-switching fashion. That is, the \routers" internal
to the network, which are responsible for forwarding tra�c from one link to the next so that it ultimately reaches its
destination, keep track of each currently active connection, and when new tra�c arrives, look up its corresponding
connection to determine where to forward the tra�c. The principal abstraction is known as providing \virtual
circuits," because the network behaves as if it provides a direct circuit from the tra�c source all the way to its
destination.

In contrast to voice tra�c, data tra�c is much more variable, with individual connections ranging from extremely
short to extremely long and from extremely low-rate to extremely high-rate. These properties have led to a design
for data networks in which each individual data \packet" or \datagram" transmitted over the network is forwarded
through the network independently of previous packets that may have been transmitted by the same connection. Each
packet is self-contained, and the routers need only inspect the \header" of the packet to determine its destination
and forward it through the network. Consequently, the routers do not keep track of each currently active connection.

This shift away from circuit-switching toward packet-switching has profound implications. On the one hand, it
results in highly e�cient networks. Any time capacity is available in the network, newly arriving packets can bene�t
from it. Each packet in the network competes with all the others|if there happens to be little competing tra�c
along a particular path, then a connection using it can enjoy the entire \bandwidth" of the path, and transfer its
data very quickly. If many connections compete along the same path, then each will receive a (perhaps unfair)
portion of the available bandwidth. In addition, packet switching buys enormous robustness : it enables networks to
route transparently around router or link failures without perturbing active connections. Routers have no problem
accepting the rerouted tra�c because, as far as they can tell, it is not in any way \new" tra�c|they have no notion
of \current" tra�c and hence no problem accepting tra�c they did not until that very moment know existed|a
situation very di�erent from a circuit-switched network, in which the routers cannot easily accept rerouted tra�c
because they have no knowledge of the corresponding virtual circuit.

However, links can become overloaded because packets arrive for transmission along them at rates exceeding
the capacity of the link. Such packets will be \bu�ered" awaiting transmission along the link, but if the excess
rate is sustained|a condition termed \congestion"|then ultimately the bu�ers in the routers will �ll up and some
packets must be discarded, or dropped. To ensure that sources behave properly in the presence of congestion in the
network, the protocols used for transmitting data in the Internet include end-to-end congestion control mechanisms
that decrease automatically the rate at which data are transmitted when congestion is detected. An important
consequence of the use of congestion control is that tra�c in the network is shaped by the conditions each connection
has encountered in its past. Thus, Internet tra�c includes a basic mechanism that introduces signi�cant, complicated
correlations across time, as well as complex interactions among the active connections.

A damaging legacy of the telephony inuence on data network research was a virtually complete absence in the
1970s and 1980s of attempts to validate crucial modeling assumptions against actual data network tra�c measure-
ments. Yet, just a few measurement studies su�ce to discover that data tra�c is highly variable or very bursty.
That is, it does not come at a steady rate, but instead in starts and �ts, with lulls in between. The term \bursty"
has a readily understood intuitive meaning, but it turns out that nailing down its precise, mathematical meaning
has profound implications for developing mathematical models of network tra�c. The natural approach for getting
a handle on burstiness is to de�ne it in terms of a time scale over which activities and lulls occur. For telephony, this
time scale is related to the rate � of the Poisson process (1) that describes the dynamics of call arrivals. For example,
if � = 100=sec, then the time scale of burstiness is around 10 msec, and periods of sustained, greater-than-average
activity or sustained, lower-than-average lulls over much smaller or larger time scales occur with rapidly vanishing
probability.

However, practitioners have long observed that tra�c bursts in data networks do indeed occur on many di�erent
time scales and that such multi-scale burstiness simply does not �t the world of traditional Poisson-based tra�c
modeling. The Poisson framework does not even provide a vocabulary for discussing burstiness of this sort.4 Figure 1
is a visual demonstration of the failure of Poisson modeling to capture the burstiness present in actual network tra�c.
The plots were generated based on an hour-long trace of Internet tra�c collected o� a network link connecting a

4Indeed, we �nd researchers falling back on metaphors to try to characterize their observations: \tra�c `spikes' (which cause actual
losses) ride on longer-term `ripples', that in turn ride on still longer-term `swells'." [FL91]
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Figure 1: Synthesized tra�c from a Poisson model vs. Internet tra�c to which its mean and variance were �t, viewed
over three orders of magnitude

large corporation to the Internet.5 From this trace we synthesized another, hour-long series of packet arrivals created
by �tting a simple Poisson-based model to the mean and variance of the measured sample. More elaborate modeling
could be done, but the end e�ect (see below) would be the same.

We then observe visually the burstiness of the original trace and the synthetic trace as we vary the time scale of
observation. The top row shows a randomly selected subset of each trace on a time scale of 100 msec; that is, each
point in the plots reects the number of packets observed during a 100 msec interval, for a total of 6 sec. The second
row shows a time scale a factor of ten larger: now, each point reects the number of packets per 1 sec, spanning
60 sec total. The black regions illustrate from where the plots in the row above were made. A key point is that we
not only have increased the scale of the X-axis by a factor of 10, but we have done the same to the Y -axis. With
the third row we have again increased the scale in both X and Y by a factor of ten, and in the �nal row by another
factor of six, such that here the plots span the entire hour of the traces.

The di�erence between the Poisson model and the measured tra�c is obvious and striking: as the time scale
increases, the Poisson tra�c \smooths out," becoming quite tame, while the measured tra�c shows no such predilec-
tion. This di�erence is absolutely crucial from an engineering perspective: tra�c that behaves as shown in the left
column can be easily engineered for. Above a certain time scale, there are no surprises|everything boils down to
knowing the long-term arrival rate; no need for big bu�ers in routers or switches, no reasons for being conservative
in choosing safe operating points for engineering backbone trunks, and why even think of user-perceived quality-of-
service as being a relevant issue? In stark contrast, measured tra�c like that shown in the right column is wild,
remains so even on quite coarse time scales, and plays havoc with conventional tra�c engineering: routers require
big bu�ers to accommodate the tra�c uctuations across many time scales; in the absence of any e�ective controls,
safe operating points have to be set conservatively because the tra�c can saturate the link at any time and over any
time scale; and adequate overall network performance can no longer be taken as a guarantee of happy individual
users.

5The measurements were gathered by J. Mogul in 1995, and are available from the Internet Tra�c Archive,
http://www.acm.org/sigcomm/ITA/.
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The edi�ce of Poisson modeling repeatedly told Internet network engineers to expect the behavior shown on
the left|but what they really observe is the roller-coaster ride on the right! The Internet engineering community
has thus come to consider teletra�c theory as irrelevant (and, actually, detrimental) to the development of the
Internet. More speci�cally, it has criticized the Poisson-based approach on grounds that the models: (i) have little in
common with network engineers' practical experience observing their networks, (ii) are theoretical constructs based
on assumptions lacking validation against measured data, especially when extended with additional parameters for
describing burstiness, (iii) are too complex to aid in developing intuition or a physical understanding of actual network
tra�c dynamics (\black boxes"), and (iv) require inputs (parameter estimates) that, in practice, cannot be speci�ed,
collected or estimated.

Hello Fractals

Many networking experts argue that the only way to gain an in-depth understanding of data network tra�c is|
simply put|doing away with teletra�c tradition and starting from scratch. Interestingly, mathematics, which has
been largely responsible for the success story of teletra�c theory for the voice network, has recently provided strong
ammunition in support of the networking experts' arguments. However, as voice tra�c turns out to di�er drastically
from data tra�c, so too do the underlying mathematical ideas and concepts. The relevant mathematics for POTS
is one of limited variability in both time|tra�c processes are either independent or have temporal correlations that
decay exponentially fast|and in space, i.e., the distributions of tra�c-related quantities have exponentially decaying
tails. But for data networks, the mathematics is one of high or extreme variability. Statistically, temporal high
variability in tra�c processes is captured by long-range dependence, i.e., autocorrelations that exhibit a power-law
decay. On the other hand, extreme forms of spatial variability can be described parsimoniously using heavy-tailed
distributions with in�nite variance, i.e., probability distributions F with the property that for large x-values,

1� F (x) � �1x
�� ; (2)

where �1 is a positive �nite constant that does not depend on x and where the tail index � is in the interval (0; 2).
This property is, for example, satis�ed by the well-known family of \Pareto distributions," originally introduced for
modeling the distribution of income within a population.

It turns out that power-law behavior in time or space of some of their statistical descriptors often cause the
corresponding tra�c processes to exhibit fractal characteristics. In the present context, we say that a tra�c process
has fractal characteristics if there exists a relationship between certain quantities Q of the underlying process and
the resolution � , of the general form

Q(�) � �2�
f(D); (3)

where �2 is a positive �nite constant that does not depend on � . Here � denotes a resolution in time or space at
which Q is evaluated, and (3) speci�es how Q must vary as a function of the resolution � ; f(�) is a simple, often
linear, function of D; and D is a fractal dimension. To declare fractality, the above relationship is supposed to hold
for a range of di�erent � -values, with a value of D that is less than the embedded dimension.

Fractal concepts have been non-existent in teletra�c theory. Yet, a look at Figure 1 (right side) shows fractal-
like behavior, over a wide range of time scales, from hundreds of milliseconds to seconds to tens of seconds and
beyond. In fact, Figure 2 shows the same sort of plot as in Figure 1, except now instead of using a Poisson-based
model, we use a very simple mathematical model called fractional Gaussian noise that is strictly fractal in a sense
to made precise shortly. For now, a covariance-stationary Gaussian process X = (Xk : k � 1) is called a fractional
Gaussian noise with Hurst parameter H 2 [0:5; 1) if the autocorrelation between Xn and Xn+k, k � 0, is given by
cor(Xn; Xn+k) = 1=2(jk + 1j2H � 2jkj2H + jk � 1j2H). Along with �tting the model to the measured tra�c's mean
and variance, it requires one extra parameter, the Hurst parameter H , which quanti�es the strength of the fractal
scaling. Visually, the synthesized tra�c using the fractal model is in the right ballpark, and we can achieve this
using only one additional parameter! This last comment is a crucial property of the fractal modeling approach: it
preserves parsimony, meaning that the model is su�ciently simple that we have some hope of applying it across a
wide range of conditions without requiring too many guesses as to how to set its parameters.

In view of the general skepticism that exists in the di�erent circles in the mathematical community concerning
the need, usefulness, and appropriateness6 of fractals, what can we say about fractal-like scaling in measured data
network tra�c? To examine this question, we call a discrete-time, covariance-stationary, zero-mean stochastic process

6See for example the recent survey by Avnir et al. [ABLM98] that reports, for all the Physical Review journals from 1990 to 1996, a
scaling range of experimentally-declared fractality that averages a mere 1.3 decades (orders of magnitude, base 10).
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Figure 2: Synthesized tra�c from a simple fractal model vs. Internet tra�c to which its mean, variance and Hurst
parameter (H) were �t, viewed over three orders of magnitude

X = (Xk : k � 1) exactly self-similar or fractal with scaling parameter H 2 [0:5; 1) if, for all levels of aggregation or
\resolution," m � 1,

X(m) = mH�1X;

where the equality is understood in the sense of �nite-dimensional distributions, and where the aggregated processes
X(m) are de�ned by:

X(m)(k) = m�1(X(m�1)k+1 + � � �+Xkm); k � 1:

For example, the fractional Gaussian noise process introduced earlier is exactly self-similar with scaling parameter
equal to the Hurst parameter. It is easy to check that for an exactly self-similar process with scaling parameter H ,
the functional relationship given by

VarX(m) = �1m
2H�2

holds and �ts the form of (3). The resulting linear log-log representation ofVarX(m) vs. m is called the variance-time
plot. An illustration of it based on the Internet tra�c trace used for Figures 1 and 2 is shown in Figure 3. Clearly,
the observed scaling range spans 3 decades, indicating compelling evidence of fractal-like scaling. In other traces
from di�erent networks, scaling ranges spanning 3{5 decades are common.

When assessing the validity of describing a process using a self-similar model, one must be very careful not to
mistake actual non-stationarities (e.g., connection arrival rate varying with time) for highly-variable but stationary
fractal behavior. The two can appear very similar, both to the eye and to a number of statistical tests. However,
this concern can be addressed by making good use of the very large size of network tra�c traces. For example, we
can extract numerous �ve-minute portions of a trace, analyze them for possible fractal behavior, and then compare
the results to those for neighboring �ve-minute portions, and also to encompassing ten-minute portions, to see if
the analyses yield consistent results, which then supports arguing that the data are well-modeled as stationary.
Ordinarily, this process might encounter problems as we run out of data points and the subsamples become too small
for compelling analysis. But for network tra�c, we have \data to burn." In turn, this motivates the development
of novel statistical techniques that exploit fully the impressive sample sizes and replace traditional concepts that
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Figure 4: Bytes per day sent through the Internet's USENET bulletin board system. Data courtesy of R. Adams.

Another basic source of problematic Internet change concerns the extremely rapid advent of new applications.
In October 1992, the aforementioned research lab participated in a total of 45 WWW connections, over the entire
month. But in the months that followed, the Web exploded, and that same site's Web tra�c began to double every
six weeks and continued doing so for two entire years. Today the site participates in more than half a million WWW
connections each day. From the perspective of Internet researchers, the Web came from out of nowhere. No one,
not even its staunchest proponents, had predicted such rapid success in their wildest dreams. Worse, its tra�c has
properties that until then were not common in the Internet. Carefully considered extrapolations regarding future
tra�c became obsolete virtually overnight!7

Toward scienti�c inference

Clearly, if one's goal is to understand and predict Internet behavior in any sound fashion, then the di�culties outlined
in the previous section must be sobering; they demonstrate that there are enormous hurdles to overcome in terms of
how rapidly the network changes, and the great diversity embodied within it. One approach for dealing with the pace
at which the Internet changes, as well as with its extreme heterogeneity, is to base �ndings about the Internet on
careful examinations of a wide range of Internet measurements, taken at di�erent points in time, at di�erent points in
the network, and under a variety of di�erent networking conditions. However, this approach has its own drawbacks:
not only does it mean diligent and immensely time-consuming \digging around" in data, but statistical inference
as it is currently taught and practiced has little to o�er when faced with the task of drawing statistically sound
conclusions from a large number of large data sets. Conventional statistical inference emphasizes the analysis of
single data sets that are typically small ; works to near perfection when it comes to the testing of \true models" using
small samples; and has developed over the years an arsenal of techniques and tools that help an analyst \squeeze a
data set dry" [Ch95].

What Internet tra�c researchers instead require are inference methods that can fruitfully span a large collection of
high-volume data sets. They need tools for searching for law-like relationships across di�erent data sets that generalize
to a wide range of di�erent conditions. These approaches de�ne what is generally called scienti�c inference. They
have a long history in the physical sciences but have been all but ignored in the social sciences and in the traditional

7We note that this phenomenon is not unique to the Web. Other applications have also exploded. The Web|so far|is the only one
that has continued to explode for more than a few years.

8



Upper tail, 32,630 connections

WWW Connection Size (bytes)

P
ro

ba
bi

lit
y

10^4 5*10^4 5*10^5 5*10^60.
00

00
1

0.
00

01
0.

00
1

0.
01

0.
1

1.
0

Figure 5: (Conditional) log-log complementary distribution plot of WWW connection sizes, given that the connection
size is at least 10,000 bytes.

statistics literature. To study Internet tra�c, we want scienti�c inference for what J. Tukey calls \broadening
the basis," which means trying to uncover tra�c invariants, i.e., features in tra�c that are insensitive to the
constantly changing conditions that networks experience. Such an approach emphasizes building intuition and
physical understanding over traditional black-box descriptions or conventional data �tting. At the same time,
scienti�c inference provides the proper framework for Internet tra�c researchers who are desperate for parsimonious
models of Internet tra�c: any model with an immodest number of parameters is doomed to impracticality, because
knowledgeable researchers know there is no hope of assigning meaningful values to all of the parameters. Put another
way: parsimony in the context of Internet tra�c is achievable only if the search for tra�c invariants turns out to be
successful.

Is there hope? Is there Math?

Unfortunately, there exist no scienti�c inference recipes for the identi�cation of tra�c invariants in an abundance of
high-quality, high-volume data sets of Internet tra�c measurements. One can, of course, still try to �nd invariants by
diligent manual analysis and hard or unconventional thinking. Any successfully-identi�ed invariant becomes worth
its weight in gold, as it o�ers hope that some sort of coherent and parsimonious model of the network might actually
prove attainable. In the following, we outline briey what we consider to be some of the successfully-identi�ed
invariants to date.

First, while Poisson models have been decisively rejected as a basis for characterizing the arrivals of individual
data packets in the Internet, there is solid evidence that these models do apply for the much more modest domain of
characterizing the \arrivals" of humans to the Internet. That is, the times at which people begin using the Internet
for a speci�c task do indeed conform to a memoryless process with an arrival rate that can be deemed constant over
time intervals of many minutes to perhaps an hour. The basis for this invariant are data sets of Internet-related
measurements that contain information about the start times of, for example, TELNET and FTP connections
[PF95], orWWW sessions [FGWK98], collected over a number of years and at numerous locations.

Another, much more intriguing invariant, is that when considering the sizes (in number of bytes or packets) or
durations (measured in seconds) of a set of network sessions or connections, one almost always �nds that the empirical
distribution exhibits the heavy-tailed property (2), with � < 2 and, sometimes, even � � 1. These cases indicate
extreme variability: � < 2 means that the tra�c process at hand is well-modeled as exhibiting in�nite variance, and
in the case � � 1, as having an in�nite mean.

Figure 5 illustrates that these heavy tails are very well grounded in measured data. The data for this plot came
from a day's WWW tra�c at a large research laboratory. The day was chosen arbitrarily from (literally) hundreds
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of days' worth of recorded tra�c. We now look at the size of each WWW connection. All in all, there were 226,000
connections. If we restrict ourselves to those connections transferring at least 10,000 bytes (the upper 14% tail), and
plot their complementary distribution function (Eqn 2) against the corresponding size, both on a log-log scale, then
we get the plot shown in Figure 5. A straight line on such a plot corresponds to tail behavior that agrees with that
of a Pareto distribution, and its slope gives ��. It is strikingly clear that the more than 32,000 points plotted in
Figure 5 do indeed fall on a line, and that, with � � 1:3, the data are indeed consistent with in�nite variance.

Note that the heavy tail property is for the distribution of an aggregate property of a tra�c source, such as how
much total data it will send. It says nothing about how the source will in fact send the data when dividing them
into a series of packets for transmission across the network. Consequently, one might well wonder to what use we can
possibly put the �nding of the in�nite variance property at the session or connection level as a tra�c invariant. The
surprising answer is that there are new mathematical results that relate the presence of connection sizes or durations
with in�nite variance directly with the �nding of fractal scaling in aggregate network tra�c at the packet level!
Thus, the compelling presence of the in�nite variance property in data set after data set of connection-level Internet
measurements has also become the bedrock of the shift away from Poisson-based modeling of data tra�c over to
fractal-based modeling. That it is an invariant therefore explains why fractal scaling is an invariant. In addition,
it turned out to be the basis for a very simple physical explanation of the empirically observed fractal nature of
aggregate network tra�c (i.e., total number of packets or bytes per time unit). As such, heavy tails aided immensely
in de-mystifying fractal tra�c modeling.

Even more striking is that, in fact, the progression of results proceeded the opposite of what we outlined above. It
was not the case that researchers observed the heavy-tailed or in�nite variance property of individual connections and
then went from there to postulate fractal tra�c models. Instead, based on an extensive analysis of numerous traces
collected from di�erent local area networks during a 4 year period, and by applying the principles of \broadening the
basis" and \borrowing strength from large data sets," some researchers �rst made the|at the time, nearly crazed|
leap to postulate fractal tra�c models [LTWW94]. Furthermore, while at that time the researchers could not
directly answer the natural question of \Why fractal??" they did speculate as to possible mechanisms|speculation
that basically told the network research community \go look for heavy tails." Once the researchers knew what to
look for, they started �nding them everywhere! For example, heavy tails can be found in: CPU time consumed by
di�erent processes; sizes of �les in a �le system; Web item sizes; inter-keystroke times when a person types; sizes of
FTP bursts; and sizes and durations of bursts or idle periods of individual Ethernet connections.

These examples serve to illustrate that some of the hard-won progress to date toward getting to know the dynamics
of Internet tra�c has come from close collaborations between mathematicians and networking researchers. On the
one hand, mathematicians feel generally overwhelmed by all the details related to the architecture of modern-day data
networks, the underlying protocol hierarchies and the di�erent network technologies. Nevertheless, many of these
apparently minor details need to be understood to ensure that the mathematics research does not become detached
from the networking application. On the other hand, networking researchers are generally less interested in the �ne
details of a mathematical proof or de�nition but want to be convinced at an intuitive level and/or through empirical
arguments. When left on their own, Internet experiments and instrumentation, and the resulting measurements
and prototypes, are impressive engineering achievements; and the theoretical results in fractal geometry represent
intriguing and beautiful mathematics. However, the prospect is that in combination, they will contribute to a
signi�cantly improved understanding of the Internet.

Should mathematicians care?

The original �nding of fractal scaling phenomena in Internet tra�c was greeted with skepticism by many math-
ematicians. They considered it as yet another example of a \fad" that comes and goes, with ultimately nothing
to show for it, similar to what had happened in other areas in the natural or social sciences such as hydrology,
economics, or biophysics, where the fractal \craze" proved to be short-lived and had absolutely no impact beyond
some philosophical discussions about the general purpose of modeling.

What these mathematicians missed was that the application of fractal analysis to networking was fundamentally
di�erent from these other applications. In addition to Internet engineering reality being the driving force, the
available data sets are unique and outstanding, not only with regard to volume and quality, but, more importantly,
with respect to the amount of information that is contained in every observation (i.e., data packet). This information
provides detailed knowledge about the di�erent layers in the hierarchical structure of modern-day networks, about
how the di�erent protocols that operate on those layers interact with one another, and, indirectly, about interactions
between the di�erent connections that share a given link. The richness of the data has a profound impact on how
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the data sets are analyzed, interpreted and modeled. It is di�cult to think of any other area in the sciences where
the available data provide such detailed information about so many di�erent facets of behavior.

The switch from Poisson to fractal thinking in network tra�c research has had a major impact on our under-
standing of actual network tra�c, to the point where we now know why aggregate Internet tra�c exhibits fractal
scaling behavior over time scales from a few hundreds of milliseconds onwards. A measure of the success of this
shift in thinking is that the corresponding mathematical arguments are at the same time rigorous and simple, are in
full agreement with the networking researchers' intuition, and can be explained readily to a non-networking expert.
An equally important part of this new understanding is the realization that we do not yet have a similarly clear
picture of the dynamics of Internet tra�c over �ne time scales, from hundreds of milliseconds downwards, where
the end-to-end congestion control mechanisms determine the ow of packets at the di�erent layers in the networking
hierarchy. However, recently reported empirical �ndings suggest that measured Internet tra�c over those small
time scales exhibits pronounced local irregularities that are consistent with multifractal scaling behavior and can
be analyzed e�ectively using wavelet-based techniques. While wavelets can be expected to advance signi�cantly the
multifractal analysis of Internet tra�c, the networking application is equally likely to inuence the development of
new wavelet-based techniques: ways to exploit fully the properties and rich structure of the available data sets.

Finally, we mention developments of a di�erent nature that again beg for mathematical attention, and hold
promise for interesting mathematical problems. Several networking research projects are now working on systematic
Internet measurements: sets of potentially thousands of \probe platforms" deployed throughout the network that
engage in both independent and orchestrated measurement of network paths in attempts to characterize the network's
behavior and to locate trouble spots. Such a network-wide view of Internet tra�c dynamics includes both temporal
and spatial dimensions, as well as a dimension de�ned by the di�erent layers in the networking hierarchy. Clearly,
the interesting problems here are those of interactions, correlations and heterogeneities in time, space, and across the
di�erent networking layers. In addition, when the ultimate goal is to enable the tens of millions of Internet users to
determine what performance they can obtain from the network, irrespective of where they are and when they want
this information, and how to improve the engineering of the network to meet their myriad needs, then the analysis
problems acquire a central element of scale, extending well beyond what has previously been attempted. While the
sheer scale may appear daunting, we still have the signi�cant advantage of superb data sets with which to work.
The problems then acquire a character of tantalizing challenge, and solving them moves beyond mere interesting
mathematics, into the regime of answering questions that will help determine just how e�ective this monstrous
emerging global infrastructure actually proves.
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